/* * I/O SAPIC support. * * Copyright (C) 1999 Intel Corp. * Copyright (C) 1999 Asit Mallick * Copyright (C) 2000-2002 J.I. Lee * Copyright (C) 1999-2000, 2002-2003 Hewlett-Packard Co. * David Mosberger-Tang * Copyright (C) 1999 VA Linux Systems * Copyright (C) 1999,2000 Walt Drummond * * 00/04/19 D. Mosberger Rewritten to mirror more closely the x86 I/O * APIC code. In particular, we now have separate * handlers for edge and level triggered * interrupts. * 00/10/27 Asit Mallick, Goutham Rao IRQ vector * allocation PCI to vector mapping, shared PCI * interrupts. * 00/10/27 D. Mosberger Document things a bit more to make them more * understandable. Clean up much of the old * IOSAPIC cruft. * 01/07/27 J.I. Lee PCI irq routing, Platform/Legacy interrupts * and fixes for ACPI S5(SoftOff) support. * 02/01/23 J.I. Lee iosapic pgm fixes for PCI irq routing from _PRT * 02/01/07 E. Focht Redirectable interrupt * vectors in iosapic_set_affinity(), * initializations for /proc/irq/#/smp_affinity * 02/04/02 P. Diefenbaugh Cleaned up ACPI PCI IRQ routing. * 02/04/18 J.I. Lee bug fix in iosapic_init_pci_irq * 02/04/30 J.I. Lee bug fix in find_iosapic to fix ACPI PCI IRQ to * IOSAPIC mapping error * 02/07/29 T. Kochi Allocate interrupt vectors dynamically * 02/08/04 T. Kochi Cleaned up terminology (irq, global system * interrupt, vector, etc.) * 02/09/20 D. Mosberger Simplified by taking advantage of ACPI's * pci_irq code. * 03/02/19 B. Helgaas Make pcat_compat system-wide, not per-IOSAPIC. * Remove iosapic_address & gsi_base from * external interfaces. Rationalize * __init/__devinit attributes. * 04/12/04 Ashok Raj Intel Corporation 2004 * Updated to work with irq migration necessary * for CPU Hotplug */ /* * Here is what the interrupt logic between a PCI device and the kernel looks * like: * * (1) A PCI device raises one of the four interrupt pins (INTA, INTB, INTC, * INTD). The device is uniquely identified by its bus-, and slot-number * (the function number does not matter here because all functions share * the same interrupt lines). * * (2) The motherboard routes the interrupt line to a pin on a IOSAPIC * controller. Multiple interrupt lines may have to share the same * IOSAPIC pin (if they're level triggered and use the same polarity). * Each interrupt line has a unique Global System Interrupt (GSI) number * which can be calculated as the sum of the controller's base GSI number * and the IOSAPIC pin number to which the line connects. * * (3) The IOSAPIC uses an internal routing table entries (RTEs) to map the * IOSAPIC pin into the IA-64 interrupt vector. This interrupt vector is then * sent to the CPU. * * (4) The kernel recognizes an interrupt as an IRQ. The IRQ interface is * used as architecture-independent interrupt handling mechanism in Linux. * As an IRQ is a number, we have to have * IA-64 interrupt vector number <-> IRQ number mapping. On smaller * systems, we use one-to-one mapping between IA-64 vector and IRQ. A * platform can implement platform_irq_to_vector(irq) and * platform_local_vector_to_irq(vector) APIs to differentiate the mapping. * Please see also include/asm-ia64/hw_irq.h for those APIs. * * To sum up, there are three levels of mappings involved: * * PCI pin -> global system interrupt (GSI) -> IA-64 vector <-> IRQ * * Note: The term "IRQ" is loosely used everywhere in Linux kernel to * describeinterrupts. Now we use "IRQ" only for Linux IRQ's. ISA IRQ * (isa_irq) is the only exception in this source code. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #undef DEBUG_INTERRUPT_ROUTING #ifdef DEBUG_INTERRUPT_ROUTING #define DBG(fmt...) printk(fmt) #else #define DBG(fmt...) #endif #define NR_PREALLOCATE_RTE_ENTRIES \ (PAGE_SIZE / sizeof(struct iosapic_rte_info)) #define RTE_PREALLOCATED (1) static DEFINE_SPINLOCK(iosapic_lock); /* * These tables map IA-64 vectors to the IOSAPIC pin that generates this * vector. */ #define NO_REF_RTE 0 static struct iosapic { char __iomem *addr; /* base address of IOSAPIC */ unsigned int gsi_base; /* GSI base */ unsigned short num_rte; /* # of RTEs on this IOSAPIC */ int rtes_inuse; /* # of RTEs in use on this IOSAPIC */ #ifdef CONFIG_NUMA unsigned short node; /* numa node association via pxm */ #endif spinlock_t lock; /* lock for indirect reg access */ } iosapic_lists[NR_IOSAPICS]; struct iosapic_rte_info { struct list_head rte_list; /* RTEs sharing the same vector */ char rte_index; /* IOSAPIC RTE index */ int refcnt; /* reference counter */ unsigned int flags; /* flags */ struct iosapic *iosapic; } ____cacheline_aligned; static struct iosapic_intr_info { struct list_head rtes; /* RTEs using this vector (empty => * not an IOSAPIC interrupt) */ int count; /* # of registered RTEs */ u32 low32; /* current value of low word of * Redirection table entry */ unsigned int dest; /* destination CPU physical ID */ unsigned char dmode : 3; /* delivery mode (see iosapic.h) */ unsigned char polarity: 1; /* interrupt polarity * (see iosapic.h) */ unsigned char trigger : 1; /* trigger mode (see iosapic.h) */ } iosapic_intr_info[NR_IRQS]; static unsigned char pcat_compat __devinitdata; /* 8259 compatibility flag */ static int iosapic_kmalloc_ok; static LIST_HEAD(free_rte_list); static inline void iosapic_write(struct iosapic *iosapic, unsigned int reg, u32 val) { unsigned long flags; spin_lock_irqsave(&iosapic->lock, flags); __iosapic_write(iosapic->addr, reg, val); spin_unlock_irqrestore(&iosapic->lock, flags); } /* * Find an IOSAPIC associated with a GSI */ static inline int find_iosapic (unsigned int gsi) { int i; for (i = 0; i < NR_IOSAPICS; i++) { if ((unsigned) (gsi - iosapic_lists[i].gsi_base) < iosapic_lists[i].num_rte) return i; } return -1; } static inline int __gsi_to_irq(unsigned int gsi) { int irq; struct iosapic_intr_info *info; struct iosapic_rte_info *rte; for (irq = 0; irq < NR_IRQS; irq++) { info = &iosapic_intr_info[irq]; list_for_each_entry(rte, &info->rtes, rte_list) if (rte->iosapic->gsi_base + rte->rte_index == gsi) return irq; } return -1; } int gsi_to_irq (unsigned int gsi) { unsigned long flags; int irq; spin_lock_irqsave(&iosapic_lock, flags); irq = __gsi_to_irq(gsi); spin_unlock_irqrestore(&iosapic_lock, flags); return irq; } static struct iosapic_rte_info *find_rte(unsigned int irq, unsigned int gsi) { struct iosapic_rte_info *rte; list_for_each_entry(rte, &iosapic_intr_info[irq].rtes, rte_list) if (rte->iosapic->gsi_base + rte->rte_index == gsi) return rte; return NULL; } static void set_rte (unsigned int gsi, unsigned int irq, unsigned int dest, int mask) { unsigned long pol, trigger, dmode; u32 low32, high32; int rte_index; char redir; struct iosapic_rte_info *rte; ia64_vector vector = irq_to_vector(irq); DBG(KERN_DEBUG"IOSAPIC: routing vector %d to 0x%x\n", vector, dest); rte = find_rte(irq, gsi); if (!rte) return; /* not an IOSAPIC interrupt */ rte_index = rte->rte_index; pol = iosapic_intr_info[irq].polarity; trigger = iosapic_intr_info[irq].trigger; dmode = iosapic_intr_info[irq].dmode; redir = (dmode == IOSAPIC_LOWEST_PRIORITY) ? 