/* * Copyright 2011 Red Hat Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Ben Skeggs */ #include #include "drmP.h" #include "drm_crtc_helper.h" #include "nouveau_drv.h" #include "nouveau_connector.h" #include "nouveau_encoder.h" #include "nouveau_crtc.h" #include "nouveau_fb.h" #define MEM_SYNC 0xe0000001 #define MEM_VRAM 0xe0010000 struct nvd0_display { struct nouveau_gpuobj *mem; struct { dma_addr_t handle; u32 *ptr; } evo[1]; }; static struct nvd0_display * nvd0_display(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; return dev_priv->engine.display.priv; } static int evo_icmd(struct drm_device *dev, int id, u32 mthd, u32 data) { int ret = 0; nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000001); nv_wr32(dev, 0x610704 + (id * 0x10), data); nv_mask(dev, 0x610704 + (id * 0x10), 0x80000ffc, 0x80000000 | mthd); if (!nv_wait(dev, 0x610704 + (id * 0x10), 0x80000000, 0x00000000)) ret = -EBUSY; nv_mask(dev, 0x610700 + (id * 0x10), 0x00000001, 0x00000000); return ret; } static u32 * evo_wait(struct drm_device *dev, int id, int nr) { struct nvd0_display *disp = nvd0_display(dev); u32 put = nv_rd32(dev, 0x640000 + (id * 0x1000)) / 4; if (put + nr >= (PAGE_SIZE / 4)) { disp->evo[id].ptr[put] = 0x20000000; nv_wr32(dev, 0x640000 + (id * 0x1000), 0x00000000); if (!nv_wait(dev, 0x640004 + (id * 0x1000), ~0, 0x00000000)) { NV_ERROR(dev, "evo %d dma stalled\n", id); return NULL; } put = 0; } return disp->evo[id].ptr + put; } static void evo_kick(u32 *push, struct drm_device *dev, int id) { struct nvd0_display *disp = nvd0_display(dev); nv_wr32(dev, 0x640000 + (id * 0x1000), (push - disp->evo[id].ptr) << 2); } #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m)) #define evo_data(p,d) *((p)++) = (d) static struct drm_crtc * nvd0_display_crtc_get(struct drm_encoder *encoder) { return nouveau_encoder(encoder)->crtc; } /****************************************************************************** * CRTC *****************************************************************************/ static int nvd0_crtc_set_dither(struct nouveau_crtc *nv_crtc, bool on, bool update) { struct drm_device *dev = nv_crtc->base.dev; u32 *push, mode; mode = 0x00000000; if (on) { /* 0x11: 6bpc dynamic 2x2 * 0x13: 8bpc dynamic 2x2 * 0x19: 6bpc static 2x2 * 0x1b: 8bpc static 2x2 * 0x21: 6bpc temporal * 0x23: 8bpc temporal */ mode = 0x00000011; } push = evo_wait(dev, 0, 4); if (push) { evo_mthd(push, 0x0490 + (nv_crtc->index * 0x300), 1); evo_data(push, mode); if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, dev, 0); } return 0; } static int nvd0_crtc_set_scale(struct nouveau_crtc *nv_crtc, int type, bool update) { struct drm_display_mode *mode = &nv_crtc->base.mode; struct drm_device *dev = nv_crtc->base.dev; u32 *push; /*XXX: actually handle scaling */ push = evo_wait(dev, 0, 16); if (push) { evo_mthd(push, 0x04c0 + (nv_crtc->index * 0x300), 3); evo_data(push, (mode->vdisplay << 16) | mode->hdisplay); evo_data(push, (mode->vdisplay << 16) | mode->hdisplay); evo_data(push, (mode->vdisplay << 16) | mode->hdisplay); evo_mthd(push, 