/* * Copyright 2016 Advanced Micro Devices, Inc. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * */ #include #include #include #include #include "hwmgr.h" #include "amd_powerplay.h" #include "vega10_smumgr.h" #include "hardwaremanager.h" #include "ppatomfwctrl.h" #include "atomfirmware.h" #include "cgs_common.h" #include "vega10_powertune.h" #include "smu9.h" #include "smu9_driver_if.h" #include "vega10_inc.h" #include "pp_soc15.h" #include "pppcielanes.h" #include "vega10_hwmgr.h" #include "vega10_processpptables.h" #include "vega10_pptable.h" #include "vega10_thermal.h" #include "pp_debug.h" #include "pp_acpi.h" #include "amd_pcie_helpers.h" #include "cgs_linux.h" #include "ppinterrupt.h" #include "pp_overdriver.h" #define VOLTAGE_SCALE 4 #define VOLTAGE_VID_OFFSET_SCALE1 625 #define VOLTAGE_VID_OFFSET_SCALE2 100 #define HBM_MEMORY_CHANNEL_WIDTH 128 static const uint32_t channel_number[] = {1, 2, 0, 4, 0, 8, 0, 16, 2}; #define MEM_FREQ_LOW_LATENCY 25000 #define MEM_FREQ_HIGH_LATENCY 80000 #define MEM_LATENCY_HIGH 245 #define MEM_LATENCY_LOW 35 #define MEM_LATENCY_ERR 0xFFFF #define mmDF_CS_AON0_DramBaseAddress0 0x0044 #define mmDF_CS_AON0_DramBaseAddress0_BASE_IDX 0 //DF_CS_AON0_DramBaseAddress0 #define DF_CS_AON0_DramBaseAddress0__AddrRngVal__SHIFT 0x0 #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn__SHIFT 0x1 #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT 0x4 #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel__SHIFT 0x8 #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr__SHIFT 0xc #define DF_CS_AON0_DramBaseAddress0__AddrRngVal_MASK 0x00000001L #define DF_CS_AON0_DramBaseAddress0__LgcyMmioHoleEn_MASK 0x00000002L #define DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK 0x000000F0L #define DF_CS_AON0_DramBaseAddress0__IntLvAddrSel_MASK 0x00000700L #define DF_CS_AON0_DramBaseAddress0__DramBaseAddr_MASK 0xFFFFF000L static int vega10_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask); const ULONG PhwVega10_Magic = (ULONG)(PHM_VIslands_Magic); struct vega10_power_state *cast_phw_vega10_power_state( struct pp_hw_power_state *hw_ps) { PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL;); return (struct vega10_power_state *)hw_ps; } const struct vega10_power_state *cast_const_phw_vega10_power_state( const struct pp_hw_power_state *hw_ps) { PP_ASSERT_WITH_CODE((PhwVega10_Magic == hw_ps->magic), "Invalid Powerstate Type!", return NULL;); return (const struct vega10_power_state *)hw_ps; } static void vega10_set_default_registry_data(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); data->registry_data.sclk_dpm_key_disabled = hwmgr->feature_mask & PP_SCLK_DPM_MASK ? false : true; data->registry_data.socclk_dpm_key_disabled = hwmgr->feature_mask & PP_SOCCLK_DPM_MASK ? false : true; data->registry_data.mclk_dpm_key_disabled = hwmgr->feature_mask & PP_MCLK_DPM_MASK ? false : true; data->registry_data.pcie_dpm_key_disabled = hwmgr->feature_mask & PP_PCIE_DPM_MASK ? false : true; data->registry_data.dcefclk_dpm_key_disabled = hwmgr->feature_mask & PP_DCEFCLK_DPM_MASK ? false : true; if (hwmgr->feature_mask & PP_POWER_CONTAINMENT_MASK) { data->registry_data.power_containment_support = 1; data->registry_data.enable_pkg_pwr_tracking_feature = 1; data->registry_data.enable_tdc_limit_feature = 1; } data->registry_data.clock_stretcher_support = hwmgr->feature_mask & PP_CLOCK_STRETCH_MASK ? true : false; data->registry_data.ulv_support = hwmgr->feature_mask & PP_ULV_MASK ? true : false; data->registry_data.sclk_deep_sleep_support = hwmgr->feature_mask & PP_SCLK_DEEP_SLEEP_MASK ? true : false; data->registry_data.disable_water_mark = 0; data->registry_data.fan_control_support = 1; data->registry_data.thermal_support = 1; data->registry_data.fw_ctf_enabled = 1; data->registry_data.avfs_support = 1; data->registry_data.led_dpm_enabled = 1; data->registry_data.vr0hot_enabled = 1; data->registry_data.vr1hot_enabled = 1; data->registry_data.regulator_hot_gpio_support = 1; data->registry_data.didt_support = 1; if (data->registry_data.didt_support) { data->registry_data.didt_mode = 6; data->registry_data.sq_ramping_support = 1; data->registry_data.db_ramping_support = 0; data->registry_data.td_ramping_support = 0; data->registry_data.tcp_ramping_support = 0; data->registry_data.dbr_ramping_support = 0; data->registry_data.edc_didt_support = 1; data->registry_data.gc_didt_support = 0; data->registry_data.psm_didt_support = 0; } data->display_voltage_mode = PPVEGA10_VEGA10DISPLAYVOLTAGEMODE_DFLT; data->dcef_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->dcef_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->disp_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->pixel_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_a = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_b = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->phy_clk_quad_eqn_c = PPREGKEY_VEGA10QUADRATICEQUATION_DFLT; data->gfxclk_average_alpha = PPVEGA10_VEGA10GFXCLKAVERAGEALPHA_DFLT; data->socclk_average_alpha = PPVEGA10_VEGA10SOCCLKAVERAGEALPHA_DFLT; data->uclk_average_alpha = PPVEGA10_VEGA10UCLKCLKAVERAGEALPHA_DFLT; data->gfx_activity_average_alpha = PPVEGA10_VEGA10GFXACTIVITYAVERAGEALPHA_DFLT; } static int vega10_set_features_platform_caps(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct cgs_system_info sys_info = {0}; int result; phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SclkDeepSleep); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPatchPowerState); if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ControlVDDCI); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EnableSMU7ThermalManagement); sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_PG_FLAGS; result = cgs_query_system_info(hwmgr->device, &sys_info); if (!result && (sys_info.value & AMD_PG_SUPPORT_UVD)) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDPowerGating); if (!result && (sys_info.value & AMD_PG_SUPPORT_VCE)) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEPowerGating); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UnTabledHardwareInterface); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_FanSpeedInTableIsRPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ODFuzzyFanControlSupport); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DynamicPowerManagement); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SMC); /* power tune caps */ /* assume disabled */ phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); if (data->registry_data.didt_support) { phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtSupport); if (data->registry_data.sq_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_SQRamping); if (data->registry_data.db_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRamping); if (data->registry_data.td_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TDRamping); if (data->registry_data.tcp_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_TCPRamping); if (data->registry_data.dbr_ramping_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DBRRamping); if (data->registry_data.edc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DiDtEDCEnable); if (data->registry_data.gc_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_GCEDC); if (data->registry_data.psm_didt_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PSM); } if (data->registry_data.power_containment_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_PowerContainment); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_CAC); if (table_info->tdp_table->usClockStretchAmount && data->registry_data.clock_stretcher_support) phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_ClockStretcher); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_RegulatorHot); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_AutomaticDCTransition); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_UVDDPM); phm_cap_set(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_VCEDPM); return 0; } static void vega10_init_dpm_defaults(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); int i; vega10_initialize_power_tune_defaults(hwmgr); for (i = 0; i < GNLD_FEATURES_MAX; i++) { data->smu_features[i].smu_feature_id = 0xffff; data->smu_features[i].smu_feature_bitmap = 1 << i; data->smu_features[i].enabled = false; data->smu_features[i].supported = false; } data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_id = FEATURE_DPM_PREFETCHER_BIT; data->smu_features[GNLD_DPM_GFXCLK].smu_feature_id = FEATURE_DPM_GFXCLK_BIT; data->smu_features[GNLD_DPM_UCLK].smu_feature_id = FEATURE_DPM_UCLK_BIT; data->smu_features[GNLD_DPM_SOCCLK].smu_feature_id = FEATURE_DPM_SOCCLK_BIT; data->smu_features[GNLD_DPM_UVD].smu_feature_id = FEATURE_DPM_UVD_BIT; data->smu_features[GNLD_DPM_VCE].smu_feature_id = FEATURE_DPM_VCE_BIT; data->smu_features[GNLD_DPM_MP0CLK].smu_feature_id = FEATURE_DPM_MP0CLK_BIT; data->smu_features[GNLD_DPM_LINK].smu_feature_id = FEATURE_DPM_LINK_BIT; data->smu_features[GNLD_DPM_DCEFCLK].smu_feature_id = FEATURE_DPM_DCEFCLK_BIT; data->smu_features[GNLD_ULV].smu_feature_id = FEATURE_ULV_BIT; data->smu_features[GNLD_AVFS].smu_feature_id = FEATURE_AVFS_BIT; data->smu_features[GNLD_DS_GFXCLK].smu_feature_id = FEATURE_DS_GFXCLK_BIT; data->smu_features[GNLD_DS_SOCCLK].smu_feature_id = FEATURE_DS_SOCCLK_BIT; data->smu_features[GNLD_DS_LCLK].smu_feature_id = FEATURE_DS_LCLK_BIT; data->smu_features[GNLD_PPT].smu_feature_id = FEATURE_PPT_BIT; data->smu_features[GNLD_TDC].smu_feature_id = FEATURE_TDC_BIT; data->smu_features[GNLD_THERMAL].smu_feature_id = FEATURE_THERMAL_BIT; data->smu_features[GNLD_GFX_PER_CU_CG].smu_feature_id = FEATURE_GFX_PER_CU_CG_BIT; data->smu_features[GNLD_RM].smu_feature_id = FEATURE_RM_BIT; data->smu_features[GNLD_DS_DCEFCLK].smu_feature_id = FEATURE_DS_DCEFCLK_BIT; data->smu_features[GNLD_ACDC].smu_feature_id = FEATURE_ACDC_BIT; data->smu_features[GNLD_VR0HOT].smu_feature_id = FEATURE_VR0HOT_BIT; data->smu_features[GNLD_VR1HOT].smu_feature_id = FEATURE_VR1HOT_BIT; data->smu_features[GNLD_FW_CTF].smu_feature_id = FEATURE_FW_CTF_BIT; data->smu_features[GNLD_LED_DISPLAY].smu_feature_id = FEATURE_LED_DISPLAY_BIT; data->smu_features[GNLD_FAN_CONTROL].smu_feature_id = FEATURE_FAN_CONTROL_BIT; data->smu_features[GNLD_ACG].smu_feature_id = FEATURE_ACG_BIT; data->smu_features[GNLD_DIDT].smu_feature_id = FEATURE_GFX_EDC_BIT; if (!data->registry_data.prefetcher_dpm_key_disabled) data->smu_features[GNLD_DPM_PREFETCHER].supported = true; if (!data->registry_data.sclk_dpm_key_disabled) data->smu_features[GNLD_DPM_GFXCLK].supported = true; if (!data->registry_data.mclk_dpm_key_disabled) data->smu_features[GNLD_DPM_UCLK].supported = true; if (!data->registry_data.socclk_dpm_key_disabled) data->smu_features[GNLD_DPM_SOCCLK].supported = true; if (PP_CAP(PHM_PlatformCaps_UVDDPM)) data->smu_features[GNLD_DPM_UVD].supported = true; if (PP_CAP(PHM_PlatformCaps_VCEDPM)) data->smu_features[GNLD_DPM_VCE].supported = true; if (!data->registry_data.pcie_dpm_key_disabled) data->smu_features[GNLD_DPM_LINK].supported = true; if (!data->registry_data.dcefclk_dpm_key_disabled) data->smu_features[GNLD_DPM_DCEFCLK].supported = true; if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep) && data->registry_data.sclk_deep_sleep_support) { data->smu_features[GNLD_DS_GFXCLK].supported = true; data->smu_features[GNLD_DS_SOCCLK].supported = true; data->smu_features[GNLD_DS_LCLK].supported = true; data->smu_features[GNLD_DS_DCEFCLK].supported = true; } if (data->registry_data.enable_pkg_pwr_tracking_feature) data->smu_features[GNLD_PPT].supported = true; if (data->registry_data.enable_tdc_limit_feature) data->smu_features[GNLD_TDC].supported = true; if (data->registry_data.thermal_support) data->smu_features[GNLD_THERMAL].supported = true; if (data->registry_data.fan_control_support) data->smu_features[GNLD_FAN_CONTROL].supported = true; if (data->registry_data.fw_ctf_enabled) data->smu_features[GNLD_FW_CTF].supported = true; if (data->registry_data.avfs_support) data->smu_features[GNLD_AVFS].supported = true; if (data->registry_data.led_dpm_enabled) data->smu_features[GNLD_LED_DISPLAY].supported = true; if (data->registry_data.vr1hot_enabled) data->smu_features[GNLD_VR1HOT].supported = true; if (data->registry_data.vr0hot_enabled) data->smu_features[GNLD_VR0HOT].supported = true; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetSmuVersion); vega10_read_arg_from_smc(hwmgr, &(data->smu_version)); /* ACG firmware has major version 5 */ if ((data->smu_version & 0xff000000) == 0x5000000) data->smu_features[GNLD_ACG].supported = true; if (data->registry_data.didt_support) data->smu_features[GNLD_DIDT].supported = true; } #ifdef PPLIB_VEGA10_EVV_SUPPORT static int vega10_get_socclk_for_voltage_evv(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, uint16_t virtual_voltage_id, int32_t *socclk) { uint8_t entry_id; uint8_t voltage_id; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); PP_ASSERT_WITH_CODE(lookup_table->count != 0, "Lookup table is empty", return -EINVAL); /* search for leakage voltage ID 0xff01 ~ 0xff08 and sclk */ for (entry_id = 0; entry_id < table_info->vdd_dep_on_sclk->count; entry_id++) { voltage_id = table_info->vdd_dep_on_socclk->entries[entry_id].vddInd; if (lookup_table->entries[voltage_id].us_vdd == virtual_voltage_id) break; } PP_ASSERT_WITH_CODE(entry_id < table_info->vdd_dep_on_socclk->count, "Can't find requested voltage id in vdd_dep_on_socclk table!", return -EINVAL); *socclk = table_info->vdd_dep_on_socclk->entries[entry_id].clk; return 0; } #define ATOM_VIRTUAL_VOLTAGE_ID0 0xff01 /** * Get Leakage VDDC based on leakage ID. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0. */ static int vega10_get_evv_voltages(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint16_t vv_id; uint32_t vddc = 0; uint16_t i, j; uint32_t sclk = 0; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *socclk_table = table_info->vdd_dep_on_socclk; int result; for (i = 0; i < VEGA10_MAX_LEAKAGE_COUNT; i++) { vv_id = ATOM_VIRTUAL_VOLTAGE_ID0 + i; if (!vega10_get_socclk_for_voltage_evv(hwmgr, table_info->vddc_lookup_table, vv_id, &sclk)) { if (PP_CAP(PHM_PlatformCaps_ClockStretcher)) { for (j = 1; j < socclk_table->count; j++) { if (socclk_table->entries[j].clk == sclk && socclk_table->entries[j].cks_enable == 0) { sclk += 5000; break; } } } PP_ASSERT_WITH_CODE(!atomctrl_get_voltage_evv_on_sclk_ai(hwmgr, VOLTAGE_TYPE_VDDC, sclk, vv_id, &vddc), "Error retrieving EVV voltage value!", continue); /* need to make sure vddc is less than 2v or else, it could burn the ASIC. */ PP_ASSERT_WITH_CODE((vddc < 2000 && vddc != 0), "Invalid VDDC value", result = -EINVAL;); /* the voltage should not be zero nor equal to leakage ID */ if (vddc != 0 && vddc != vv_id) { data->vddc_leakage.actual_voltage[data->vddc_leakage.count] = (uint16_t)(vddc/100); data->vddc_leakage.leakage_id[data->vddc_leakage.count] = vv_id; data->vddc_leakage.count++; } } } return 0; } /** * Change virtual leakage voltage to actual value. * * @param hwmgr the address of the powerplay hardware manager. * @param pointer to changing voltage * @param pointer to leakage table */ static void vega10_patch_with_vdd_leakage(struct pp_hwmgr *hwmgr, uint16_t *voltage, struct vega10_leakage_voltage *leakage_table) { uint32_t index; /* search for leakage voltage ID 0xff01 ~ 0xff08 */ for (index = 0; index < leakage_table->count; index++) { /* if this voltage matches a leakage voltage ID */ /* patch with actual leakage voltage */ if (leakage_table->leakage_id[index] == *voltage) { *voltage = leakage_table->actual_voltage[index]; break; } } if (*voltage > ATOM_VIRTUAL_VOLTAGE_ID0) pr_info("Voltage value looks like a Leakage ID \ but it's not patched\n"); } /** * Patch voltage lookup table by EVV leakages. * * @param hwmgr the address of the powerplay hardware manager. * @param pointer to voltage lookup table * @param pointer to leakage table * @return always 0 */ static int vega10_patch_lookup_table_with_leakage(struct pp_hwmgr *hwmgr, phm_ppt_v1_voltage_lookup_table *lookup_table, struct vega10_leakage_voltage *leakage_table) { uint32_t i; for (i = 0; i < lookup_table->count; i++) vega10_patch_with_vdd_leakage(hwmgr, &lookup_table->entries[i].us_vdd, leakage_table); return 0; } static int vega10_patch_clock_voltage_limits_with_vddc_leakage( struct pp_hwmgr *hwmgr, struct vega10_leakage_voltage *leakage_table, uint16_t *vddc) { vega10_patch_with_vdd_leakage(hwmgr, (uint16_t *)vddc, leakage_table); return 0; } #endif static int vega10_patch_voltage_dependency_tables_with_lookup_table( struct pp_hwmgr *hwmgr) { uint8_t entry_id, voltage_id; unsigned i; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table = table_info->mm_dep_table; struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; for (i = 0; i < 6; i++) { struct phm_ppt_v1_clock_voltage_dependency_table *vdt; switch (i) { case 0: vdt = table_info->vdd_dep_on_socclk; break; case 1: vdt = table_info->vdd_dep_on_sclk; break; case 2: vdt = table_info->vdd_dep_on_dcefclk; break; case 3: vdt = table_info->vdd_dep_on_pixclk; break; case 4: vdt = table_info->vdd_dep_on_dispclk; break; case 5: vdt = table_info->vdd_dep_on_phyclk; break; } for (entry_id = 0; entry_id < vdt->count; entry_id++) { voltage_id = vdt->entries[entry_id].vddInd; vdt->entries[entry_id].vddc = table_info->vddc_lookup_table->entries[voltage_id].us_vdd; } } for (entry_id = 0; entry_id < mm_table->count; ++entry_id) { voltage_id = mm_table->entries[entry_id].vddcInd; mm_table->entries[entry_id].vddc = table_info->vddc_lookup_table->entries[voltage_id].us_vdd; } for (entry_id = 0; entry_id < mclk_table->count; ++entry_id) { voltage_id = mclk_table->entries[entry_id].vddInd; mclk_table->entries[entry_id].vddc = table_info->vddc_lookup_table->entries[voltage_id].us_vdd; voltage_id = mclk_table->entries[entry_id].vddciInd; mclk_table->entries[entry_id].vddci = table_info->vddci_lookup_table->entries[voltage_id].us_vdd; voltage_id = mclk_table->entries[entry_id].mvddInd; mclk_table->entries[entry_id].mvdd = table_info->vddmem_lookup_table->entries[voltage_id].us_vdd; } return 0; } static int vega10_sort_lookup_table(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_voltage_lookup_table *lookup_table) { uint32_t table_size, i, j; struct phm_ppt_v1_voltage_lookup_record tmp_voltage_lookup_record; PP_ASSERT_WITH_CODE(lookup_table && lookup_table->count, "Lookup table is empty", return -EINVAL); table_size = lookup_table->count; /* Sorting voltages */ for (i = 0; i < table_size - 1; i++) { for (j = i + 1; j > 0; j--) { if (lookup_table->entries[j].us_vdd < lookup_table->entries[j - 1].us_vdd) { tmp_voltage_lookup_record = lookup_table->entries[j - 1]; lookup_table->entries[j - 1] = lookup_table->entries[j]; lookup_table->entries[j] = tmp_voltage_lookup_record; } } } return 0; } static int vega10_complete_dependency_tables(struct pp_hwmgr *hwmgr) { int result = 0; int tmp_result; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); #ifdef PPLIB_VEGA10_EVV_SUPPORT struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); tmp_result = vega10_patch_lookup_table_with_leakage(hwmgr, table_info->vddc_lookup_table, &(data->vddc_leakage)); if (tmp_result) result = tmp_result; tmp_result = vega10_patch_clock_voltage_limits_with_vddc_leakage(hwmgr, &(data->vddc_leakage), &table_info->max_clock_voltage_on_dc.vddc); if (tmp_result) result = tmp_result; #endif tmp_result = vega10_patch_voltage_dependency_tables_with_lookup_table(hwmgr); if (tmp_result) result = tmp_result; tmp_result = vega10_sort_lookup_table(hwmgr, table_info->vddc_lookup_table); if (tmp_result) result = tmp_result; return result; } static int vega10_set_private_data_based_on_pptable(struct pp_hwmgr *hwmgr) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *allowed_sclk_vdd_table = table_info->vdd_dep_on_socclk; struct phm_ppt_v1_clock_voltage_dependency_table *allowed_mclk_vdd_table = table_info->vdd_dep_on_mclk; PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table, "VDD dependency on SCLK table is missing. \ This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_sclk_vdd_table->count >= 1, "VDD dependency on SCLK table is empty. \ This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table, "VDD dependency on MCLK table is missing. \ This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(allowed_mclk_vdd_table->count >= 1, "VDD dependency on MCLK table is empty. \ This table is mandatory", return -EINVAL); table_info->max_clock_voltage_on_ac.sclk = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].clk; table_info->max_clock_voltage_on_ac.mclk = allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].clk; table_info->max_clock_voltage_on_ac.vddc = allowed_sclk_vdd_table->entries[allowed_sclk_vdd_table->count - 1].vddc; table_info->max_clock_voltage_on_ac.vddci = allowed_mclk_vdd_table->entries[allowed_mclk_vdd_table->count - 1].vddci; hwmgr->dyn_state.max_clock_voltage_on_ac.sclk = table_info->max_clock_voltage_on_ac.sclk; hwmgr->dyn_state.max_clock_voltage_on_ac.mclk = table_info->max_clock_voltage_on_ac.mclk; hwmgr->dyn_state.max_clock_voltage_on_ac.vddc = table_info->max_clock_voltage_on_ac.vddc; hwmgr->dyn_state.max_clock_voltage_on_ac.vddci = table_info->max_clock_voltage_on_ac.vddci; return 0; } static int vega10_hwmgr_backend_fini(struct pp_hwmgr *hwmgr) { kfree(hwmgr->dyn_state.vddc_dep_on_dal_pwrl); hwmgr->dyn_state.vddc_dep_on_dal_pwrl = NULL; kfree(hwmgr->backend); hwmgr->backend = NULL; return 0; } static int vega10_hwmgr_backend_init(struct pp_hwmgr *hwmgr) { int result = 0; struct vega10_hwmgr *data; uint32_t config_telemetry = 0; struct pp_atomfwctrl_voltage_table vol_table; struct cgs_system_info sys_info = {0}; data = kzalloc(sizeof(struct vega10_hwmgr), GFP_KERNEL); if (data == NULL) return -ENOMEM; hwmgr->backend = data; vega10_set_default_registry_data(hwmgr); data->disable_dpm_mask = 0xff; data->workload_mask = 0xff; /* need to set voltage control types before EVV patching */ data->vddc_control = VEGA10_VOLTAGE_CONTROL_NONE; data->mvdd_control = VEGA10_VOLTAGE_CONTROL_NONE; data->vddci_control = VEGA10_VOLTAGE_CONTROL_NONE; /* VDDCR_SOC */ if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2)) { if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2, &vol_table)) { config_telemetry = ((vol_table.telemetry_slope << 8) & 0xff00) | (vol_table.telemetry_offset & 0xff); data->vddc_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; } } else { kfree(hwmgr->backend); hwmgr->backend = NULL; PP_ASSERT_WITH_CODE(false, "VDDCR_SOC is not SVID2!", return -1); } /* MVDDC */ if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2)) { if (!pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_MVDDC, VOLTAGE_OBJ_SVID2, &vol_table)) { config_telemetry |= ((vol_table.telemetry_slope << 24) & 0xff000000) | ((vol_table.telemetry_offset << 16) & 0xff0000); data->mvdd_control = VEGA10_VOLTAGE_CONTROL_BY_SVID2; } } /* VDDCI_MEM */ if (PP_CAP(PHM_PlatformCaps_ControlVDDCI)) { if (pp_atomfwctrl_is_voltage_controlled_by_gpio_v4(hwmgr, VOLTAGE_TYPE_VDDCI, VOLTAGE_OBJ_GPIO_LUT)) data->vddci_control = VEGA10_VOLTAGE_CONTROL_BY_GPIO; } data->config_telemetry = config_telemetry; vega10_set_features_platform_caps(hwmgr); vega10_init_dpm_defaults(hwmgr); #ifdef PPLIB_VEGA10_EVV_SUPPORT /* Get leakage voltage based on leakage ID. */ PP_ASSERT_WITH_CODE(!vega10_get_evv_voltages(hwmgr), "Get EVV Voltage Failed. Abort Driver loading!", return -1); #endif /* Patch our voltage dependency table with actual leakage voltage * We need to perform leakage translation before it's used by other functions */ vega10_complete_dependency_tables(hwmgr); /* Parse pptable data read from VBIOS */ vega10_set_private_data_based_on_pptable(hwmgr); data->is_tlu_enabled = false; hwmgr->platform_descriptor.hardwareActivityPerformanceLevels = VEGA10_MAX_HARDWARE_POWERLEVELS; hwmgr->platform_descriptor.hardwarePerformanceLevels = 2; hwmgr->platform_descriptor.minimumClocksReductionPercentage = 50; hwmgr->platform_descriptor.vbiosInterruptId = 0x20000400; /* IRQ_SOURCE1_SW_INT */ /* The true clock step depends on the frequency, typically 4.5 or 9 MHz. Here we use 5. */ hwmgr->platform_descriptor.clockStep.engineClock = 500; hwmgr->platform_descriptor.clockStep.memoryClock = 500; sys_info.size = sizeof(struct cgs_system_info); sys_info.info_id = CGS_SYSTEM_INFO_GFX_CU_INFO; result = cgs_query_system_info(hwmgr->device, &sys_info); data->total_active_cus = sys_info.value; /* Setup default Overdrive Fan control settings */ data->odn_fan_table.target_fan_speed = hwmgr->thermal_controller.advanceFanControlParameters.usMaxFanRPM; data->odn_fan_table.target_temperature = hwmgr->thermal_controller. advanceFanControlParameters.ucTargetTemperature; data->odn_fan_table.min_performance_clock = hwmgr->thermal_controller.advanceFanControlParameters. ulMinFanSCLKAcousticLimit; data->odn_fan_table.min_fan_limit = hwmgr->thermal_controller. advanceFanControlParameters.usFanPWMMinLimit * hwmgr->thermal_controller.fanInfo.ulMaxRPM / 100; return result; } static int vega10_init_sclk_threshold(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); data->low_sclk_interrupt_threshold = 0; return 0; } static int vega10_setup_dpm_led_config(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct pp_atomfwctrl_voltage_table table; uint8_t i, j; uint32_t mask = 0; uint32_t tmp; int32_t ret = 0; ret = pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_LEDDPM, VOLTAGE_OBJ_GPIO_LUT, &table); if (!ret) { tmp = table.mask_low; for (i = 0, j = 0; i < 32; i++) { if (tmp & 1) { mask |= (uint32_t)(i << (8 * j)); if (++j >= 3) break; } tmp >>= 1; } } pp_table->LedPin0 = (uint8_t)(mask & 0xff); pp_table->LedPin1 = (uint8_t)((mask >> 8) & 0xff); pp_table->LedPin2 = (uint8_t)((mask >> 16) & 0xff); return 0; } static int vega10_setup_asic_task(struct pp_hwmgr *hwmgr) { PP_ASSERT_WITH_CODE(!vega10_init_sclk_threshold(hwmgr), "Failed to init sclk threshold!", return -EINVAL); PP_ASSERT_WITH_CODE(!vega10_setup_dpm_led_config(hwmgr), "Failed to set up led dpm config!", return -EINVAL); return 0; } static bool vega10_is_dpm_running(struct pp_hwmgr *hwmgr) { uint32_t features_enabled; if (!vega10_get_smc_features(hwmgr, &features_enabled)) { if (features_enabled & SMC_DPM_FEATURES) return true; } return false; } /** * Remove repeated voltage values and create table with unique values. * * @param hwmgr the address of the powerplay hardware manager. * @param vol_table the pointer to changing voltage table * @return 0 in success */ static int vega10_trim_voltage_table(struct pp_hwmgr *hwmgr, struct pp_atomfwctrl_voltage_table *vol_table) { uint32_t i, j; uint16_t vvalue; bool found = false; struct pp_atomfwctrl_voltage_table *table; PP_ASSERT_WITH_CODE(vol_table, "Voltage Table empty.", return -EINVAL); table = kzalloc(sizeof(struct pp_atomfwctrl_voltage_table), GFP_KERNEL); if (!table) return -ENOMEM; table->mask_low = vol_table->mask_low; table->phase_delay = vol_table->phase_delay; for (i = 0; i < vol_table->count; i++) { vvalue = vol_table->entries[i].value; found = false; for (j = 0; j < table->count; j++) { if (vvalue == table->entries[j].value) { found = true; break; } } if (!found) { table->entries[table->count].value = vvalue; table->entries[table->count].smio_low = vol_table->entries[i].smio_low; table->count++; } } memcpy(vol_table, table, sizeof(struct pp_atomfwctrl_voltage_table)); kfree(table); return 0; } static int vega10_get_mvdd_voltage_table(struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table *dep_table, struct pp_atomfwctrl_voltage_table *vol_table) { int i; PP_ASSERT_WITH_CODE(dep_table->count, "Voltage Dependency Table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < vol_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].mvdd; vol_table->entries[i].smio_low = 0; } PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table), "Failed to trim MVDD Table!", return -1); return 0; } static int vega10_get_vddci_voltage_table(struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table *dep_table, struct pp_atomfwctrl_voltage_table *vol_table) { uint32_t i; PP_ASSERT_WITH_CODE(dep_table->count, "Voltage Dependency Table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < dep_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].vddci; vol_table->entries[i].smio_low = 0; } PP_ASSERT_WITH_CODE(!vega10_trim_voltage_table(hwmgr, vol_table), "Failed to trim VDDCI table.", return -1); return 0; } static int vega10_get_vdd_voltage_table(struct pp_hwmgr *hwmgr, phm_ppt_v1_clock_voltage_dependency_table *dep_table, struct pp_atomfwctrl_voltage_table *vol_table) { int i; PP_ASSERT_WITH_CODE(dep_table->count, "Voltage Dependency Table empty.", return -EINVAL); vol_table->mask_low = 0; vol_table->phase_delay = 0; vol_table->count = dep_table->count; for (i = 0; i < vol_table->count; i++) { vol_table->entries[i].value = dep_table->entries[i].vddc; vol_table->entries[i].smio_low = 0; } return 0; } /* ---- Voltage Tables ---- * If the voltage table would be bigger than * what will fit into the state table on * the SMC keep only the higher entries. */ static void vega10_trim_voltage_table_to_fit_state_table( struct pp_hwmgr *hwmgr, uint32_t max_vol_steps, struct pp_atomfwctrl_voltage_table *vol_table) { unsigned int i, diff; if (vol_table->count <= max_vol_steps) return; diff = vol_table->count - max_vol_steps; for (i = 0; i < max_vol_steps; i++) vol_table->entries[i] = vol_table->entries[i + diff]; vol_table->count = max_vol_steps; } /** * Create Voltage Tables. * * @param hwmgr the address of the powerplay hardware manager. * @return always 0 */ static int vega10_construct_voltage_tables(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; int result; if (data->mvdd_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || data->mvdd_control == VEGA10_VOLTAGE_CONTROL_NONE) { result = vega10_get_mvdd_voltage_table(hwmgr, table_info->vdd_dep_on_mclk, &(data->mvdd_voltage_table)); PP_ASSERT_WITH_CODE(!result, "Failed to retrieve MVDDC table!", return result); } if (data->vddci_control == VEGA10_VOLTAGE_CONTROL_NONE) { result = vega10_get_vddci_voltage_table(hwmgr, table_info->vdd_dep_on_mclk, &(data->vddci_voltage_table)); PP_ASSERT_WITH_CODE(!result, "Failed to retrieve VDDCI_MEM table!", return result); } if (data->vddc_control == VEGA10_VOLTAGE_CONTROL_BY_SVID2 || data->vddc_control == VEGA10_VOLTAGE_CONTROL_NONE) { result = vega10_get_vdd_voltage_table(hwmgr, table_info->vdd_dep_on_sclk, &(data->vddc_voltage_table)); PP_ASSERT_WITH_CODE(!result, "Failed to retrieve VDDCR_SOC table!", return result); } PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 16, "Too many voltage values for VDDC. Trimming to fit state table.", vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, &(data->vddc_voltage_table))); PP_ASSERT_WITH_CODE(data->vddci_voltage_table.count <= 16, "Too many voltage values for VDDCI. Trimming to fit state table.", vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, &(data->vddci_voltage_table))); PP_ASSERT_WITH_CODE(data->mvdd_voltage_table.count <= 16, "Too many voltage values for MVDD. Trimming to fit state table.", vega10_trim_voltage_table_to_fit_state_table(hwmgr, 16, &(data->mvdd_voltage_table))); return 0; } /* * @fn vega10_init_dpm_state * @brief Function to initialize all Soft Min/Max and Hard Min/Max to 0xff. * * @param dpm_state - the address of the DPM Table to initiailize. * @return None. */ static void vega10_init_dpm_state(struct vega10_dpm_state *dpm_state) { dpm_state->soft_min_level = 0xff; dpm_state->soft_max_level = 0xff; dpm_state->hard_min_level = 0xff; dpm_state->hard_max_level = 0xff; } static void vega10_setup_default_single_dpm_table(struct pp_hwmgr *hwmgr, struct vega10_single_dpm_table *dpm_table, struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) { int i; for (i = 0; i < dep_table->count; i++) { if (i == 0 || dpm_table->dpm_levels[dpm_table->count - 1].value <= dep_table->entries[i].clk) { dpm_table->dpm_levels[dpm_table->count].value = dep_table->entries[i].clk; dpm_table->dpm_levels[dpm_table->count].enabled = true; dpm_table->count++; } } } static int vega10_setup_default_pcie_table(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_pcie_table *bios_pcie_table = table_info->pcie_table; uint32_t i; PP_ASSERT_WITH_CODE(bios_pcie_table->count, "Incorrect number of PCIE States from VBIOS!", return -1); for (i = 0; i < NUM_LINK_LEVELS; i++) { if (data->registry_data.pcieSpeedOverride) pcie_table->pcie_gen[i] = data->registry_data.pcieSpeedOverride; else pcie_table->pcie_gen[i] = bios_pcie_table->entries[i].gen_speed; if (data->registry_data.pcieLaneOverride) pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( data->registry_data.pcieLaneOverride); else pcie_table->pcie_lane[i] = (uint8_t)encode_pcie_lane_width( bios_pcie_table->entries[i].lane_width); if (data->registry_data.pcieClockOverride) pcie_table->lclk[i] = data->registry_data.pcieClockOverride; else pcie_table->lclk[i] = bios_pcie_table->entries[i].pcie_sclk; } pcie_table->count = NUM_LINK_LEVELS; return 0; } /* * This function is to initialize all DPM state tables * for SMU based on the dependency table. * Dynamic state patching function will then trim these * state tables to the allowed range based * on the power policy or external client requests, * such as UVD request, etc. */ static int vega10_setup_default_dpm_tables(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct vega10_single_dpm_table *dpm_table; uint32_t i; struct phm_ppt_v1_clock_voltage_dependency_table *dep_soc_table = table_info->vdd_dep_on_socclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_gfx_table = table_info->vdd_dep_on_sclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_mclk_table = table_info->vdd_dep_on_mclk; struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_mm_table = table_info->mm_dep_table; struct phm_ppt_v1_clock_voltage_dependency_table *dep_dcef_table = table_info->vdd_dep_on_dcefclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_pix_table = table_info->vdd_dep_on_pixclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_disp_table = table_info->vdd_dep_on_dispclk; struct phm_ppt_v1_clock_voltage_dependency_table *dep_phy_table = table_info->vdd_dep_on_phyclk; PP_ASSERT_WITH_CODE(dep_soc_table, "SOCCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_soc_table->count >= 1, "SOCCLK dependency table is empty. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_gfx_table, "GFXCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_gfx_table->count >= 1, "GFXCLK dependency table is empty. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_mclk_table, "MCLK dependency table is missing. This table is mandatory", return -EINVAL); PP_ASSERT_WITH_CODE(dep_mclk_table->count >= 1, "MCLK dependency table has to have is missing. This table is mandatory", return -EINVAL); /* Initialize Sclk DPM table based on allow Sclk values */ data->dpm_table.soc_table.count = 0; data->dpm_table.gfx_table.count = 0; data->dpm_table.dcef_table.count = 0; dpm_table = &(data->dpm_table.soc_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_soc_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.gfx_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_gfx_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); /* Initialize Mclk DPM table based on allow Mclk values */ data->dpm_table.mem_table.count = 0; dpm_table = &(data->dpm_table.mem_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_mclk_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); data->dpm_table.eclk_table.count = 0; dpm_table = &(data->dpm_table.eclk_table); for (i = 0; i < dep_mm_table->count; i++) { if (i == 0 || dpm_table->dpm_levels [dpm_table->count - 1].value <= dep_mm_table->entries[i].eclk) { dpm_table->dpm_levels[dpm_table->count].value = dep_mm_table->entries[i].eclk; dpm_table->dpm_levels[dpm_table->count].enabled = (i == 0) ? true : false; dpm_table->count++; } } vega10_init_dpm_state(&(dpm_table->dpm_state)); data->dpm_table.vclk_table.count = 0; data->dpm_table.dclk_table.count = 0; dpm_table = &(data->dpm_table.vclk_table); for (i = 0; i < dep_mm_table->count; i++) { if (i == 0 || dpm_table->dpm_levels [dpm_table->count - 1].value <= dep_mm_table->entries[i].vclk) { dpm_table->dpm_levels[dpm_table->count].value = dep_mm_table->entries[i].vclk; dpm_table->dpm_levels[dpm_table->count].enabled = (i == 0) ? true : false; dpm_table->count++; } } vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.dclk_table); for (i = 0; i < dep_mm_table->count; i++) { if (i == 0 || dpm_table->dpm_levels [dpm_table->count - 1].value <= dep_mm_table->entries[i].dclk) { dpm_table->dpm_levels[dpm_table->count].value = dep_mm_table->entries[i].dclk; dpm_table->dpm_levels[dpm_table->count].enabled = (i == 0) ? true : false; dpm_table->count++; } } vega10_init_dpm_state(&(dpm_table->dpm_state)); /* Assume there is no headless Vega10 for now */ dpm_table = &(data->dpm_table.dcef_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_dcef_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.pixel_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_pix_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.display_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_disp_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); dpm_table = &(data->dpm_table.phy_table); vega10_setup_default_single_dpm_table(hwmgr, dpm_table, dep_phy_table); vega10_init_dpm_state(&(dpm_table->dpm_state)); vega10_setup_default_pcie_table(hwmgr); /* save a copy of the default DPM table */ memcpy(&(data->golden_dpm_table), &(data->dpm_table), sizeof(struct vega10_dpm_table)); if (PP_CAP(PHM_PlatformCaps_ODNinACSupport) || PP_CAP(PHM_PlatformCaps_ODNinDCSupport)) { data->odn_dpm_table.odn_core_clock_dpm_levels. number_of_performance_levels = data->dpm_table.gfx_table.count; for (i = 0; i < data->dpm_table.gfx_table.count; i++) { data->odn_dpm_table.odn_core_clock_dpm_levels. performance_level_entries[i].clock = data->dpm_table.gfx_table.dpm_levels[i].value; data->odn_dpm_table.odn_core_clock_dpm_levels. performance_level_entries[i].enabled = true; } data->odn_dpm_table.vdd_dependency_on_sclk.count = dep_gfx_table->count; for (i = 0; i < dep_gfx_table->count; i++) { data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].clk = dep_gfx_table->entries[i].clk; data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].vddInd = dep_gfx_table->entries[i].vddInd; data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].cks_enable = dep_gfx_table->entries[i].cks_enable; data->odn_dpm_table.vdd_dependency_on_sclk.entries[i].cks_voffset = dep_gfx_table->entries[i].cks_voffset; } data->odn_dpm_table.odn_memory_clock_dpm_levels. number_of_performance_levels = data->dpm_table.mem_table.count; for (i = 0; i < data->dpm_table.mem_table.count; i++) { data->odn_dpm_table.odn_memory_clock_dpm_levels. performance_level_entries[i].clock = data->dpm_table.mem_table.dpm_levels[i].value; data->odn_dpm_table.odn_memory_clock_dpm_levels. performance_level_entries[i].enabled = true; } data->odn_dpm_table.vdd_dependency_on_mclk.count = dep_mclk_table->count; for (i = 0; i < dep_mclk_table->count; i++) { data->odn_dpm_table.vdd_dependency_on_mclk.entries[i].clk = dep_mclk_table->entries[i].clk; data->odn_dpm_table.vdd_dependency_on_mclk.entries[i].vddInd = dep_mclk_table->entries[i].vddInd; data->odn_dpm_table.vdd_dependency_on_mclk.entries[i].vddci = dep_mclk_table->entries[i].vddci; } } return 0; } /* * @fn vega10_populate_ulv_state * @brief Function to provide parameters for Utral Low Voltage state to SMC. * * @param hwmgr - the address of the hardware manager. * @return Always 0. */ static int vega10_populate_ulv_state(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); data->smc_state_table.pp_table.UlvOffsetVid = (uint8_t)table_info->us_ulv_voltage_offset; data->smc_state_table.pp_table.UlvSmnclkDid = (uint8_t)(table_info->us_ulv_smnclk_did); data->smc_state_table.pp_table.UlvMp1clkDid = (uint8_t)(table_info->us_ulv_mp1clk_did); data->smc_state_table.pp_table.UlvGfxclkBypass = (uint8_t)(table_info->us_ulv_gfxclk_bypass); data->smc_state_table.pp_table.UlvPhaseSheddingPsi0 = (uint8_t)(data->vddc_voltage_table.psi0_enable); data->smc_state_table.pp_table.UlvPhaseSheddingPsi1 = (uint8_t)(data->vddc_voltage_table.psi1_enable); return 0; } static int vega10_populate_single_lclk_level(struct pp_hwmgr *hwmgr, uint32_t lclock, uint8_t *curr_lclk_did) { struct pp_atomfwctrl_clock_dividers_soc15 dividers; PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, lclock, ÷rs), "Failed to get LCLK clock settings from VBIOS!", return -1); *curr_lclk_did = dividers.ulDid; return 0; } static int vega10_populate_smc_link_levels(struct pp_hwmgr *hwmgr) { int result = -1; struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); uint32_t i, j; for (i = 0; i < pcie_table->count; i++) { pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[i]; pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[i]; result = vega10_populate_single_lclk_level(hwmgr, pcie_table->lclk[i], &(pp_table->LclkDid[i])); if (result) { pr_info("Populate LClock Level %d Failed!\n", i); return result; } } j = i - 1; while (i < NUM_LINK_LEVELS) { pp_table->PcieGenSpeed[i] = pcie_table->pcie_gen[j]; pp_table->PcieLaneCount[i] = pcie_table->pcie_lane[j]; result = vega10_populate_single_lclk_level(hwmgr, pcie_table->lclk[j], &(pp_table->LclkDid[i])); if (result) { pr_info("Populate LClock Level %d Failed!\n", i); return result; } i++; } return result; } /** * Populates single SMC GFXSCLK structure using the provided engine clock * * @param hwmgr the address of the hardware manager * @param gfx_clock the GFX clock to use to populate the structure. * @param current_gfxclk_level location in PPTable for the SMC GFXCLK structure. */ static int vega10_populate_single_gfx_level(struct pp_hwmgr *hwmgr, uint32_t gfx_clock, PllSetting_t *current_gfxclk_level, uint32_t *acg_freq) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_sclk = table_info->vdd_dep_on_sclk; struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct pp_atomfwctrl_clock_dividers_soc15 dividers; uint32_t gfx_max_clock = hwmgr->platform_descriptor.overdriveLimit.engineClock; uint32_t i = 0; if (data->apply_overdrive_next_settings_mask & DPMTABLE_OD_UPDATE_VDDC) dep_on_sclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) &(data->odn_dpm_table.vdd_dependency_on_sclk); PP_ASSERT_WITH_CODE(dep_on_sclk, "Invalid SOC_VDD-GFX_CLK Dependency Table!", return -EINVAL); if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK) gfx_clock = gfx_clock > gfx_max_clock ? gfx_max_clock : gfx_clock; else { for (i = 0; i < dep_on_sclk->count; i++) { if (dep_on_sclk->entries[i].clk == gfx_clock) break; } PP_ASSERT_WITH_CODE(dep_on_sclk->count > i, "Cannot find gfx_clk in SOC_VDD-GFX_CLK!", return -EINVAL); } PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_GFXCLK, gfx_clock, ÷rs), "Failed to get GFX Clock settings from VBIOS!", return -EINVAL); /* Feedback Multiplier: bit 0:8 int, bit 15:12 post_div, bit 31:16 frac */ current_gfxclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult); /* Spread FB Multiplier bit: bit 0:8 int, bit 31:16 frac */ current_gfxclk_level->SsOn = dividers.ucPll_ss_enable; current_gfxclk_level->SsFbMult = cpu_to_le32(dividers.ulPll_ss_fbsmult); current_gfxclk_level->SsSlewFrac = cpu_to_le16(dividers.usPll_ss_slew_frac); current_gfxclk_level->Did = (uint8_t)(dividers.ulDid); *acg_freq = gfx_clock / 100; /* 100 Khz to Mhz conversion */ return 0; } /** * @brief Populates single SMC SOCCLK structure using the provided clock. * * @param hwmgr - the address of the hardware manager. * @param soc_clock - the SOC clock to use to populate the structure. * @param current_socclk_level - location in PPTable for the SMC SOCCLK structure. * @return 0 on success.. */ static int vega10_populate_single_soc_level(struct pp_hwmgr *hwmgr, uint32_t soc_clock, uint8_t *current_soc_did, uint8_t *current_vol_index) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_soc = table_info->vdd_dep_on_socclk; struct pp_atomfwctrl_clock_dividers_soc15 dividers; uint32_t i; PP_ASSERT_WITH_CODE(dep_on_soc, "Invalid SOC_VDD-SOC_CLK Dependency Table!", return -EINVAL); for (i = 0; i < dep_on_soc->count; i++) { if (dep_on_soc->entries[i].clk == soc_clock) break; } PP_ASSERT_WITH_CODE(dep_on_soc->count > i, "Cannot find SOC_CLK in SOC_VDD-SOC_CLK Dependency Table", return -EINVAL); PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, soc_clock, ÷rs), "Failed to get SOC Clock settings from VBIOS!", return -EINVAL); *current_soc_did = (uint8_t)dividers.ulDid; *current_vol_index = (uint8_t)(dep_on_soc->entries[i].vddInd); return 0; } uint16_t vega10_locate_vddc_given_clock(struct pp_hwmgr *hwmgr, uint32_t clk, struct phm_ppt_v1_clock_voltage_dependency_table *dep_table) { uint16_t i; for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].clk == clk) return dep_table->entries[i].vddc; } pr_info("[LocateVddcGivenClock] Cannot locate SOC Vddc for this clock!"); return 0; } /** * Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states * * @param hwmgr the address of the hardware manager */ static int vega10_populate_all_graphic_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk; PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); int result = 0; uint32_t i, j; for (i = 0; i < dpm_table->count; i++) { result = vega10_populate_single_gfx_level(hwmgr, dpm_table->dpm_levels[i].value, &(pp_table->GfxclkLevel[i]), &(pp_table->AcgFreqTable[i])); if (result) return result; } j = i - 1; while (i < NUM_GFXCLK_DPM_LEVELS) { result = vega10_populate_single_gfx_level(hwmgr, dpm_table->dpm_levels[j].value, &(pp_table->GfxclkLevel[i]), &(pp_table->AcgFreqTable[i])); if (result) return result; i++; } pp_table->GfxclkSlewRate = cpu_to_le16(table_info->us_gfxclk_slew_rate); dpm_table = &(data->dpm_table.soc_table); for (i = 0; i < dpm_table->count; i++) { pp_table->SocVid[i] = (uint8_t)convert_to_vid( vega10_locate_vddc_given_clock(hwmgr, dpm_table->dpm_levels[i].value, dep_table)); result = vega10_populate_single_soc_level(hwmgr, dpm_table->dpm_levels[i].value, &(pp_table->SocclkDid[i]), &(pp_table->SocDpmVoltageIndex[i])); if (result) return result; } j = i - 1; while (i < NUM_SOCCLK_DPM_LEVELS) { pp_table->SocVid[i] = pp_table->SocVid[j]; result = vega10_populate_single_soc_level(hwmgr, dpm_table->dpm_levels[j].value, &(pp_table->SocclkDid[i]), &(pp_table->SocDpmVoltageIndex[i])); if (result) return result; i++; } return result; } /** * @brief Populates single SMC GFXCLK structure using the provided clock. * * @param hwmgr - the address of the hardware manager. * @param mem_clock - the memory clock to use to populate the structure. * @return 0 on success.. */ static int vega10_populate_single_memory_level(struct pp_hwmgr *hwmgr, uint32_t mem_clock, uint8_t *current_mem_vid, PllSetting_t *current_memclk_level, uint8_t *current_mem_soc_vind) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_on_mclk = table_info->vdd_dep_on_mclk; struct pp_atomfwctrl_clock_dividers_soc15 dividers; uint32_t mem_max_clock = hwmgr->platform_descriptor.overdriveLimit.memoryClock; uint32_t i = 0; if (data->apply_overdrive_next_settings_mask & DPMTABLE_OD_UPDATE_VDDC) dep_on_mclk = (struct phm_ppt_v1_clock_voltage_dependency_table *) &data->odn_dpm_table.vdd_dependency_on_mclk; PP_ASSERT_WITH_CODE(dep_on_mclk, "Invalid SOC_VDD-UCLK Dependency Table!", return -EINVAL); if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK) mem_clock = mem_clock > mem_max_clock ? mem_max_clock : mem_clock; else { for (i = 0; i < dep_on_mclk->count; i++) { if (dep_on_mclk->entries[i].clk == mem_clock) break; } PP_ASSERT_WITH_CODE(dep_on_mclk->count > i, "Cannot find UCLK in SOC_VDD-UCLK Dependency Table!", return -EINVAL); } PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10( hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_UCLK, mem_clock, ÷rs), "Failed to get UCLK settings from VBIOS!", return -1); *current_mem_vid = (uint8_t)(convert_to_vid(dep_on_mclk->entries[i].mvdd)); *current_mem_soc_vind = (uint8_t)(dep_on_mclk->entries[i].vddInd); current_memclk_level->FbMult = cpu_to_le32(dividers.ulPll_fb_mult); current_memclk_level->Did = (uint8_t)(dividers.ulDid); PP_ASSERT_WITH_CODE(current_memclk_level->Did >= 1, "Invalid Divider ID!", return -EINVAL); return 0; } /** * @brief Populates all SMC MCLK levels' structure based on the trimmed allowed dpm memory clock states. * * @param pHwMgr - the address of the hardware manager. * @return PP_Result_OK on success. */ static int vega10_populate_all_memory_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.mem_table); int result = 0; uint32_t i, j, reg, mem_channels; for (i = 0; i < dpm_table->count; i++) { result = vega10_populate_single_memory_level(hwmgr, dpm_table->dpm_levels[i].value, &(pp_table->MemVid[i]), &(pp_table->UclkLevel[i]), &(pp_table->MemSocVoltageIndex[i])); if (result) return result; } j = i - 1; while (i < NUM_UCLK_DPM_LEVELS) { result = vega10_populate_single_memory_level(hwmgr, dpm_table->dpm_levels[j].value, &(pp_table->MemVid[i]), &(pp_table->UclkLevel[i]), &(pp_table->MemSocVoltageIndex[i])); if (result) return result; i++; } reg = soc15_get_register_offset(DF_HWID, 0, mmDF_CS_AON0_DramBaseAddress0_BASE_IDX, mmDF_CS_AON0_DramBaseAddress0); mem_channels = (cgs_read_register(hwmgr->device, reg) & DF_CS_AON0_DramBaseAddress0__IntLvNumChan_MASK) >> DF_CS_AON0_DramBaseAddress0__IntLvNumChan__SHIFT; pp_table->NumMemoryChannels = cpu_to_le16(mem_channels); pp_table->MemoryChannelWidth = cpu_to_le16(HBM_MEMORY_CHANNEL_WIDTH * channel_number[mem_channels]); pp_table->LowestUclkReservedForUlv = (uint8_t)(data->lowest_uclk_reserved_for_ulv); return result; } static int vega10_populate_single_display_type(struct pp_hwmgr *hwmgr, DSPCLK_e disp_clock) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *) (hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; uint32_t i; uint16_t clk = 0, vddc = 0; uint8_t vid = 0; switch (disp_clock) { case DSPCLK_DCEFCLK: dep_table = table_info->vdd_dep_on_dcefclk; break; case DSPCLK_DISPCLK: dep_table = table_info->vdd_dep_on_dispclk; break; case DSPCLK_PIXCLK: dep_table = table_info->vdd_dep_on_pixclk; break; case DSPCLK_PHYCLK: dep_table = table_info->vdd_dep_on_phyclk; break; default: return -1; } PP_ASSERT_WITH_CODE(dep_table->count <= NUM_DSPCLK_LEVELS, "Number Of Entries Exceeded maximum!", return -1); for (i = 0; i < dep_table->count; i++) { clk = (uint16_t)(dep_table->entries[i].clk / 100); vddc = table_info->vddc_lookup_table-> entries[dep_table->entries[i].vddInd].us_vdd; vid = (uint8_t)convert_to_vid(vddc); pp_table->DisplayClockTable[disp_clock][i].Freq = cpu_to_le16(clk); pp_table->DisplayClockTable[disp_clock][i].Vid = cpu_to_le16(vid); } while (i < NUM_DSPCLK_LEVELS) { pp_table->DisplayClockTable[disp_clock][i].Freq = cpu_to_le16(clk); pp_table->DisplayClockTable[disp_clock][i].Vid = cpu_to_le16(vid); i++; } return 0; } static int vega10_populate_all_display_clock_levels(struct pp_hwmgr *hwmgr) { uint32_t i; for (i = 0; i < DSPCLK_COUNT; i++) { PP_ASSERT_WITH_CODE(!vega10_populate_single_display_type(hwmgr, i), "Failed to populate Clock in DisplayClockTable!", return -1); } return 0; } static int vega10_populate_single_eclock_level(struct pp_hwmgr *hwmgr, uint32_t eclock, uint8_t *current_eclk_did, uint8_t *current_soc_vol) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = table_info->mm_dep_table; struct pp_atomfwctrl_clock_dividers_soc15 dividers; uint32_t i; PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, eclock, ÷rs), "Failed to get ECLK clock settings from VBIOS!", return -1); *current_eclk_did = (uint8_t)dividers.ulDid; for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].eclk == eclock) *current_soc_vol = dep_table->entries[i].vddcInd; } return 0; } static int vega10_populate_smc_vce_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.eclk_table); int result = -EINVAL; uint32_t i, j; for (i = 0; i < dpm_table->count; i++) { result = vega10_populate_single_eclock_level(hwmgr, dpm_table->dpm_levels[i].value, &(pp_table->EclkDid[i]), &(pp_table->VceDpmVoltageIndex[i])); if (result) return result; } j = i - 1; while (i < NUM_VCE_DPM_LEVELS) { result = vega10_populate_single_eclock_level(hwmgr, dpm_table->dpm_levels[j].value, &(pp_table->EclkDid[i]), &(pp_table->VceDpmVoltageIndex[i])); if (result) return result; i++; } return result; } static int vega10_populate_single_vclock_level(struct pp_hwmgr *hwmgr, uint32_t vclock, uint8_t *current_vclk_did) { struct pp_atomfwctrl_clock_dividers_soc15 dividers; PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, vclock, ÷rs), "Failed to get VCLK clock settings from VBIOS!", return -EINVAL); *current_vclk_did = (uint8_t)dividers.ulDid; return 0; } static int vega10_populate_single_dclock_level(struct pp_hwmgr *hwmgr, uint32_t dclock, uint8_t *current_dclk_did) { struct pp_atomfwctrl_clock_dividers_soc15 dividers; PP_ASSERT_WITH_CODE(!pp_atomfwctrl_get_gpu_pll_dividers_vega10(hwmgr, COMPUTE_GPUCLK_INPUT_FLAG_DEFAULT_GPUCLK, dclock, ÷rs), "Failed to get DCLK clock settings from VBIOS!", return -EINVAL); *current_dclk_did = (uint8_t)dividers.ulDid; return 0; } static int vega10_populate_smc_uvd_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct vega10_single_dpm_table *vclk_dpm_table = &(data->dpm_table.vclk_table); struct vega10_single_dpm_table *dclk_dpm_table = &(data->dpm_table.dclk_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_mm_clock_voltage_dependency_table *dep_table = table_info->mm_dep_table; int result = -EINVAL; uint32_t i, j; for (i = 0; i < vclk_dpm_table->count; i++) { result = vega10_populate_single_vclock_level(hwmgr, vclk_dpm_table->dpm_levels[i].value, &(pp_table->VclkDid[i])); if (result) return result; } j = i - 1; while (i < NUM_UVD_DPM_LEVELS) { result = vega10_populate_single_vclock_level(hwmgr, vclk_dpm_table->dpm_levels[j].value, &(pp_table->VclkDid[i])); if (result) return result; i++; } for (i = 0; i < dclk_dpm_table->count; i++) { result = vega10_populate_single_dclock_level(hwmgr, dclk_dpm_table->dpm_levels[i].value, &(pp_table->DclkDid[i])); if (result) return result; } j = i - 1; while (i < NUM_UVD_DPM_LEVELS) { result = vega10_populate_single_dclock_level(hwmgr, dclk_dpm_table->dpm_levels[j].value, &(pp_table->DclkDid[i])); if (result) return result; i++; } for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].vclk == vclk_dpm_table->dpm_levels[i].value && dep_table->entries[i].dclk == dclk_dpm_table->dpm_levels[i].value) pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[i].vddcInd; else return -1; } j = i - 1; while (i < NUM_UVD_DPM_LEVELS) { pp_table->UvdDpmVoltageIndex[i] = dep_table->entries[j].vddcInd; i++; } return 0; } static int vega10_populate_clock_stretcher_table(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_sclk; uint32_t i; for (i = 0; i < dep_table->count; i++) { pp_table->CksEnable[i] = dep_table->entries[i].cks_enable; pp_table->CksVidOffset[i] = (uint8_t)(dep_table->entries[i].cks_voffset * VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1); } return 0; } static int vega10_populate_avfs_parameters(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_sclk; struct pp_atomfwctrl_avfs_parameters avfs_params = {0}; int result = 0; uint32_t i; pp_table->MinVoltageVid = (uint8_t)0xff; pp_table->MaxVoltageVid = (uint8_t)0; if (data->smu_features[GNLD_AVFS].supported) { result = pp_atomfwctrl_get_avfs_information(hwmgr, &avfs_params); if (!result) { pp_table->MinVoltageVid = (uint8_t) convert_to_vid((uint16_t)(avfs_params.ulMinVddc)); pp_table->MaxVoltageVid = (uint8_t) convert_to_vid((uint16_t)(avfs_params.ulMaxVddc)); pp_table->AConstant[0] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant0); pp_table->AConstant[1] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant1); pp_table->AConstant[2] = cpu_to_le32(avfs_params.ulMeanNsigmaAcontant2); pp_table->DC_tol_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); pp_table->Platform_mean = cpu_to_le16(avfs_params.usMeanNsigmaPlatformMean); pp_table->Platform_sigma = cpu_to_le16(avfs_params.usMeanNsigmaDcTolSigma); pp_table->PSM_Age_CompFactor = cpu_to_le16(avfs_params.usPsmAgeComfactor); pp_table->BtcGbVdroopTableCksOff.a0 = cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA0); pp_table->BtcGbVdroopTableCksOff.a0_shift = 20; pp_table->BtcGbVdroopTableCksOff.a1 = cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA1); pp_table->BtcGbVdroopTableCksOff.a1_shift = 20; pp_table->BtcGbVdroopTableCksOff.a2 = cpu_to_le32(avfs_params.ulGbVdroopTableCksoffA2); pp_table->BtcGbVdroopTableCksOff.a2_shift = 20; pp_table->OverrideBtcGbCksOn = avfs_params.ucEnableGbVdroopTableCkson; pp_table->BtcGbVdroopTableCksOn.a0 = cpu_to_le32(avfs_params.ulGbVdroopTableCksonA0); pp_table->BtcGbVdroopTableCksOn.a0_shift = 20; pp_table->BtcGbVdroopTableCksOn.a1 = cpu_to_le32(avfs_params.ulGbVdroopTableCksonA1); pp_table->BtcGbVdroopTableCksOn.a1_shift = 20; pp_table->BtcGbVdroopTableCksOn.a2 = cpu_to_le32(avfs_params.ulGbVdroopTableCksonA2); pp_table->BtcGbVdroopTableCksOn.a2_shift = 20; pp_table->AvfsGbCksOn.m1 = cpu_to_le32(avfs_params.ulGbFuseTableCksonM1); pp_table->AvfsGbCksOn.m2 = cpu_to_le32(avfs_params.ulGbFuseTableCksonM2); pp_table->AvfsGbCksOn.b = cpu_to_le32(avfs_params.ulGbFuseTableCksonB); pp_table->AvfsGbCksOn.m1_shift = 24; pp_table->AvfsGbCksOn.m2_shift = 12; pp_table->AvfsGbCksOn.b_shift = 0; pp_table->OverrideAvfsGbCksOn = avfs_params.ucEnableGbFuseTableCkson; pp_table->AvfsGbCksOff.m1 = cpu_to_le32(avfs_params.ulGbFuseTableCksoffM1); pp_table->AvfsGbCksOff.m2 = cpu_to_le32(avfs_params.ulGbFuseTableCksoffM2); pp_table->AvfsGbCksOff.b = cpu_to_le32(avfs_params.ulGbFuseTableCksoffB); pp_table->AvfsGbCksOff.m1_shift = 24; pp_table->AvfsGbCksOff.m2_shift = 12; pp_table->AvfsGbCksOff.b_shift = 0; for (i = 0; i < dep_table->count; i++) pp_table->StaticVoltageOffsetVid[i] = convert_to_vid((uint8_t)(dep_table->entries[i].sclk_offset)); if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->disp_clk_quad_eqn_a) && (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->disp_clk_quad_eqn_b)) { pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = (int32_t)data->disp_clk_quad_eqn_a; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = (int32_t)data->disp_clk_quad_eqn_b; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = (int32_t)data->disp_clk_quad_eqn_c; } else { pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1 = (int32_t)avfs_params.ulDispclk2GfxclkM1; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2 = (int32_t)avfs_params.ulDispclk2GfxclkM2; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b = (int32_t)avfs_params.ulDispclk2GfxclkB; } pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m1_shift = 24; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].m2_shift = 12; pp_table->DisplayClock2Gfxclk[DSPCLK_DISPCLK].b_shift = 12; if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->dcef_clk_quad_eqn_a) && (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->dcef_clk_quad_eqn_b)) { pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = (int32_t)data->dcef_clk_quad_eqn_a; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = (int32_t)data->dcef_clk_quad_eqn_b; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = (int32_t)data->dcef_clk_quad_eqn_c; } else { pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1 = (int32_t)avfs_params.ulDcefclk2GfxclkM1; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2 = (int32_t)avfs_params.ulDcefclk2GfxclkM2; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b = (int32_t)avfs_params.ulDcefclk2GfxclkB; } pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m1_shift = 24; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].m2_shift = 12; pp_table->DisplayClock2Gfxclk[DSPCLK_DCEFCLK].b_shift = 12; if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->pixel_clk_quad_eqn_a) && (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->pixel_clk_quad_eqn_b)) { pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = (int32_t)data->pixel_clk_quad_eqn_a; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = (int32_t)data->pixel_clk_quad_eqn_b; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = (int32_t)data->pixel_clk_quad_eqn_c; } else { pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1 = (int32_t)avfs_params.ulPixelclk2GfxclkM1; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2 = (int32_t)avfs_params.ulPixelclk2GfxclkM2; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b = (int32_t)avfs_params.ulPixelclk2GfxclkB; } pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m1_shift = 24; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].m2_shift = 12; pp_table->DisplayClock2Gfxclk[DSPCLK_PIXCLK].b_shift = 12; if ((PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->phy_clk_quad_eqn_a) && (PPREGKEY_VEGA10QUADRATICEQUATION_DFLT != data->phy_clk_quad_eqn_b)) { pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = (int32_t)data->phy_clk_quad_eqn_a; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = (int32_t)data->phy_clk_quad_eqn_b; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = (int32_t)data->phy_clk_quad_eqn_c; } else { pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1 = (int32_t)avfs_params.ulPhyclk2GfxclkM1; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2 = (int32_t)avfs_params.ulPhyclk2GfxclkM2; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b = (int32_t)avfs_params.ulPhyclk2GfxclkB; } pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m1_shift = 24; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].m2_shift = 12; pp_table->DisplayClock2Gfxclk[DSPCLK_PHYCLK].b_shift = 12; pp_table->AcgBtcGbVdroopTable.a0 = avfs_params.ulAcgGbVdroopTableA0; pp_table->AcgBtcGbVdroopTable.a0_shift = 20; pp_table->AcgBtcGbVdroopTable.a1 = avfs_params.ulAcgGbVdroopTableA1; pp_table->AcgBtcGbVdroopTable.a1_shift = 20; pp_table->AcgBtcGbVdroopTable.a2 = avfs_params.ulAcgGbVdroopTableA2; pp_table->AcgBtcGbVdroopTable.a2_shift = 20; pp_table->AcgAvfsGb.m1 = avfs_params.ulAcgGbFuseTableM1; pp_table->AcgAvfsGb.m2 = avfs_params.ulAcgGbFuseTableM2; pp_table->AcgAvfsGb.b = avfs_params.ulAcgGbFuseTableB; pp_table->AcgAvfsGb.m1_shift = 0; pp_table->AcgAvfsGb.m2_shift = 0; pp_table->AcgAvfsGb.b_shift = 0; } else { data->smu_features[GNLD_AVFS].supported = false; } } return 0; } static int vega10_acg_enable(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint32_t agc_btc_response; if (data->smu_features[GNLD_ACG].supported) { if (0 == vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DPM_PREFETCHER].smu_feature_bitmap)) data->smu_features[GNLD_DPM_PREFETCHER].enabled = true; smum_send_msg_to_smc(hwmgr, PPSMC_MSG_InitializeAcg); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgBtc); vega10_read_arg_from_smc(hwmgr, &agc_btc_response); if (1 == agc_btc_response) { if (1 == data->acg_loop_state) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInClosedLoop); else if (2 == data->acg_loop_state) smum_send_msg_to_smc(hwmgr, PPSMC_MSG_RunAcgInOpenLoop); if (0 == vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_ACG].smu_feature_bitmap)) data->smu_features[GNLD_ACG].enabled = true; } else { pr_info("[ACG_Enable] ACG BTC Returned Failed Status!\n"); data->smu_features[GNLD_ACG].enabled = false; } } return 0; } static int vega10_acg_disable(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_ACG].supported && data->smu_features[GNLD_ACG].enabled) if (!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_ACG].smu_feature_bitmap)) data->smu_features[GNLD_ACG].enabled = false; return 0; } static int vega10_populate_gpio_parameters(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct pp_atomfwctrl_gpio_parameters gpio_params = {0}; int result; result = pp_atomfwctrl_get_gpio_information(hwmgr, &gpio_params); if (!result) { if (PP_CAP(PHM_PlatformCaps_RegulatorHot) && data->registry_data.regulator_hot_gpio_support) { pp_table->VR0HotGpio = gpio_params.ucVR0HotGpio; pp_table->VR0HotPolarity = gpio_params.ucVR0HotPolarity; pp_table->VR1HotGpio = gpio_params.ucVR1HotGpio; pp_table->VR1HotPolarity = gpio_params.ucVR1HotPolarity; } else { pp_table->VR0HotGpio = 0; pp_table->VR0HotPolarity = 0; pp_table->VR1HotGpio = 0; pp_table->VR1HotPolarity = 0; } if (PP_CAP(PHM_PlatformCaps_AutomaticDCTransition) && data->registry_data.ac_dc_switch_gpio_support) { pp_table->AcDcGpio = gpio_params.ucAcDcGpio; pp_table->AcDcPolarity = gpio_params.ucAcDcPolarity; } else { pp_table->AcDcGpio = 0; pp_table->AcDcPolarity = 0; } } return result; } static int vega10_avfs_enable(struct pp_hwmgr *hwmgr, bool enable) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_AVFS].supported) { if (enable) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_AVFS].smu_feature_bitmap), "[avfs_control] Attempt to Enable AVFS feature Failed!", return -1); data->smu_features[GNLD_AVFS].enabled = true; } else { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_AVFS].smu_feature_id), "[avfs_control] Attempt to Disable AVFS feature Failed!", return -1); data->smu_features[GNLD_AVFS].enabled = false; } } return 0; } static int vega10_populate_and_upload_avfs_fuse_override(struct pp_hwmgr *hwmgr) { int result = 0; uint64_t serial_number = 0; uint32_t top32, bottom32; struct phm_fuses_default fuse; struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); AvfsFuseOverride_t *avfs_fuse_table = &(data->smc_state_table.avfs_fuse_override_table); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumTop32); vega10_read_arg_from_smc(hwmgr, &top32); smum_send_msg_to_smc(hwmgr, PPSMC_MSG_ReadSerialNumBottom32); vega10_read_arg_from_smc(hwmgr, &bottom32); serial_number = ((uint64_t)bottom32 << 32) | top32; if (pp_override_get_default_fuse_value(serial_number, vega10_fuses_default, &fuse) == 0) { avfs_fuse_table->VFT0_b = fuse.VFT0_b; avfs_fuse_table->VFT0_m1 = fuse.VFT0_m1; avfs_fuse_table->VFT0_m2 = fuse.VFT0_m2; avfs_fuse_table->VFT1_b = fuse.VFT1_b; avfs_fuse_table->VFT1_m1 = fuse.VFT1_m1; avfs_fuse_table->VFT1_m2 = fuse.VFT1_m2; avfs_fuse_table->VFT2_b = fuse.VFT2_b; avfs_fuse_table->VFT2_m1 = fuse.VFT2_m1; avfs_fuse_table->VFT2_m2 = fuse.VFT2_m2; result = vega10_copy_table_to_smc(hwmgr, (uint8_t *)avfs_fuse_table, AVFSFUSETABLE); PP_ASSERT_WITH_CODE(!result, "Failed to upload FuseOVerride!", ); } return result; } static int vega10_save_default_power_profile(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_single_dpm_table *dpm_table = &(data->dpm_table.gfx_table); uint32_t min_level; hwmgr->default_gfx_power_profile.type = AMD_PP_GFX_PROFILE; hwmgr->default_compute_power_profile.type = AMD_PP_COMPUTE_PROFILE; /* Optimize compute power profile: Use only highest * 2 power levels (if more than 2 are available) */ if (dpm_table->count > 2) min_level = dpm_table->count - 2; else if (dpm_table->count == 2) min_level = 1; else min_level = 0; hwmgr->default_compute_power_profile.min_sclk = dpm_table->dpm_levels[min_level].value; hwmgr->gfx_power_profile = hwmgr->default_gfx_power_profile; hwmgr->compute_power_profile = hwmgr->default_compute_power_profile; return 0; } /** * Initializes the SMC table and uploads it * * @param hwmgr the address of the powerplay hardware manager. * @param pInput the pointer to input data (PowerState) * @return always 0 */ static int vega10_init_smc_table(struct pp_hwmgr *hwmgr) { int result; struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); PPTable_t *pp_table = &(data->smc_state_table.pp_table); struct pp_atomfwctrl_voltage_table voltage_table; struct pp_atomfwctrl_bios_boot_up_values boot_up_values; result = vega10_setup_default_dpm_tables(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to setup default DPM tables!", return result); pp_atomfwctrl_get_voltage_table_v4(hwmgr, VOLTAGE_TYPE_VDDC, VOLTAGE_OBJ_SVID2, &voltage_table); pp_table->MaxVidStep = voltage_table.max_vid_step; pp_table->GfxDpmVoltageMode = (uint8_t)(table_info->uc_gfx_dpm_voltage_mode); pp_table->SocDpmVoltageMode = (uint8_t)(table_info->uc_soc_dpm_voltage_mode); pp_table->UclkDpmVoltageMode = (uint8_t)(table_info->uc_uclk_dpm_voltage_mode); pp_table->UvdDpmVoltageMode = (uint8_t)(table_info->uc_uvd_dpm_voltage_mode); pp_table->VceDpmVoltageMode = (uint8_t)(table_info->uc_vce_dpm_voltage_mode); pp_table->Mp0DpmVoltageMode = (uint8_t)(table_info->uc_mp0_dpm_voltage_mode); pp_table->DisplayDpmVoltageMode = (uint8_t)(table_info->uc_dcef_dpm_voltage_mode); data->vddc_voltage_table.psi0_enable = voltage_table.psi0_enable; data->vddc_voltage_table.psi1_enable = voltage_table.psi1_enable; if (data->registry_data.ulv_support && table_info->us_ulv_voltage_offset) { result = vega10_populate_ulv_state(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize ULV state!", return result); } result = vega10_populate_smc_link_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Link Level!", return result); result = vega10_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Graphics Level!", return result); result = vega10_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Memory Level!", return result); result = vega10_populate_all_display_clock_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize Display Level!", return result); result = vega10_populate_smc_vce_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize VCE Level!", return result); result = vega10_populate_smc_uvd_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize UVD Level!", return result); if (data->registry_data.clock_stretcher_support) { result = vega10_populate_clock_stretcher_table(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate Clock Stretcher Table!", return result); } result = pp_atomfwctrl_get_vbios_bootup_values(hwmgr, &boot_up_values); if (!result) { data->vbios_boot_state.vddc = boot_up_values.usVddc; data->vbios_boot_state.vddci = boot_up_values.usVddci; data->vbios_boot_state.mvddc = boot_up_values.usMvddc; data->vbios_boot_state.gfx_clock = boot_up_values.ulGfxClk; data->vbios_boot_state.mem_clock = boot_up_values.ulUClk; data->vbios_boot_state.soc_clock = boot_up_values.ulSocClk; data->vbios_boot_state.dcef_clock = boot_up_values.ulDCEFClk; if (0 != boot_up_values.usVddc) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFloorSocVoltage, (boot_up_values.usVddc * 4)); data->vbios_boot_state.bsoc_vddc_lock = true; } else { data->vbios_boot_state.bsoc_vddc_lock = false; } smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, (uint32_t)(data->vbios_boot_state.dcef_clock / 100)); } result = vega10_populate_avfs_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize AVFS Parameters!", return result); result = vega10_populate_gpio_parameters(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to initialize GPIO Parameters!", return result); pp_table->GfxclkAverageAlpha = (uint8_t) (data->gfxclk_average_alpha); pp_table->SocclkAverageAlpha = (uint8_t) (data->socclk_average_alpha); pp_table->UclkAverageAlpha = (uint8_t) (data->uclk_average_alpha); pp_table->GfxActivityAverageAlpha = (uint8_t) (data->gfx_activity_average_alpha); vega10_populate_and_upload_avfs_fuse_override(hwmgr); result = vega10_copy_table_to_smc(hwmgr, (uint8_t *)pp_table, PPTABLE); PP_ASSERT_WITH_CODE(!result, "Failed to upload PPtable!", return result); result = vega10_avfs_enable(hwmgr, true); PP_ASSERT_WITH_CODE(!result, "Attempt to enable AVFS feature Failed!", return result); vega10_acg_enable(hwmgr); vega10_save_default_power_profile(hwmgr); return 0; } static int vega10_enable_thermal_protection(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_THERMAL].supported) { if (data->smu_features[GNLD_THERMAL].enabled) pr_info("THERMAL Feature Already enabled!"); PP_ASSERT_WITH_CODE( !vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_THERMAL].smu_feature_bitmap), "Enable THERMAL Feature Failed!", return -1); data->smu_features[GNLD_THERMAL].enabled = true; } return 0; } static int vega10_disable_thermal_protection(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_THERMAL].supported) { if (!data->smu_features[GNLD_THERMAL].enabled) pr_info("THERMAL Feature Already disabled!"); PP_ASSERT_WITH_CODE( !vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_THERMAL].smu_feature_bitmap), "disable THERMAL Feature Failed!", return -1); data->smu_features[GNLD_THERMAL].enabled = false; } return 0; } static int vega10_enable_vrhot_feature(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (PP_CAP(PHM_PlatformCaps_RegulatorHot)) { if (data->smu_features[GNLD_VR0HOT].supported) { PP_ASSERT_WITH_CODE( !vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_VR0HOT].smu_feature_bitmap), "Attempt to Enable VR0 Hot feature Failed!", return -1); data->smu_features[GNLD_VR0HOT].enabled = true; } else { if (data->smu_features[GNLD_VR1HOT].supported) { PP_ASSERT_WITH_CODE( !vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_VR1HOT].smu_feature_bitmap), "Attempt to Enable VR0 Hot feature Failed!", return -1); data->smu_features[GNLD_VR1HOT].enabled = true; } } } return 0; } static int vega10_enable_ulv(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->registry_data.ulv_support) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_ULV].smu_feature_bitmap), "Enable ULV Feature Failed!", return -1); data->smu_features[GNLD_ULV].enabled = true; } return 0; } static int vega10_disable_ulv(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->registry_data.ulv_support) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_ULV].smu_feature_bitmap), "disable ULV Feature Failed!", return -EINVAL); data->smu_features[GNLD_ULV].enabled = false; } return 0; } static int vega10_enable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DS_GFXCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), "Attempt to Enable DS_GFXCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_GFXCLK].enabled = true; } if (data->smu_features[GNLD_DS_SOCCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), "Attempt to Enable DS_SOCCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_SOCCLK].enabled = true; } if (data->smu_features[GNLD_DS_LCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), "Attempt to Enable DS_LCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_LCLK].enabled = true; } if (data->smu_features[GNLD_DS_DCEFCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), "Attempt to Enable DS_DCEFCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_DCEFCLK].enabled = true; } return 0; } static int vega10_disable_deep_sleep_master_switch(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DS_GFXCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DS_GFXCLK].smu_feature_bitmap), "Attempt to disable DS_GFXCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_GFXCLK].enabled = false; } if (data->smu_features[GNLD_DS_SOCCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DS_SOCCLK].smu_feature_bitmap), "Attempt to disable DS_ Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_SOCCLK].enabled = false; } if (data->smu_features[GNLD_DS_LCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DS_LCLK].smu_feature_bitmap), "Attempt to disable DS_LCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_LCLK].enabled = false; } if (data->smu_features[GNLD_DS_DCEFCLK].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_DS_DCEFCLK].smu_feature_bitmap), "Attempt to disable DS_DCEFCLK Feature Failed!", return -EINVAL); data->smu_features[GNLD_DS_DCEFCLK].enabled = false; } return 0; } static int vega10_stop_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint32_t i, feature_mask = 0; if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, false, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), "Attempt to disable LED DPM feature failed!", return -EINVAL); data->smu_features[GNLD_LED_DISPLAY].enabled = false; } for (i = 0; i < GNLD_DPM_MAX; i++) { if (data->smu_features[i].smu_feature_bitmap & bitmap) { if (data->smu_features[i].supported) { if (data->smu_features[i].enabled) { feature_mask |= data->smu_features[i]. smu_feature_bitmap; data->smu_features[i].enabled = false; } } } } vega10_enable_smc_features(hwmgr, false, feature_mask); return 0; } /** * @brief Tell SMC to enabled the supported DPMs. * * @param hwmgr - the address of the powerplay hardware manager. * @Param bitmap - bitmap for the features to enabled. * @return 0 on at least one DPM is successfully enabled. */ static int vega10_start_dpm(struct pp_hwmgr *hwmgr, uint32_t bitmap) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint32_t i, feature_mask = 0; for (i = 0; i < GNLD_DPM_MAX; i++) { if (data->smu_features[i].smu_feature_bitmap & bitmap) { if (data->smu_features[i].supported) { if (!data->smu_features[i].enabled) { feature_mask |= data->smu_features[i]. smu_feature_bitmap; data->smu_features[i].enabled = true; } } } } if (vega10_enable_smc_features(hwmgr, true, feature_mask)) { for (i = 0; i < GNLD_DPM_MAX; i++) { if (data->smu_features[i].smu_feature_bitmap & feature_mask) data->smu_features[i].enabled = false; } } if(data->smu_features[GNLD_LED_DISPLAY].supported == true){ PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_LED_DISPLAY].smu_feature_bitmap), "Attempt to Enable LED DPM feature Failed!", return -EINVAL); data->smu_features[GNLD_LED_DISPLAY].enabled = true; } if (data->vbios_boot_state.bsoc_vddc_lock) { smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetFloorSocVoltage, 0); data->vbios_boot_state.bsoc_vddc_lock = false; } if (PP_CAP(PHM_PlatformCaps_Falcon_QuickTransition)) { if (data->smu_features[GNLD_ACDC].