1 : 0; #ifdef CONFIG_SMP set_irq_affinity_info(irq, (int)(dest & 0xffff), redir); #endif low32 = ((pol << IOSAPIC_POLARITY_SHIFT) | (trigger << IOSAPIC_TRIGGER_SHIFT) | (dmode << IOSAPIC_DELIVERY_SHIFT) | ((mask ? 1 : 0) << IOSAPIC_MASK_SHIFT) | vector); /* dest contains both id and eid */ high32 = (dest << IOSAPIC_DEST_SHIFT); iosapic_write(rte->iosapic, IOSAPIC_RTE_HIGH(rte_index), high32); iosapic_write(rte->iosapic, IOSAPIC_RTE_LOW(rte_index), low32); iosapic_intr_info[irq].low32 = low32; iosapic_intr_info[irq].dest = dest; } static void nop (unsigned int irq) { /* do nothing... */ } #ifdef CONFIG_KEXEC void kexec_disable_iosapic(void) { struct iosapic_intr_info *info; struct iosapic_rte_info *rte; ia64_vector vec; int irq; for (irq = 0; irq < NR_IRQS; irq++) { info = &iosapic_intr_info[irq]; vec = irq_to_vector(irq); list_for_each_entry(rte, &info->rtes, rte_list) { iosapic_write(rte->iosapic, IOSAPIC_RTE_LOW(rte->rte_index), IOSAPIC_MASK|vec); iosapic_eoi(rte->iosapic->addr, vec); } } } #endif static void mask_irq (unsigned int irq) { u32 low32; int rte_index; struct iosapic_rte_info *rte; if (!iosapic_intr_info[irq].count) return; /* not an IOSAPIC interrupt! */ /* set only the mask bit */ low32 = iosapic_intr_info[irq].low32 |= IOSAPIC_MASK; list_for_each_entry(rte, &iosapic_intr_info[irq].rtes, rte_list) { rte_index = rte->rte_index; iosapic_write(rte->iosapic, IOSAPIC_RTE_LOW(rte_index), low32); } } static void unmask_irq (unsigned int irq) { u32 low32; int rte_index; struct iosapic_rte_info *rte; if (!iosapic_intr_info[irq].count) return; /* not an IOSAPIC interrupt! */ low32 = iosapic_intr_info[irq].low32 &= ~IOSAPIC_MASK; list_for_each_entry(rte, &iosapic_intr_info[irq].rtes, rte_list) { rte_index = rte->rte_index; iosapic_write(rte->iosapic, IOSAPIC_RTE_LOW(rte_index), low32); } } static void iosapic_set_affinity (unsigned int irq, cpumask_t mask) { #ifdef CONFIG_SMP u32 high32, low32; int dest, rte_index; int redir = (irq & IA64_IRQ_REDIRECTED) ? 1 : 0; struct iosapic_rte_info *rte; struct iosapic *iosapic; irq &= (~IA64_IRQ_REDIRECTED); cpus_and(mask, mask, cpu_online_map); if (cpus_empty(mask)) return; if (irq_prepare_move(irq, first_cpu(mask))) return; dest = cpu_physical_id(first_cpu(mask)); if (!iosapic_intr_info[irq].count) return; /* not an IOSAPIC interrupt */ set_irq_affinity_info(irq, dest, redir); /* dest contains both id and eid */ high32 = dest << IOSAPIC_DEST_SHIFT; low32 = iosapic_intr_info[irq].low32 & ~(7 << IOSAPIC_DELIVERY_SHIFT); if (redir) /* change delivery mode to lowest priority */ low32 |= (IOSAPIC_LOWEST_PRIORITY << IOSAPIC_DELIVERY_SHIFT); else /* change delivery mode to fixed */ low32 |= (IOSAPIC_FIXED << IOSAPIC_DELIVERY_SHIFT); low32 &= IOSAPIC_VECTOR_MASK; low32 |= irq_to_vector(irq); iosapic_intr_info[irq].low32 = low32; iosapic_intr_info[irq].dest = dest; list_for_each_entry(rte, &iosapic_intr_info[irq].rtes, rte_list) { iosapic = rte->iosapic; rte_index = rte->rte_index; iosapic_write(iosapic, IOSAPIC_RTE_HIGH(rte_index), high32); iosapic_write(iosapic, IOSAPIC_RTE_LOW(rte_index), low32); } #endif } /* * Handlers for level-triggered interrupts. */ static unsigned int iosapic_startup_level_irq (unsigned int irq) { unmask_irq(irq); return 0; } static void iosapic_end_level_irq (unsigned int irq) { ia64_vector vec = irq_to_vector(irq); struct iosapic_rte_info *rte; int do_unmask_irq = 0; irq_complete_move(irq); if (unlikely(irq_desc[irq].status & IRQ_MOVE_PENDING)) { do_unmask_irq = 1; mask_irq(irq); } list_for_each_entry(rte, &iosapic_intr_info[irq].rtes, rte_list) iosapic_eoi(rte->iosapic->addr, vec); if (unlikely(do_unmask_irq)) { move_masked_irq(irq); unmask_irq(irq); } } #define iosapic_shutdown_level_irq mask_irq #define iosapic_enable_level_irq unmask_irq #define iosapic_disable_level_irq mask_irq #define iosapic_ack_level_irq nop static struct irq_chip irq_type_iosapic_level = { .name = "IO-SAPIC-level", .startup = iosapic_startup_level_irq, .shutdown = iosapic_shutdown_level_irq, .enable = iosapic_enable_level_irq, .disable = iosapic_disable_level_irq, .ack = iosapic_ack_level_irq, .end = iosapic_end_level_irq, .mask = mask_irq, .unmask = unmask_irq, .set_affinity = iosapic_set_affinity }; /* * Handlers for edge-triggered interrupts. */ static unsigned int iosapic_startup_edge_irq (unsigned int irq) { unmask_irq(irq); /* * IOSAPIC simply drops interrupts pended while the * corresponding pin was masked, so we can't know if an * interrupt is pending already. Let's hope not... */ return 0; } static void iosapic_ack_edge_irq (unsigned int irq) { irq_desc_t *idesc = irq_desc + irq; irq_complete_move(irq); move_native_irq(irq); /* * Once we have recorded IRQ_PENDING already, we can mask the * interrupt for real. This prevents IRQ storms from unhandled * devices. */ if ((idesc->status & (IRQ_PENDING|IRQ_DISABLED)) == (IRQ_PENDING|IRQ_DISABLED)) mask_irq(irq); } #define iosapic_enable_edge_irq unmask_irq #define iosapic_disable_edge_irq nop #define iosapic_end_edge_irq nop static struct irq_chip irq_type_iosapic_edge = { .name = "IO-SAPIC-edge", .startup = iosapic_startup_edge_irq, .shutdown = iosapic_disable_edge_irq, .enable = iosapic_enable_edge_irq, .disable = iosapic_disable_edge_irq, .ack = iosapic_ack_edge_irq, .end = iosapic_end_edge_irq, .mask = mask_irq, .unmask = unmask_irq, .set_affinity = iosapic_set_affinity }; static unsigned int iosapic_version (char __iomem *addr) { /* * IOSAPIC Version Register return 32 bit structure like: * { * unsigned int version : 8; * unsigned int reserved1 : 8; * unsigned int max_redir : 8; * unsigned int reserved2 : 8; * } */ return __iosapic_read(addr, IOSAPIC_VERSION); } static int iosapic_find_sharable_irq(unsigned long trigger, unsigned long pol) { int i, irq = -ENOSPC, min_count = -1; struct iosapic_intr_info *info; /* * shared vectors for edge-triggered interrupts are not * supported yet */ if (trigger == IOSAPIC_EDGE) return -EINVAL; for (i = 0; i <= NR_IRQS; i++) { info = &iosapic_intr_info[i]; if (info->trigger == trigger && info->polarity == pol && (info->dmode == IOSAPIC_FIXED || info->dmode == IOSAPIC_LOWEST_PRIORITY) && can_request_irq(i, IRQF_SHARED)) { if (min_count == -1 || info->count < min_count) { irq = i; min_count = info->count; } } } return irq; } /* * if the given vector is already owned by other, * assign a new vector for the other and make the vector available */ static void __init iosapic_reassign_vector (int irq) { int new_irq; if (iosapic_intr_info[irq].count) { new_irq = create_irq(); if (new_irq < 0) panic("%s: out of interrupt vectors!\n", __func__); printk(KERN_INFO "Reassigning vector %d to %d\n", irq_to_vector(irq), irq_to_vector(new_irq)); memcpy(&iosapic_intr_info[new_irq], &iosapic_intr_info[irq], sizeof(struct iosapic_intr_info)); INIT_LIST_HEAD(&iosapic_intr_info[new_irq].rtes); list_move(iosapic_intr_info[irq].rtes.next, &iosapic_intr_info[new_irq].rtes); memset(&iosapic_intr_info[irq], 0, sizeof(struct iosapic_intr_info)); iosapic_intr_info[irq].low32 = IOSAPIC_MASK; INIT_LIST_HEAD(&iosapic_intr_info[irq].rtes); } } static struct iosapic_rte_info * __init_refok iosapic_alloc_rte (void) { int i; struct