/* * Copyright (C) 2012 ARM Ltd. * Author: Marc Zyngier * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include #include #include #include #include #include #include #include #include #include #include #include /* * How the whole thing works (courtesy of Christoffer Dall): * * - At any time, the dist->irq_pending_on_cpu is the oracle that knows if * something is pending * - VGIC pending interrupts are stored on the vgic.irq_state vgic * bitmap (this bitmap is updated by both user land ioctls and guest * mmio ops, and other in-kernel peripherals such as the * arch. timers) and indicate the 'wire' state. * - Every time the bitmap changes, the irq_pending_on_cpu oracle is * recalculated * - To calculate the oracle, we need info for each cpu from * compute_pending_for_cpu, which considers: * - PPI: dist->irq_state & dist->irq_enable * - SPI: dist->irq_state & dist->irq_enable & dist->irq_spi_target * - irq_spi_target is a 'formatted' version of the GICD_ICFGR * registers, stored on each vcpu. We only keep one bit of * information per interrupt, making sure that only one vcpu can * accept the interrupt. * - The same is true when injecting an interrupt, except that we only * consider a single interrupt at a time. The irq_spi_cpu array * contains the target CPU for each SPI. * * The handling of level interrupts adds some extra complexity. We * need to track when the interrupt has been EOIed, so we can sample * the 'line' again. This is achieved as such: * * - When a level interrupt is moved onto a vcpu, the corresponding * bit in irq_active is set. As long as this bit is set, the line * will be ignored for further interrupts. The interrupt is injected * into the vcpu with the GICH_LR_EOI bit set (generate a * maintenance interrupt on EOI). * - When the interrupt is EOIed, the maintenance interrupt fires, * and clears the corresponding bit in irq_active. This allow the * interrupt line to be sampled again. */ #define VGIC_ADDR_UNDEF (-1) #define IS_VGIC_ADDR_UNDEF(_x) ((_x) == VGIC_ADDR_UNDEF) /* Physical address of vgic virtual cpu interface */ static phys_addr_t vgic_vcpu_base; /* Virtual control interface base address */ static void __iomem *vgic_vctrl_base; static struct device_node *vgic_node; #define ACCESS_READ_VALUE (1 << 0) #define ACCESS_READ_RAZ (0 << 0) #define ACCESS_READ_MASK(x) ((x) & (1 << 0)) #define ACCESS_WRITE_IGNORED (0 << 1) #define ACCESS_WRITE_SETBIT (1 << 1) #define ACCESS_WRITE_CLEARBIT (2 << 1) #define ACCESS_WRITE_VALUE (3 << 1) #define ACCESS_WRITE_MASK(x) ((x) & (3 << 1)) static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu); static void vgic_update_state(struct kvm *kvm); static void vgic_kick_vcpus(struct kvm *kvm); static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg); static u32 vgic_nr_lr; static unsigned int vgic_maint_irq; static u32 *vgic_bitmap_get_reg(struct vgic_bitmap *x, int cpuid, u32 offset) { offset >>= 2; if (!offset) return x->percpu[cpuid].reg; else return x->shared.reg + offset - 1; } static int vgic_bitmap_get_irq_val(struct vgic_bitmap *x, int cpuid, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) return test_bit(irq, x->percpu[cpuid].reg_ul); return test_bit(irq - VGIC_NR_PRIVATE_IRQS, x->shared.reg_ul); } static void vgic_bitmap_set_irq_val(struct vgic_bitmap *x, int cpuid, int irq, int val) { unsigned long *reg; if (irq < VGIC_NR_PRIVATE_IRQS) { reg = x->percpu[cpuid].reg_ul; } else { reg = x->shared.reg_ul; irq -= VGIC_NR_PRIVATE_IRQS; } if (val) set_bit(irq, reg); else clear_bit(irq, reg); } static unsigned long *vgic_bitmap_get_cpu_map(struct vgic_bitmap *x, int cpuid) { if (unlikely(cpuid >= VGIC_MAX_CPUS)) return NULL; return x->percpu[cpuid].reg_ul; } static unsigned long *vgic_bitmap_get_shared_map(struct vgic_bitmap *x) { return x->shared.reg_ul; } static u32 *vgic_bytemap_get_reg(struct vgic_bytemap *x, int cpuid, u32 offset) { offset >>= 2; BUG_ON(offset > (VGIC_NR_IRQS / 4)); if (offset < 8) return x->percpu[cpuid] + offset; else return x->shared + offset - 8; } #define VGIC_CFG_LEVEL 0 #define VGIC_CFG_EDGE 1 static bool vgic_irq_is_edge(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int