/******************************************************************* * This file is part of the Emulex Linux Device Driver for * * Fibre Channel Host Bus Adapters. * * Copyright (C) 2004-2008 Emulex. All rights reserved. * * EMULEX and SLI are trademarks of Emulex. * * www.emulex.com * * Portions Copyright (C) 2004-2005 Christoph Hellwig * * * * This program is free software; you can redistribute it and/or * * modify it under the terms of version 2 of the GNU General * * Public License as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful. * * ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND * * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, * * FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT, ARE * * DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD * * TO BE LEGALLY INVALID. See the GNU General Public License for * * more details, a copy of which can be found in the file COPYING * * included with this package. * *******************************************************************/ #include <linux/pci.h> #include <linux/interrupt.h> #include <linux/delay.h> #include <asm/unaligned.h> #include <scsi/scsi.h> #include <scsi/scsi_device.h> #include <scsi/scsi_eh.h> #include <scsi/scsi_host.h> #include <scsi/scsi_tcq.h> #include <scsi/scsi_transport_fc.h> #include "lpfc_version.h" #include "lpfc_hw.h" #include "lpfc_sli.h" #include "lpfc_nl.h" #include "lpfc_disc.h" #include "lpfc_scsi.h" #include "lpfc.h" #include "lpfc_logmsg.h" #include "lpfc_crtn.h" #include "lpfc_vport.h" #define LPFC_RESET_WAIT 2 #define LPFC_ABORT_WAIT 2 int _dump_buf_done; static char *dif_op_str[] = { "SCSI_PROT_NORMAL", "SCSI_PROT_READ_INSERT", "SCSI_PROT_WRITE_STRIP", "SCSI_PROT_READ_STRIP", "SCSI_PROT_WRITE_INSERT", "SCSI_PROT_READ_PASS", "SCSI_PROT_WRITE_PASS", "SCSI_PROT_READ_CONVERT", "SCSI_PROT_WRITE_CONVERT" }; static void lpfc_debug_save_data(struct scsi_cmnd *cmnd) { void *src, *dst; struct scatterlist *sgde = scsi_sglist(cmnd); if (!_dump_buf_data) { printk(KERN_ERR "BLKGRD ERROR %s _dump_buf_data is NULL\n", __func__); return; } if (!sgde) { printk(KERN_ERR "BLKGRD ERROR: data scatterlist is null\n"); return; } dst = (void *) _dump_buf_data; while (sgde) { src = sg_virt(sgde); memcpy(dst, src, sgde->length); dst += sgde->length; sgde = sg_next(sgde); } } static void lpfc_debug_save_dif(struct scsi_cmnd *cmnd) { void *src, *dst; struct scatterlist *sgde = scsi_prot_sglist(cmnd); if (!_dump_buf_dif) { printk(KERN_ERR "BLKGRD ERROR %s _dump_buf_data is NULL\n", __func__); return; } if (!sgde) { printk(KERN_ERR "BLKGRD ERROR: prot scatterlist is null\n"); return; } dst = _dump_buf_dif; while (sgde) { src = sg_virt(sgde); memcpy(dst, src, sgde->length); dst += sgde->length; sgde = sg_next(sgde); } } /** * lpfc_update_stats - Update statistical data for the command completion * @phba: Pointer to HBA object. * @lpfc_cmd: lpfc scsi command object pointer. * * This function is called when there is a command completion and this * function updates the statistical data for the command completion. **/ static void lpfc_update_stats(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct lpfc_rport_data *rdata = lpfc_cmd->rdata; struct lpfc_nodelist *pnode = rdata->pnode; struct scsi_cmnd *cmd = lpfc_cmd->pCmd; unsigned long flags; struct Scsi_Host *shost = cmd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; unsigned long latency; int i; if (cmd->result) return; latency = jiffies_to_msecs((long)jiffies - (long)lpfc_cmd->start_time); spin_lock_irqsave(shost->host_lock, flags); if (!vport->stat_data_enabled || vport->stat_data_blocked || !pnode->lat_data || (phba->bucket_type == LPFC_NO_BUCKET)) { spin_unlock_irqrestore(shost->host_lock, flags); return; } if (phba->bucket_type == LPFC_LINEAR_BUCKET) { i = (latency + phba->bucket_step - 1 - phba->bucket_base)/ phba->bucket_step; /* check array subscript bounds */ if (i < 0) i = 0; else if (i >= LPFC_MAX_BUCKET_COUNT) i = LPFC_MAX_BUCKET_COUNT - 1; } else { for (i = 0; i < LPFC_MAX_BUCKET_COUNT-1; i++) if (latency <= (phba->bucket_base + ((1<<i)*phba->bucket_step))) break; } pnode->lat_data[i].cmd_count++; spin_unlock_irqrestore(shost->host_lock, flags); } /** * lpfc_send_sdev_queuedepth_change_event - Posts a queuedepth change event * @phba: Pointer to HBA context object. * @vport: Pointer to vport object. * @ndlp: Pointer to FC node associated with the target. * @lun: Lun number of the scsi device. * @old_val: Old value of the queue depth. * @new_val: New value of the queue depth. * * This function sends an event to the mgmt application indicating * there is a change in the scsi device queue depth. **/ static void lpfc_send_sdev_queuedepth_change_event(struct lpfc_hba *phba, struct lpfc_vport *vport, struct lpfc_nodelist *ndlp, uint32_t lun, uint32_t old_val, uint32_t new_val) { struct lpfc_fast_path_event *fast_path_evt; unsigned long flags; fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.queue_depth_evt.scsi_event.event_type = FC_REG_SCSI_EVENT; fast_path_evt->un.queue_depth_evt.scsi_event.subcategory = LPFC_EVENT_VARQUEDEPTH; /* Report all luns with change in queue depth */ fast_path_evt->un.queue_depth_evt.scsi_event.lun = lun; if (ndlp && NLP_CHK_NODE_ACT(ndlp)) { memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwpn, &ndlp->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.queue_depth_evt.scsi_event.wwnn, &ndlp->nlp_nodename, sizeof(struct lpfc_name)); } fast_path_evt->un.queue_depth_evt.oldval = old_val; fast_path_evt->un.queue_depth_evt.newval = new_val; fast_path_evt->vport = vport; fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); return; } /** * lpfc_rampdown_queue_depth - Post RAMP_DOWN_QUEUE event to worker thread * @phba: The Hba for which this call is being executed. * * This routine is called when there is resource error in driver or firmware. * This routine posts WORKER_RAMP_DOWN_QUEUE event for @phba. This routine * posts at most 1 event each second. This routine wakes up worker thread of * @phba to process WORKER_RAM_DOWN_EVENT event. * * This routine should be called with no lock held. **/ void lpfc_rampdown_queue_depth(struct lpfc_hba *phba) { unsigned long flags; uint32_t evt_posted; spin_lock_irqsave(&phba->hbalock, flags); atomic_inc(&phba->num_rsrc_err); phba->last_rsrc_error_time = jiffies; if ((phba->last_ramp_down_time + QUEUE_RAMP_DOWN_INTERVAL) > jiffies) { spin_unlock_irqrestore(&phba->hbalock, flags); return; } phba->last_ramp_down_time = jiffies; spin_unlock_irqrestore(&phba->hbalock, flags); spin_lock_irqsave(&phba->pport->work_port_lock, flags); evt_posted = phba->pport->work_port_events & WORKER_RAMP_DOWN_QUEUE; if (!evt_posted) phba->pport->work_port_events |= WORKER_RAMP_DOWN_QUEUE; spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); if (!evt_posted) lpfc_worker_wake_up(phba); return; } /** * lpfc_rampup_queue_depth - Post RAMP_UP_QUEUE event for worker thread * @phba: The Hba for which this call is being executed. * * This routine post WORKER_RAMP_UP_QUEUE event for @phba vport. This routine * post at most 1 event every 5 minute after last_ramp_up_time or * last_rsrc_error_time. This routine wakes up worker thread of @phba * to process WORKER_RAM_DOWN_EVENT event. * * This routine should be called with no lock held. **/ static inline void lpfc_rampup_queue_depth(struct lpfc_vport *vport, struct scsi_device *sdev) { unsigned long flags; struct lpfc_hba *phba = vport->phba; uint32_t evt_posted; atomic_inc(&phba->num_cmd_success); if (vport->cfg_lun_queue_depth <= sdev->queue_depth) return; spin_lock_irqsave(&phba->hbalock, flags); if (((phba->last_ramp_up_time + QUEUE_RAMP_UP_INTERVAL) > jiffies) || ((phba->last_rsrc_error_time + QUEUE_RAMP_UP_INTERVAL ) > jiffies)) { spin_unlock_irqrestore(&phba->hbalock, flags); return; } phba->last_ramp_up_time = jiffies; spin_unlock_irqrestore(&phba->hbalock, flags); spin_lock_irqsave(&phba->pport->work_port_lock, flags); evt_posted = phba->pport->work_port_events & WORKER_RAMP_UP_QUEUE; if (!evt_posted) phba->pport->work_port_events |= WORKER_RAMP_UP_QUEUE; spin_unlock_irqrestore(&phba->pport->work_port_lock, flags); if (!evt_posted) lpfc_worker_wake_up(phba); return; } /** * lpfc_ramp_down_queue_handler - WORKER_RAMP_DOWN_QUEUE event handler * @phba: The Hba for which this call is being executed. * * This routine is called to process WORKER_RAMP_DOWN_QUEUE event for worker * thread.This routine reduces queue depth for all scsi device on each vport * associated with @phba. **/ void lpfc_ramp_down_queue_handler(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; struct scsi_device *sdev; unsigned long new_queue_depth, old_queue_depth; unsigned long num_rsrc_err, num_cmd_success; int i; struct lpfc_rport_data *rdata; num_rsrc_err = atomic_read(&phba->num_rsrc_err); num_cmd_success = atomic_read(&phba->num_cmd_success); vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for(i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); shost_for_each_device(sdev, shost) { new_queue_depth = sdev->queue_depth * num_rsrc_err / (num_rsrc_err + num_cmd_success); if (!new_queue_depth) new_queue_depth = sdev->queue_depth - 1; else new_queue_depth = sdev->queue_depth - new_queue_depth; old_queue_depth = sdev->queue_depth; if (sdev->ordered_tags) scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, new_queue_depth); else scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, new_queue_depth); rdata = sdev->hostdata; if (rdata) lpfc_send_sdev_queuedepth_change_event( phba, vports[i], rdata->pnode, sdev->lun, old_queue_depth, new_queue_depth); } } lpfc_destroy_vport_work_array(phba, vports); atomic_set(&phba->num_rsrc_err, 0); atomic_set(&phba->num_cmd_success, 0); } /** * lpfc_ramp_up_queue_handler - WORKER_RAMP_UP_QUEUE event handler * @phba: The Hba for which this call is being executed. * * This routine is called to process WORKER_RAMP_UP_QUEUE event for worker * thread.This routine increases queue depth for all scsi device on each vport * associated with @phba by 1. This routine also sets @phba num_rsrc_err and * num_cmd_success to zero. **/ void lpfc_ramp_up_queue_handler(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; struct scsi_device *sdev; int i; struct lpfc_rport_data *rdata; vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for(i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); shost_for_each_device(sdev, shost) { if (vports[i]->cfg_lun_queue_depth <= sdev->queue_depth) continue; if (sdev->ordered_tags) scsi_adjust_queue_depth(sdev, MSG_ORDERED_TAG, sdev->queue_depth+1); else scsi_adjust_queue_depth(sdev, MSG_SIMPLE_TAG, sdev->queue_depth+1); rdata = sdev->hostdata; if (rdata) lpfc_send_sdev_queuedepth_change_event( phba, vports[i], rdata->pnode, sdev->lun, sdev->queue_depth - 1, sdev->queue_depth); } } lpfc_destroy_vport_work_array(phba, vports); atomic_set(&phba->num_rsrc_err, 0); atomic_set(&phba->num_cmd_success, 0); } /** * lpfc_scsi_dev_block - set all scsi hosts to block state * @phba: Pointer to HBA context object. * * This function walks vport list and set each SCSI host to block state * by invoking fc_remote_port_delete() routine. This function is invoked * with EEH when device's PCI slot has been permanently disabled. **/ void lpfc_scsi_dev_block(struct lpfc_hba *phba) { struct lpfc_vport **vports; struct Scsi_Host *shost; struct scsi_device *sdev; struct fc_rport *rport; int i; vports = lpfc_create_vport_work_array(phba); if (vports != NULL) for (i = 0; i <= phba->max_vpi && vports[i] != NULL; i++) { shost = lpfc_shost_from_vport(vports[i]); shost_for_each_device(sdev, shost) { rport = starget_to_rport(scsi_target(sdev)); fc_remote_port_delete(rport); } } lpfc_destroy_vport_work_array(phba, vports); } /** * lpfc_new_scsi_buf - Scsi buffer allocator * @vport: The virtual port for which this call being executed. * * This routine allocates a scsi buffer, which contains all the necessary * information needed to initiate a SCSI I/O. The non-DMAable buffer region * contains information to build the IOCB. The DMAable region contains * memory for the FCP CMND, FCP RSP, and the initial BPL. In addition to * allocating memory, the FCP CMND and FCP RSP BDEs are setup in the BPL * and the BPL BDE is setup in the IOCB. * * Return codes: * NULL - Error * Pointer to lpfc_scsi_buf data structure - Success **/ static struct lpfc_scsi_buf * lpfc_new_scsi_buf(struct lpfc_vport *vport) { struct lpfc_hba *phba = vport->phba; struct lpfc_scsi_buf *psb; struct ulp_bde64 *bpl; IOCB_t *iocb; dma_addr_t pdma_phys_fcp_cmd; dma_addr_t pdma_phys_fcp_rsp; dma_addr_t pdma_phys_bpl; uint16_t iotag; psb = kzalloc(sizeof(struct lpfc_scsi_buf), GFP_KERNEL); if (!psb) return NULL; /* * Get memory from the pci pool to map the virt space to pci bus space * for an I/O. The DMA buffer includes space for the struct fcp_cmnd, * struct fcp_rsp and the number of bde's necessary to support the * sg_tablesize. */ psb->data = pci_pool_alloc(phba->lpfc_scsi_dma_buf_pool, GFP_KERNEL, &psb->dma_handle); if (!psb->data) { kfree(psb); return NULL; } /* Initialize virtual ptrs to dma_buf region. */ memset(psb->data, 0, phba->cfg_sg_dma_buf_size); /* Allocate iotag for psb->cur_iocbq. */ iotag = lpfc_sli_next_iotag(phba, &psb->cur_iocbq); if (iotag == 0) { pci_pool_free(phba->lpfc_scsi_dma_buf_pool, psb->data, psb->dma_handle); kfree (psb); return NULL; } psb->cur_iocbq.iocb_flag |= LPFC_IO_FCP; psb->fcp_cmnd = psb->data; psb->fcp_rsp = psb->data + sizeof(struct fcp_cmnd); psb->fcp_bpl = psb->data + sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp); /* Initialize local short-hand pointers. */ bpl = psb->fcp_bpl; pdma_phys_fcp_cmd = psb->dma_handle; pdma_phys_fcp_rsp = psb->dma_handle + sizeof(struct fcp_cmnd); pdma_phys_bpl = psb->dma_handle + sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp); /* * The first two bdes are the FCP_CMD and FCP_RSP. The balance are sg * list bdes. Initialize the first two and leave the rest for * queuecommand. */ bpl[0].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_cmd)); bpl[0].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_cmd)); bpl[0].tus.f.bdeSize = sizeof(struct fcp_cmnd); bpl[0].tus.f.bdeFlags = BUFF_TYPE_BDE_64; bpl[0].tus.w = le32_to_cpu(bpl[0].tus.w); /* Setup the physical region for the FCP RSP */ bpl[1].addrHigh = le32_to_cpu(putPaddrHigh(pdma_phys_fcp_rsp)); bpl[1].addrLow = le32_to_cpu(putPaddrLow(pdma_phys_fcp_rsp)); bpl[1].tus.f.bdeSize = sizeof(struct fcp_rsp); bpl[1].tus.f.bdeFlags = BUFF_TYPE_BDE_64; bpl[1].tus.w = le32_to_cpu(bpl[1].tus.w); /* * Since the IOCB for the FCP I/O is built into this lpfc_scsi_buf, * initialize it with all known data now. */ iocb = &psb->cur_iocbq.iocb; iocb->un.fcpi64.bdl.ulpIoTag32 = 0; if ((phba->sli_rev == 3) && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { /* fill in immediate fcp command BDE */ iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BDE_IMMED; iocb->un.fcpi64.bdl.bdeSize = sizeof(struct fcp_cmnd); iocb->un.fcpi64.bdl.addrLow = offsetof(IOCB_t, unsli3.fcp_ext.icd); iocb->un.fcpi64.bdl.addrHigh = 0; iocb->ulpBdeCount = 0; iocb->ulpLe = 0; /* fill in responce BDE */ iocb->unsli3.fcp_ext.rbde.tus.f.bdeFlags = BUFF_TYPE_BDE_64; iocb->unsli3.fcp_ext.rbde.tus.f.bdeSize = sizeof(struct fcp_rsp); iocb->unsli3.fcp_ext.rbde.addrLow = putPaddrLow(pdma_phys_fcp_rsp); iocb->unsli3.fcp_ext.rbde.addrHigh = putPaddrHigh(pdma_phys_fcp_rsp); } else { iocb->un.fcpi64.bdl.bdeFlags = BUFF_TYPE_BLP_64; iocb->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); iocb->un.fcpi64.bdl.addrLow = putPaddrLow(pdma_phys_bpl); iocb->un.fcpi64.bdl.addrHigh = putPaddrHigh(pdma_phys_bpl); iocb->ulpBdeCount = 1; iocb->ulpLe = 1; } iocb->ulpClass = CLASS3; return psb; } /** * lpfc_get_scsi_buf - Get a scsi buffer from lpfc_scsi_buf_list list of Hba * @phba: The Hba for which this call is being executed. * * This routine removes a scsi buffer from head of @phba lpfc_scsi_buf_list list * and returns to caller. * * Return codes: * NULL - Error * Pointer to lpfc_scsi_buf - Success **/ static struct lpfc_scsi_buf* lpfc_get_scsi_buf(struct lpfc_hba * phba) { struct lpfc_scsi_buf * lpfc_cmd = NULL; struct list_head *scsi_buf_list = &phba->lpfc_scsi_buf_list; unsigned long iflag = 0; spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); list_remove_head(scsi_buf_list, lpfc_cmd, struct lpfc_scsi_buf, list); if (lpfc_cmd) { lpfc_cmd->seg_cnt = 0; lpfc_cmd->nonsg_phys = 0; lpfc_cmd->prot_seg_cnt = 0; } spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); return lpfc_cmd; } /** * lpfc_release_scsi_buf - Return a scsi buffer back to hba's lpfc_scsi_buf_list * @phba: The Hba for which this call is being executed. * @psb: The scsi buffer which is being released. * * This routine releases @psb scsi buffer by adding it to tail of @phba * lpfc_scsi_buf_list list. **/ static void lpfc_release_scsi_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *psb) { unsigned long iflag = 0; spin_lock_irqsave(&phba->scsi_buf_list_lock, iflag); psb->pCmd = NULL; list_add_tail(&psb->list, &phba->lpfc_scsi_buf_list); spin_unlock_irqrestore(&phba->scsi_buf_list_lock, iflag); } /** * lpfc_scsi_prep_dma_buf - Routine to do DMA mapping for scsi buffer * @phba: The Hba for which this call is being executed. * @lpfc_cmd: The scsi buffer which is going to be mapped. * * This routine does the pci dma mapping for scatter-gather list of scsi cmnd * field of @lpfc_cmd. This routine scans through sg elements and format the * bdea. This routine also initializes all IOCB fields which are dependent on * scsi command request buffer. * * Return codes: * 1 - Error * 0 - Success **/ static int lpfc_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct scatterlist *sgel = NULL; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; struct ulp_bde64 *data_bde = iocb_cmd->unsli3.fcp_ext.dbde; dma_addr_t physaddr; uint32_t num_bde = 0; int nseg, datadir = scsi_cmnd->sc_data_direction; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. Start the lpfc command prep by * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first * data bde entry. */ bpl += 2; if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from pci_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ nseg = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), scsi_sg_count(scsi_cmnd), datadir); if (unlikely(!nseg)) return 1; lpfc_cmd->seg_cnt = nseg; if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { printk(KERN_ERR "%s: Too many sg segments from " "dma_map_sg. Config %d, seg_cnt %d\n", __func__, phba->cfg_sg_seg_cnt, lpfc_cmd->seg_cnt); scsi_dma_unmap(scsi_cmnd); return 1; } /* * The driver established a maximum scatter-gather segment count * during probe that limits the number of sg elements in any * single scsi command. Just run through the seg_cnt and format * the bde's. * When using SLI-3 the driver will try to fit all the BDEs into * the IOCB. If it can't then the BDEs get added to a BPL as it * does for SLI-2 mode. */ scsi_for_each_sg(scsi_cmnd, sgel, nseg, num_bde) { physaddr = sg_dma_address(sgel); if (phba->sli_rev == 3 && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && nseg <= LPFC_EXT_DATA_BDE_COUNT) { data_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; data_bde->tus.f.bdeSize = sg_dma_len(sgel); data_bde->addrLow = putPaddrLow(physaddr); data_bde->addrHigh = putPaddrHigh(physaddr); data_bde++; } else { bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; bpl->tus.f.bdeSize = sg_dma_len(sgel); bpl->tus.w = le32_to_cpu(bpl->tus.w); bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); bpl++; } } } /* * Finish initializing those IOCB fields that are dependent on the * scsi_cmnd request_buffer. Note that for SLI-2 the bdeSize is * explicitly reinitialized and for SLI-3 the extended bde count is * explicitly reinitialized since all iocb memory resources are reused. */ if (phba->sli_rev == 3 && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) { if (num_bde > LPFC_EXT_DATA_BDE_COUNT) { /* * The extended IOCB format can only fit 3 BDE or a BPL. * This I/O has more than 3 BDE so the 1st data bde will * be a BPL that is filled in here. */ physaddr = lpfc_cmd->dma_handle; data_bde->tus.f.bdeFlags = BUFF_TYPE_BLP_64; data_bde->tus.f.bdeSize = (num_bde * sizeof(struct ulp_bde64)); physaddr += (sizeof(struct fcp_cmnd) + sizeof(struct fcp_rsp) + (2 * sizeof(struct ulp_bde64))); data_bde->addrHigh = putPaddrHigh(physaddr); data_bde->addrLow = putPaddrLow(physaddr); /* ebde count includes the responce bde and data bpl */ iocb_cmd->unsli3.fcp_ext.ebde_count = 2; } else { /* ebde count includes the responce bde and data bdes */ iocb_cmd->unsli3.fcp_ext.ebde_count = (num_bde + 1); } } else { iocb_cmd->un.fcpi64.bdl.bdeSize = ((num_bde + 2) * sizeof(struct ulp_bde64)); } fcp_cmnd->fcpDl = cpu_to_be32(scsi_bufflen(scsi_cmnd)); /* * Due to difference in data length between DIF/non-DIF paths, * we need to set word 4 of IOCB here */ iocb_cmd->un.fcpi.fcpi_parm = le32_to_cpu(scsi_bufflen(scsi_cmnd)); return 0; } /* * Given a scsi cmnd, determine the BlockGuard profile to be used * with the cmd */ static int lpfc_sc_to_sli_prof(struct scsi_cmnd *sc) { uint8_t guard_type = scsi_host_get_guard(sc->device->host); uint8_t ret_prof = LPFC_PROF_INVALID; if (guard_type == SHOST_DIX_GUARD_IP) { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: ret_prof = LPFC_PROF_AST2; break; case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: ret_prof = LPFC_PROF_A1; break; case SCSI_PROT_READ_CONVERT: case SCSI_PROT_WRITE_CONVERT: ret_prof = LPFC_PROF_AST1; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: case SCSI_PROT_NORMAL: default: printk(KERN_ERR "Bad op/guard:%d/%d combination\n", scsi_get_prot_op(sc), guard_type); break; } } else if (guard_type == SHOST_DIX_GUARD_CRC) { switch (scsi_get_prot_op(sc)) { case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: ret_prof = LPFC_PROF_A1; break; case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: ret_prof = LPFC_PROF_C1; break; case SCSI_PROT_READ_CONVERT: case SCSI_PROT_WRITE_CONVERT: case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: case SCSI_PROT_NORMAL: default: printk(KERN_ERR "Bad op/guard:%d/%d combination\n", scsi_get_prot_op(sc), guard_type); break; } } else { /* unsupported format */ BUG(); } return ret_prof; } struct scsi_dif_tuple { __be16 guard_tag; /* Checksum */ __be16 app_tag; /* Opaque storage */ __be32 ref_tag; /* Target LBA or indirect LBA */ }; static inline unsigned lpfc_cmd_blksize(struct scsi_cmnd *sc) { return sc->device->sector_size; } /** * lpfc_get_cmd_dif_parms - Extract DIF parameters from SCSI command * @sc: in: SCSI command * @apptagmask: out: app tag mask * @apptagval: out: app tag value * @reftag: out: ref tag (reference tag) * * Description: * Extract DIF paramters from the command if possible. Otherwise, * use default paratmers. * **/ static inline void lpfc_get_cmd_dif_parms(struct scsi_cmnd *sc, uint16_t *apptagmask, uint16_t *apptagval, uint32_t *reftag) { struct scsi_dif_tuple *spt; unsigned char op = scsi_get_prot_op(sc); unsigned int protcnt = scsi_prot_sg_count(sc); static int cnt; if (protcnt && (op == SCSI_PROT_WRITE_STRIP || op == SCSI_PROT_WRITE_PASS || op == SCSI_PROT_WRITE_CONVERT)) { cnt++; spt = page_address(sg_page(scsi_prot_sglist(sc))) + scsi_prot_sglist(sc)[0].offset; *apptagmask = 0; *apptagval = 0; *reftag = cpu_to_be32(spt->ref_tag); } else { /* SBC defines ref tag to be lower 32bits of LBA */ *reftag = (uint32_t) (0xffffffff & scsi_get_lba(sc)); *apptagmask = 0; *apptagval = 0; } } /* * This function sets up buffer list for protection groups of * type LPFC_PG_TYPE_NO_DIF * * This is usually used when the HBA is instructed to generate * DIFs and insert them into data stream (or strip DIF from * incoming data stream) * * The buffer list consists of just one protection group described * below: * +-------------------------+ * start of prot group --> | PDE_1 | * +-------------------------+ * | Data BDE | * +-------------------------+ * |more Data BDE's ... (opt)| * +-------------------------+ * * @sc: pointer to scsi command we're working on * @bpl: pointer to buffer list for protection groups * @datacnt: number of segments of data that have been dma mapped * * Note: Data s/g buffers have been dma mapped */ static int lpfc_bg_setup_bpl(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct ulp_bde64 *bpl, int datasegcnt) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct lpfc_pde *pde1 = NULL; dma_addr_t physaddr; int i = 0, num_bde = 0; int datadir = sc->sc_data_direction; int prof = LPFC_PROF_INVALID; unsigned blksize; uint32_t reftag; uint16_t apptagmask, apptagval; pde1 = (struct lpfc_pde *) bpl; prof = lpfc_sc_to_sli_prof(sc); if (prof == LPFC_PROF_INVALID) goto out; /* extract some info from the scsi command for PDE1*/ blksize = lpfc_cmd_blksize(sc); lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); /* setup PDE1 with what we have */ lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize, BG_EC_STOP_ERR); lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag); num_bde++; bpl++; /* assumption: caller has already run dma_map_sg on command data */ scsi_for_each_sg(sc, sgde, datasegcnt, i) { physaddr = sg_dma_address(sgde); bpl->addrLow = le32_to_cpu(putPaddrLow(physaddr)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(physaddr)); bpl->tus.f.bdeSize = sg_dma_len(sgde); if (datadir == DMA_TO_DEVICE) bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; else bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; bpl->tus.w = le32_to_cpu(bpl->tus.w); bpl++; num_bde++; } out: return num_bde; } /* * This function sets up buffer list for protection groups of * type LPFC_PG_TYPE_DIF_BUF * * This is usually used when DIFs are in their own buffers, * separate from the data. The HBA can then by instructed * to place the DIFs in the outgoing stream. For read operations, * The HBA could extract the DIFs and place it in DIF buffers. * * The buffer list for this type consists of one or more of the * protection groups described below: * +-------------------------+ * start of first prot group --> | PDE_1 | * +-------------------------+ * | PDE_3 (Prot BDE) | * +-------------------------+ * | Data BDE | * +-------------------------+ * |more Data BDE's ... (opt)| * +-------------------------+ * start of new prot group --> | PDE_1 | * +-------------------------+ * | ... | * +-------------------------+ * * @sc: pointer to scsi command we're working on * @bpl: pointer to buffer list for protection groups * @datacnt: number of segments of data that have been dma mapped * @protcnt: number of segment of protection data that have been dma mapped * * Note: It is assumed that both data and protection s/g buffers have been * mapped for DMA */ static int lpfc_bg_setup_bpl_prot(struct lpfc_hba *phba, struct scsi_cmnd *sc, struct ulp_bde64 *bpl, int datacnt, int protcnt) { struct scatterlist *sgde = NULL; /* s/g data entry */ struct scatterlist *sgpe = NULL; /* s/g prot entry */ struct lpfc_pde *pde1 = NULL; struct ulp_bde64 *prot_bde = NULL; dma_addr_t dataphysaddr, protphysaddr; unsigned short curr_data = 0, curr_prot = 0; unsigned int split_offset, protgroup_len; unsigned int protgrp_blks, protgrp_bytes; unsigned int remainder, subtotal; int prof = LPFC_PROF_INVALID; int datadir = sc->sc_data_direction; unsigned char pgdone = 0, alldone = 0; unsigned blksize; uint32_t reftag; uint16_t apptagmask, apptagval; int num_bde = 0; sgpe = scsi_prot_sglist(sc); sgde = scsi_sglist(sc); if (!sgpe || !sgde) { lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9020 Invalid s/g entry: data=0x%p prot=0x%p\n", sgpe, sgde); return 0; } prof = lpfc_sc_to_sli_prof(sc); if (prof == LPFC_PROF_INVALID) goto out; /* extract some info from the scsi command for PDE1*/ blksize = lpfc_cmd_blksize(sc); lpfc_get_cmd_dif_parms(sc, &apptagmask, &apptagval, &reftag); split_offset = 0; do { /* setup the first PDE_1 */ pde1 = (struct lpfc_pde *) bpl; lpfc_pde_set_bg_parms(pde1, LPFC_PDE1_DESCRIPTOR, prof, blksize, BG_EC_STOP_ERR); lpfc_pde_set_dif_parms(pde1, apptagmask, apptagval, reftag); num_bde++; bpl++; /* setup the first BDE that points to protection buffer */ prot_bde = (struct ulp_bde64 *) bpl; protphysaddr = sg_dma_address(sgpe); prot_bde->addrLow = le32_to_cpu(putPaddrLow(protphysaddr)); prot_bde->addrHigh = le32_to_cpu(putPaddrHigh(protphysaddr)); protgroup_len = sg_dma_len(sgpe); /* must be integer multiple of the DIF block length */ BUG_ON(protgroup_len % 8); protgrp_blks = protgroup_len / 8; protgrp_bytes = protgrp_blks * blksize; prot_bde->tus.f.bdeSize = protgroup_len; if (datadir == DMA_TO_DEVICE) prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64; else prot_bde->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; prot_bde->tus.w = le32_to_cpu(bpl->tus.w); curr_prot++; num_bde++; /* setup BDE's for data blocks associated with DIF data */ pgdone = 0; subtotal = 0; /* total bytes processed for current prot grp */ while (!pgdone) { if (!sgde) { printk(KERN_ERR "%s Invalid data segment\n", __func__); return 0; } bpl++; dataphysaddr = sg_dma_address(sgde) + split_offset; bpl->addrLow = le32_to_cpu(putPaddrLow(dataphysaddr)); bpl->addrHigh = le32_to_cpu(putPaddrHigh(dataphysaddr)); remainder = sg_dma_len(sgde) - split_offset; if ((subtotal + remainder) <= protgrp_bytes) { /* we can use this whole buffer */ bpl->tus.f.bdeSize = remainder; split_offset = 0; if ((subtotal + remainder) == protgrp_bytes) pgdone = 1; } else { /* must split this buffer with next prot grp */ bpl->tus.f.bdeSize = protgrp_bytes - subtotal; split_offset += bpl->tus.f.bdeSize; } subtotal += bpl->tus.f.bdeSize; if (datadir == DMA_TO_DEVICE) bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64; else bpl->tus.f.bdeFlags = BUFF_TYPE_BDE_64I; bpl->tus.w = le32_to_cpu(bpl->tus.w); num_bde++; curr_data++; if (split_offset) break; /* Move to the next s/g segment if possible */ sgde = sg_next(sgde); } /* are we done ? */ if (curr_prot == protcnt) { alldone = 1; } else if (curr_prot < protcnt) { /* advance to next prot buffer */ sgpe = sg_next(sgpe); bpl++; /* update the reference tag */ reftag += protgrp_blks; } else { /* if we're here, we have a bug */ printk(KERN_ERR "BLKGRD: bug in %s\n", __func__); } } while (!alldone); out: return num_bde; } /* * Given a SCSI command that supports DIF, determine composition of protection * groups involved in setting up buffer lists * * Returns: * for DIF (for both read and write) * */ static int lpfc_prot_group_type(struct lpfc_hba *phba, struct scsi_cmnd *sc) { int ret = LPFC_PG_TYPE_INVALID; unsigned char op = scsi_get_prot_op(sc); switch (op) { case SCSI_PROT_READ_STRIP: case SCSI_PROT_WRITE_INSERT: ret = LPFC_PG_TYPE_NO_DIF; break; case SCSI_PROT_READ_INSERT: case SCSI_PROT_WRITE_STRIP: case SCSI_PROT_READ_PASS: case SCSI_PROT_WRITE_PASS: case