iosapic_rte_info *rte; int preallocated = 0; if (!iosapic_kmalloc_ok && list_empty(&free_rte_list)) { rte = alloc_bootmem(sizeof(struct iosapic_rte_info) * NR_PREALLOCATE_RTE_ENTRIES); if (!rte) return NULL; for (i = 0; i < NR_PREALLOCATE_RTE_ENTRIES; i++, rte++) list_add(&rte->rte_list, &free_rte_list); } if (!list_empty(&free_rte_list)) { rte = list_entry(free_rte_list.next, struct iosapic_rte_info, rte_list); list_del(&rte->rte_list); preallocated++; } else { rte = kmalloc(sizeof(struct iosapic_rte_info), GFP_ATOMIC); if (!rte) return NULL; } memset(rte, 0, sizeof(struct iosapic_rte_info)); if (preallocated) rte->flags |= RTE_PREALLOCATED; return rte; } static inline int irq_is_shared (int irq) { return (iosapic_intr_info[irq].count > 1); } struct irq_chip* ia64_native_iosapic_get_irq_chip(unsigned long trigger) { if (trigger == IOSAPIC_EDGE) return &irq_type_iosapic_edge; else return &irq_type_iosapic_level; } static int register_intr (unsigned int gsi, int irq, unsigned char delivery, unsigned long polarity, unsigned long trigger) { irq_desc_t *idesc; struct hw_interrupt_type *irq_type; int index; struct iosapic_rte_info *rte; index = find_iosapic(gsi); if (index < 0) { printk(KERN_WARNING "%s: No IOSAPIC for GSI %u\n", __func__, gsi); return -ENODEV; } rte = find_rte(irq, gsi); if (!rte) { rte = iosapic_alloc_rte(); if (!rte) { printk(KERN_WARNING "%s: cannot allocate memory\n", __func__); return -ENOMEM; } rte->iosapic = &iosapic_lists[index]; rte->rte_index = gsi - rte->iosapic->gsi_base; rte->refcnt++; list_add_tail(&rte->rte_list, &iosapic_intr_info[irq].rtes); iosapic_intr_info[irq].count++; iosapic_lists[index].rtes_inuse++; } else if (rte->refcnt == NO_REF_RTE) { struct iosapic_intr_info *info = &iosapic_intr_info[irq]; if (info->count > 0 && (info->trigger != trigger || info->polarity != polarity)){ printk (KERN_WARNING "%s: cannot override the interrupt\n", __func__); return -EINVAL; } rte->refcnt++; iosapic_intr_info[irq].count++; iosapic_lists[index].rtes_inuse++; } iosapic_intr_info[irq].polarity = polarity; iosapic_intr_info[irq].dmode = delivery; iosapic_intr_info[irq].trigger = trigger; irq_type = iosapic_get_irq_chip(trigger); idesc = irq_desc + irq; if (irq_type != NULL && idesc->chip != irq_type) { if (idesc->chip != &no_irq_type) printk(KERN_WARNING "%s: changing vector %d from %s to %s\n", __func__, irq_to_vector(irq), idesc->chip->name, irq_type->name); idesc->chip = irq_type; } return 0; } static unsigned int get_target_cpu (unsigned int gsi, int irq) { #ifdef CONFIG_SMP static int cpu = -1; extern int cpe_vector; cpumask_t domain = irq_to_domain(irq); /* * In case of vector shared by multiple RTEs, all RTEs that * share the vector need to use the same destination CPU. */ if (iosapic_intr_info[irq].count) return iosapic_intr_info[irq].dest; /* * If the platform supports redirection via XTP, let it * distribute interrupts. */ if (smp_int_redirect & SMP_IRQ_REDIRECTION) return cpu_physical_id(smp_processor_id()); /* * Some interrupts (ACPI SCI, for instance) are registered * before the BSP is marked as online. */ if (!cpu_online(smp_processor_id())) return cpu_physical_id(smp_processor_id()); #ifdef CONFIG_ACPI if (cpe_vector > 0 && irq_to_vector(irq) == IA64_CPEP_VECTOR) return get_cpei_target_cpu(); #endif #ifdef CONFIG_NUMA { int num_cpus, cpu_index, iosapic_index, numa_cpu, i = 0; cpumask_t cpu_mask; iosapic_index = find_iosapic(gsi); if (iosapic_index < 0 || iosapic_lists[iosapic_index].node == MAX_NUMNODES) goto skip_numa_setup; cpu_mask = node_to_cpumask(iosapic_lists[iosapic_index].node); cpus_and(cpu_mask, cpu_mask, domain); for_each_cpu_mask(numa_cpu, cpu_mask) { if (!cpu_online(numa_cpu)) cpu_clear(numa_cpu, cpu_mask); } num_cpus = cpus_weight(cpu_mask); if (!num_cpus) goto skip_numa_setup; /* Use irq assignment to distribute across cpus in node */ cpu_index = irq % num_cpus; for (numa_cpu = first_cpu(cpu_mask) ; i < cpu_index ; i++) numa_cpu = next_cpu(numa_cpu, cpu_mask); if (numa_cpu != NR_CPUS) return cpu_physical_id(numa_cpu); } skip_numa_setup: #endif /* * Otherwise, round-robin interrupt vectors across all the * processors. (It'd be nice if we could be smarter in the * case of NUMA.) */ do { if (++cpu >= NR_CPUS) cpu = 0; } while (!cpu_online(cpu) || !cpu_isset(cpu, domain)); return cpu_physical_id(cpu); #else /* CONFIG_SMP */ return cpu_physical_id(smp_processor_id()); #endif } static inline unsigned char choose_dmode(void) { #ifdef CONFIG_SMP if (smp_int_redirect & SMP_IRQ_REDIRECTION) return IOSAPIC_LOWEST_PRIORITY; #endif return IOSAPIC_FIXED; } /* * ACPI can describe IOSAPIC interrupts via static tables and namespace * methods. This provides an interface to register those interrupts and * program the IOSAPIC RTE. */ int iosapic_register_intr (unsigned int gsi, unsigned long polarity, unsigned long trigger) { int irq, mask = 1, err; unsigned int dest; unsigned long flags; struct iosapic_rte_info *rte; u32 low32; unsigned char dmode; /* * If this GSI has already been registered (i.e., it's a * shared interrupt, or we lost a race to register it), * don't touch the RTE. */ spin_lock_irqsave(&iosapic_lock, flags); irq = __gsi_to_irq(gsi); if (irq > 0) { rte = find_rte(irq, gsi); if(iosapic_intr_info[irq].count == 0) { assign_irq_vector(irq); dynamic_irq_init(irq); } else if (rte->refcnt != NO_REF_RTE) { rte->refcnt++; goto unlock_iosapic_lock; } } else irq = create_irq(); /* If vector is running out, we try to find a sharable vector */ if (irq < 0) { irq = iosapic_find_sharable_irq(trigger, polarity); if (irq < 0) goto unlock_iosapic_lock; } spin_lock(&irq_desc[irq].lock); dest = get_target_cpu(gsi, irq); dmode = choose_dmode(); err = register_intr(gsi, irq, dmode, polarity, trigger); if (err < 0) { spin_unlock(&irq_desc[irq].lock); irq = err; goto unlock_iosapic_lock; } /* * If the vector is shared and already unmasked for other * interrupt sources, don't mask it. */ low32 = iosapic_intr_info[irq].low32; if (irq_is_shared(irq) && !(low32 & IOSAPIC_MASK)) mask = 0; set_rte(gsi, irq, dest, mask); printk(KERN_INFO "GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d\n", gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"), (polarity == IOSAPIC_POL_HIGH ? "high" : "low"), cpu_logical_id(dest), dest, irq_to_vector(irq)); spin_unlock(&irq_desc[irq].lock); unlock_iosapic_lock: spin_unlock_irqrestore(&iosapic_lock, flags); return irq; } void iosapic_unregister_intr (unsigned int gsi) { unsigned long flags; int irq, index; irq_desc_t *idesc; u32 low32; unsigned long trigger, polarity; unsigned int dest; struct iosapic_rte_info *rte; /* * If the irq associated with the gsi is not found, * iosapic_unregister_intr() is unbalanced. We need to check * this again after getting locks. */ irq = gsi_to_irq(gsi); if (irq < 0) { printk(KERN_ERR "iosapic_unregister_intr(%u) unbalanced\n", gsi); WARN_ON(1); return; } spin_lock_irqsave(&iosapic_lock, flags); if ((rte = find_rte(irq, gsi)) == NULL) { printk(KERN_ERR "iosapic_unregister_intr(%u) unbalanced\n", gsi); WARN_ON(1); goto out; } if (--rte->refcnt > 0) goto out; idesc = irq_desc + irq; rte->refcnt = NO_REF_RTE; /* Mask the interrupt */ low32 = iosapic_intr_info[irq].low32 | IOSAPIC_MASK; iosapic_write(rte->iosapic, IOSAPIC_RTE_LOW(rte->rte_index), low32); iosapic_intr_info[irq].count--; index = find_iosapic(gsi); iosapic_lists[index].rtes_inuse--; WARN_ON(iosapic_lists[index].rtes_inuse < 0); trigger = iosapic_intr_info[irq].trigger; polarity = iosapic_intr_info[irq].polarity; dest = iosapic_intr_info[irq].dest; printk(KERN_INFO "GSI %u (%s, %s) -> CPU %d (0x%04x) vector %d unregistered\n", gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"), (polarity == IOSAPIC_POL_HIGH ? "high" : "low"), cpu_logical_id(dest), dest, irq_to_vector(irq)); if (iosapic_intr_info[irq].count == 0) { #ifdef CONFIG_SMP /* Clear affinity */ cpus_setall(idesc->affinity); #endif /* Clear the interrupt information */ iosapic_intr_info[irq].dest = 0; iosapic_intr_info[irq].dmode = 0; iosapic_intr_info[irq].polarity = 0; iosapic_intr_info[irq].trigger = 0; iosapic_intr_info[irq].low32 |= IOSAPIC_MASK; /* Destroy and reserve IRQ */ destroy_and_reserve_irq(irq); } out: spin_unlock_irqrestore(&iosapic_lock, flags); } /* * ACPI calls this when it finds an entry for a platform interrupt. */ int __init iosapic_register_platform_intr (u32 int_type, unsigned int gsi, int iosapic_vector, u16 eid, u16 id, unsigned long polarity, unsigned long trigger) { static const char * const name[] = {"unknown", "PMI", "INIT", "CPEI"}; unsigned char delivery; int irq, vector, mask = 0; unsigned int dest = ((id << 8) | eid) & 0xffff; switch (int_type) { case ACPI_INTERRUPT_PMI: irq = vector = iosapic_vector; bind_irq_vector(irq, vector, CPU_MASK_ALL); /* * since PMI vector is alloc'd by FW(ACPI) not by kernel, * we need to make sure the vector is available */ iosapic_reassign_vector(irq); delivery = IOSAPIC_PMI; break; case ACPI_INTERRUPT_INIT: irq = create_irq(); if (irq < 0) panic("%s: out of interrupt vectors!\n", __func__); vector = irq_to_vector(irq); delivery = IOSAPIC_INIT; break; case ACPI_INTERRUPT_CPEI: irq = vector = IA64_CPE_VECTOR; BUG_ON(bind_irq_vector(irq, vector, CPU_MASK_ALL)); delivery = IOSAPIC_FIXED; mask = 1; break; default: printk(KERN_ERR "%s: invalid int type 0x%x\n", __func__, int_type); return -1; } register_intr(gsi, irq, delivery, polarity, trigger); printk(KERN_INFO "PLATFORM int %s (0x%x): GSI %u (%s, %s) -> CPU %d (0x%04x)" " vector %d\n", int_type < ARRAY_SIZE(name) ? name[int_type] : "unknown", int_type, gsi, (trigger == IOSAPIC_EDGE ? "edge" : "level"), (polarity == IOSAPIC_POL_HIGH ? "high" : "low"), cpu_logical_id(dest), dest, vector); set_rte(gsi, irq, dest, mask); return vector; } /* * ACPI calls this when it finds an entry for a legacy ISA IRQ override. */ void __devinit iosapic_override_isa_irq (unsigned int isa_irq, unsigned int gsi, unsigned long polarity, unsigned long trigger) { int vector, irq; unsigned int dest = cpu_physical_id(smp_processor_id()); unsigned char dmode; irq = vector = isa_irq_to_vector(isa_irq); BUG_ON(bind_irq_vector(irq, vector, CPU_MASK_ALL)); dmode = choose_dmode(); register_intr(gsi, irq, dmode, polarity, trigger); DBG("ISA: IRQ %u -> GSI %u (%s,%s) -> CPU %d (0x%04x) vector %d\n", isa_irq, gsi, trigger == IOSAPIC_EDGE ? "edge" : "level", polarity == IOSAPIC_POL_HIGH ? "high" : "low", cpu_logical_id(dest), dest, vector); set_rte(gsi, irq, dest, 1); } void __init ia64_native_iosapic_pcat_compat_init(void) { if (pcat_compat) { /* * Disable the compatibility mode interrupts (8259 style), * needs IN/OUT support enabled. */ printk(KERN_INFO "%s: Disabling PC-AT compatible 8259 interrupts\n", __func__); outb(0xff, 0xA1); outb(0xff, 0x21); } } void __init iosapic_system_init (int system_pcat_compat) { int irq; for (irq = 0; irq < NR_IRQS; ++irq) { iosapic_intr_info[irq].low32 = IOSAPIC_MASK; /* mark as unused */ INIT_LIST_HEAD(&iosapic_intr_info[irq].rtes); iosapic_intr_info[irq].count = 0; } pcat_compat = system_pcat_compat; if (pcat_compat) iosapic_pcat_compat_init(); } static inline int iosapic_alloc (void) { int index; for (index = 0; index < NR_IOSAPICS; index++) if (!iosapic_lists[index].addr) return index; printk(KERN_WARNING "%s: failed to allocate iosapic\n", __func__); return -1; } static inline void iosapic_free (int index) { memset(&iosapic_lists[index], 0, sizeof(iosapic_lists[0])); } static inline int iosapic_check_gsi_range (unsigned int gsi_base, unsigned int ver) { int index; unsigned int gsi_end, base, end; /* check gsi range */ gsi_end = gsi_base + ((ver >> 16) & 0xff); for (index = 0; index < NR_IOSAPICS; index++) { if (!iosapic_lists[index].addr) continue; base = iosapic_lists[index].gsi_base; end = base + iosapic_lists[index].num_rte - 1; if (gsi_end < base || end < gsi_base) continue; /* OK */ return -EBUSY; } return 0; } int __devinit iosapic_init (unsigned long phys_addr, unsigned int gsi_base) { int num_rte, err, index; unsigned int isa_irq, ver; char __iomem *addr; unsigned long flags; spin_lock_irqsave(&iosapic_lock, flags); index = find_iosapic(gsi_base); if (index >= 0) { spin_unlock_irqrestore(&iosapic_lock, flags); return -EBUSY; } addr = ioremap(phys_addr, 0); ver = iosapic_version(addr); if ((err = iosapic_check_gsi_range(gsi_base, ver))) { iounmap(addr); spin_unlock_irqrestore(&iosapic_lock, flags); return err; } /* * The MAX_REDIR register holds the highest input pin number * (starting from 0). We add 1 so that we can use it for * number of pins (= RTEs) */ num_rte = ((ver >> 16) & 0xff) + 1; index = iosapic_alloc(); iosapic_lists[index].addr = addr; iosapic_lists[index].gsi_base = gsi_base; iosapic_lists[index].num_rte = num_rte; #ifdef CONFIG_NUMA iosapic_lists[index].node = MAX_NUMNODES; #endif spin_lock_init(&iosapic_lists[index].lock); spin_unlock_irqrestore(&iosapic_lock, flags); if ((gsi_base == 0) && pcat_compat) { /* * Map the legacy ISA devices into the IOSAPIC data. Some of * these may get reprogrammed later on with data from the ACPI * Interrupt Source Override table. */ for (isa_irq = 0; isa_irq < 16; ++isa_irq) iosapic_override_isa_irq(isa_irq, isa_irq, IOSAPIC_POL_HIGH, IOSAPIC_EDGE); } return 0; } #ifdef CONFIG_HOTPLUG int iosapic_remove (unsigned int gsi_base) { int index, err = 0; unsigned long flags; spin_lock_irqsave(&iosapic_lock, flags); index = find_iosapic(gsi_base); if (index < 0) { printk(KERN_WARNING "%s: No IOSAPIC for GSI base %u\n", __func__, gsi_base); goto out; } if (iosapic_lists[index].rtes_inuse) { err = -EBUSY; printk(KERN_WARNING "%s: IOSAPIC for GSI base %u is busy\n", __func__, gsi_base); goto out; } iounmap(iosapic_lists[index].addr); iosapic_free(index); out: spin_unlock_irqrestore(&iosapic_lock, flags); return err; } #endif /* CONFIG_HOTPLUG */ #ifdef CONFIG_NUMA void __devinit map_iosapic_to_node(unsigned int gsi_base, int node) { int index; index = find_iosapic(gsi_base); if (index < 0) { printk(KERN_WARNING "%s: No IOSAPIC for GSI %u\n", __func__, gsi_base); return; } iosapic_lists[index].node = node; return; } #endif static int __init iosapic_enable_kmalloc (void) { iosapic_kmalloc_ok = 1; return 0; } core_initcall (iosapic_enable_kmalloc);