irq_val; irq_val = vgic_bitmap_get_irq_val(&dist->irq_cfg, vcpu->vcpu_id, irq); return irq_val == VGIC_CFG_EDGE; } static int vgic_irq_is_enabled(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_enabled, vcpu->vcpu_id, irq); } static int vgic_irq_is_active(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_active, vcpu->vcpu_id, irq); } static void vgic_irq_set_active(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 1); } static void vgic_irq_clear_active(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_active, vcpu->vcpu_id, irq, 0); } static int vgic_dist_irq_is_pending(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; return vgic_bitmap_get_irq_val(&dist->irq_state, vcpu->vcpu_id, irq); } static void vgic_dist_irq_set(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 1); } static void vgic_dist_irq_clear(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; vgic_bitmap_set_irq_val(&dist->irq_state, vcpu->vcpu_id, irq, 0); } static void vgic_cpu_irq_set(struct kvm_vcpu *vcpu, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) set_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); else set_bit(irq - VGIC_NR_PRIVATE_IRQS, vcpu->arch.vgic_cpu.pending_shared); } static void vgic_cpu_irq_clear(struct kvm_vcpu *vcpu, int irq) { if (irq < VGIC_NR_PRIVATE_IRQS) clear_bit(irq, vcpu->arch.vgic_cpu.pending_percpu); else clear_bit(irq - VGIC_NR_PRIVATE_IRQS, vcpu->arch.vgic_cpu.pending_shared); } static u32 mmio_data_read(struct kvm_exit_mmio *mmio, u32 mask) { return *((u32 *)mmio->data) & mask; } static void mmio_data_write(struct kvm_exit_mmio *mmio, u32 mask, u32 value) { *((u32 *)mmio->data) = value & mask; } /** * vgic_reg_access - access vgic register * @mmio: pointer to the data describing the mmio access * @reg: pointer to the virtual backing of vgic distributor data * @offset: least significant 2 bits used for word offset * @mode: ACCESS_ mode (see defines above) * * Helper to make vgic register access easier using one of the access * modes defined for vgic register access * (read,raz,write-ignored,setbit,clearbit,write) */ static void vgic_reg_access(struct kvm_exit_mmio *mmio, u32 *reg, phys_addr_t offset, int mode) { int word_offset = (offset & 3) * 8; u32 mask = (1UL << (mmio->len * 8)) - 1; u32 regval; /* * Any alignment fault should have been delivered to the guest * directly (ARM ARM B3.12.7 "Prioritization of aborts"). */ if (reg) { regval = *reg; } else { BUG_ON(mode != (ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED)); regval = 0; } if (mmio->is_write) { u32 data = mmio_data_read(mmio, mask) << word_offset; switch (ACCESS_WRITE_MASK(mode)) { case ACCESS_WRITE_IGNORED: return; case ACCESS_WRITE_SETBIT: regval |= data; break; case ACCESS_WRITE_CLEARBIT: regval &= ~data; break; case ACCESS_WRITE_VALUE: regval = (regval & ~(mask << word_offset)) | data; break; } *reg = regval; } else { switch (ACCESS_READ_MASK(mode)) { case ACCESS_READ_RAZ: regval = 0; /* fall through */ case ACCESS_READ_VALUE: mmio_data_write(mmio, mask, regval >> word_offset); } } } static bool handle_mmio_misc(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; u32 word_offset = offset & 3; switch (offset & ~3) { case 0: /* CTLR */ reg = vcpu->kvm->arch.vgic.enabled; vgic_reg_access(mmio, ®, word_offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); if (mmio->is_write) { vcpu->kvm->arch.vgic.enabled = reg & 1; vgic_update_state(vcpu->kvm); return true; } break; case 4: /* TYPER */ reg = (atomic_read(&vcpu->kvm->online_vcpus) - 1) << 5; reg |= (VGIC_NR_IRQS >> 5) - 1; vgic_reg_access(mmio, ®, word_offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); break; case 8: /* IIDR */ reg = 0x4B00043B; vgic_reg_access(mmio, ®, word_offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); break; } return false; } static bool handle_mmio_raz_wi(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { vgic_reg_access(mmio, NULL, offset, ACCESS_READ_RAZ | ACCESS_WRITE_IGNORED); return false; } static bool handle_mmio_set_enable_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); if (mmio->is_write) { vgic_update_state(vcpu->kvm); return true; } return