SCSI_PROT_WRITE_CONVERT: case SCSI_PROT_READ_CONVERT: ret = LPFC_PG_TYPE_DIF_BUF; break; default: lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9021 Unsupported protection op:%d\n", op); break; } return ret; } /* * This is the protection/DIF aware version of * lpfc_scsi_prep_dma_buf(). It may be a good idea to combine the * two functions eventually, but for now, it's here */ static int lpfc_bg_scsi_prep_dma_buf(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd) { struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; struct ulp_bde64 *bpl = lpfc_cmd->fcp_bpl; IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; uint32_t num_bde = 0; int datasegcnt, protsegcnt, datadir = scsi_cmnd->sc_data_direction; int prot_group_type = 0; int diflen, fcpdl; unsigned blksize; /* * Start the lpfc command prep by bumping the bpl beyond fcp_cmnd * fcp_rsp regions to the first data bde entry */ bpl += 2; if (scsi_sg_count(scsi_cmnd)) { /* * The driver stores the segment count returned from pci_map_sg * because this a count of dma-mappings used to map the use_sg * pages. They are not guaranteed to be the same for those * architectures that implement an IOMMU. */ datasegcnt = dma_map_sg(&phba->pcidev->dev, scsi_sglist(scsi_cmnd), scsi_sg_count(scsi_cmnd), datadir); if (unlikely(!datasegcnt)) return 1; lpfc_cmd->seg_cnt = datasegcnt; if (lpfc_cmd->seg_cnt > phba->cfg_sg_seg_cnt) { printk(KERN_ERR "%s: Too many sg segments from " "dma_map_sg. Config %d, seg_cnt %d\n", __func__, phba->cfg_sg_seg_cnt, lpfc_cmd->seg_cnt); scsi_dma_unmap(scsi_cmnd); return 1; } prot_group_type = lpfc_prot_group_type(phba, scsi_cmnd); switch (prot_group_type) { case LPFC_PG_TYPE_NO_DIF: num_bde = lpfc_bg_setup_bpl(phba, scsi_cmnd, bpl, datasegcnt); /* we shoud have 2 or more entries in buffer list */ if (num_bde < 2) goto err; break; case LPFC_PG_TYPE_DIF_BUF:{ /* * This type indicates that protection buffers are * passed to the driver, so that needs to be prepared * for DMA */ protsegcnt = dma_map_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), datadir); if (unlikely(!protsegcnt)) { scsi_dma_unmap(scsi_cmnd); return 1; } lpfc_cmd->prot_seg_cnt = protsegcnt; if (lpfc_cmd->prot_seg_cnt > phba->cfg_prot_sg_seg_cnt) { printk(KERN_ERR "%s: Too many prot sg segments " "from dma_map_sg. Config %d," "prot_seg_cnt %d\n", __func__, phba->cfg_prot_sg_seg_cnt, lpfc_cmd->prot_seg_cnt); dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(scsi_cmnd), scsi_prot_sg_count(scsi_cmnd), datadir); scsi_dma_unmap(scsi_cmnd); return 1; } num_bde = lpfc_bg_setup_bpl_prot(phba, scsi_cmnd, bpl, datasegcnt, protsegcnt); /* we shoud have 3 or more entries in buffer list */ if (num_bde < 3) goto err; break; } case LPFC_PG_TYPE_INVALID: default: lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9022 Unexpected protection group %i\n", prot_group_type); return 1; } } /* * Finish initializing those IOCB fields that are dependent on the * scsi_cmnd request_buffer. Note that the bdeSize is explicitly * reinitialized since all iocb memory resources are used many times * for transmit, receive, and continuation bpl's. */ iocb_cmd->un.fcpi64.bdl.bdeSize = (2 * sizeof(struct ulp_bde64)); iocb_cmd->un.fcpi64.bdl.bdeSize += (num_bde * sizeof(struct ulp_bde64)); iocb_cmd->ulpBdeCount = 1; iocb_cmd->ulpLe = 1; fcpdl = scsi_bufflen(scsi_cmnd); if (scsi_get_prot_type(scsi_cmnd) == SCSI_PROT_DIF_TYPE1) { /* * We are in DIF Type 1 mode * Every data block has a 8 byte DIF (trailer) * attached to it. Must ajust FCP data length */ blksize = lpfc_cmd_blksize(scsi_cmnd); diflen = (fcpdl / blksize) * 8; fcpdl += diflen; } fcp_cmnd->fcpDl = be32_to_cpu(fcpdl); /* * Due to difference in data length between DIF/non-DIF paths, * we need to set word 4 of IOCB here */ iocb_cmd->un.fcpi.fcpi_parm = fcpdl; return 0; err: lpfc_printf_log(phba, KERN_ERR, LOG_FCP, "9023 Could not setup all needed BDE's" "prot_group_type=%d, num_bde=%d\n", prot_group_type, num_bde); return 1; } /* * This function checks for BlockGuard errors detected by * the HBA. In case of errors, the ASC/ASCQ fields in the * sense buffer will be set accordingly, paired with * ILLEGAL_REQUEST to signal to the kernel that the HBA * detected corruption. * * Returns: * 0 - No error found * 1 - BlockGuard error found * -1 - Internal error (bad profile, ...etc) */ static int lpfc_parse_bg_err(struct lpfc_hba *phba, struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *pIocbOut) { struct scsi_cmnd *cmd = lpfc_cmd->pCmd; struct sli3_bg_fields *bgf = &pIocbOut->iocb.unsli3.sli3_bg; int ret = 0; uint32_t bghm = bgf->bghm; uint32_t bgstat = bgf->bgstat; uint64_t failing_sector = 0; printk(KERN_ERR "BG ERROR in cmd 0x%x lba 0x%llx blk cnt 0x%lx " "bgstat=0x%x bghm=0x%x\n", cmd->cmnd[0], (unsigned long long)scsi_get_lba(cmd), cmd->request->nr_sectors, bgstat, bghm); spin_lock(&_dump_buf_lock); if (!_dump_buf_done) { printk(KERN_ERR "Saving Data for %u blocks to debugfs\n", (cmd->cmnd[7] << 8 | cmd->cmnd[8])); lpfc_debug_save_data(cmd); /* If we have a prot sgl, save the DIF buffer */ if (lpfc_prot_group_type(phba, cmd) == LPFC_PG_TYPE_DIF_BUF) { printk(KERN_ERR "Saving DIF for %u blocks to debugfs\n", (cmd->cmnd[7] << 8 | cmd->cmnd[8])); lpfc_debug_save_dif(cmd); } _dump_buf_done = 1; } spin_unlock(&_dump_buf_lock); if (lpfc_bgs_get_invalid_prof(bgstat)) { cmd->result = ScsiResult(DID_ERROR, 0); printk(KERN_ERR "Invalid BlockGuard profile. bgstat:0x%x\n", bgstat); ret = (-1); goto out; } if (lpfc_bgs_get_uninit_dif_block(bgstat)) { cmd->result = ScsiResult(DID_ERROR, 0); printk(KERN_ERR "Invalid BlockGuard DIF Block. bgstat:0x%x\n", bgstat); ret = (-1); goto out; } if (lpfc_bgs_get_guard_err(bgstat)) { ret = 1; scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 0x10, 0x1); cmd->result = DRIVER_SENSE << 24 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); phba->bg_guard_err_cnt++; printk(KERN_ERR "BLKGRD: guard_tag error\n"); } if (lpfc_bgs_get_reftag_err(bgstat)) { ret = 1; scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 0x10, 0x3); cmd->result = DRIVER_SENSE << 24 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); phba->bg_reftag_err_cnt++; printk(KERN_ERR "BLKGRD: ref_tag error\n"); } if (lpfc_bgs_get_apptag_err(bgstat)) { ret = 1; scsi_build_sense_buffer(1, cmd->sense_buffer, ILLEGAL_REQUEST, 0x10, 0x2); cmd->result = DRIVER_SENSE << 24 | ScsiResult(DID_ABORT, SAM_STAT_CHECK_CONDITION); phba->bg_apptag_err_cnt++; printk(KERN_ERR "BLKGRD: app_tag error\n"); } if (lpfc_bgs_get_hi_water_mark_present(bgstat)) { /* * setup sense data descriptor 0 per SPC-4 as an information * field, and put the failing LBA in it */ cmd->sense_buffer[8] = 0; /* Information */ cmd->sense_buffer[9] = 0xa; /* Add. length */ bghm /= cmd->device->sector_size; failing_sector = scsi_get_lba(cmd); failing_sector += bghm; put_unaligned_be64(failing_sector, &cmd->sense_buffer[10]); } if (!ret) { /* No error was reported - problem in FW? */ cmd->result = ScsiResult(DID_ERROR, 0); printk(KERN_ERR "BLKGRD: no errors reported!\n"); } out: return ret; } /** * lpfc_send_scsi_error_event - Posts an event when there is SCSI error * @phba: Pointer to hba context object. * @vport: Pointer to vport object. * @lpfc_cmd: Pointer to lpfc scsi command which reported the error. * @rsp_iocb: Pointer to response iocb object which reported error. * * This function posts an event when there is a SCSI command reporting * error from the scsi device. **/ static void lpfc_send_scsi_error_event(struct lpfc_hba *phba, struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; uint32_t resp_info = fcprsp->rspStatus2; uint32_t scsi_status = fcprsp->rspStatus3; uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; struct lpfc_fast_path_event *fast_path_evt = NULL; struct lpfc_nodelist *pnode = lpfc_cmd->rdata->pnode; unsigned long flags; /* If there is queuefull or busy condition send a scsi event */ if ((cmnd->result == SAM_STAT_TASK_SET_FULL) || (cmnd->result == SAM_STAT_BUSY)) { fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.scsi_evt.event_type = FC_REG_SCSI_EVENT; fast_path_evt->un.scsi_evt.subcategory = (cmnd->result == SAM_STAT_TASK_SET_FULL) ? LPFC_EVENT_QFULL : LPFC_EVENT_DEVBSY; fast_path_evt->un.scsi_evt.lun = cmnd->device->lun; memcpy(&fast_path_evt->un.scsi_evt.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.scsi_evt.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); } else if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen && ((cmnd->cmnd[0] == READ_10) || (cmnd->cmnd[0] == WRITE_10))) { fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.check_cond_evt.scsi_event.event_type = FC_REG_SCSI_EVENT; fast_path_evt->un.check_cond_evt.scsi_event.subcategory = LPFC_EVENT_CHECK_COND; fast_path_evt->un.check_cond_evt.scsi_event.lun = cmnd->device->lun; memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.check_cond_evt.scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fast_path_evt->un.check_cond_evt.sense_key = cmnd->sense_buffer[2] & 0xf; fast_path_evt->un.check_cond_evt.asc = cmnd->sense_buffer[12]; fast_path_evt->un.check_cond_evt.ascq = cmnd->sense_buffer[13]; } else if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && fcpi_parm && ((be32_to_cpu(fcprsp->rspResId) != fcpi_parm) || ((scsi_status == SAM_STAT_GOOD) && !(resp_info & (RESID_UNDER | RESID_OVER))))) { /* * If status is good or resid does not match with fcp_param and * there is valid fcpi_parm, then there is a read_check error */ fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) return; fast_path_evt->un.read_check_error.header.event_type = FC_REG_FABRIC_EVENT; fast_path_evt->un.read_check_error.header.subcategory = LPFC_EVENT_FCPRDCHKERR; memcpy(&fast_path_evt->un.read_check_error.header.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.read_check_error.header.