/* linux/arch/arm/mach-exynos4/mct.c * * Copyright (c) 2011 Samsung Electronics Co., Ltd. * http://www.samsung.com * * EXYNOS4 MCT(Multi-Core Timer) support * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define EXYNOS4_MCTREG(x) (x) #define EXYNOS4_MCT_G_CNT_L EXYNOS4_MCTREG(0x100) #define EXYNOS4_MCT_G_CNT_U EXYNOS4_MCTREG(0x104) #define EXYNOS4_MCT_G_CNT_WSTAT EXYNOS4_MCTREG(0x110) #define EXYNOS4_MCT_G_COMP0_L EXYNOS4_MCTREG(0x200) #define EXYNOS4_MCT_G_COMP0_U EXYNOS4_MCTREG(0x204) #define EXYNOS4_MCT_G_COMP0_ADD_INCR EXYNOS4_MCTREG(0x208) #define EXYNOS4_MCT_G_TCON EXYNOS4_MCTREG(0x240) #define EXYNOS4_MCT_G_INT_CSTAT EXYNOS4_MCTREG(0x244) #define EXYNOS4_MCT_G_INT_ENB EXYNOS4_MCTREG(0x248) #define EXYNOS4_MCT_G_WSTAT EXYNOS4_MCTREG(0x24C) #define _EXYNOS4_MCT_L_BASE EXYNOS4_MCTREG(0x300) #define EXYNOS4_MCT_L_BASE(x) (_EXYNOS4_MCT_L_BASE + (0x100 * x)) #define EXYNOS4_MCT_L_MASK (0xffffff00) #define MCT_L_TCNTB_OFFSET (0x00) #define MCT_L_ICNTB_OFFSET (0x08) #define MCT_L_TCON_OFFSET (0x20) #define MCT_L_INT_CSTAT_OFFSET (0x30) #define MCT_L_INT_ENB_OFFSET (0x34) #define MCT_L_WSTAT_OFFSET (0x40) #define MCT_G_TCON_START (1 << 8) #define MCT_G_TCON_COMP0_AUTO_INC (1 << 1) #define MCT_G_TCON_COMP0_ENABLE (1 << 0) #define MCT_L_TCON_INTERVAL_MODE (1 << 2) #define MCT_L_TCON_INT_START (1 << 1) #define MCT_L_TCON_TIMER_START (1 << 0) #define TICK_BASE_CNT 1 enum { MCT_INT_SPI, MCT_INT_PPI }; enum { MCT_G0_IRQ, MCT_G1_IRQ, MCT_G2_IRQ, MCT_G3_IRQ, MCT_L0_IRQ, MCT_L1_IRQ, MCT_L2_IRQ, MCT_L3_IRQ, MCT_L4_IRQ, MCT_L5_IRQ, MCT_L6_IRQ, MCT_L7_IRQ, MCT_NR_IRQS, }; static void __iomem *reg_base; static unsigned long clk_rate; static unsigned int mct_int_type; static int mct_irqs[MCT_NR_IRQS]; struct mct_clock_event_device { struct clock_event_device evt; unsigned long base; char name[10]; }; static void exynos4_mct_write(unsigned int value, unsigned long offset) { unsigned long stat_addr; u32 mask; u32 i; __raw_writel(value, reg_base + offset); if (likely(offset >= EXYNOS4_MCT_L_BASE(0))) { stat_addr = (offset & ~EXYNOS4_MCT_L_MASK) + MCT_L_WSTAT_OFFSET; switch (offset & EXYNOS4_MCT_L_MASK) { case MCT_L_TCON_OFFSET: mask = 1 << 3; /* L_TCON write status */ break; case MCT_L_ICNTB_OFFSET: mask = 1 << 1; /* L_ICNTB write status */ break; case MCT_L_TCNTB_OFFSET: mask = 1 << 0; /* L_TCNTB write status */ break; default: return; } } else { switch (offset) { case EXYNOS4_MCT_G_TCON: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 16; /* G_TCON write status */ break; case EXYNOS4_MCT_G_COMP0_L: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 0; /* G_COMP0_L write status */ break; case EXYNOS4_MCT_G_COMP0_U: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 1; /* G_COMP0_U write status */ break; case EXYNOS4_MCT_G_COMP0_ADD_INCR: stat_addr = EXYNOS4_MCT_G_WSTAT; mask = 1 << 2; /* G_COMP0_ADD_INCR w status */ break; case EXYNOS4_MCT_G_CNT_L: stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; mask = 1 << 0; /* G_CNT_L write status */ break; case EXYNOS4_MCT_G_CNT_U: stat_addr = EXYNOS4_MCT_G_CNT_WSTAT; mask = 1 << 1; /* G_CNT_U write status */ break; default: return; } } /* Wait maximum 1 ms until written values are applied */ for (i = 0; i < loops_per_jiffy / 1000 * HZ; i++) if (__raw_readl(reg_base + stat_addr) & mask) { __raw_writel(mask, reg_base + stat_addr); return; } panic("MCT hangs after writing %d (offset:0x%lx)\n", value, offset); } /* Clocksource