/* * Created: Fri Jan 19 10:48:35 2001 by faith@acm.org * * Copyright 2001 VA Linux Systems, Inc., Sunnyvale, California. * All Rights Reserved. * * Author Rickard E. (Rik) Faith * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * PRECISION INSIGHT AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER * DEALINGS IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include "drm_legacy.h" #include "drm_internal.h" unsigned int drm_debug = 0; /* 1 to enable debug output */ EXPORT_SYMBOL(drm_debug); bool drm_atomic = 0; MODULE_AUTHOR(CORE_AUTHOR); MODULE_DESCRIPTION(CORE_DESC); MODULE_LICENSE("GPL and additional rights"); MODULE_PARM_DESC(debug, "Enable debug output"); MODULE_PARM_DESC(atomic, "Enable experimental atomic KMS API"); MODULE_PARM_DESC(vblankoffdelay, "Delay until vblank irq auto-disable [msecs] (0: never disable, <0: disable immediately)"); MODULE_PARM_DESC(timestamp_precision_usec, "Max. error on timestamps [usecs]"); MODULE_PARM_DESC(timestamp_monotonic, "Use monotonic timestamps"); module_param_named(debug, drm_debug, int, 0600); module_param_named_unsafe(atomic, drm_atomic, bool, 0600); static DEFINE_SPINLOCK(drm_minor_lock); static struct idr drm_minors_idr; struct class *drm_class; static struct dentry *drm_debugfs_root; void drm_err(const char *format, ...) { struct va_format vaf; va_list args; va_start(args, format); vaf.fmt = format; vaf.va = &args; printk(KERN_ERR "[" DRM_NAME ":%ps] *ERROR* %pV", __builtin_return_address(0), &vaf); va_end(args); } EXPORT_SYMBOL(drm_err); void drm_ut_debug_printk(const char *function_name, const char *format, ...) { struct va_format vaf; va_list args; va_start(args, format); vaf.fmt = format; vaf.va = &args; printk(KERN_DEBUG "[" DRM_NAME ":%s] %pV", function_name, &vaf); va_end(args); } EXPORT_SYMBOL(drm_ut_debug_printk); struct drm_master *drm_master_create(struct drm_minor *minor) { struct drm_master *master; master = kzalloc(sizeof(*master), GFP_KERNEL); if (!master) return NULL; kref_init(&master->refcount); spin_lock_init(&master->lock.spinlock); init_waitqueue_head(&master->lock.lock_queue); idr_init(&master->magic_map); master->minor = minor; return master; } struct drm_master *drm_master_get(struct drm_master *master) { kref_get(&master->refcount); return master; } EXPORT_SYMBOL(drm_master_get); static void drm_master_destroy(struct kref *kref) { struct drm_master *master = container_of(kref, struct drm_master, refcount); struct drm_device *dev = master->minor->dev; struct drm_map_list *r_list, *list_temp; mutex_lock(&dev->struct_mutex); if (dev->driver->master_destroy) dev->driver->master_destroy(dev, master); list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) { if (r_list->master == master) { drm_legacy_rmmap_locked(dev, r_list->map); r_list = NULL; } } if (master->unique) { kfree(master->unique); master->unique = NULL; master->unique_len = 0; } mutex_unlock(&dev->struct_mutex); idr_destroy(&master->magic_map); kfree(master); } void drm_master_put(struct drm_master **master) { kref_put(&(*master)->refcount, drm_master_destroy); *master = NULL; } EXPORT_SYMBOL(drm_master_put); int drm_setmaster_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { int ret = 0; mutex_lock(&dev->master_mutex); if (file_priv->is_master) goto out_unlock; if (file_priv->minor->master) { ret = -EINVAL; goto out_unlock; } if (!file_priv->master) { ret = -EINVAL; goto out_unlock; } file_priv->minor->master = drm_master_get(file_priv->master); file_priv->is_master = 1; if (dev->driver->master_set) { ret = dev->driver->master_set(dev, file_priv, false); if (unlikely(ret != 0)) { file_priv->is_master = 0; drm_master_put(&file_priv->minor->master); } } out_unlock: mutex_unlock(&dev->master_mutex); return ret; } int drm_dropmaster_ioctl(struct drm_device *dev, void *data, struct drm_file *file_priv) { int ret = -EINVAL; mutex_lock(&dev->master_mutex); if (!file_priv->is_master) goto out_unlock; if (!file_priv->minor->master) goto out_unlock; ret = 0; if (dev->driver->master_drop) dev->driver->master_drop(dev, file_priv, false); drm_master_put(&file_priv->minor->master); file_priv->is_master = 0; out_unlock: mutex_unlock(&dev->master_mutex); return ret; } /* * DRM Minors * A DRM device can provide several char-dev interfaces on the DRM-Major. Each * of them is represented by a drm_minor object. Depending on the capabilities * of the device-driver, different interfaces are registered. * * Minors can be accessed via dev->$minor_name. This pointer is either * NULL or a valid drm_minor pointer and stays valid as long as the device is * valid. This means, DRM minors have the same life-time as the underlying * device. However, this doesn't mean that the minor is active. Minors are * registered and unregistered dynamically according to device-state. */ static struct drm_minor **drm_minor_get_slot(struct drm_device *dev, unsigned int type) { switch (type) { case DRM_MINOR_LEGACY: return &dev->primary; case DRM_MINOR_RENDER: return &dev->render; case DRM_MINOR_CONTROL: return &dev->control; default: return NULL; } } static int drm_minor_alloc(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; int r; minor = kzalloc(sizeof(*minor), GFP_KERNEL); if (!minor) return -ENOMEM; minor->type = type; minor->dev = dev; idr_preload(GFP_KERNEL); spin_lock_irqsave(&drm_minor_lock, flags); r = idr_alloc(&drm_minors_idr, NULL, 64 * type, 64 * (type + 1), GFP_NOWAIT); spin_unlock_irqrestore(&drm_minor_lock, flags); idr_preload_end(); if (r < 0) goto err_free; minor->index = r; minor->kdev = drm_sysfs_minor_alloc(minor); if (IS_ERR(minor->kdev)) { r = PTR_ERR(minor->kdev); goto err_index; } *drm_minor_get_slot(dev, type) = minor; return 0; err_index: spin_lock_irqsave(&drm_minor_lock, flags); idr_remove(&drm_minors_idr, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); err_free: kfree(minor); return r; } static void drm_minor_free(struct drm_device *dev, unsigned int type) { struct drm_minor **slot, *minor; unsigned long flags; slot = drm_minor_get_slot(dev, type); minor = *slot; if (!minor) return; drm_mode_group_destroy(&minor->mode_group); put_device(minor->kdev); spin_lock_irqsave(&drm_minor_lock, flags); idr_remove(&drm_minors_idr, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); kfree(minor); *slot = NULL; } static int drm_minor_register(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; int ret; DRM_DEBUG("\n"); minor = *drm_minor_get_slot(dev, type); if (!minor) return 0; ret = drm_debugfs_init(minor, minor->index, drm_debugfs_root); if (ret) { DRM_ERROR("DRM: Failed to initialize /sys/kernel/debug/dri.