0x0494 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x04b0 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x04b8 + (nv_crtc->index * 0x300), 1); evo_data(push, (mode->vdisplay << 16) | mode->hdisplay); if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, dev, 0); } return 0; } static int nvd0_crtc_set_image(struct nouveau_crtc *nv_crtc, struct drm_framebuffer *fb, int x, int y, bool update) { struct nouveau_framebuffer *nvfb = nouveau_framebuffer(fb); u32 *push; /*XXX*/ nv_crtc->fb.tile_flags = MEM_VRAM; push = evo_wait(fb->dev, 0, 16); if (push) { evo_mthd(push, 0x0460 + (nv_crtc->index * 0x300), 1); evo_data(push, nvfb->nvbo->bo.offset >> 8); evo_mthd(push, 0x0468 + (nv_crtc->index * 0x300), 4); evo_data(push, (fb->height << 16) | fb->width); evo_data(push, nvfb->r_pitch); evo_data(push, nvfb->r_format); evo_data(push, nv_crtc->fb.tile_flags); evo_kick(push, fb->dev, 0); } return 0; } static void nvd0_crtc_cursor_show(struct nouveau_crtc *nv_crtc, bool show, bool update) { struct drm_device *dev = nv_crtc->base.dev; u32 *push = evo_wait(dev, 0, 16); if (push) { if (show) { evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 2); evo_data(push, 0x85000000); evo_data(push, nv_crtc->cursor.nvbo->bo.offset >> 8); evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1); evo_data(push, MEM_VRAM); } else { evo_mthd(push, 0x0480 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x05000000); evo_mthd(push, 0x048c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); } if (update) { evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); } evo_kick(push, dev, 0); } } static void nvd0_crtc_dpms(struct drm_crtc *crtc, int mode) { } static void nvd0_crtc_prepare(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 *push; push = evo_wait(crtc->dev, 0, 2); if (push) { evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x03000000); evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); evo_kick(push, crtc->dev, 0); } nvd0_crtc_cursor_show(nv_crtc, false, false); } static void nvd0_crtc_commit(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 *push; push = evo_wait(crtc->dev, 0, 32); if (push) { evo_mthd(push, 0x0474 + (nv_crtc->index * 0x300), 1); evo_data(push, nv_crtc->fb.tile_flags); evo_mthd(push, 0x0440 + (nv_crtc->index * 0x300), 4); evo_data(push, 0x83000000); evo_data(push, nv_crtc->lut.nvbo->bo.offset >> 8); evo_data(push, 0x00000000); evo_data(push, 0x00000000); evo_mthd(push, 0x045c + (nv_crtc->index * 0x300), 1); evo_data(push, MEM_VRAM); evo_kick(push, crtc->dev, 0); } nvd0_crtc_cursor_show(nv_crtc, nv_crtc->cursor.visible, true); } static bool nvd0_crtc_mode_fixup(struct drm_crtc *crtc, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { return true; } static int nvd0_crtc_swap_fbs(struct drm_crtc *crtc, struct drm_framebuffer *old_fb) { struct nouveau_framebuffer *nvfb = nouveau_framebuffer(crtc->fb); int ret; ret = nouveau_bo_pin(nvfb->nvbo, TTM_PL_FLAG_VRAM); if (ret) return ret; if (old_fb) { nvfb = nouveau_framebuffer(old_fb); nouveau_bo_unpin(nvfb->nvbo); } return 