false; } static bool handle_mmio_clear_enable_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_enabled, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); if (mmio->is_write) { if (offset < 4) /* Force SGI enabled */ *reg |= 0xffff; vgic_retire_disabled_irqs(vcpu); vgic_update_state(vcpu->kvm); return true; } return false; } static bool handle_mmio_set_pending_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_SETBIT); if (mmio->is_write) { vgic_update_state(vcpu->kvm); return true; } return false; } static bool handle_mmio_clear_pending_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_state, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_CLEARBIT); if (mmio->is_write) { vgic_update_state(vcpu->kvm); return true; } return false; } static bool handle_mmio_priority_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 *reg = vgic_bytemap_get_reg(&vcpu->kvm->arch.vgic.irq_priority, vcpu->vcpu_id, offset); vgic_reg_access(mmio, reg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); return false; } #define GICD_ITARGETSR_SIZE 32 #define GICD_CPUTARGETS_BITS 8 #define GICD_IRQS_PER_ITARGETSR (GICD_ITARGETSR_SIZE / GICD_CPUTARGETS_BITS) static u32 vgic_get_target_reg(struct kvm *kvm, int irq) { struct vgic_dist *dist = &kvm->arch.vgic; int i; u32 val = 0; irq -= VGIC_NR_PRIVATE_IRQS; for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) val |= 1 << (dist->irq_spi_cpu[irq + i] + i * 8); return val; } static void vgic_set_target_reg(struct kvm *kvm, u32 val, int irq) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int i, c; unsigned long *bmap; u32 target; irq -= VGIC_NR_PRIVATE_IRQS; /* * Pick the LSB in each byte. This ensures we target exactly * one vcpu per IRQ. If the byte is null, assume we target * CPU0. */ for (i = 0; i < GICD_IRQS_PER_ITARGETSR; i++) { int shift = i * GICD_CPUTARGETS_BITS; target = ffs((val >> shift) & 0xffU); target = target ? (target - 1) : 0; dist->irq_spi_cpu[irq + i] = target; kvm_for_each_vcpu(c, vcpu, kvm) { bmap = vgic_bitmap_get_shared_map(&dist->irq_spi_target[c]); if (c == target) set_bit(irq + i, bmap); else clear_bit(irq + i, bmap); } } } static bool handle_mmio_target_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; /* We treat the banked interrupts targets as read-only */ if (offset < 32) { u32 roreg = 1 << vcpu->vcpu_id; roreg |= roreg << 8; roreg |= roreg << 16; vgic_reg_access(mmio, &roreg, offset, ACCESS_READ_VALUE | ACCESS_WRITE_IGNORED); return false; } reg = vgic_get_target_reg(vcpu->kvm, offset & ~3U); vgic_reg_access(mmio, ®, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); if (mmio->is_write) { vgic_set_target_reg(vcpu->kvm, reg, offset & ~3U); vgic_update_state(vcpu->kvm); return true; } return false; } static u32 vgic_cfg_expand(u16 val) { u32 res = 0; int i; /* * Turn a 16bit value like abcd...mnop into a 32bit word * a0b0c0d0...m0n0o0p0, which is what the HW cfg register is. */ for (i = 0; i < 16; i++) res |= ((val >> i) & VGIC_CFG_EDGE) << (2 * i + 1); return res; } static u16 vgic_cfg_compress(u32 val) { u16 res = 0; int i; /* * Turn a 32bit word a0b0c0d0...m0n0o0p0 into 16bit value like * abcd...mnop which is what we really care about. */ for (i = 0; i < 16; i++) res |= ((val >> (i * 2 + 1)) & VGIC_CFG_EDGE) << i; return res; } /* * The distributor uses 2 bits per IRQ for the CFG register, but the * LSB is always 0. As such, we only keep the upper bit, and use the * two above functions to compress/expand the bits */ static bool handle_mmio_cfg_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 val; u32 *reg; offset >>= 1; reg = vgic_bitmap_get_reg(&vcpu->kvm->arch.vgic.irq_cfg, vcpu->vcpu_id, offset); if (offset & 2) val = *reg >> 16; else val = *reg & 0xffff; val = vgic_cfg_expand(val); vgic_reg_access(mmio, &val, offset, ACCESS_READ_VALUE | ACCESS_WRITE_VALUE); if (mmio->is_write) { if (offset < 4) { *reg = ~0U; /* Force PPIs/SGIs to 1 */ return false; } val = vgic_cfg_compress(val); if (offset & 2) { *reg &= 0xffff; *reg |= val << 16; } else { *reg &= 0xffff << 16; *reg |= val; } } return false; } static bool handle_mmio_sgi_reg(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset) { u32 