handling */ static void exynos4_mct_frc_start(u32 hi, u32 lo) { u32 reg; exynos4_mct_write(lo, EXYNOS4_MCT_G_CNT_L); exynos4_mct_write(hi, EXYNOS4_MCT_G_CNT_U); reg = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON); reg |= MCT_G_TCON_START; exynos4_mct_write(reg, EXYNOS4_MCT_G_TCON); } static cycle_t exynos4_frc_read(struct clocksource *cs) { unsigned int lo, hi; u32 hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U); do { hi = hi2; lo = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_L); hi2 = __raw_readl(reg_base + EXYNOS4_MCT_G_CNT_U); } while (hi != hi2); return ((cycle_t)hi << 32) | lo; } static void exynos4_frc_resume(struct clocksource *cs) { exynos4_mct_frc_start(0, 0); } struct clocksource mct_frc = { .name = "mct-frc", .rating = 400, .read = exynos4_frc_read, .mask = CLOCKSOURCE_MASK(64), .flags = CLOCK_SOURCE_IS_CONTINUOUS, .resume = exynos4_frc_resume, }; static void __init exynos4_clocksource_init(void) { exynos4_mct_frc_start(0, 0); if (clocksource_register_hz(&mct_frc, clk_rate)) panic("%s: can't register clocksource\n", mct_frc.name); } static void exynos4_mct_comp0_stop(void) { unsigned int tcon; tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON); tcon &= ~(MCT_G_TCON_COMP0_ENABLE | MCT_G_TCON_COMP0_AUTO_INC); exynos4_mct_write(tcon, EXYNOS4_MCT_G_TCON); exynos4_mct_write(0, EXYNOS4_MCT_G_INT_ENB); } static void exynos4_mct_comp0_start(enum clock_event_mode mode, unsigned long cycles) { unsigned int tcon; cycle_t comp_cycle; tcon = __raw_readl(reg_base + EXYNOS4_MCT_G_TCON); if (mode == CLOCK_EVT_MODE_PERIODIC) { tcon |= MCT_G_TCON_COMP0_AUTO_INC; exynos4_mct_write(cycles, EXYNOS4_MCT_G_COMP0_ADD_INCR); } comp_cycle = exynos4_frc_read(&mct_frc) + cycles; exynos4_mct_write((u32)comp_cycle, EXYNOS4_MCT_G_COMP0_L); exynos4_mct_write((u32)(comp_cycle >> 32), EXYNOS4_MCT_G_COMP0_U); exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_ENB); tcon |= MCT_G_TCON_COMP0_ENABLE; exynos4_mct_write(tcon , EXYNOS4_MCT_G_TCON); } static int exynos4_comp_set_next_event(unsigned long cycles, struct clock_event_device *evt) { exynos4_mct_comp0_start(evt->mode, cycles); return 0; } static void exynos4_comp_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { unsigned long cycles_per_jiffy; exynos4_mct_comp0_stop(); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: cycles_per_jiffy = (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift); exynos4_mct_comp0_start(mode, cycles_per_jiffy); break; case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static struct clock_event_device mct_comp_device = { .name = "mct-comp", .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT, .rating = 250, .set_next_event = exynos4_comp_set_next_event, .set_mode = exynos4_comp_set_mode, }; static irqreturn_t exynos4_mct_comp_isr(int irq, void *dev_id) { struct clock_event_device *evt = dev_id; exynos4_mct_write(0x1, EXYNOS4_MCT_G_INT_CSTAT); evt->event_handler(evt); return IRQ_HANDLED; } static struct irqaction mct_comp_event_irq = { .name = "mct_comp_irq", .flags = IRQF_TIMER | IRQF_IRQPOLL, .handler = exynos4_mct_comp_isr, .dev_id = &mct_comp_device, }; static void exynos4_clockevent_init(void) { mct_comp_device.cpumask = cpumask_of(0); clockevents_config_and_register(&mct_comp_device, clk_rate, 0xf, 0xffffffff); setup_irq(mct_irqs[MCT_G0_IRQ], &mct_comp_event_irq); } static DEFINE_PER_CPU(struct