0; } static int nvd0_crtc_mode_set(struct drm_crtc *crtc, struct drm_display_mode *umode, struct drm_display_mode *mode, int x, int y, struct drm_framebuffer *old_fb) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct nouveau_connector *nv_connector; u32 htotal = mode->htotal; u32 vtotal = mode->vtotal; u32 hsyncw = mode->hsync_end - mode->hsync_start - 1; u32 vsyncw = mode->vsync_end - mode->vsync_start - 1; u32 hfrntp = mode->hsync_start - mode->hdisplay; u32 vfrntp = mode->vsync_start - mode->vdisplay; u32 hbackp = mode->htotal - mode->hsync_end; u32 vbackp = mode->vtotal - mode->vsync_end; u32 hss2be = hsyncw + hbackp; u32 vss2be = vsyncw + vbackp; u32 hss2de = htotal - hfrntp; u32 vss2de = vtotal - vfrntp; u32 hstart = 0; u32 vstart = 0; u32 *push; int ret; ret = nvd0_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; push = evo_wait(crtc->dev, 0, 64); if (push) { evo_mthd(push, 0x0410 + (nv_crtc->index * 0x300), 5); evo_data(push, (vstart << 16) | hstart); evo_data(push, (vtotal << 16) | htotal); evo_data(push, (vsyncw << 16) | hsyncw); evo_data(push, (vss2be << 16) | hss2be); evo_data(push, (vss2de << 16) | hss2de); evo_mthd(push, 0x042c + (nv_crtc->index * 0x300), 1); evo_data(push, 0x00000000); /* ??? */ evo_mthd(push, 0x0450 + (nv_crtc->index * 0x300), 3); evo_data(push, mode->clock * 1000); evo_data(push, 0x00200000); /* ??? */ evo_data(push, mode->clock * 1000); evo_mthd(push, 0x0408 + (nv_crtc->index * 0x300), 1); evo_data(push, 0x31ec6000); /* ??? */ evo_kick(push, crtc->dev, 0); } nv_connector = nouveau_crtc_connector_get(nv_crtc); nvd0_crtc_set_dither(nv_crtc, nv_connector->use_dithering, false); nvd0_crtc_set_scale(nv_crtc, nv_connector->scaling_mode, false); nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, false); return 0; } static int nvd0_crtc_mode_set_base(struct drm_crtc *crtc, int x, int y, struct drm_framebuffer *old_fb) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); int ret; ret = nvd0_crtc_swap_fbs(crtc, old_fb); if (ret) return ret; nvd0_crtc_set_image(nv_crtc, crtc->fb, x, y, true); return 0; } static int nvd0_crtc_mode_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb, int x, int y, enum mode_set_atomic state) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nvd0_crtc_set_image(nv_crtc, fb, x, y, true); return 0; } static void nvd0_crtc_lut_load(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); void __iomem *lut = nvbo_kmap_obj_iovirtual(nv_crtc->lut.nvbo); int i; for (i = 0; i < 256; i++) { writew(nv_crtc->lut.r[i] >> 2, lut + 8*i + 0); writew(nv_crtc->lut.g[i] >> 2, lut + 8*i + 2); writew(nv_crtc->lut.b[i] >> 2, lut + 8*i + 4); } } static int nvd0_crtc_cursor_set(struct drm_crtc *crtc, struct drm_file *file_priv, uint32_t handle, uint32_t width, uint32_t height) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); struct drm_device *dev = crtc->dev; struct drm_gem_object *gem; struct nouveau_bo *nvbo; bool visible = (handle != 0); int i, ret = 0; if (visible) { if (width != 64 || height != 64) return -EINVAL; gem = drm_gem_object_lookup(dev, file_priv, handle); if (unlikely(!gem)) return -ENOENT; nvbo = nouveau_gem_object(gem); ret = nouveau_bo_map(nvbo); if (ret == 0) { for (i = 0; i < 64 * 64; i++) { u32 v = nouveau_bo_rd32(nvbo, i); nouveau_bo_wr32(nv_crtc->cursor.nvbo, i, v); } nouveau_bo_unmap(nvbo); } drm_gem_object_unreference_unlocked(gem); } if (visible != nv_crtc->cursor.visible) { nvd0_crtc_cursor_show(nv_crtc, visible, true); nv_crtc->cursor.visible = visible; } return ret; } static int nvd0_crtc_cursor_move(struct drm_crtc *crtc, int x, int y) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); const u32 data = (y << 16) | x; nv_wr32(crtc->dev, 0x64d084 + (nv_crtc->index * 0x1000), data); nv_wr32(crtc->dev, 0x64d080 + (nv_crtc->index * 0x1000), 0x00000000); return 0; } static void nvd0_crtc_gamma_set(struct drm_crtc *crtc, u16 *r, u16 *g, u16 *b, uint32_t start, uint32_t size) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); u32 end = max(start + size, (u32)256); u32 i; for (i = start; i < end; i++) { nv_crtc->lut.r[i] = r[i]; nv_crtc->lut.g[i] = g[i]; nv_crtc->lut.b[i] = b[i]; } nvd0_crtc_lut_load(crtc); } static void nvd0_crtc_destroy(struct drm_crtc *crtc) { struct nouveau_crtc *nv_crtc = nouveau_crtc(crtc); nouveau_bo_unmap(nv_crtc->cursor.nvbo); nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); nouveau_bo_unmap(nv_crtc->lut.nvbo); nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); drm_crtc_cleanup(crtc); kfree(crtc); } static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc = { .dpms = nvd0_crtc_dpms, .prepare = nvd0_crtc_prepare, .commit = nvd0_crtc_commit, .mode_fixup = nvd0_crtc_mode_fixup, .mode_set = nvd0_crtc_mode_set, .mode_set_base = nvd0_crtc_mode_set_base, .mode_set_base_atomic = nvd0_crtc_mode_set_base_atomic, .load_lut = nvd0_crtc_lut_load, }; static const struct drm_crtc_funcs nvd0_crtc_func = { .cursor_set = nvd0_crtc_cursor_set, .cursor_move = nvd0_crtc_cursor_move, .gamma_set = nvd0_crtc_gamma_set, .set_config = drm_crtc_helper_set_config, .destroy = nvd0_crtc_destroy, }; static int nvd0_crtc_create(struct drm_device *dev, int index) { struct nouveau_crtc *nv_crtc; struct drm_crtc *crtc; int ret, i; nv_crtc = kzalloc(sizeof(*nv_crtc), GFP_KERNEL); if (!nv_crtc) return -ENOMEM; nv_crtc->index = index; nv_crtc->set_dither = nvd0_crtc_set_dither; nv_crtc->set_scale = nvd0_crtc_set_scale; for (i = 0; i < 256; i++) { nv_crtc->lut.r[i] = i << 8; nv_crtc->lut.g[i] = i << 8; nv_crtc->lut.b[i] = i << 8; } crtc = &nv_crtc->base; drm_crtc_init(dev, crtc, &nvd0_crtc_func); drm_crtc_helper_add(crtc, &nvd0_crtc_hfunc); drm_mode_crtc_set_gamma_size(crtc, 256); ret = nouveau_bo_new(dev, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, &nv_crtc->cursor.nvbo); if (!ret) { ret = nouveau_bo_pin(nv_crtc->cursor.nvbo, TTM_PL_FLAG_VRAM); if (!ret) ret = nouveau_bo_map(nv_crtc->cursor.nvbo); if (ret) nouveau_bo_ref(NULL, &nv_crtc->cursor.nvbo); } if (ret) goto out; ret = nouveau_bo_new(dev, 4096, 0x100, TTM_PL_FLAG_VRAM, 0, 0x0000, &nv_crtc->lut.nvbo); if (!ret) { ret = nouveau_bo_pin(nv_crtc->lut.nvbo, TTM_PL_FLAG_VRAM); if (!ret) ret = nouveau_bo_map(nv_crtc->lut.nvbo); if (ret) nouveau_bo_ref(NULL, &nv_crtc->lut.nvbo); } if (ret) goto out; nvd0_crtc_lut_load(crtc); out: if (ret) nvd0_crtc_destroy(crtc); return ret; } /****************************************************************************** * DAC *****************************************************************************/ /****************************************************************************** * SOR *****************************************************************************/ static void nvd0_sor_dpms(struct drm_encoder *encoder, int mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; struct drm_encoder *partner; int or = nv_encoder->or; u32 dpms_ctrl; nv_encoder->last_dpms = mode; list_for_each_entry(partner, &dev->mode_config.encoder_list, head) { struct nouveau_encoder *nv_partner = nouveau_encoder(partner); if (partner->encoder_type != DRM_MODE_ENCODER_TMDS) continue; if (nv_partner != nv_encoder && nv_partner->dcb->or == nv_encoder->or) { if (nv_partner->last_dpms == DRM_MODE_DPMS_ON) return; break; } } dpms_ctrl = (mode == DRM_MODE_DPMS_ON); dpms_ctrl |= 0x80000000; nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000); nv_mask(dev, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl); nv_wait(dev, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000); nv_wait(dev, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000); } static bool nvd0_sor_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_connector *nv_connector; nv_connector = nouveau_encoder_connector_get(nv_encoder); if (nv_connector && nv_connector->native_mode) { if (nv_connector->scaling_mode != DRM_MODE_SCALE_NONE) { int id = adjusted_mode->base.id; *adjusted_mode = *nv_connector->native_mode; adjusted_mode->base.id = id; } } return true; } static void nvd0_sor_prepare(struct drm_encoder *encoder) { } static void nvd0_sor_commit(struct drm_encoder *encoder) { } static void nvd0_sor_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode, struct drm_display_mode *adjusted_mode) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct nouveau_crtc *nv_crtc = nouveau_crtc(encoder->crtc); u32 mode_ctrl = (1 << nv_crtc->index); u32 *push; if (nv_encoder->dcb->sorconf.link & 1) { if (adjusted_mode->clock < 165000) mode_ctrl |= 0x00000100; else mode_ctrl |= 0x00000500; } else { mode_ctrl |= 0x00000200; } nvd0_sor_dpms(encoder, DRM_MODE_DPMS_ON); push = evo_wait(encoder->dev, 0, 2); if (push) { evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1); evo_data(push, mode_ctrl); evo_kick(push, encoder->dev, 0); } nv_encoder->crtc = encoder->crtc; } static void nvd0_sor_disconnect(struct drm_encoder *encoder) { struct nouveau_encoder *nv_encoder = nouveau_encoder(encoder); struct drm_device *dev = encoder->dev; u32 *push; if (nv_encoder->crtc) { nvd0_crtc_prepare(nv_encoder->crtc); push = evo_wait(dev, 0, 4); if (push) { evo_mthd(push, 0x0200 + (nv_encoder->or * 0x20), 