reg; vgic_reg_access(mmio, ®, offset, ACCESS_READ_RAZ | ACCESS_WRITE_VALUE); if (mmio->is_write) { vgic_dispatch_sgi(vcpu, reg); vgic_update_state(vcpu->kvm); return true; } return false; } /* * I would have liked to use the kvm_bus_io_*() API instead, but it * cannot cope with banked registers (only the VM pointer is passed * around, and we need the vcpu). One of these days, someone please * fix it! */ struct mmio_range { phys_addr_t base; unsigned long len; bool (*handle_mmio)(struct kvm_vcpu *vcpu, struct kvm_exit_mmio *mmio, phys_addr_t offset); }; static const struct mmio_range vgic_ranges[] = { { .base = GIC_DIST_CTRL, .len = 12, .handle_mmio = handle_mmio_misc, }, { .base = GIC_DIST_IGROUP, .len = VGIC_NR_IRQS / 8, .handle_mmio = handle_mmio_raz_wi, }, { .base = GIC_DIST_ENABLE_SET, .len = VGIC_NR_IRQS / 8, .handle_mmio = handle_mmio_set_enable_reg, }, { .base = GIC_DIST_ENABLE_CLEAR, .len = VGIC_NR_IRQS / 8, .handle_mmio = handle_mmio_clear_enable_reg, }, { .base = GIC_DIST_PENDING_SET, .len = VGIC_NR_IRQS / 8, .handle_mmio = handle_mmio_set_pending_reg, }, { .base = GIC_DIST_PENDING_CLEAR, .len = VGIC_NR_IRQS / 8, .handle_mmio = handle_mmio_clear_pending_reg, }, { .base = GIC_DIST_ACTIVE_SET, .len = VGIC_NR_IRQS / 8, .handle_mmio = handle_mmio_raz_wi, }, { .base = GIC_DIST_ACTIVE_CLEAR, .len = VGIC_NR_IRQS / 8, .handle_mmio = handle_mmio_raz_wi, }, { .base = GIC_DIST_PRI, .len = VGIC_NR_IRQS, .handle_mmio = handle_mmio_priority_reg, }, { .base = GIC_DIST_TARGET, .len = VGIC_NR_IRQS, .handle_mmio = handle_mmio_target_reg, }, { .base = GIC_DIST_CONFIG, .len = VGIC_NR_IRQS / 4, .handle_mmio = handle_mmio_cfg_reg, }, { .base = GIC_DIST_SOFTINT, .len = 4, .handle_mmio = handle_mmio_sgi_reg, }, {} }; static const struct mmio_range *find_matching_range(const struct mmio_range *ranges, struct kvm_exit_mmio *mmio, phys_addr_t base) { const struct mmio_range *r = ranges; phys_addr_t addr = mmio->phys_addr - base; while (r->len) { if (addr >= r->base && (addr + mmio->len) <= (r->base + r->len)) return r; r++; } return NULL; } /** * vgic_handle_mmio - handle an in-kernel MMIO access * @vcpu: pointer to the vcpu performing the access * @run: pointer to the kvm_run structure * @mmio: pointer to the data describing the access * * returns true if the MMIO access has been performed in kernel space, * and false if it needs to be emulated in user space. */ bool vgic_handle_mmio(struct kvm_vcpu *vcpu, struct kvm_run *run, struct kvm_exit_mmio *mmio) { const struct mmio_range *range; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; unsigned long base = dist->vgic_dist_base; bool updated_state; unsigned long offset; if (!irqchip_in_kernel(vcpu->kvm) || mmio->phys_addr < base || (mmio->phys_addr + mmio->len) > (base + KVM_VGIC_V2_DIST_SIZE)) return false; /* We don't support ldrd / strd or ldm / stm to the emulated vgic */ if (mmio->len > 4) { kvm_inject_dabt(vcpu, mmio->phys_addr); return true; } range = find_matching_range(vgic_ranges, mmio, base); if (unlikely(!range || !range->handle_mmio)) { pr_warn("Unhandled access %d %08llx %d\n", mmio->is_write, mmio->phys_addr, mmio->len); return false; } spin_lock(&vcpu->kvm->arch.vgic.lock); offset = mmio->phys_addr - range->base - base; updated_state = range->handle_mmio(vcpu, mmio, offset); spin_unlock(&vcpu->kvm->arch.vgic.lock); kvm_prepare_mmio(run, mmio); kvm_handle_mmio_return(vcpu, run); if (updated_state) vgic_kick_vcpus(vcpu->kvm); return true; } static void vgic_dispatch_sgi(struct kvm_vcpu *vcpu, u32 reg) { struct kvm *kvm = vcpu->kvm; struct vgic_dist *dist = &kvm->arch.vgic; int nrcpus = atomic_read(&kvm->online_vcpus); u8 target_cpus; int sgi, mode, c, vcpu_id; vcpu_id = vcpu->vcpu_id; sgi = reg & 0xf; target_cpus = (reg >> 16) & 0xff; mode = (reg >> 24) & 3; switch (mode) { case 0: if (!target_cpus) return; case 1: target_cpus = ((1 << nrcpus) - 1) & ~(1 << vcpu_id) & 0xff; break; case 2: target_cpus = 1 << vcpu_id; break; } kvm_for_each_vcpu(c, vcpu, kvm) { if (target_cpus & 1) { /* Flag the SGI as pending */ vgic_dist_irq_set(vcpu, sgi); dist->irq_sgi_sources[c][sgi] |= 1 << vcpu_id; kvm_debug("SGI%d