\n"); return ret; } ret = device_add(minor->kdev); if (ret) goto err_debugfs; /* replace NULL with @minor so lookups will succeed from now on */ spin_lock_irqsave(&drm_minor_lock, flags); idr_replace(&drm_minors_idr, minor, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); DRM_DEBUG("new minor registered %d\n", minor->index); return 0; err_debugfs: drm_debugfs_cleanup(minor); return ret; } static void drm_minor_unregister(struct drm_device *dev, unsigned int type) { struct drm_minor *minor; unsigned long flags; minor = *drm_minor_get_slot(dev, type); if (!minor || !device_is_registered(minor->kdev)) return; /* replace @minor with NULL so lookups will fail from now on */ spin_lock_irqsave(&drm_minor_lock, flags); idr_replace(&drm_minors_idr, NULL, minor->index); spin_unlock_irqrestore(&drm_minor_lock, flags); device_del(minor->kdev); dev_set_drvdata(minor->kdev, NULL); /* safety belt */ drm_debugfs_cleanup(minor); } /** * drm_minor_acquire - Acquire a DRM minor * @minor_id: Minor ID of the DRM-minor * * Looks up the given minor-ID and returns the respective DRM-minor object. The * refence-count of the underlying device is increased so you must release this * object with drm_minor_release(). * * As long as you hold this minor, it is guaranteed that the object and the * minor->dev pointer will stay valid! However, the device may get unplugged and * unregistered while you hold the minor. * * Returns: * Pointer to minor-object with increased device-refcount, or PTR_ERR on * failure. */ struct drm_minor *drm_minor_acquire(unsigned int minor_id) { struct drm_minor *minor; unsigned long flags; spin_lock_irqsave(&drm_minor_lock, flags); minor = idr_find(&drm_minors_idr, minor_id); if (minor) drm_dev_ref(minor->dev); spin_unlock_irqrestore(&drm_minor_lock, flags); if (!minor) { return ERR_PTR(-ENODEV); } else if (drm_device_is_unplugged(minor->dev)) { drm_dev_unref(minor->dev); return ERR_PTR(-ENODEV); } return minor; } /** * drm_minor_release - Release DRM minor * @minor: Pointer to DRM minor object * * Release a minor that was previously acquired via drm_minor_acquire(). */ void drm_minor_release(struct drm_minor *minor) { drm_dev_unref(minor->dev); } /** * drm_put_dev - Unregister and release a DRM device * @dev: DRM device * * Called at module unload time or when a PCI device is unplugged. * * Use of this function is discouraged. It will eventually go away completely. * Please use drm_dev_unregister() and drm_dev_unref() explicitly instead. * * Cleans up all DRM device, calling drm_lastclose(). */ void drm_put_dev(struct drm_device *dev) { DRM_DEBUG("\n"); if (!dev) { DRM_ERROR("cleanup called no dev\n"); return; } drm_dev_unregister(dev); drm_dev_unref(dev); } EXPORT_SYMBOL(drm_put_dev); void drm_unplug_dev(struct drm_device *dev) { /* for a USB device */ drm_minor_unregister(dev, DRM_MINOR_LEGACY); drm_minor_unregister(dev, DRM_MINOR_RENDER); drm_minor_unregister(dev, DRM_MINOR_CONTROL); mutex_lock(&drm_global_mutex); drm_device_set_unplugged(dev); if (dev->open_count == 0) { drm_put_dev(dev); } mutex_unlock(&drm_global_mutex); } EXPORT_SYMBOL(drm_unplug_dev); /* * DRM internal mount * We want to be able to allocate our own "struct address_space" to control * memory-mappings in VRAM (or stolen RAM, ...). However, core MM does not allow * stand-alone address_space objects, so we need an underlying inode. As there * is no way to allocate an independent inode easily, we need a fake internal * VFS mount-point. * * The drm_fs_inode_new() function allocates a new inode, drm_fs_inode_free() * frees it again. You are allowed to use iget() and iput() to get references to * the inode. But each drm_fs_inode_new() call must be paired with exactly one * drm_fs_inode_free() call (which does not have to be the last iput()). * We use drm_fs_inode_*() to manage our internal VFS mount-point and share it * between multiple inode-users. You could, technically, call * iget() + drm_fs_inode_free() directly after alloc and sometime later do an * iput(), but this way you'd end up with a new vfsmount for each inode. */ static int drm_fs_cnt; static struct vfsmount *drm_fs_mnt; static const struct dentry_operations drm_fs_dops = { .d_dname = simple_dname, }; static const struct super_operations drm_fs_sops = { .statfs = simple_statfs, }; static struct dentry *drm_fs_mount(struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_pseudo(fs_type, "drm:", &drm_fs_sops, &drm_fs_dops, 0x010203ff); } static struct file_system_type drm_fs_type = { .name = "drm", .owner = THIS_MODULE, .mount = drm_fs_mount, .kill_sb = kill_anon_super, }; static struct inode *drm_fs_inode_new(void) { struct inode *inode; int r; r = simple_pin_fs(&drm_fs_type, &drm_fs_mnt, &drm_fs_cnt); if (r < 0) { DRM_ERROR("Cannot mount pseudo fs: %d\n", r); return ERR_PTR(r); } inode = alloc_anon_inode(drm_fs_mnt->mnt_sb); if (IS_ERR(inode)) simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); return inode; } static void drm_fs_inode_free(struct inode *inode) { if (inode) { iput(inode); simple_release_fs(&drm_fs_mnt, &drm_fs_cnt); } } /** * drm_dev_alloc - Allocate new DRM device * @driver: DRM driver to allocate device for * @parent: Parent device object * * Allocate and initialize a new DRM device. No device registration is done. * Call drm_dev_register() to advertice the device to user space and register it * with other core subsystems. * * The initial ref-count of the object is 1. Use drm_dev_ref() and * drm_dev_unref() to take and drop further ref-counts. * * Note that for purely virtual devices @parent can be NULL. * * RETURNS: * Pointer to new DRM device, or NULL if out of memory. */ struct drm_device *drm_dev_alloc(struct drm_driver *driver, struct device *parent) { struct drm_device *dev; int ret; dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return NULL; kref_init(&dev->ref); dev->dev = parent; dev->driver = driver; INIT_LIST_HEAD(&dev->filelist); INIT_LIST_HEAD(&dev->ctxlist); INIT_LIST_HEAD(&dev->vmalist); INIT_LIST_HEAD(&dev->maplist); INIT_LIST_HEAD(&dev->vblank_event_list); spin_lock_init(&dev->buf_lock); spin_lock_init(&dev->event_lock); mutex_init(&dev->struct_mutex); mutex_init(&dev->ctxlist_mutex); mutex_init(&dev->master_mutex); dev->anon_inode = drm_fs_inode_new(); if (IS_ERR(dev->anon_inode)) { ret = PTR_ERR(dev->anon_inode); DRM_ERROR("Cannot allocate anonymous inode: %d\n", ret); goto err_free; } if (drm_core_check_feature(dev, DRIVER_MODESET)) { ret = drm_minor_alloc(dev, DRM_MINOR_CONTROL); if (ret) goto err_minors; } if (drm_core_check_feature(dev, DRIVER_RENDER)) { ret = drm_minor_alloc(dev, DRM_MINOR_RENDER); if (ret) goto err_minors; } ret = drm_minor_alloc(dev, DRM_MINOR_LEGACY); if (ret) goto err_minors; if (drm_ht_create(&dev->map_hash, 12)) goto err_minors; ret = drm_legacy_ctxbitmap_init(dev); if (ret) { DRM_ERROR("Cannot allocate memory for context bitmap.