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0080, 1); evo_data(push, 0x00000000); evo_kick(push, dev, 0); } nv_encoder->crtc = NULL; nv_encoder->last_dpms = DRM_MODE_DPMS_OFF; } } static void nvd0_sor_destroy(struct drm_encoder *encoder) { drm_encoder_cleanup(encoder); kfree(encoder); } static const struct drm_encoder_helper_funcs nvd0_sor_hfunc = { .dpms = nvd0_sor_dpms, .mode_fixup = nvd0_sor_mode_fixup, .prepare = nvd0_sor_prepare, .commit = nvd0_sor_commit, .mode_set = nvd0_sor_mode_set, .disable = nvd0_sor_disconnect, .get_crtc = nvd0_display_crtc_get, }; static const struct drm_encoder_funcs nvd0_sor_func = { .destroy = nvd0_sor_destroy, }; static int nvd0_sor_create(struct drm_connector *connector, struct dcb_entry *dcbe) { struct drm_device *dev = connector->dev; struct nouveau_encoder *nv_encoder; struct drm_encoder *encoder; nv_encoder = kzalloc(sizeof(*nv_encoder), GFP_KERNEL); if (!nv_encoder) return -ENOMEM; nv_encoder->dcb = dcbe; nv_encoder->or = ffs(dcbe->or) - 1; nv_encoder->last_dpms = DRM_MODE_DPMS_OFF; encoder = to_drm_encoder(nv_encoder); encoder->possible_crtcs = dcbe->heads; encoder->possible_clones = 0; drm_encoder_init(dev, encoder, &nvd0_sor_func, DRM_MODE_ENCODER_TMDS); drm_encoder_helper_add(encoder, &nvd0_sor_hfunc); drm_mode_connector_attach_encoder(connector, encoder); return 0; } /****************************************************************************** * IRQ *****************************************************************************/ static void nvd0_display_unk1_handler(struct drm_device *dev) { u32 unk0 = nv_rd32(dev, 0x6101d0); NV_INFO(dev, "PDISP: unk1 0x%08x\n", unk0); nv_wr32(dev, 0x6101d4, 0x00000000); nv_wr32(dev, 0x6109d4, 0x00000000); nv_wr32(dev, 0x6101d0, 0x80000000); } static void nvd0_display_unk2_handler(struct drm_device *dev) { u32 unk0 = nv_rd32(dev, 0x6101d0); NV_INFO(dev, "PDISP: unk2 0x%08x\n", unk0); nv_wr32(dev, 0x6101d4, 0x00000000); nv_wr32(dev, 0x6109d4, 0x00000000); nv_wr32(dev, 0x6101d0, 0x80000000); } static void nvd0_display_unk4_handler(struct drm_device *dev) { u32 unk0 = nv_rd32(dev, 0x6101d0); NV_INFO(dev, "PDISP: unk4 0x%08x\n", unk0); nv_wr32(dev, 0x6101d4, 0x00000000); nv_wr32(dev, 0x6109d4, 0x00000000); nv_wr32(dev, 0x6101d0, 0x80000000); } static void nvd0_display_intr(struct drm_device *dev) { u32 intr = nv_rd32(dev, 0x610088); if (intr & 0x00000002) { u32 stat = nv_rd32(dev, 0x61009c); int chid = ffs(stat) - 1; if (chid >= 0) { u32 mthd = nv_rd32(dev, 0x6101f0 + (chid * 12)); u32 data = nv_rd32(dev, 0x6101f4 + (chid * 12)); u32 unkn = nv_rd32(dev, 0x6101f8 + (chid * 12)); NV_INFO(dev, "EvoCh: chid %d mthd 0x%04x data 0x%08x " "0x%08x 0x%08x\n", chid, (mthd & 0x0000ffc), data, mthd, unkn); nv_wr32(dev, 0x61009c, (1 << chid)); nv_wr32(dev, 0x6101f0 + (chid * 12), 0x90000000); } intr &= ~0x00000002; } if (intr & 0x00100000) { u32 stat = nv_rd32(dev, 0x6100ac); if (stat & 0x00000007) { nv_wr32(dev, 0x6100ac, (stat & 0x00000007)); if (stat & 0x00000001) nvd0_display_unk1_handler(dev); if (stat & 0x00000002) nvd0_display_unk2_handler(dev); if (stat & 0x00000004) nvd0_display_unk4_handler(dev); stat &= ~0x00000007; } if (stat) { NV_INFO(dev, "PDISP: unknown intr24 0x%08x\n", stat); nv_wr32(dev, 0x6100ac, stat); } intr &= ~0x00100000; } if (intr & 0x01000000) { u32 stat = nv_rd32(dev, 0x6100bc); nv_wr32(dev, 0x6100bc, stat); intr &= ~0x01000000; } if (intr & 0x02000000) { u32 stat = nv_rd32(dev, 0x6108bc); nv_wr32(dev, 0x6108bc, stat); intr &= ~0x02000000; } if (intr) NV_INFO(dev, "PDISP: unknown intr 0x%08x\n", intr); } /****************************************************************************** * Init *****************************************************************************/ static void nvd0_display_fini(struct drm_device *dev) { int i; /* fini cursors */ for (i = 14; i >= 13; i--) { if (!(nv_rd32(dev, 0x610490 + (i * 0x10)) & 0x00000001)) continue; nv_mask(dev, 0x610490 + (i * 0x10), 0x00000001, 0x00000000); nv_wait(dev, 0x610490 + (i * 0x10), 0x00010000, 0x00000000); nv_mask(dev, 0x610090, 1 << i, 0x00000000); nv_mask(dev, 0x6100a0, 1 << i, 0x00000000); } /* fini master */ if (nv_rd32(dev, 0x610490) & 0x00000010) { nv_mask(dev, 0x610490, 0x00000010, 0x00000000); nv_mask(dev, 0x610490, 0x00000003, 0x00000000); nv_wait(dev, 0x610490, 0x80000000, 0x00000000); nv_mask(dev, 0x610090, 0x00000001, 0x00000000); nv_mask(dev, 0x6100a0, 0x00000001, 0x00000000); } } int nvd0_display_init(struct drm_device *dev) { struct nvd0_display *disp = nvd0_display(dev); u32 *push; int i; if (nv_rd32(dev, 0x6100ac) & 0x00000100) { nv_wr32(dev, 0x6100ac, 0x00000100); nv_mask(dev, 0x6194e8, 0x00000001, 0x00000000); if (!nv_wait(dev, 0x6194e8, 0x00000002, 0x00000000)) { NV_ERROR(dev, "PDISP: 0x6194e8 0x%08x\n", nv_rd32(dev, 0x6194e8)); return -EBUSY; } } nv_wr32(dev, 0x610010, (disp->mem->vinst >> 8) | 9); nv_mask(dev, 0x6100b0, 0x00000307, 0x00000307); /* init master */ nv_wr32(dev, 0x610494, (disp->evo[0].handle >> 8) | 3); nv_wr32(dev, 0x610498, 0x00010000); nv_wr32(dev, 0x61049c, 0x00000001); nv_mask(dev, 0x610490, 0x00000010, 0x00000010); nv_wr32(dev, 0x640000, 0x00000000); nv_wr32(dev, 0x610490, 0x01000013); if (!nv_wait(dev, 0x610490, 0x80000000, 0x00000000)) { NV_ERROR(dev, "PDISP: master 0x%08x\n", nv_rd32(dev, 0x610490)); return -EBUSY; } nv_mask(dev, 0x610090, 0x00000001, 0x00000001); nv_mask(dev, 0x6100a0, 0x00000001, 0x00000001); /* init cursors */ for (i = 13; i <= 14; i++) { nv_wr32(dev, 0x610490 + (i * 0x10), 0x00000001); if (!nv_wait(dev, 0x610490 + (i * 0x10), 0x00010000, 0x00010000)) { NV_ERROR(dev, "PDISP: curs%d 0x%08x\n", i, nv_rd32(dev, 0x610490 + (i * 0x10))); return -EBUSY; } nv_mask(dev, 0x610090, 1 << i, 1 << i); nv_mask(dev, 0x6100a0, 1 << i, 1 << i); } push = evo_wait(dev, 0, 32); if (!push) return -EBUSY; evo_mthd(push, 0x0088, 1); evo_data(push, MEM_SYNC); evo_mthd(push, 0x0084, 1); evo_data(push, 0x00000000); evo_mthd(push, 0x0084, 1); evo_data(push, 0x80000000); evo_mthd(push, 0x008c, 1); evo_data(push, 0x00000000); evo_kick(push, dev, 0); return 0; } void nvd0_display_destroy(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nvd0_display *disp = nvd0_display(dev); struct pci_dev *pdev = dev->pdev; nvd0_display_fini(dev); pci_free_consistent(pdev, PAGE_SIZE, disp->evo[0].ptr, disp->evo[0].handle); nouveau_gpuobj_ref(NULL, &disp->mem); nouveau_irq_unregister(dev, 26); dev_priv->engine.display.priv = NULL; kfree(disp); } int nvd0_display_create(struct drm_device *dev) { struct drm_nouveau_private *dev_priv = dev->dev_private; struct nouveau_instmem_engine *pinstmem = &dev_priv->engine.instmem; struct dcb_table *dcb = &dev_priv->vbios.dcb; struct drm_connector *connector, *tmp; struct pci_dev *pdev = dev->pdev; struct nvd0_display *disp; struct dcb_entry *dcbe; int ret, i; disp = kzalloc(sizeof(*disp), GFP_KERNEL); if (!disp) return -ENOMEM; dev_priv->engine.display.priv = disp; /* create crtc objects to represent the hw heads */ for (i = 0; i < 2; i++) { ret = nvd0_crtc_create(dev, i); if (ret) goto out; } /* create encoder/connector objects based on VBIOS DCB table */ for (i = 0, dcbe = &dcb->entry[0]; i < dcb->entries; i++, dcbe++) { connector = nouveau_connector_create(dev, dcbe->connector); if (IS_ERR(connector)) continue; if (dcbe->location != DCB_LOC_ON_CHIP) { NV_WARN(dev, "skipping off-chip encoder %d/%d\n", dcbe->type, ffs(dcbe->or) - 1); continue; } switch (dcbe->type) { case OUTPUT_TMDS: nvd0_sor_create(connector, dcbe); break; default: NV_WARN(dev, "skipping unsupported encoder %d/%d\n", dcbe->type, ffs(dcbe->or) - 1); continue; } } /* cull any connectors we created that don't have an encoder */ list_for_each_entry_safe(connector, tmp, &dev->mode_config.connector_list, head) { if (connector->encoder_ids[0]) continue; NV_WARN(dev, "%s has no encoders, removing\n", drm_get_connector_name(connector)); connector->funcs->destroy(connector); } /* setup interrupt handling */ nouveau_irq_register(dev, 26, nvd0_display_intr); /* hash table and dma objects for the memory areas we care about */ ret = nouveau_gpuobj_new(dev, NULL, 0x4000, 0x10000, NVOBJ_FLAG_ZERO_ALLOC, &disp->mem); if (ret) goto out; nv_wo32(disp->mem, 0x1000, 0x00000049); nv_wo32(disp->mem, 0x1004, (disp->mem->vinst + 0x2000) >> 8); nv_wo32(disp->mem, 0x1008, (disp->mem->vinst + 0x2fff) >> 8); nv_wo32(disp->mem, 0x100c, 0x00000000); nv_wo32(disp->mem, 0x1010, 0x00000000); nv_wo32(disp->mem, 0x1014, 0x00000000); nv_wo32(disp->mem, 0x0000, MEM_SYNC); nv_wo32(disp->mem, 0x0004, (0x1000 << 9) | 0x00000001); nv_wo32(disp->mem, 0x1020, 0x00000009); nv_wo32(disp->mem, 0x1024, 0x00000000); nv_wo32(disp->mem, 0x1028, (dev_priv->vram_size - 1) >> 8); nv_wo32(disp->mem, 0x102c, 0x00000000); nv_wo32(disp->mem, 0x1030, 0x00000000); nv_wo32(disp->mem, 0x1034, 0x00000000); nv_wo32(disp->mem, 0x0008, MEM_VRAM); nv_wo32(disp->mem, 0x000c, (0x1020 << 9) | 0x00000001); pinstmem->flush(dev); /* push buffers for evo channels */ disp->evo[0].ptr = pci_alloc_consistent(pdev, PAGE_SIZE, &disp->evo[0].handle); if (!disp->evo[0].ptr) { ret = -ENOMEM; goto out; } ret = nvd0_display_init(dev); if (ret) goto out; out: if (ret) nvd0_display_destroy(dev); return ret; }