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fast_path_evt->un.read_check_error.lun = cmnd->device->lun; fast_path_evt->un.read_check_error.opcode = cmnd->cmnd[0]; fast_path_evt->un.read_check_error.fcpiparam = fcpi_parm; } else return; fast_path_evt->vport = vport; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); return; } /** * lpfc_scsi_unprep_dma_buf - Routine to un-map DMA mapping of scatter gather * @phba: The Hba for which this call is being executed. * @psb: The scsi buffer which is going to be un-mapped. * * This routine does DMA un-mapping of scatter gather list of scsi command * field of @lpfc_cmd. **/ static void lpfc_scsi_unprep_dma_buf(struct lpfc_hba * phba, struct lpfc_scsi_buf * psb) { /* * There are only two special cases to consider. (1) the scsi command * requested scatter-gather usage or (2) the scsi command allocated * a request buffer, but did not request use_sg. There is a third * case, but it does not require resource deallocation. */ if (psb->seg_cnt > 0) scsi_dma_unmap(psb->pCmd); if (psb->prot_seg_cnt > 0) dma_unmap_sg(&phba->pcidev->dev, scsi_prot_sglist(psb->pCmd), scsi_prot_sg_count(psb->pCmd), psb->pCmd->sc_data_direction); } /** * lpfc_handler_fcp_err - FCP response handler * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. * @rsp_iocb: The response IOCB which contains FCP error. * * This routine is called to process response IOCB with status field * IOSTAT_FCP_RSP_ERROR. This routine sets result field of scsi command * based upon SCSI and FCP error. **/ static void lpfc_handle_fcp_err(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_iocbq *rsp_iocb) { struct scsi_cmnd *cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcpcmd = lpfc_cmd->fcp_cmnd; struct fcp_rsp *fcprsp = lpfc_cmd->fcp_rsp; uint32_t fcpi_parm = rsp_iocb->iocb.un.fcpi.fcpi_parm; uint32_t resp_info = fcprsp->rspStatus2; uint32_t scsi_status = fcprsp->rspStatus3; uint32_t *lp; uint32_t host_status = DID_OK; uint32_t rsplen = 0; uint32_t logit = LOG_FCP | LOG_FCP_ERROR; /* * If this is a task management command, there is no * scsi packet associated with this lpfc_cmd. The driver * consumes it. */ if (fcpcmd->fcpCntl2) { scsi_status = 0; goto out; } if ((resp_info & SNS_LEN_VALID) && fcprsp->rspSnsLen) { uint32_t snslen = be32_to_cpu(fcprsp->rspSnsLen); if (snslen > SCSI_SENSE_BUFFERSIZE) snslen = SCSI_SENSE_BUFFERSIZE; if (resp_info & RSP_LEN_VALID) rsplen = be32_to_cpu(fcprsp->rspRspLen); memcpy(cmnd->sense_buffer, &fcprsp->rspInfo0 + rsplen, snslen); } lp = (uint32_t *)cmnd->sense_buffer; if (!scsi_status && (resp_info & RESID_UNDER)) logit = LOG_FCP; lpfc_printf_vlog(vport, KERN_WARNING, logit, "9024 FCP command x%x failed: x%x SNS x%x x%x " "Data: x%x x%x x%x x%x x%x\n", cmnd->cmnd[0], scsi_status, be32_to_cpu(*lp), be32_to_cpu(*(lp + 3)), resp_info, be32_to_cpu(fcprsp->rspResId), be32_to_cpu(fcprsp->rspSnsLen), be32_to_cpu(fcprsp->rspRspLen), fcprsp->rspInfo3); if (resp_info & RSP_LEN_VALID) { rsplen = be32_to_cpu(fcprsp->rspRspLen); if ((rsplen != 0 && rsplen != 4 && rsplen != 8) || (fcprsp->rspInfo3 != RSP_NO_FAILURE)) { host_status = DID_ERROR; goto out; } } scsi_set_resid(cmnd, 0); if (resp_info & RESID_UNDER) { scsi_set_resid(cmnd, be32_to_cpu(fcprsp->rspResId)); lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "9025 FCP Read Underrun, expected %d, " "residual %d Data: x%x x%x x%x\n", be32_to_cpu(fcpcmd->fcpDl), scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0], cmnd->underflow); /* * If there is an under run check if under run reported by * storage array is same as the under run reported by HBA. * If this is not same, there is a dropped frame. */ if ((cmnd->sc_data_direction == DMA_FROM_DEVICE) && fcpi_parm && (scsi_get_resid(cmnd) != fcpi_parm)) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, "9026 FCP Read Check Error " "and Underrun Data: x%x x%x x%x x%x\n", be32_to_cpu(fcpcmd->fcpDl), scsi_get_resid(cmnd), fcpi_parm, cmnd->cmnd[0]); scsi_set_resid(cmnd, scsi_bufflen(cmnd)); host_status = DID_ERROR; } /* * The cmnd->underflow is the minimum number of bytes that must * be transfered for this command. Provided a sense condition * is not present, make sure the actual amount transferred is at * least the underflow value or fail. */ if (!(resp_info & SNS_LEN_VALID) && (scsi_status == SAM_STAT_GOOD) && (scsi_bufflen(cmnd) - scsi_get_resid(cmnd) < cmnd->underflow)) { lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "9027 FCP command x%x residual " "underrun converted to error " "Data: x%x x%x x%x\n", cmnd->cmnd[0], scsi_bufflen(cmnd), scsi_get_resid(cmnd), cmnd->underflow); host_status = DID_ERROR; } } else if (resp_info & RESID_OVER) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "9028 FCP command x%x residual overrun error. " "Data: x%x x%x \n", cmnd->cmnd[0], scsi_bufflen(cmnd), scsi_get_resid(cmnd)); host_status = DID_ERROR; /* * Check SLI validation that all the transfer was actually done * (fcpi_parm should be zero). Apply check only to reads. */ } else if ((scsi_status == SAM_STAT_GOOD) && fcpi_parm && (cmnd->sc_data_direction == DMA_FROM_DEVICE)) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP | LOG_FCP_ERROR, "9029 FCP Read Check Error Data: " "x%x x%x x%x x%x\n", be32_to_cpu(fcpcmd->fcpDl), be32_to_cpu(fcprsp->rspResId), fcpi_parm, cmnd->cmnd[0]); host_status = DID_ERROR; scsi_set_resid(cmnd, scsi_bufflen(cmnd)); } out: cmnd->result = ScsiResult(host_status, scsi_status); lpfc_send_scsi_error_event(vport->phba, vport, lpfc_cmd, rsp_iocb); } /** * lpfc_scsi_cmd_iocb_cmpl - Scsi cmnd IOCB completion routine * @phba: The Hba for which this call is being executed. * @pIocbIn: The command IOCBQ for the scsi cmnd. * @pIocbOut: The response IOCBQ for the scsi cmnd . * * This routine assigns scsi command result by looking into response IOCB * status field appropriately. This routine handles QUEUE FULL condition as * well by ramping down device queue depth. **/ static void lpfc_scsi_cmd_iocb_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *pIocbIn, struct lpfc_iocbq *pIocbOut) { struct lpfc_scsi_buf *lpfc_cmd = (struct lpfc_scsi_buf *) pIocbIn->context1; struct lpfc_vport *vport = pIocbIn->vport; struct lpfc_rport_data *rdata = lpfc_cmd->rdata; struct lpfc_nodelist *pnode = rdata->pnode; struct scsi_cmnd *cmd = lpfc_cmd->pCmd; int result; struct scsi_device *sdev, *tmp_sdev; int depth = 0; unsigned long flags; struct lpfc_fast_path_event *fast_path_evt; lpfc_cmd->result = pIocbOut->iocb.un.ulpWord[4]; lpfc_cmd->status = pIocbOut->iocb.ulpStatus; if (pnode && NLP_CHK_NODE_ACT(pnode)) atomic_dec(&pnode->cmd_pending); if (lpfc_cmd->status) { if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && (lpfc_cmd->result & IOERR_DRVR_MASK)) lpfc_cmd->status = IOSTAT_DRIVER_REJECT; else if (lpfc_cmd->status >= IOSTAT_CNT) lpfc_cmd->status = IOSTAT_DEFAULT; lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "9030 FCP cmd x%x failed <%d/%d> " "status: x%x result: x%x Data: x%x x%x\n", cmd->cmnd[0], cmd->device ? cmd->device->id : 0xffff, cmd->device ? cmd->device->lun : 0xffff, lpfc_cmd->status, lpfc_cmd->result, pIocbOut->iocb.ulpContext, lpfc_cmd->cur_iocbq.iocb.ulpIoTag); switch (lpfc_cmd->status) { case IOSTAT_FCP_RSP_ERROR: /* Call FCP RSP handler to determine result */ lpfc_handle_fcp_err(vport, lpfc_cmd, pIocbOut); break; case IOSTAT_NPORT_BSY: case IOSTAT_FABRIC_BSY: cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); fast_path_evt = lpfc_alloc_fast_evt(phba); if (!fast_path_evt) break; fast_path_evt->un.fabric_evt.event_type = FC_REG_FABRIC_EVENT; fast_path_evt->un.fabric_evt.subcategory = (lpfc_cmd->status == IOSTAT_NPORT_BSY) ? LPFC_EVENT_PORT_BUSY : LPFC_EVENT_FABRIC_BUSY; if (pnode && NLP_CHK_NODE_ACT(pnode)) { memcpy(&fast_path_evt->un.fabric_evt.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(&fast_path_evt->un.fabric_evt.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); } fast_path_evt->vport = vport; fast_path_evt->work_evt.evt = LPFC_EVT_FASTPATH_MGMT_EVT; spin_lock_irqsave(&phba->hbalock, flags); list_add_tail(&fast_path_evt->work_evt.evt_listp, &phba->work_list); spin_unlock_irqrestore(&phba->hbalock, flags); lpfc_worker_wake_up(phba); break; case IOSTAT_LOCAL_REJECT: if (lpfc_cmd->result == IOERR_INVALID_RPI || lpfc_cmd->result == IOERR_NO_RESOURCES || lpfc_cmd->result == IOERR_ABORT_REQUESTED) { cmd->result = ScsiResult(DID_REQUEUE, 0); break; } if ((lpfc_cmd->result == IOERR_RX_DMA_FAILED || lpfc_cmd->result == IOERR_TX_DMA_FAILED) && pIocbOut->iocb.unsli3.sli3_bg.bgstat) { if (scsi_get_prot_op(cmd) != SCSI_PROT_NORMAL) { /* * This is a response for a BG enabled * cmd. Parse BG error */ lpfc_parse_bg_err(phba, lpfc_cmd, pIocbOut); break; } else { lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9031 non-zero BGSTAT " "on unprotected cmd"); } } /* else: fall through */ default: cmd->result = ScsiResult(DID_ERROR, 0); break; } if (!pnode || !NLP_CHK_NODE_ACT(pnode) || (pnode->nlp_state != NLP_STE_MAPPED_NODE)) cmd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, SAM_STAT_BUSY); } else { cmd->result = ScsiResult(DID_OK, 0); } if (cmd->result || lpfc_cmd->fcp_rsp->rspSnsLen) { uint32_t *lp = (uint32_t *)cmd->sense_buffer; lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0710 Iodone <%d/%d> cmd %p, error " "x%x SNS x%x x%x Data: x%x x%x\n", cmd->device->id, cmd->device->lun, cmd, cmd->result, *lp, *(lp + 3), cmd->retries, scsi_get_resid(cmd)); } lpfc_update_stats(phba, lpfc_cmd); result = cmd->result; sdev = cmd->device; if (vport->cfg_max_scsicmpl_time && time_after(jiffies, lpfc_cmd->start_time + msecs_to_jiffies(vport->cfg_max_scsicmpl_time))) { spin_lock_irqsave(sdev->host->host_lock, flags); if (pnode && NLP_CHK_NODE_ACT(pnode)) { if (pnode->cmd_qdepth > atomic_read(&pnode->cmd_pending) && (atomic_read(&pnode->cmd_pending) > LPFC_MIN_TGT_QDEPTH) && ((cmd->cmnd[0] == READ_10) || (cmd->cmnd[0] == WRITE_10))) pnode->cmd_qdepth = atomic_read(&pnode->cmd_pending); pnode->last_change_time = jiffies; } spin_unlock_irqrestore(sdev->host->host_lock, flags); } else if (pnode && NLP_CHK_NODE_ACT(pnode)) { if ((pnode->cmd_qdepth < LPFC_MAX_TGT_QDEPTH) && time_after(jiffies, pnode->last_change_time + msecs_to_jiffies(LPFC_TGTQ_INTERVAL))) { spin_lock_irqsave(sdev->host->host_lock, flags); pnode->cmd_qdepth += pnode->cmd_qdepth * LPFC_TGTQ_RAMPUP_PCENT / 100; if (pnode->cmd_qdepth > LPFC_MAX_TGT_QDEPTH) pnode->cmd_qdepth = LPFC_MAX_TGT_QDEPTH; pnode->last_change_time = jiffies; spin_unlock_irqrestore(sdev->host->host_lock, flags); } } lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); cmd->scsi_done(cmd); if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { /* * If there is a thread waiting for command completion * wake up the