from CPU%d to CPU%d\n", sgi, vcpu_id, c); } target_cpus >>= 1; } } static int compute_pending_for_cpu(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; unsigned long *pending, *enabled, *pend_percpu, *pend_shared; unsigned long pending_private, pending_shared; int vcpu_id; vcpu_id = vcpu->vcpu_id; pend_percpu = vcpu->arch.vgic_cpu.pending_percpu; pend_shared = vcpu->arch.vgic_cpu.pending_shared; pending = vgic_bitmap_get_cpu_map(&dist->irq_state, vcpu_id); enabled = vgic_bitmap_get_cpu_map(&dist->irq_enabled, vcpu_id); bitmap_and(pend_percpu, pending, enabled, VGIC_NR_PRIVATE_IRQS); pending = vgic_bitmap_get_shared_map(&dist->irq_state); enabled = vgic_bitmap_get_shared_map(&dist->irq_enabled); bitmap_and(pend_shared, pending, enabled, VGIC_NR_SHARED_IRQS); bitmap_and(pend_shared, pend_shared, vgic_bitmap_get_shared_map(&dist->irq_spi_target[vcpu_id]), VGIC_NR_SHARED_IRQS); pending_private = find_first_bit(pend_percpu, VGIC_NR_PRIVATE_IRQS); pending_shared = find_first_bit(pend_shared, VGIC_NR_SHARED_IRQS); return (pending_private < VGIC_NR_PRIVATE_IRQS || pending_shared < VGIC_NR_SHARED_IRQS); } /* * Update the interrupt state and determine which CPUs have pending * interrupts. Must be called with distributor lock held. */ static void vgic_update_state(struct kvm *kvm) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int c; if (!dist->enabled) { set_bit(0, &dist->irq_pending_on_cpu); return; } kvm_for_each_vcpu(c, vcpu, kvm) { if (compute_pending_for_cpu(vcpu)) { pr_debug("CPU%d has pending interrupts\n", c); set_bit(c, &dist->irq_pending_on_cpu); } } } #define LR_CPUID(lr) \ (((lr) & GICH_LR_PHYSID_CPUID) >> GICH_LR_PHYSID_CPUID_SHIFT) #define MK_LR_PEND(src, irq) \ (GICH_LR_PENDING_BIT | ((src) << GICH_LR_PHYSID_CPUID_SHIFT) | (irq)) /* * An interrupt may have been disabled after being made pending on the * CPU interface (the classic case is a timer running while we're * rebooting the guest - the interrupt would kick as soon as the CPU * interface gets enabled, with deadly consequences). * * The solution is to examine already active LRs, and check the * interrupt is still enabled. If not, just retire it. */ static void vgic_retire_disabled_irqs(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; int lr; for_each_set_bit(lr, vgic_cpu->lr_used, vgic_cpu->nr_lr) { int irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID; if (!vgic_irq_is_enabled(vcpu, irq)) { vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY; clear_bit(lr, vgic_cpu->lr_used); vgic_cpu->vgic_lr[lr] &= ~GICH_LR_STATE; if (vgic_irq_is_active(vcpu, irq)) vgic_irq_clear_active(vcpu, irq); } } } /* * Queue an interrupt to a CPU virtual interface. Return true on success, * or false if it wasn't possible to queue it. */ static bool vgic_queue_irq(struct kvm_vcpu *vcpu, u8 sgi_source_id, int irq) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; int lr; /* Sanitize the input... */ BUG_ON(sgi_source_id & ~7); BUG_ON(sgi_source_id && irq >= VGIC_NR_SGIS); BUG_ON(irq >= VGIC_NR_IRQS); kvm_debug("Queue IRQ%d\n", irq); lr = vgic_cpu->vgic_irq_lr_map[irq]; /* Do we have an active interrupt for the same CPUID? */ if (lr != LR_EMPTY && (LR_CPUID(vgic_cpu->vgic_lr[lr]) == sgi_source_id)) { kvm_debug("LR%d piggyback for IRQ%d %x\n", lr, irq, vgic_cpu->vgic_lr[lr]); BUG_ON(!test_bit(lr, vgic_cpu->lr_used)); vgic_cpu->vgic_lr[lr] |= GICH_LR_PENDING_BIT; return true; } /* Try to use another LR for this interrupt */ lr = find_first_zero_bit((unsigned long *)vgic_cpu->lr_used, vgic_cpu->nr_lr); if (lr >= vgic_cpu->nr_lr) return false; kvm_debug("LR%d allocated for IRQ%d %x\n", lr, irq, sgi_source_id); vgic_cpu->vgic_lr[lr] = MK_LR_PEND(sgi_source_id, irq); vgic_cpu->vgic_irq_lr_map[irq] = lr; set_bit(lr, vgic_cpu->lr_used); if (!vgic_irq_is_edge(vcpu, irq)) vgic_cpu->vgic_lr[lr] |= GICH_LR_EOI; return true; } static bool vgic_queue_sgi(struct kvm_vcpu *vcpu, int irq) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; unsigned long sources; int vcpu_id = vcpu->vcpu_id; int c; sources = dist->irq_sgi_sources[vcpu_id][irq]; for_each_set_bit(c, &sources, VGIC_MAX_CPUS) { if (vgic_queue_irq(vcpu, c, irq)) clear_bit(c, &sources); } dist->irq_sgi_sources[vcpu_id][irq] = sources; /* * If the sources bitmap has been cleared it means that we * could queue all the SGIs onto link registers (see the * clear_bit above), and therefore we are done with them in * our emulated gic and can get rid of them. */ if (!sources) { vgic_dist_irq_clear(vcpu, irq); vgic_cpu_irq_clear(vcpu, irq); return true; } return false; } static bool vgic_queue_hwirq(struct kvm_vcpu *vcpu, int irq) { if (vgic_irq_is_active(vcpu, irq)) return true; /* level interrupt, already queued */ if (vgic_queue_irq(vcpu, 0, irq)) { if (vgic_irq_is_edge(vcpu, irq)) { vgic_dist_irq_clear(vcpu, irq); vgic_cpu_irq_clear(vcpu, irq); } else { vgic_irq_set_active(vcpu, irq); } return true; } return false; } /* * Fill the list registers with pending interrupts before running the * guest. */ static void __kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int i, vcpu_id; int overflow = 0; vcpu_id = vcpu->vcpu_id; /* * We may not have any pending interrupt, or the interrupts * may have been serviced from another vcpu. In all cases, * move along. */ if (!kvm_vgic_vcpu_pending_irq(vcpu)) { pr_debug("CPU%d has no pending interrupt\n", vcpu_id); goto epilog; } /* SGIs */ for_each_set_bit(i, vgic_cpu->pending_percpu, VGIC_NR_SGIS) { if (!vgic_queue_sgi(vcpu, i)) overflow = 1; } /* PPIs */ for_each_set_bit_from(i, vgic_cpu->pending_percpu, VGIC_NR_PRIVATE_IRQS) { if (!vgic_queue_hwirq(vcpu, i)) overflow = 1; } /* SPIs */ for_each_set_bit(i, vgic_cpu->pending_shared, VGIC_NR_SHARED_IRQS) { if (!vgic_queue_hwirq(vcpu, i + VGIC_NR_PRIVATE_IRQS)) overflow = 1; } epilog: if (overflow) { vgic_cpu->vgic_hcr |= GICH_HCR_UIE; } else { vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE; /* * We're about to run this VCPU, and we've consumed * everything the distributor had in store for * us. Claim we don't have anything pending. We'll * adjust that if needed while exiting. */ clear_bit(vcpu_id, &dist->irq_pending_on_cpu); } } static bool vgic_process_maintenance(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; bool level_pending = false; kvm_debug("MISR = %08x\n", vgic_cpu->vgic_misr); if (vgic_cpu->vgic_misr & GICH_MISR_EOI) { /* * Some level interrupts have been EOIed. Clear their * active bit. */ int lr, irq; for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_eisr, vgic_cpu->nr_lr) { irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID; vgic_irq_clear_active(vcpu, irq); vgic_cpu->vgic_lr[lr] &= ~GICH_LR_EOI; /* Any additional pending interrupt? */ if (vgic_dist_irq_is_pending(vcpu, irq)) { vgic_cpu_irq_set(vcpu, irq); level_pending = true; } else { vgic_cpu_irq_clear(vcpu, irq); } /* * Despite being EOIed, the LR may not have * been marked as empty. */ set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr); vgic_cpu->vgic_lr[lr] &= ~GICH_LR_ACTIVE_BIT; } } if (vgic_cpu->vgic_misr & GICH_MISR_U) vgic_cpu->vgic_hcr &= ~GICH_HCR_UIE; return level_pending; } /* * Sync back the VGIC state after a guest run. The distributor lock is * needed so we don't get preempted in the middle of the state processing. */ static void __kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int lr, pending; bool level_pending; level_pending = vgic_process_maintenance(vcpu); /* Clear mappings for empty LRs */ for_each_set_bit(lr, (unsigned long *)vgic_cpu->vgic_elrsr, vgic_cpu->nr_lr) { int irq; if (!test_and_clear_bit(lr, vgic_cpu->lr_used)) continue; irq = vgic_cpu->vgic_lr[lr] & GICH_LR_VIRTUALID; BUG_ON(irq >= VGIC_NR_IRQS); vgic_cpu->vgic_irq_lr_map[irq] = LR_EMPTY; } /* Check if we still have something up our sleeve... */ pending = find_first_zero_bit((unsigned long *)vgic_cpu->vgic_elrsr, vgic_cpu->nr_lr); if (level_pending || pending < vgic_cpu->nr_lr) set_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu); } void kvm_vgic_flush_hwstate(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; if (!irqchip_in_kernel(vcpu->kvm)) return; spin_lock(&dist->lock); __kvm_vgic_flush_hwstate(vcpu); spin_unlock(&dist->lock); } void kvm_vgic_sync_hwstate(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; if (!irqchip_in_kernel(vcpu->kvm)) return; spin_lock(&dist->lock); __kvm_vgic_sync_hwstate(vcpu); spin_unlock(&dist->lock); } int kvm_vgic_vcpu_pending_irq(struct kvm_vcpu *vcpu) { struct vgic_dist *dist = &vcpu->kvm->arch.vgic; if (!irqchip_in_kernel(vcpu->kvm)) return 0; return test_bit(vcpu->vcpu_id, &dist->irq_pending_on_cpu); } static void vgic_kick_vcpus(struct kvm *kvm) { struct kvm_vcpu *vcpu; int c; /* * We've injected an interrupt, time to find out who deserves * a good kick... */ kvm_for_each_vcpu(c, vcpu, kvm) { if (kvm_vgic_vcpu_pending_irq(vcpu)) kvm_vcpu_kick(vcpu); } } static int vgic_validate_injection(struct kvm_vcpu *vcpu, int irq, int level) { int is_edge = vgic_irq_is_edge(vcpu, irq); int state = vgic_dist_irq_is_pending(vcpu, irq); /* * Only inject an interrupt if: * - edge triggered and we have a rising edge * - level triggered and we change level */ if (is_edge) return level > state; else return level != state; } static bool vgic_update_irq_state(struct kvm *kvm, int cpuid, unsigned int irq_num, bool level) { struct vgic_dist *dist = &kvm->arch.vgic; struct kvm_vcpu *vcpu; int is_edge, is_level; int enabled; bool ret = true; spin_lock(&dist->lock); vcpu = kvm_get_vcpu(kvm, cpuid); is_edge = vgic_irq_is_edge(vcpu, irq_num); is_level = !is_edge; if (!vgic_validate_injection(vcpu, irq_num, level)) { ret = false; goto out; } if (irq_num >= VGIC_NR_PRIVATE_IRQS) { cpuid = dist->irq_spi_cpu[irq_num - VGIC_NR_PRIVATE_IRQS]; vcpu = kvm_get_vcpu(kvm, cpuid); } kvm_debug("Inject IRQ%d level %d CPU%d\n", irq_num, level, cpuid); if (level) vgic_dist_irq_set(vcpu, irq_num); else vgic_dist_irq_clear(vcpu, irq_num); enabled = vgic_irq_is_enabled(vcpu, irq_num); if (!enabled) { ret = false; goto out; } if (is_level && vgic_irq_is_active(vcpu, irq_num)) { /* * Level interrupt in progress, will be picked up * when EOId. */ ret = false; goto out; } if (level) { vgic_cpu_irq_set(vcpu, irq_num); set_bit(cpuid, &dist->irq_pending_on_cpu); } out: spin_unlock(&dist->lock); return ret; } /** * kvm_vgic_inject_irq - Inject an IRQ from a device to the vgic * @kvm: The VM structure pointer * @cpuid: The CPU for PPIs * @irq_num: The IRQ number that is assigned to the device * @level: Edge-triggered: true: to trigger the interrupt * false: to ignore the call * Level-sensitive true: activates an interrupt * false: deactivates an interrupt * * The GIC is not concerned with devices being active-LOW or active-HIGH for * level-sensitive interrupts. You can think of the level parameter as 1 * being HIGH and 0 being LOW and all devices being active-HIGH. */ int kvm_vgic_inject_irq(struct kvm *kvm, int cpuid, unsigned int irq_num, bool level) { if (vgic_update_irq_state(kvm, cpuid, irq_num, level)) vgic_kick_vcpus(kvm); return 0; } static irqreturn_t vgic_maintenance_handler(int irq, void *data) { /* * We cannot rely on the vgic maintenance interrupt to be * delivered synchronously. This means we can only use it to * exit the VM, and we perform the handling of EOIed * interrupts on the exit path (see vgic_process_maintenance). */ return IRQ_HANDLED; } int kvm_vgic_vcpu_init(struct kvm_vcpu *vcpu) { struct vgic_cpu *vgic_cpu = &vcpu->arch.vgic_cpu; struct vgic_dist *dist = &vcpu->kvm->arch.vgic; int i; if (!irqchip_in_kernel(vcpu->kvm)) return 0; if (vcpu->vcpu_id >= VGIC_MAX_CPUS) return -EBUSY; for (i = 0; i < VGIC_NR_IRQS; i++) { if (i < VGIC_NR_PPIS) vgic_bitmap_set_irq_val(&dist->irq_enabled, vcpu->vcpu_id, i, 1); if (i < VGIC_NR_PRIVATE_IRQS) vgic_bitmap_set_irq_val(&dist->irq_cfg, vcpu->vcpu_id, i, VGIC_CFG_EDGE); vgic_cpu->vgic_irq_lr_map[i] = LR_EMPTY; } /* * By forcing VMCR to zero, the GIC will restore the binary * points to their reset values. Anything else resets to zero * anyway. */ vgic_cpu->vgic_vmcr = 0; vgic_cpu->nr_lr = vgic_nr_lr; vgic_cpu->vgic_hcr = GICH_HCR_EN; /* Get the show on the road... */ return 0; } static void vgic_init_maintenance_interrupt(void *info) { enable_percpu_irq(vgic_maint_irq, 0); } static int vgic_cpu_notify(struct notifier_block *self, unsigned long action, void *cpu) { switch (action) { case CPU_STARTING: case CPU_STARTING_FROZEN: vgic_init_maintenance_interrupt(NULL); break; case