\n"); goto err_ht; } if (drm_core_check_feature(dev, DRIVER_GEM)) { ret = drm_gem_init(dev); if (ret) { DRM_ERROR("Cannot initialize graphics execution manager (GEM)\n"); goto err_ctxbitmap; } } return dev; err_ctxbitmap: drm_legacy_ctxbitmap_cleanup(dev); err_ht: drm_ht_remove(&dev->map_hash); err_minors: drm_minor_free(dev, DRM_MINOR_LEGACY); drm_minor_free(dev, DRM_MINOR_RENDER); drm_minor_free(dev, DRM_MINOR_CONTROL); drm_fs_inode_free(dev->anon_inode); err_free: mutex_destroy(&dev->master_mutex); kfree(dev); return NULL; } EXPORT_SYMBOL(drm_dev_alloc); static void drm_dev_release(struct kref *ref) { struct drm_device *dev = container_of(ref, struct drm_device, ref); if (drm_core_check_feature(dev, DRIVER_GEM)) drm_gem_destroy(dev); drm_legacy_ctxbitmap_cleanup(dev); drm_ht_remove(&dev->map_hash); drm_fs_inode_free(dev->anon_inode); drm_minor_free(dev, DRM_MINOR_LEGACY); drm_minor_free(dev, DRM_MINOR_RENDER); drm_minor_free(dev, DRM_MINOR_CONTROL); mutex_destroy(&dev->master_mutex); kfree(dev->unique); kfree(dev); } /** * drm_dev_ref - Take reference of a DRM device * @dev: device to take reference of or NULL * * This increases the ref-count of @dev by one. You *must* already own a * reference when calling this. Use drm_dev_unref() to drop this reference * again. * * This function never fails. However, this function does not provide *any* * guarantee whether the device is alive or running. It only provides a * reference to the object and the memory associated with it. */ void drm_dev_ref(struct drm_device *dev) { if (dev) kref_get(&dev->ref); } EXPORT_SYMBOL(drm_dev_ref); /** * drm_dev_unref - Drop reference of a DRM device * @dev: device to drop reference of or NULL * * This decreases the ref-count of @dev by one. The device is destroyed if the * ref-count drops to zero. */ void drm_dev_unref(struct drm_device *dev) { if (dev) kref_put(&dev->ref, drm_dev_release); } EXPORT_SYMBOL(drm_dev_unref); /** * drm_dev_register - Register DRM device * @dev: Device to register * @flags: Flags passed to the driver's .load() function * * Register the DRM device @dev with the system, advertise device to user-space * and start normal device operation. @dev must be allocated via drm_dev_alloc() * previously. * * Never call this twice on any device! * * RETURNS: * 0 on success, negative error code on failure. */ int drm_dev_register(struct drm_device *dev, unsigned long flags) { int ret; mutex_lock(&drm_global_mutex); ret = drm_minor_register(dev, DRM_MINOR_CONTROL); if (ret) goto err_minors; ret = drm_minor_register(dev, DRM_MINOR_RENDER); if (ret) goto err_minors; ret = drm_minor_register(dev, DRM_MINOR_LEGACY); if (ret) goto err_minors; if (dev->driver->load) { ret = dev->driver->load(dev, flags); if (ret) goto err_minors; } /* setup grouping for legacy outputs */ if (drm_core_check_feature(dev, DRIVER_MODESET)) { ret = drm_mode_group_init_legacy_group(dev, &dev->primary->mode_group); if (ret) goto err_unload; } ret = 0; goto out_unlock; err_unload: if (dev->driver->unload) dev->driver->unload(dev); err_minors: drm_minor_unregister(dev, DRM_MINOR_LEGACY); drm_minor_unregister(dev, DRM_MINOR_RENDER); drm_minor_unregister(dev, DRM_MINOR_CONTROL); out_unlock: mutex_unlock(&drm_global_mutex); return ret; } EXPORT_SYMBOL(drm_dev_register); /** * drm_dev_unregister - Unregister DRM device * @dev: Device to unregister * * Unregister the DRM device from the system. This does the reverse of * drm_dev_register() but does not deallocate the device. The caller must call * drm_dev_unref() to drop their final reference. */ void drm_dev_unregister(struct drm_device *dev) { struct drm_map_list *r_list, *list_temp; drm_lastclose(dev); if (dev->driver->unload) dev->driver->unload(dev); if (dev->agp) drm_pci_agp_destroy(dev); drm_vblank_cleanup(dev); list_for_each_entry_safe(r_list, list_temp, &dev->maplist, head) drm_legacy_rmmap(dev, r_list->map); drm_minor_unregister(dev, DRM_MINOR_LEGACY); drm_minor_unregister(dev, DRM_MINOR_RENDER); drm_minor_unregister(dev, DRM_MINOR_CONTROL); } EXPORT_SYMBOL(drm_dev_unregister); /** * drm_dev_set_unique - Set the unique name of a DRM device * @dev: device of which to set the unique name * @fmt: format string for unique name * * Sets the unique name of a DRM device using the specified format string and * a variable list of arguments. Drivers can use this at driver probe time if * the unique name of the devices they drive is static. * * Return: 0 on success or a negative error code on failure. */ int drm_dev_set_unique(struct drm_device *dev, const char *fmt, ...) { va_list ap; kfree(dev->unique); va_start(ap, fmt); dev->unique = kvasprintf(GFP_KERNEL, fmt, ap); va_end(ap); return dev->unique ? 0 : -ENOMEM; } EXPORT_SYMBOL(drm_dev_set_unique); /* * DRM Core * The DRM core module initializes all global DRM objects and makes them * available to drivers. Once setup, drivers can probe their respective * devices. * Currently, core management includes: * - The "DRM-Global" key/value database * - Global ID management for connectors * - DRM major number allocation * - DRM minor management * - DRM sysfs class * - DRM debugfs root * * Furthermore, the DRM core provides dynamic char-dev lookups. For each * interface registered on a DRM device, you can request minor numbers from DRM * core. DRM core takes care of major-number management and char-dev * registration. A stub ->open() callback forwards any open() requests to the * registered minor. */ static int drm_stub_open(struct inode *inode, struct file *filp) { const struct file_operations *new_fops; struct drm_minor *minor; int err; DRM_DEBUG("\n"); mutex_lock(&drm_global_mutex); minor = drm_minor_acquire(iminor(inode)); if (IS_ERR(minor)) { err = PTR_ERR(minor); goto out_unlock; } new_fops = fops_get(minor->dev->driver->fops); if (!new_fops) { err = -ENODEV; goto out_release; } replace_fops(filp, new_fops); if (filp->f_op->open) err = filp->f_op->open(inode, filp); else err = 0; out_release: drm_minor_release(minor); out_unlock: mutex_unlock(&drm_global_mutex); return err; } static const struct file_operations drm_stub_fops = { .owner = THIS_MODULE, .open = drm_stub_open, .llseek = noop_llseek, }; static int __init drm_core_init(void) { int ret = -ENOMEM; drm_global_init(); drm_connector_ida_init(); idr_init(&drm_minors_idr); if (register_chrdev(DRM_MAJOR, "drm", &drm_stub_fops)) goto err_p1; drm_class = drm_sysfs_create(THIS_MODULE, "drm"); if (IS_ERR(drm_class)) { printk(KERN_ERR "DRM: Error creating drm class.\n"); ret = PTR_ERR(drm_class); goto err_p2; } drm_debugfs_root = debugfs_create_dir("dri", NULL); if (!drm_debugfs_root) { DRM_ERROR("Cannot create /sys/kernel/debug/dri\n"); ret = -1; goto err_p3; } DRM_INFO("Initialized %s %d.%d.%d %s\n", CORE_NAME, CORE_MAJOR, CORE_MINOR, CORE_PATCHLEVEL, CORE_DATE); return 0; err_p3: drm_sysfs_destroy(); err_p2: unregister_chrdev(DRM_MAJOR, "drm"); idr_destroy(&drm_minors_idr); err_p1: return ret; } static void __exit drm_core_exit(void) { debugfs_remove(drm_debugfs_root); drm_sysfs_destroy(); unregister_chrdev(DRM_MAJOR, "drm"); drm_connector_ida_destroy(); idr_destroy(&drm_minors_idr); } module_init(drm_core_init); module_exit(drm_core_exit);