thread. */ spin_lock_irqsave(sdev->host->host_lock, flags); lpfc_cmd->pCmd = NULL; if (lpfc_cmd->waitq) wake_up(lpfc_cmd->waitq); spin_unlock_irqrestore(sdev->host->host_lock, flags); lpfc_release_scsi_buf(phba, lpfc_cmd); return; } if (!result) lpfc_rampup_queue_depth(vport, sdev); if (!result && pnode && NLP_CHK_NODE_ACT(pnode) && ((jiffies - pnode->last_ramp_up_time) > LPFC_Q_RAMP_UP_INTERVAL * HZ) && ((jiffies - pnode->last_q_full_time) > LPFC_Q_RAMP_UP_INTERVAL * HZ) && (vport->cfg_lun_queue_depth > sdev->queue_depth)) { shost_for_each_device(tmp_sdev, sdev->host) { if (vport->cfg_lun_queue_depth > tmp_sdev->queue_depth){ if (tmp_sdev->id != sdev->id) continue; if (tmp_sdev->ordered_tags) scsi_adjust_queue_depth(tmp_sdev, MSG_ORDERED_TAG, tmp_sdev->queue_depth+1); else scsi_adjust_queue_depth(tmp_sdev, MSG_SIMPLE_TAG, tmp_sdev->queue_depth+1); pnode->last_ramp_up_time = jiffies; } } lpfc_send_sdev_queuedepth_change_event(phba, vport, pnode, 0xFFFFFFFF, sdev->queue_depth - 1, sdev->queue_depth); } /* * Check for queue full. If the lun is reporting queue full, then * back off the lun queue depth to prevent target overloads. */ if (result == SAM_STAT_TASK_SET_FULL && pnode && NLP_CHK_NODE_ACT(pnode)) { pnode->last_q_full_time = jiffies; shost_for_each_device(tmp_sdev, sdev->host) { if (tmp_sdev->id != sdev->id) continue; depth = scsi_track_queue_full(tmp_sdev, tmp_sdev->queue_depth - 1); } /* * The queue depth cannot be lowered any more. * Modify the returned error code to store * the final depth value set by * scsi_track_queue_full. */ if (depth == -1) depth = sdev->host->cmd_per_lun; if (depth) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0711 detected queue full - lun queue " "depth adjusted to %d.\n", depth); lpfc_send_sdev_queuedepth_change_event(phba, vport, pnode, 0xFFFFFFFF, depth+1, depth); } } /* * If there is a thread waiting for command completion * wake up the thread. */ spin_lock_irqsave(sdev->host->host_lock, flags); lpfc_cmd->pCmd = NULL; if (lpfc_cmd->waitq) wake_up(lpfc_cmd->waitq); spin_unlock_irqrestore(sdev->host->host_lock, flags); lpfc_release_scsi_buf(phba, lpfc_cmd); } /** * lpfc_fcpcmd_to_iocb - copy the fcp_cmd data into the IOCB * @data: A pointer to the immediate command data portion of the IOCB. * @fcp_cmnd: The FCP Command that is provided by the SCSI layer. * * The routine copies the entire FCP command from @fcp_cmnd to @data while * byte swapping the data to big endian format for transmission on the wire. **/ static void lpfc_fcpcmd_to_iocb(uint8_t *data, struct fcp_cmnd *fcp_cmnd) { int i, j; for (i = 0, j = 0; i < sizeof(struct fcp_cmnd); i += sizeof(uint32_t), j++) { ((uint32_t *)data)[j] = cpu_to_be32(((uint32_t *)fcp_cmnd)[j]); } } /** * lpfc_scsi_prep_cmnd - Routine to convert scsi cmnd to FCP information unit * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: The scsi command which needs to send. * @pnode: Pointer to lpfc_nodelist. * * This routine initializes fcp_cmnd and iocb data structure from scsi command * to transfer. **/ static void lpfc_scsi_prep_cmnd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_nodelist *pnode) { struct lpfc_hba *phba = vport->phba; struct scsi_cmnd *scsi_cmnd = lpfc_cmd->pCmd; struct fcp_cmnd *fcp_cmnd = lpfc_cmd->fcp_cmnd; IOCB_t *iocb_cmd = &lpfc_cmd->cur_iocbq.iocb; struct lpfc_iocbq *piocbq = &(lpfc_cmd->cur_iocbq); int datadir = scsi_cmnd->sc_data_direction; char tag[2]; if (!pnode || !NLP_CHK_NODE_ACT(pnode)) return; lpfc_cmd->fcp_rsp->rspSnsLen = 0; /* clear task management bits */ lpfc_cmd->fcp_cmnd->fcpCntl2 = 0; int_to_scsilun(lpfc_cmd->pCmd->device->lun, &lpfc_cmd->fcp_cmnd->fcp_lun); memcpy(&fcp_cmnd->fcpCdb[0], scsi_cmnd->cmnd, 16); if (scsi_populate_tag_msg(scsi_cmnd, tag)) { switch (tag[0]) { case HEAD_OF_QUEUE_TAG: fcp_cmnd->fcpCntl1 = HEAD_OF_Q; break; case ORDERED_QUEUE_TAG: fcp_cmnd->fcpCntl1 = ORDERED_Q; break; default: fcp_cmnd->fcpCntl1 = SIMPLE_Q; break; } } else fcp_cmnd->fcpCntl1 = 0; /* * There are three possibilities here - use scatter-gather segment, use * the single mapping, or neither. Start the lpfc command prep by * bumping the bpl beyond the fcp_cmnd and fcp_rsp regions to the first * data bde entry. */ if (scsi_sg_count(scsi_cmnd)) { if (datadir == DMA_TO_DEVICE) { iocb_cmd->ulpCommand = CMD_FCP_IWRITE64_CR; iocb_cmd->un.fcpi.fcpi_parm = 0; iocb_cmd->ulpPU = 0; fcp_cmnd->fcpCntl3 = WRITE_DATA; phba->fc4OutputRequests++; } else { iocb_cmd->ulpCommand = CMD_FCP_IREAD64_CR; iocb_cmd->ulpPU = PARM_READ_CHECK; fcp_cmnd->fcpCntl3 = READ_DATA; phba->fc4InputRequests++; } } else { iocb_cmd->ulpCommand = CMD_FCP_ICMND64_CR; iocb_cmd->un.fcpi.fcpi_parm = 0; iocb_cmd->ulpPU = 0; fcp_cmnd->fcpCntl3 = 0; phba->fc4ControlRequests++; } if (phba->sli_rev == 3 && !(phba->sli3_options & LPFC_SLI3_BG_ENABLED)) lpfc_fcpcmd_to_iocb(iocb_cmd->unsli3.fcp_ext.icd, fcp_cmnd); /* * Finish initializing those IOCB fields that are independent * of the scsi_cmnd request_buffer */ piocbq->iocb.ulpContext = pnode->nlp_rpi; if (pnode->nlp_fcp_info & NLP_FCP_2_DEVICE) piocbq->iocb.ulpFCP2Rcvy = 1; else piocbq->iocb.ulpFCP2Rcvy = 0; piocbq->iocb.ulpClass = (pnode->nlp_fcp_info & 0x0f); piocbq->context1 = lpfc_cmd; piocbq->iocb_cmpl = lpfc_scsi_cmd_iocb_cmpl; piocbq->iocb.ulpTimeout = lpfc_cmd->timeout; piocbq->vport = vport; } /** * lpfc_scsi_prep_task_mgmt_cmnd - Convert scsi TM cmnd to FCP information unit * @vport: The virtual port for which this call is being executed. * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure. * @lun: Logical unit number. * @task_mgmt_cmd: SCSI task management command. * * This routine creates FCP information unit corresponding to @task_mgmt_cmd. * * Return codes: * 0 - Error * 1 - Success **/ static int lpfc_scsi_prep_task_mgmt_cmd(struct lpfc_vport *vport, struct lpfc_scsi_buf *lpfc_cmd, unsigned int lun, uint8_t task_mgmt_cmd) { struct lpfc_iocbq *piocbq; IOCB_t *piocb; struct fcp_cmnd *fcp_cmnd; struct lpfc_rport_data *rdata = lpfc_cmd->rdata; struct lpfc_nodelist *ndlp = rdata->pnode; if (!ndlp || !NLP_CHK_NODE_ACT(ndlp) || ndlp->nlp_state != NLP_STE_MAPPED_NODE) return 0; piocbq = &(lpfc_cmd->cur_iocbq); piocbq->vport = vport; piocb = &piocbq->iocb; fcp_cmnd = lpfc_cmd->fcp_cmnd; /* Clear out any old data in the FCP command area */ memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd)); int_to_scsilun(lun, &fcp_cmnd->fcp_lun); fcp_cmnd->fcpCntl2 = task_mgmt_cmd; if (vport->phba->sli_rev == 3 && !(vport->phba->sli3_options & LPFC_SLI3_BG_ENABLED)) lpfc_fcpcmd_to_iocb(piocb->unsli3.fcp_ext.icd, fcp_cmnd); piocb->ulpCommand = CMD_FCP_ICMND64_CR; piocb->ulpContext = ndlp->nlp_rpi; if (ndlp->nlp_fcp_info & NLP_FCP_2_DEVICE) { piocb->ulpFCP2Rcvy = 1; } piocb->ulpClass = (ndlp->nlp_fcp_info & 0x0f); /* ulpTimeout is only one byte */ if (lpfc_cmd->timeout > 0xff) { /* * Do not timeout the command at the firmware level. * The driver will provide the timeout mechanism. */ piocb->ulpTimeout = 0; } else { piocb->ulpTimeout = lpfc_cmd->timeout; } return 1; } /** * lpfc_taskmgmt_def_cmpl - IOCB completion routine for task management command * @phba: The Hba for which this call is being executed. * @cmdiocbq: Pointer to lpfc_iocbq data structure. * @rspiocbq: Pointer to lpfc_iocbq data structure. * * This routine is IOCB completion routine for device reset and target reset * routine. This routine release scsi buffer associated with lpfc_cmd. **/ static void lpfc_tskmgmt_def_cmpl(struct lpfc_hba *phba, struct lpfc_iocbq *cmdiocbq, struct lpfc_iocbq *rspiocbq) { struct lpfc_scsi_buf *lpfc_cmd = (struct lpfc_scsi_buf *) cmdiocbq->context1; if (lpfc_cmd) lpfc_release_scsi_buf(phba, lpfc_cmd); return; } /** * lpfc_scsi_tgt_reset - Target reset handler * @lpfc_cmd: Pointer to lpfc_scsi_buf data structure * @vport: The virtual port for which this call is being executed. * @tgt_id: Target ID. * @lun: Lun number. * @rdata: Pointer to lpfc_rport_data. * * This routine issues a TARGET RESET iocb to reset a target with @tgt_id ID. * * Return Code: * 0x2003 - Error * 0x2002 - Success. **/ static int lpfc_scsi_tgt_reset(struct lpfc_scsi_buf *lpfc_cmd, struct lpfc_vport *vport, unsigned tgt_id, unsigned int lun, struct lpfc_rport_data *rdata) { struct lpfc_hba *phba = vport->phba; struct lpfc_iocbq *iocbq; struct lpfc_iocbq *iocbqrsp; int ret; int status; if (!rdata->pnode || !NLP_CHK_NODE_ACT(rdata->pnode)) return FAILED; lpfc_cmd->rdata = rdata; status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, lun, FCP_TARGET_RESET); if (!status) return FAILED; iocbq = &lpfc_cmd->cur_iocbq; iocbqrsp = lpfc_sli_get_iocbq(phba); if (!iocbqrsp) return FAILED; /* Issue Target Reset to TGT <num> */ lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0702 Issue Target Reset to TGT %d Data: x%x x%x\n", tgt_id, rdata->pnode->nlp_rpi, rdata->pnode->nlp_flag); status = lpfc_sli_issue_iocb_wait(phba, &phba->sli.ring[phba->sli.fcp_ring], iocbq, iocbqrsp, lpfc_cmd->timeout); if (status != IOCB_SUCCESS) { if (status == IOCB_TIMEDOUT) { iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl; ret = TIMEOUT_ERROR; } else ret = FAILED; lpfc_cmd->status = IOSTAT_DRIVER_REJECT; } else { ret = SUCCESS; lpfc_cmd->result = iocbqrsp->iocb.un.ulpWord[4]; lpfc_cmd->status = iocbqrsp->iocb.ulpStatus; if (lpfc_cmd->status == IOSTAT_LOCAL_REJECT && (lpfc_cmd->result & IOERR_DRVR_MASK)) lpfc_cmd->status = IOSTAT_DRIVER_REJECT; } lpfc_sli_release_iocbq(phba, iocbqrsp); return ret; } /** * lpfc_info - Info entry point of scsi_host_template data structure * @host: The scsi host for which this call is being executed. * * This routine provides module information about hba. * * Reutrn code: * Pointer to char - Success. **/ const char * lpfc_info(struct Scsi_Host *host) { struct lpfc_vport *vport = (struct lpfc_vport *) host->hostdata; struct lpfc_hba *phba = vport->phba; int len; static char lpfcinfobuf[384]; memset(lpfcinfobuf,0,384); if (phba && phba->pcidev){ strncpy(lpfcinfobuf, phba->ModelDesc, 256); len = strlen(lpfcinfobuf); snprintf(lpfcinfobuf + len, 384-len, " on PCI bus %02x device %02x irq %d", phba->pcidev->bus->number, phba->pcidev->devfn, phba->pcidev->irq); len = strlen(lpfcinfobuf); if (phba->Port[0]) { snprintf(lpfcinfobuf + len, 384-len, " port %s", phba->Port); } } return lpfcinfobuf; } /** * lpfc_poll_rearm_time - Routine to modify fcp_poll timer of hba * @phba: The Hba for which this call is being executed. * * This routine modifies fcp_poll_timer field of @phba by cfg_poll_tmo. * The default value of cfg_poll_tmo is 10 milliseconds. **/ static __inline__ void lpfc_poll_rearm_timer(struct lpfc_hba * phba) { unsigned long poll_tmo_expires = (jiffies + msecs_to_jiffies(phba->cfg_poll_tmo)); if (phba->sli.ring[LPFC_FCP_RING].txcmplq_cnt) mod_timer(&phba->fcp_poll_timer, poll_tmo_expires); } /** * lpfc_poll_start_timer - Routine to start fcp_poll_timer of HBA * @phba: The Hba for which this call is being executed. * * This routine starts the fcp_poll_timer of @phba. **/ void lpfc_poll_start_timer(struct lpfc_hba * phba) { lpfc_poll_rearm_timer(phba); } /** * lpfc_poll_timeout - Restart polling timer * @ptr: Map to lpfc_hba data structure pointer. * * This routine restarts fcp_poll timer, when FCP ring polling is enable * and FCP Ring interrupt is disable. **/ void lpfc_poll_timeout(unsigned long ptr) { struct lpfc_hba *phba = (struct lpfc_hba *) ptr; if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { lpfc_sli_poll_fcp_ring (phba); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_poll_rearm_timer(phba); } } /** * lpfc_queuecommand - scsi_host_template queuecommand entry point * @cmnd: Pointer to scsi_cmnd data structure. * @done: Pointer to done routine. * * Driver registers this routine to scsi midlayer to submit a @cmd to process. * This routine prepares an IOCB from scsi command and provides to firmware. * The @done callback is invoked after driver finished processing the command. * * Return value : * 0 - Success * SCSI_MLQUEUE_HOST_BUSY - Block all devices served by this host temporarily. **/ static int lpfc_queuecommand(struct scsi_cmnd *cmnd, void (*done) (struct scsi_cmnd *)) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_sli *psli = &phba->sli; struct lpfc_rport_data *rdata = cmnd->device->hostdata; struct lpfc_nodelist *ndlp = rdata->pnode; struct lpfc_scsi_buf *lpfc_cmd; struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); int err; err = fc_remote_port_chkready(rport); if (err) { cmnd->result = err; goto out_fail_command; } if (!(phba->sli3_options & LPFC_SLI3_BG_ENABLED) && scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { printk(KERN_ERR "BLKGRD ERROR: rcvd protected cmd:%02x op:%02x " "str=%s without registering for BlockGuard - " "Rejecting command\n", cmnd->cmnd[0], scsi_get_prot_op(cmnd), dif_op_str[scsi_get_prot_op(cmnd)]); goto out_fail_command; } /* * Catch race where our node has transitioned, but the * transport is still transitioning. */ if (!ndlp || !NLP_CHK_NODE_ACT(ndlp)) { cmnd->result = ScsiResult(DID_TRANSPORT_DISRUPTED, 0); goto out_fail_command; } if (vport->cfg_max_scsicmpl_time && (atomic_read(&ndlp->cmd_pending) >= ndlp->cmd_qdepth)) goto out_host_busy; lpfc_cmd = lpfc_get_scsi_buf(phba); if (lpfc_cmd == NULL) { lpfc_rampdown_queue_depth(phba); lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0707 driver's buffer pool is empty, " "IO busied\n"); goto out_host_busy; } /* * Store the midlayer's command structure for the completion phase * and complete the command initialization. */ lpfc_cmd->pCmd = cmnd; lpfc_cmd->rdata = rdata; lpfc_cmd->timeout = 0; lpfc_cmd->start_time = jiffies; cmnd->host_scribble = (unsigned char *)lpfc_cmd; cmnd->scsi_done = done; if (scsi_get_prot_op(cmnd) != SCSI_PROT_NORMAL) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9033 BLKGRD: rcvd protected cmd:%02x op:%02x " "str=%s\n", cmnd->cmnd[0], scsi_get_prot_op(cmnd), dif_op_str[scsi_get_prot_op(cmnd)]); lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9034 BLKGRD: CDB: %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x \n", cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2], cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5], cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8], cmnd->cmnd[9]); if (cmnd->cmnd[0] == READ_10) lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9035 BLKGRD: READ @ sector %llu, " "count %lu\n", (unsigned long long)scsi_get_lba(cmnd), cmnd->request->nr_sectors); else if (cmnd->cmnd[0] == WRITE_10) lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9036 BLKGRD: WRITE @ sector %llu, " "count %lu cmd=%p\n", (unsigned long long)scsi_get_lba(cmnd), cmnd->request->nr_sectors, cmnd); err = lpfc_bg_scsi_prep_dma_buf(phba, lpfc_cmd); } else { lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9038 BLKGRD: rcvd unprotected cmd:%02x op:%02x" " str=%s\n", cmnd->cmnd[0], scsi_get_prot_op(cmnd), dif_op_str[scsi_get_prot_op(cmnd)]); lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9039 BLKGRD: CDB: %02x %02x %02x %02x %02x " "%02x %02x %02x %02x %02x \n", cmnd->cmnd[0], cmnd->cmnd[1], cmnd->cmnd[2], cmnd->cmnd[3], cmnd->cmnd[4], cmnd->cmnd[5], cmnd->cmnd[6], cmnd->cmnd[7], cmnd->cmnd[8], cmnd->cmnd[9]); if (cmnd->cmnd[0] == READ_10) lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9040 dbg: READ @ sector %llu, " "count %lu\n", (unsigned long long)scsi_get_lba(cmnd), cmnd->request->nr_sectors); else if (cmnd->cmnd[0] == WRITE_10) lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9041 dbg: WRITE @ sector %llu, " "count %lu cmd=%p\n", (unsigned long long)scsi_get_lba(cmnd), cmnd->request->nr_sectors, cmnd); else lpfc_printf_vlog(vport, KERN_WARNING, LOG_BG, "9042 dbg: parser not implemented\n"); err = lpfc_scsi_prep_dma_buf(phba, lpfc_cmd); } if (err) goto out_host_busy_free_buf; lpfc_scsi_prep_cmnd(vport, lpfc_cmd, ndlp); atomic_inc(&ndlp->cmd_pending); err = lpfc_sli_issue_iocb(phba, &phba->sli.ring[psli->fcp_ring], &lpfc_cmd->cur_iocbq, SLI_IOCB_RET_IOCB); if (err) { atomic_dec(&ndlp->cmd_pending); goto out_host_busy_free_buf; } if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { lpfc_sli_poll_fcp_ring(phba); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_poll_rearm_timer(phba); } return 0; out_host_busy_free_buf: lpfc_scsi_unprep_dma_buf(phba, lpfc_cmd); lpfc_release_scsi_buf(phba, lpfc_cmd); out_host_busy: return SCSI_MLQUEUE_HOST_BUSY; out_fail_command: done(cmnd); return 0; } /** * lpfc_block_error_handler - Routine to block error handler * @cmnd: Pointer to scsi_cmnd data structure. * * This routine blocks execution till fc_rport state is not FC_PORSTAT_BLCOEKD. **/ static void lpfc_block_error_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct fc_rport *rport = starget_to_rport(scsi_target(cmnd->device)); spin_lock_irq(shost->host_lock); while (rport->port_state == FC_PORTSTATE_BLOCKED) { spin_unlock_irq(shost->host_lock); msleep(1000); spin_lock_irq(shost->host_lock); } spin_unlock_irq(shost->host_lock); return; } /** * lpfc_abort_handler - scsi_host_template eh_abort_handler entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine aborts @cmnd pending in base driver. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_abort_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_sli_ring *pring = &phba->sli.ring[phba->sli.fcp_ring]; struct lpfc_iocbq *iocb; struct lpfc_iocbq *abtsiocb; struct lpfc_scsi_buf *lpfc_cmd; IOCB_t *cmd, *icmd; int ret = SUCCESS; DECLARE_WAIT_QUEUE_HEAD_ONSTACK(waitq); lpfc_block_error_handler(cmnd); lpfc_cmd = (struct lpfc_scsi_buf *)cmnd->host_scribble; BUG_ON(!lpfc_cmd); /* * If pCmd field of the corresponding lpfc_scsi_buf structure * points to a different SCSI command, then the driver has * already completed this command, but the midlayer did not * see the completion before the eh fired. Just return * SUCCESS. */ iocb = &lpfc_cmd->cur_iocbq; if (lpfc_cmd->pCmd != cmnd) goto out; BUG_ON(iocb->context1 != lpfc_cmd); abtsiocb = lpfc_sli_get_iocbq(phba); if (abtsiocb == NULL) { ret = FAILED; goto out; } /* * The scsi command can not be in txq and it is in flight because the * pCmd is still pointig at the SCSI command we have to abort. There * is no need to search the txcmplq. Just send an abort to the FW. */ cmd = &iocb->iocb; icmd = &abtsiocb->iocb; icmd->un.acxri.abortType = ABORT_TYPE_ABTS; icmd->un.acxri.abortContextTag = cmd->ulpContext; icmd->un.acxri.abortIoTag = cmd->ulpIoTag; icmd->ulpLe = 1; icmd->ulpClass = cmd->ulpClass; if (lpfc_is_link_up(phba)) icmd->ulpCommand = CMD_ABORT_XRI_CN; else icmd->ulpCommand = CMD_CLOSE_XRI_CN; abtsiocb->iocb_cmpl = lpfc_sli_abort_fcp_cmpl; abtsiocb->vport = vport; if (lpfc_sli_issue_iocb(phba, pring, abtsiocb, 0) == IOCB_ERROR) { lpfc_sli_release_iocbq(phba, abtsiocb); ret = FAILED; goto out; } if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_sli_poll_fcp_ring (phba); lpfc_cmd->waitq = &waitq; /* Wait for abort to complete */ wait_event_timeout(waitq, (lpfc_cmd->pCmd != cmnd), (2*vport->cfg_devloss_tmo*HZ)); spin_lock_irq(shost->host_lock); lpfc_cmd->waitq = NULL; spin_unlock_irq(shost->host_lock); if (lpfc_cmd->pCmd == cmnd) { ret = FAILED; lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0748 abort handler timed out waiting " "for abort to complete: ret %#x, ID %d, " "LUN %d, snum %#lx\n", ret, cmnd->device->id, cmnd->device->lun, cmnd->serial_number); } out: lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0749 SCSI Layer I/O Abort Request Status x%x ID %d " "LUN %d snum %#lx\n", ret, cmnd->device->id, cmnd->device->lun, cmnd->serial_number); return ret; } /** * lpfc_device_reset_handler - scsi_host_template eh_device_reset entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine does a device reset by sending a TARGET_RESET task management * command. * * Return code : * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_device_reset_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_scsi_buf *lpfc_cmd; struct lpfc_iocbq *iocbq, *iocbqrsp; struct lpfc_rport_data *rdata = cmnd->device->hostdata; struct lpfc_nodelist *pnode = rdata->pnode; unsigned long later; int ret = SUCCESS; int status; int cnt; struct lpfc_scsi_event_header scsi_event; lpfc_block_error_handler(cmnd); /* * If target is not in a MAPPED state, delay the reset until * target is rediscovered or devloss timeout expires. */ later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; while (time_after(later, jiffies)) { if (!pnode || !NLP_CHK_NODE_ACT(pnode)) return FAILED; if (pnode->nlp_state == NLP_STE_MAPPED_NODE) break; schedule_timeout_uninterruptible(msecs_to_jiffies(500)); rdata = cmnd->device->hostdata; if (!rdata) break; pnode = rdata->pnode; } scsi_event.event_type = FC_REG_SCSI_EVENT; scsi_event.subcategory = LPFC_EVENT_TGTRESET; scsi_event.lun = 0; memcpy(scsi_event.wwpn, &pnode->nlp_portname, sizeof(struct lpfc_name)); memcpy(scsi_event.wwnn, &pnode->nlp_nodename, sizeof(struct lpfc_name)); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); if (!rdata || pnode->nlp_state != NLP_STE_MAPPED_NODE) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0721 LUN Reset rport " "failure: msec x%x rdata x%p\n", jiffies_to_msecs(jiffies - later), rdata); return FAILED; } lpfc_cmd = lpfc_get_scsi_buf(phba); if (lpfc_cmd == NULL) return FAILED; lpfc_cmd->timeout = 60; lpfc_cmd->rdata = rdata; status = lpfc_scsi_prep_task_mgmt_cmd(vport, lpfc_cmd, cmnd->device->lun, FCP_TARGET_RESET); if (!status) { lpfc_release_scsi_buf(phba, lpfc_cmd); return FAILED; } iocbq = &lpfc_cmd->cur_iocbq; /* get a buffer for this IOCB command response */ iocbqrsp = lpfc_sli_get_iocbq(phba); if (iocbqrsp == NULL) { lpfc_release_scsi_buf(phba, lpfc_cmd); return FAILED; } lpfc_printf_vlog(vport, KERN_INFO, LOG_FCP, "0703 Issue target reset to TGT %d LUN %d " "rpi x%x nlp_flag x%x\n", cmnd->device->id, cmnd->device->lun, pnode->nlp_rpi, pnode->nlp_flag); status = lpfc_sli_issue_iocb_wait(phba, &phba->sli.ring[phba->sli.fcp_ring], iocbq, iocbqrsp, lpfc_cmd->timeout); if (status == IOCB_TIMEDOUT) { iocbq->iocb_cmpl = lpfc_tskmgmt_def_cmpl; ret = TIMEOUT_ERROR; } else { if (status != IOCB_SUCCESS) ret = FAILED; lpfc_release_scsi_buf(phba, lpfc_cmd); } lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0713 SCSI layer issued device reset (%d, %d) " "return x%x status x%x result x%x\n", cmnd->device->id, cmnd->device->lun, ret, iocbqrsp->iocb.ulpStatus, iocbqrsp->iocb.un.ulpWord[4]); lpfc_sli_release_iocbq(phba, iocbqrsp); cnt = lpfc_sli_sum_iocb(vport, cmnd->device->id, cmnd->device->lun, LPFC_CTX_TGT); if (cnt) lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring], cmnd->device->id, cmnd->device->lun, LPFC_CTX_TGT); later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; while (time_after(later, jiffies) && cnt) { schedule_timeout_uninterruptible(msecs_to_jiffies(20)); cnt = lpfc_sli_sum_iocb(vport, cmnd->device->id, cmnd->device->lun, LPFC_CTX_TGT); } if (cnt) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0719 device reset I/O flush failure: " "cnt x%x\n", cnt); ret = FAILED; } return ret; } /** * lpfc_bus_reset_handler - scsi_host_template eh_bus_reset_handler entry point * @cmnd: Pointer to scsi_cmnd data structure. * * This routine does target reset to all target on @cmnd->device->host. * * Return Code: * 0x2003 - Error * 0x2002 - Success **/ static int lpfc_bus_reset_handler(struct scsi_cmnd *cmnd) { struct Scsi_Host *shost = cmnd->device->host; struct lpfc_vport *vport = (struct lpfc_vport *) shost->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_nodelist *ndlp = NULL; int match; int ret = SUCCESS, status = SUCCESS, i; int cnt; struct lpfc_scsi_buf * lpfc_cmd; unsigned long later; struct lpfc_scsi_event_header scsi_event; scsi_event.event_type = FC_REG_SCSI_EVENT; scsi_event.subcategory = LPFC_EVENT_BUSRESET; scsi_event.lun = 0; memcpy(scsi_event.wwpn, &vport->fc_portname, sizeof(struct lpfc_name)); memcpy(scsi_event.wwnn, &vport->fc_nodename, sizeof(struct lpfc_name)); fc_host_post_vendor_event(shost, fc_get_event_number(), sizeof(scsi_event), (char *)&scsi_event, LPFC_NL_VENDOR_ID); lpfc_block_error_handler(cmnd); /* * Since the driver manages a single bus device, reset all * targets known to the driver. Should any target reset * fail, this routine returns failure to the midlayer. */ for (i = 0; i < LPFC_MAX_TARGET; i++) { /* Search for mapped node by target ID */ match = 0; spin_lock_irq(shost->host_lock); list_for_each_entry(ndlp, &vport->fc_nodes, nlp_listp) { if (!NLP_CHK_NODE_ACT(ndlp)) continue; if (ndlp->nlp_state == NLP_STE_MAPPED_NODE && ndlp->nlp_sid == i && ndlp->rport) { match = 1; break; } } spin_unlock_irq(shost->host_lock); if (!match) continue; lpfc_cmd = lpfc_get_scsi_buf(phba); if (lpfc_cmd) { lpfc_cmd->timeout = 60; status = lpfc_scsi_tgt_reset(lpfc_cmd, vport, i, cmnd->device->lun, ndlp->rport->dd_data); if (status != TIMEOUT_ERROR) lpfc_release_scsi_buf(phba, lpfc_cmd); } if (!lpfc_cmd || status != SUCCESS) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0700 Bus Reset on target %d failed\n", i); ret = FAILED; } } /* * All outstanding txcmplq I/Os should have been aborted by * the targets. Unfortunately, some targets do not abide by * this forcing the driver to double check. */ cnt = lpfc_sli_sum_iocb(vport, 0, 0, LPFC_CTX_HOST); if (cnt) lpfc_sli_abort_iocb(vport, &phba->sli.ring[phba->sli.fcp_ring], 0, 0, LPFC_CTX_HOST); later = msecs_to_jiffies(2 * vport->cfg_devloss_tmo * 1000) + jiffies; while (time_after(later, jiffies) && cnt) { schedule_timeout_uninterruptible(msecs_to_jiffies(20)); cnt = lpfc_sli_sum_iocb(vport, 0, 0, LPFC_CTX_HOST); } if (cnt) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0715 Bus Reset I/O flush failure: " "cnt x%x left x%x\n", cnt, i); ret = FAILED; } lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0714 SCSI layer issued Bus Reset Data: x%x\n", ret); return ret; } /** * lpfc_slave_alloc - scsi_host_template slave_alloc entry point * @sdev: Pointer to scsi_device. * * This routine populates the cmds_per_lun count + 2 scsi_bufs into this host's * globally available list of scsi buffers. This routine also makes sure scsi * buffer is not allocated more than HBA limit conveyed to midlayer. This list * of scsi buffer exists for the lifetime of the driver. * * Return codes: * non-0 - Error * 0 - Success **/ static int lpfc_slave_alloc(struct scsi_device *sdev) { struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; struct lpfc_hba *phba = vport->phba; struct lpfc_scsi_buf *scsi_buf = NULL; struct fc_rport *rport = starget_to_rport(scsi_target(sdev)); uint32_t total = 0, i; uint32_t num_to_alloc = 0; unsigned long flags; if (!rport || fc_remote_port_chkready(rport)) return -ENXIO; sdev->hostdata = rport->dd_data; /* * Populate the cmds_per_lun count scsi_bufs into this host's globally * available list of scsi buffers. Don't allocate more than the * HBA limit conveyed to the midlayer via the host structure. The * formula accounts for the lun_queue_depth + error handlers + 1 * extra. This list of scsi bufs exists for the lifetime of the driver. */ total = phba->total_scsi_bufs; num_to_alloc = vport->cfg_lun_queue_depth + 2; /* Allow some exchanges to be available always to complete discovery */ if (total >= phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0704 At limitation of %d preallocated " "command buffers\n", total); return 0; /* Allow some exchanges to be available always to complete discovery */ } else if (total + num_to_alloc > phba->cfg_hba_queue_depth - LPFC_DISC_IOCB_BUFF_COUNT ) { lpfc_printf_vlog(vport, KERN_WARNING, LOG_FCP, "0705 Allocation request of %d " "command buffers will exceed max of %d. " "Reducing allocation request to %d.\n", num_to_alloc, phba->cfg_hba_queue_depth, (phba->cfg_hba_queue_depth - total)); num_to_alloc = phba->cfg_hba_queue_depth - total; } for (i = 0; i < num_to_alloc; i++) { scsi_buf = lpfc_new_scsi_buf(vport); if (!scsi_buf) { lpfc_printf_vlog(vport, KERN_ERR, LOG_FCP, "0706 Failed to allocate " "command buffer\n"); break; } spin_lock_irqsave(&phba->scsi_buf_list_lock, flags); phba->total_scsi_bufs++; list_add_tail(&scsi_buf->list, &phba->lpfc_scsi_buf_list); spin_unlock_irqrestore(&phba->scsi_buf_list_lock, flags); } return 0; } /** * lpfc_slave_configure - scsi_host_template slave_configure entry point * @sdev: Pointer to scsi_device. * * This routine configures following items * - Tag command queuing support for @sdev if supported. * - Dev loss time out value of fc_rport. * - Enable SLI polling for fcp ring if ENABLE_FCP_RING_POLLING flag is set. * * Return codes: * 0 - Success **/ static int lpfc_slave_configure(struct scsi_device *sdev) { struct lpfc_vport *vport = (struct lpfc_vport *) sdev->host->hostdata; struct lpfc_hba *phba = vport->phba; struct fc_rport *rport = starget_to_rport(sdev->sdev_target); if (sdev->tagged_supported) scsi_activate_tcq(sdev, vport->cfg_lun_queue_depth); else scsi_deactivate_tcq(sdev, vport->cfg_lun_queue_depth); /* * Initialize the fc transport attributes for the target * containing this scsi device. Also note that the driver's * target pointer is stored in the starget_data for the * driver's sysfs entry point functions. */ rport->dev_loss_tmo = vport->cfg_devloss_tmo; if (phba->cfg_poll & ENABLE_FCP_RING_POLLING) { lpfc_sli_poll_fcp_ring(phba); if (phba->cfg_poll & DISABLE_FCP_RING_INT) lpfc_poll_rearm_timer(phba); } return 0; } /** * lpfc_slave_destroy - slave_destroy entry point of SHT data structure * @sdev: Pointer to scsi_device. * * This routine sets @sdev hostatdata filed to null. **/ static void lpfc_slave_destroy(struct scsi_device *sdev) { sdev->hostdata = NULL; return; } struct scsi_host_template lpfc_template = { .module = THIS_MODULE, .name = LPFC_DRIVER_NAME, .info = lpfc_info, .queuecommand = lpfc_queuecommand, .eh_abort_handler = lpfc_abort_handler, .eh_device_reset_handler= lpfc_device_reset_handler, .eh_bus_reset_handler = lpfc_bus_reset_handler, .slave_alloc = lpfc_slave_alloc, .slave_configure = lpfc_slave_configure, .slave_destroy = lpfc_slave_destroy, .scan_finished = lpfc_scan_finished, .this_id = -1, .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, .cmd_per_lun = LPFC_CMD_PER_LUN, .use_clustering = ENABLE_CLUSTERING, .shost_attrs = lpfc_hba_attrs, .max_sectors = 0xFFFF, }; struct scsi_host_template lpfc_vport_template = { .module = THIS_MODULE, .name = LPFC_DRIVER_NAME, .info = lpfc_info, .queuecommand = lpfc_queuecommand, .eh_abort_handler = lpfc_abort_handler, .eh_device_reset_handler= lpfc_device_reset_handler, .eh_bus_reset_handler = lpfc_bus_reset_handler, .slave_alloc = lpfc_slave_alloc, .slave_configure = lpfc_slave_configure, .slave_destroy = lpfc_slave_destroy, .scan_finished = lpfc_scan_finished, .this_id = -1, .sg_tablesize = LPFC_DEFAULT_SG_SEG_CNT, .cmd_per_lun = LPFC_CMD_PER_LUN, .use_clustering = ENABLE_CLUSTERING, .shost_attrs = lpfc_vport_attrs, .max_sectors = 0xFFFF, };