CPU_DYING: case CPU_DYING_FROZEN: disable_percpu_irq(vgic_maint_irq); break; } return NOTIFY_OK; } static struct notifier_block vgic_cpu_nb = { .notifier_call = vgic_cpu_notify, }; int kvm_vgic_hyp_init(void) { int ret; struct resource vctrl_res; struct resource vcpu_res; vgic_node = of_find_compatible_node(NULL, NULL, "arm,cortex-a15-gic"); if (!vgic_node) { kvm_err("error: no compatible vgic node in DT\n"); return -ENODEV; } vgic_maint_irq = irq_of_parse_and_map(vgic_node, 0); if (!vgic_maint_irq) { kvm_err("error getting vgic maintenance irq from DT\n"); ret = -ENXIO; goto out; } ret = request_percpu_irq(vgic_maint_irq, vgic_maintenance_handler, "vgic", kvm_get_running_vcpus()); if (ret) { kvm_err("Cannot register interrupt %d\n", vgic_maint_irq); goto out; } ret = register_cpu_notifier(&vgic_cpu_nb); if (ret) { kvm_err("Cannot register vgic CPU notifier\n"); goto out_free_irq; } ret = of_address_to_resource(vgic_node, 2, &vctrl_res); if (ret) { kvm_err("Cannot obtain VCTRL resource\n"); goto out_free_irq; } vgic_vctrl_base = of_iomap(vgic_node, 2); if (!vgic_vctrl_base) { kvm_err("Cannot ioremap VCTRL\n"); ret = -ENOMEM; goto out_free_irq; } vgic_nr_lr = readl_relaxed(vgic_vctrl_base + GICH_VTR); vgic_nr_lr = (vgic_nr_lr & 0x3f) + 1; ret = create_hyp_io_mappings(vgic_vctrl_base, vgic_vctrl_base + resource_size(&vctrl_res), vctrl_res.start); if (ret) { kvm_err("Cannot map VCTRL into hyp\n"); goto out_unmap; } kvm_info("%s@%llx IRQ%d\n", vgic_node->name, vctrl_res.start, vgic_maint_irq); on_each_cpu(vgic_init_maintenance_interrupt, NULL, 1); if (of_address_to_resource(vgic_node, 3, &vcpu_res)) { kvm_err("Cannot obtain VCPU resource\n"); ret = -ENXIO; goto out_unmap; } vgic_vcpu_base = vcpu_res.start; goto out; out_unmap: iounmap(vgic_vctrl_base); out_free_irq: free_percpu_irq(vgic_maint_irq, kvm_get_running_vcpus()); out: of_node_put(vgic_node); return ret; } int kvm_vgic_init(struct kvm *kvm) { int ret = 0, i; mutex_lock(&kvm->lock); if (vgic_initialized(kvm)) goto out; if (IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_dist_base) || IS_VGIC_ADDR_UNDEF(kvm->arch.vgic.vgic_cpu_base)) { kvm_err("Need to set vgic cpu and dist addresses first\n"); ret = -ENXIO; goto out; } ret = kvm_phys_addr_ioremap(kvm, kvm->arch.vgic.vgic_cpu_base, vgic_vcpu_base, KVM_VGIC_V2_CPU_SIZE); if (ret) { kvm_err("Unable to remap VGIC CPU to VCPU\n"); goto out; } for (i = VGIC_NR_PRIVATE_IRQS; i < VGIC_NR_IRQS; i += 4) vgic_set_target_reg(kvm, 0, i); kvm->arch.vgic.ready = true; out: mutex_unlock(&kvm->lock); return ret; } int kvm_vgic_create(struct kvm *kvm) { int ret = 0; mutex_lock(&kvm->lock); if (atomic_read(&kvm->online_vcpus) || kvm->arch.vgic.vctrl_base) { ret = -EEXIST; goto out; } spin_lock_init(&kvm->arch.vgic.lock); kvm->arch.vgic.vctrl_base = vgic_vctrl_base; kvm->arch.vgic.vgic_dist_base = VGIC_ADDR_UNDEF; kvm->arch.vgic.vgic_cpu_base = VGIC_ADDR_UNDEF; out: mutex_unlock(&kvm->lock); return ret; } static bool vgic_ioaddr_overlap(struct kvm *kvm) { phys_addr_t dist = kvm->arch.vgic.vgic_dist_base; phys_addr_t cpu = kvm->arch.vgic.vgic_cpu_base; if (IS_VGIC_ADDR_UNDEF(dist) || IS_VGIC_ADDR_UNDEF(cpu)) return 0; if ((dist <= cpu && dist + KVM_VGIC_V2_DIST_SIZE > cpu) || (cpu <= dist && cpu + KVM_VGIC_V2_CPU_SIZE > dist)) return -EBUSY; return 0; } static int vgic_ioaddr_assign(struct kvm *kvm, phys_addr_t *ioaddr, phys_addr_t addr, phys_addr_t size) { int ret; if (!IS_VGIC_ADDR_UNDEF(*ioaddr)) return -EEXIST; if (addr + size < addr) return -EINVAL; ret = vgic_ioaddr_overlap(kvm); if (ret) return ret; *ioaddr = addr; return ret; } int kvm_vgic_set_addr(struct kvm *kvm, unsigned long type, u64 addr) { int r = 0; struct vgic_dist *vgic = &kvm->arch.vgic; if (addr & ~KVM_PHYS_MASK) return -E2BIG; if (addr & (SZ_4K - 1)) return -EINVAL; mutex_lock(&kvm->lock); switch (type) { case KVM_VGIC_V2_ADDR_TYPE_DIST: r = vgic_ioaddr_assign(kvm, &vgic->vgic_dist_base, addr, KVM_VGIC_V2_DIST_SIZE); break; case KVM_VGIC_V2_ADDR_TYPE_CPU: r = vgic_ioaddr_assign(kvm, &vgic->vgic_cpu_base, addr, KVM_VGIC_V2_CPU_SIZE); break; default: r = -ENODEV; } mutex_unlock(&kvm->lock); return r; }