mct_clock_event_device, percpu_mct_tick); /* Clock event handling */ static void exynos4_mct_tick_stop(struct mct_clock_event_device *mevt) { unsigned long tmp; unsigned long mask = MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START; unsigned long offset = mevt->base + MCT_L_TCON_OFFSET; tmp = __raw_readl(reg_base + offset); if (tmp & mask) { tmp &= ~mask; exynos4_mct_write(tmp, offset); } } static void exynos4_mct_tick_start(unsigned long cycles, struct mct_clock_event_device *mevt) { unsigned long tmp; exynos4_mct_tick_stop(mevt); tmp = (1 << 31) | cycles; /* MCT_L_UPDATE_ICNTB */ /* update interrupt count buffer */ exynos4_mct_write(tmp, mevt->base + MCT_L_ICNTB_OFFSET); /* enable MCT tick interrupt */ exynos4_mct_write(0x1, mevt->base + MCT_L_INT_ENB_OFFSET); tmp = __raw_readl(reg_base + mevt->base + MCT_L_TCON_OFFSET); tmp |= MCT_L_TCON_INT_START | MCT_L_TCON_TIMER_START | MCT_L_TCON_INTERVAL_MODE; exynos4_mct_write(tmp, mevt->base + MCT_L_TCON_OFFSET); } static int exynos4_tick_set_next_event(unsigned long cycles, struct clock_event_device *evt) { struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick); exynos4_mct_tick_start(cycles, mevt); return 0; } static inline void exynos4_tick_set_mode(enum clock_event_mode mode, struct clock_event_device *evt) { struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick); unsigned long cycles_per_jiffy; exynos4_mct_tick_stop(mevt); switch (mode) { case CLOCK_EVT_MODE_PERIODIC: cycles_per_jiffy = (((unsigned long long) NSEC_PER_SEC / HZ * evt->mult) >> evt->shift); exynos4_mct_tick_start(cycles_per_jiffy, mevt); break; case CLOCK_EVT_MODE_ONESHOT: case CLOCK_EVT_MODE_UNUSED: case CLOCK_EVT_MODE_SHUTDOWN: case CLOCK_EVT_MODE_RESUME: break; } } static int exynos4_mct_tick_clear(struct mct_clock_event_device *mevt) { struct clock_event_device *evt = &mevt->evt; /* * This is for supporting oneshot mode. * Mct would generate interrupt periodically * without explicit stopping. */ if (evt->mode != CLOCK_EVT_MODE_PERIODIC) exynos4_mct_tick_stop(mevt); /* Clear the MCT tick interrupt */ if (__raw_readl(reg_base + mevt->base + MCT_L_INT_CSTAT_OFFSET) & 1) { exynos4_mct_write(0x1, mevt->base + MCT_L_INT_CSTAT_OFFSET); return 1; } else { return 0; } } static irqreturn_t exynos4_mct_tick_isr(int irq, void *dev_id) { struct mct_clock_event_device *mevt = dev_id; struct clock_event_device *evt = &mevt->evt; exynos4_mct_tick_clear(mevt); evt->event_handler(evt); return IRQ_HANDLED; } static int exynos4_local_timer_setup(struct clock_event_device *evt) { struct mct_clock_event_device *mevt; unsigned int cpu = smp_processor_id(); mevt = container_of(evt, struct mct_clock_event_device, evt); mevt->base = EXYNOS4_MCT_L_BASE(cpu); snprintf(mevt->name, sizeof(mevt->name), "mct_tick%d", cpu); evt->name = mevt->name; evt->cpumask = cpumask_of(cpu); evt->set_next_event = exynos4_tick_set_next_event; evt->set_mode = exynos4_tick_set_mode; evt->features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT; evt->rating = 450; clockevents_config_and_register(evt, clk_rate / (TICK_BASE_CNT + 1), 0xf, 0x7fffffff); exynos4_mct_write(TICK_BASE_CNT, mevt->base + MCT_L_TCNTB_OFFSET); if (mct_int_type == MCT_INT_SPI) { evt->irq = mct_irqs[MCT_L0_IRQ + cpu]; if (request_irq(evt->irq, exynos4_mct_tick_isr, IRQF_TIMER | IRQF_NOBALANCING, evt->name, mevt)) { pr_err("exynos-mct: cannot register IRQ %d\n", evt->irq); return -EIO; } irq_force_affinity(mct_irqs[MCT_L0_IRQ + cpu], cpumask_of(cpu)); } else { enable_percpu_irq(mct_irqs[MCT_L0_IRQ], 0); } return 0; } static void exynos4_local_timer_stop(struct clock_event_device *evt) { evt->set_mode(CLOCK_EVT_MODE_UNUSED, evt); if (mct_int_type == MCT_INT_SPI) free_irq(evt->irq, this_cpu_ptr(&percpu_mct_tick)); else disable_percpu_irq(mct_irqs[MCT_L0_IRQ]); } static int exynos4_mct_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu) { struct mct_clock_event_device *mevt; /* * Grab cpu pointer in each case to avoid spurious * preemptible warnings */ switch (action & ~CPU_TASKS_FROZEN) { case CPU_STARTING: mevt = this_cpu_ptr(&percpu_mct_tick); exynos4_local_timer_setup(&mevt->evt); break; case CPU_DYING: mevt = this_cpu_ptr(&percpu_mct_tick); exynos4_local_timer_stop(&mevt->evt); break; } return NOTIFY_OK; } static struct notifier_block exynos4_mct_cpu_nb = { .notifier_call = exynos4_mct_cpu_notify, }; static void __init exynos4_timer_resources(struct device_node *np, void __iomem *base) { int err; struct mct_clock_event_device *mevt = this_cpu_ptr(&percpu_mct_tick); struct clk *mct_clk, *tick_clk; tick_clk = np ? of_clk_get_by_name(np, "fin_pll") : clk_get(NULL, "fin_pll"); if (IS_ERR(tick_clk)) panic("%s: unable to determine tick clock rate\n", __func__); clk_rate = clk_get_rate(tick_clk); mct_clk = np ? of_clk_get_by_name(np, "mct") : clk_get(NULL, "mct"); if (IS_ERR(mct_clk)) panic("%s: unable to retrieve mct clock instance\n", __func__); clk_prepare_enable(mct_clk); reg_base = base; if (!reg_base) panic("%s: unable to ioremap mct address space\n", __func__); if (mct_int_type == MCT_INT_PPI) { err = request_percpu_irq(mct_irqs[MCT_L0_IRQ], exynos4_mct_tick_isr, "MCT", &percpu_mct_tick); WARN(err, "MCT: can't request IRQ %d (%d)\n", mct_irqs[MCT_L0_IRQ], err); } else { irq_set_affinity(mct_irqs[MCT_L0_IRQ], cpumask_of(0)); } err = register_cpu_notifier(&exynos4_mct_cpu_nb); if (err) goto out_irq; /* Immediately configure the timer on the boot CPU */ exynos4_local_timer_setup(&mevt->evt); return; out_irq: free_percpu_irq(mct_irqs[MCT_L0_IRQ], &percpu_mct_tick); } void __init mct_init(void __iomem *base, int irq_g0, int irq_l0, int irq_l1) { mct_irqs[MCT_G0_IRQ] = irq_g0; mct_irqs[MCT_L0_IRQ] = irq_l0; mct_irqs[MCT_L1_IRQ] = irq_l1; mct_int_type = MCT_INT_SPI; exynos4_timer_resources(NULL, base); exynos4_clocksource_init(); exynos4_clockevent_init(); } static void __init mct_init_dt(struct device_node *np, unsigned int int_type) { u32 nr_irqs, i; mct_int_type = int_type; /* This driver uses only one global timer interrupt */ mct_irqs[MCT_G0_IRQ] = irq_of_parse_and_map(np, MCT_G0_IRQ); /* * Find out the number of local irqs specified. The local * timer irqs are specified after the four global timer * irqs are specified. */ #ifdef CONFIG_OF nr_irqs = of_irq_count(np); #else nr_irqs = 0; #endif for (i = MCT_L0_IRQ; i < nr_irqs; i++) mct_irqs[i] = irq_of_parse_and_map(np, i); exynos4_timer_resources(np, of_iomap(np, 0)); exynos4_clocksource_init(); exynos4_clockevent_init(); } static void __init mct_init_spi(struct device_node *np) { return mct_init_dt(np, MCT_INT_SPI); } static void __init mct_init_ppi(struct device_node *np) { return mct_init_dt(np, MCT_INT_PPI); } CLOCKSOURCE_OF_DECLARE(exynos4210, "samsung,exynos4210-mct", mct_init_spi); CLOCKSOURCE_OF_DECLARE(exynos4412, "samsung,exynos4412-mct", mct_init_ppi);