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, true, data->smu_features[GNLD_ACDC].smu_feature_bitmap), "Attempt to Enable DS_GFXCLK Feature Failed!", return -1); data->smu_features[GNLD_ACDC].enabled = true; } } return 0; } static int vega10_enable_dpm_tasks(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); int tmp_result, result = 0; tmp_result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_ConfigureTelemetry, data->config_telemetry); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to configure telemetry!", return tmp_result); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, 0); tmp_result = (!vega10_is_dpm_running(hwmgr)) ? 0 : -1; PP_ASSERT_WITH_CODE(!tmp_result, "DPM is already running right , skipping re-enablement!", return 0); tmp_result = vega10_construct_voltage_tables(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to contruct voltage tables!", result = tmp_result); tmp_result = vega10_init_smc_table(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to initialize SMC table!", result = tmp_result); if (PP_CAP(PHM_PlatformCaps_ThermalController)) { tmp_result = vega10_enable_thermal_protection(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable thermal protection!", result = tmp_result); } tmp_result = vega10_enable_vrhot_feature(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable VR hot feature!", result = tmp_result); tmp_result = vega10_enable_deep_sleep_master_switch(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable deep sleep master switch!", result = tmp_result); tmp_result = vega10_start_dpm(hwmgr, SMC_DPM_FEATURES); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to start DPM!", result = tmp_result); /* enable didt, do not abort if failed didt */ tmp_result = vega10_enable_didt_config(hwmgr); PP_ASSERT(!tmp_result, "Failed to enable didt config!"); tmp_result = vega10_enable_power_containment(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable power containment!", result = tmp_result); tmp_result = vega10_power_control_set_level(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to power control set level!", result = tmp_result); tmp_result = vega10_enable_ulv(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to enable ULV!", result = tmp_result); return result; } static int vega10_get_power_state_size(struct pp_hwmgr *hwmgr) { return sizeof(struct vega10_power_state); } static int vega10_get_pp_table_entry_callback_func(struct pp_hwmgr *hwmgr, void *state, struct pp_power_state *power_state, void *pp_table, uint32_t classification_flag) { ATOM_Vega10_GFXCLK_Dependency_Record_V2 *patom_record_V2; struct vega10_power_state *vega10_power_state = cast_phw_vega10_power_state(&(power_state->hardware)); struct vega10_performance_level *performance_level; ATOM_Vega10_State *state_entry = (ATOM_Vega10_State *)state; ATOM_Vega10_POWERPLAYTABLE *powerplay_table = (ATOM_Vega10_POWERPLAYTABLE *)pp_table; ATOM_Vega10_SOCCLK_Dependency_Table *socclk_dep_table = (ATOM_Vega10_SOCCLK_Dependency_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usSocclkDependencyTableOffset)); ATOM_Vega10_GFXCLK_Dependency_Table *gfxclk_dep_table = (ATOM_Vega10_GFXCLK_Dependency_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usGfxclkDependencyTableOffset)); ATOM_Vega10_MCLK_Dependency_Table *mclk_dep_table = (ATOM_Vega10_MCLK_Dependency_Table *) (((unsigned long)powerplay_table) + le16_to_cpu(powerplay_table->usMclkDependencyTableOffset)); /* The following fields are not initialized here: * id orderedList allStatesList */ power_state->classification.ui_label = (le16_to_cpu(state_entry->usClassification) & ATOM_PPLIB_CLASSIFICATION_UI_MASK) >> ATOM_PPLIB_CLASSIFICATION_UI_SHIFT; power_state->classification.flags = classification_flag; /* NOTE: There is a classification2 flag in BIOS * that is not being used right now */ power_state->classification.temporary_state = false; power_state->classification.to_be_deleted = false; power_state->validation.disallowOnDC = ((le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Vega10_DISALLOW_ON_DC) != 0); power_state->display.disableFrameModulation = false; power_state->display.limitRefreshrate = false; power_state->display.enableVariBright = ((le32_to_cpu(state_entry->ulCapsAndSettings) & ATOM_Vega10_ENABLE_VARIBRIGHT) != 0); power_state->validation.supportedPowerLevels = 0; power_state->uvd_clocks.VCLK = 0; power_state->uvd_clocks.DCLK = 0; power_state->temperatures.min = 0; power_state->temperatures.max = 0; performance_level = &(vega10_power_state->performance_levels [vega10_power_state->performance_level_count++]); PP_ASSERT_WITH_CODE( (vega10_power_state->performance_level_count < NUM_GFXCLK_DPM_LEVELS), "Performance levels exceeds SMC limit!", return -1); PP_ASSERT_WITH_CODE( (vega10_power_state->performance_level_count <= hwmgr->platform_descriptor. hardwareActivityPerformanceLevels), "Performance levels exceeds Driver limit!", return -1); /* Performance levels are arranged from low to high. */ performance_level->soc_clock = socclk_dep_table->entries [state_entry->ucSocClockIndexLow].ulClk; performance_level->gfx_clock = gfxclk_dep_table->entries [state_entry->ucGfxClockIndexLow].ulClk; performance_level->mem_clock = mclk_dep_table->entries [state_entry->ucMemClockIndexLow].ulMemClk; performance_level = &(vega10_power_state->performance_levels [vega10_power_state->performance_level_count++]); performance_level->soc_clock = socclk_dep_table->entries [state_entry->ucSocClockIndexHigh].ulClk; if (gfxclk_dep_table->ucRevId == 0) { performance_level->gfx_clock = gfxclk_dep_table->entries [state_entry->ucGfxClockIndexHigh].ulClk; } else if (gfxclk_dep_table->ucRevId == 1) { patom_record_V2 = (ATOM_Vega10_GFXCLK_Dependency_Record_V2 *)gfxclk_dep_table->entries; performance_level->gfx_clock = patom_record_V2[state_entry->ucGfxClockIndexHigh].ulClk; } performance_level->mem_clock = mclk_dep_table->entries [state_entry->ucMemClockIndexHigh].ulMemClk; return 0; } static int vega10_get_pp_table_entry(struct pp_hwmgr *hwmgr, unsigned long entry_index, struct pp_power_state *state) { int result; struct vega10_power_state *ps; state->hardware.magic = PhwVega10_Magic; ps = cast_phw_vega10_power_state(&state->hardware); result = vega10_get_powerplay_table_entry(hwmgr, entry_index, state, vega10_get_pp_table_entry_callback_func); /* * This is the earliest time we have all the dependency table * and the VBIOS boot state */ /* set DC compatible flag if this state supports DC */ if (!state->validation.disallowOnDC) ps->dc_compatible = true; ps->uvd_clks.vclk = state->uvd_clocks.VCLK; ps->uvd_clks.dclk = state->uvd_clocks.DCLK; return 0; } static int vega10_patch_boot_state(struct pp_hwmgr *hwmgr, struct pp_hw_power_state *hw_ps) { return 0; } static int vega10_apply_state_adjust_rules(struct pp_hwmgr *hwmgr, struct pp_power_state *request_ps, const struct pp_power_state *current_ps) { struct vega10_power_state *vega10_ps = cast_phw_vega10_power_state(&request_ps->hardware); uint32_t sclk; uint32_t mclk; struct PP_Clocks minimum_clocks = {0}; bool disable_mclk_switching; bool disable_mclk_switching_for_frame_lock; bool disable_mclk_switching_for_vr; bool force_mclk_high; struct cgs_display_info info = {0}; const struct phm_clock_and_voltage_limits *max_limits; uint32_t i; struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); int32_t count; uint32_t stable_pstate_sclk_dpm_percentage; uint32_t stable_pstate_sclk = 0, stable_pstate_mclk = 0; uint32_t latency; data->battery_state = (PP_StateUILabel_Battery == request_ps->classification.ui_label); if (vega10_ps->performance_level_count != 2) pr_info("VI should always have 2 performance levels"); max_limits = (PP_PowerSource_AC == hwmgr->power_source) ? &(hwmgr->dyn_state.max_clock_voltage_on_ac) : &(hwmgr->dyn_state.max_clock_voltage_on_dc); /* Cap clock DPM tables at DC MAX if it is in DC. */ if (PP_PowerSource_DC == hwmgr->power_source) { for (i = 0; i < vega10_ps->performance_level_count; i++) { if (vega10_ps->performance_levels[i].mem_clock > max_limits->mclk) vega10_ps->performance_levels[i].mem_clock = max_limits->mclk; if (vega10_ps->performance_levels[i].gfx_clock > max_limits->sclk) vega10_ps->performance_levels[i].gfx_clock = max_limits->sclk; } } vega10_ps->vce_clks.evclk = hwmgr->vce_arbiter.evclk; vega10_ps->vce_clks.ecclk = hwmgr->vce_arbiter.ecclk; cgs_get_active_displays_info(hwmgr->device, &info); /* result = PHM_CheckVBlankTime(hwmgr, &vblankTooShort);*/ minimum_clocks.engineClock = hwmgr->display_config.min_core_set_clock; minimum_clocks.memoryClock = hwmgr->display_config.min_mem_set_clock; if (PP_CAP(PHM_PlatformCaps_StablePState)) { PP_ASSERT_WITH_CODE( data->registry_data.stable_pstate_sclk_dpm_percentage >= 1 && data->registry_data.stable_pstate_sclk_dpm_percentage <= 100, "percent sclk value must range from 1% to 100%, setting default value", stable_pstate_sclk_dpm_percentage = 75); max_limits = &(hwmgr->dyn_state.max_clock_voltage_on_ac); stable_pstate_sclk = (max_limits->sclk * stable_pstate_sclk_dpm_percentage) / 100; for (count = table_info->vdd_dep_on_sclk->count - 1; count >= 0; count--) { if (stable_pstate_sclk >= table_info->vdd_dep_on_sclk->entries[count].clk) { stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[count].clk; break; } } if (count < 0) stable_pstate_sclk = table_info->vdd_dep_on_sclk->entries[0].clk; stable_pstate_mclk = max_limits->mclk; minimum_clocks.engineClock = stable_pstate_sclk; minimum_clocks.memoryClock = stable_pstate_mclk; } if (minimum_clocks.engineClock < hwmgr->gfx_arbiter.sclk) minimum_clocks.engineClock = hwmgr->gfx_arbiter.sclk; if (minimum_clocks.memoryClock < hwmgr->gfx_arbiter.mclk) minimum_clocks.memoryClock = hwmgr->gfx_arbiter.mclk; vega10_ps->sclk_threshold = hwmgr->gfx_arbiter.sclk_threshold; if (hwmgr->gfx_arbiter.sclk_over_drive) { PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.sclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.engineClock), "Overdrive sclk exceeds limit", hwmgr->gfx_arbiter.sclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.engineClock); if (hwmgr->gfx_arbiter.sclk_over_drive >= hwmgr->gfx_arbiter.sclk) vega10_ps->performance_levels[1].gfx_clock = hwmgr->gfx_arbiter.sclk_over_drive; } if (hwmgr->gfx_arbiter.mclk_over_drive) { PP_ASSERT_WITH_CODE((hwmgr->gfx_arbiter.mclk_over_drive <= hwmgr->platform_descriptor.overdriveLimit.memoryClock), "Overdrive mclk exceeds limit", hwmgr->gfx_arbiter.mclk_over_drive = hwmgr->platform_descriptor.overdriveLimit.memoryClock); if (hwmgr->gfx_arbiter.mclk_over_drive >= hwmgr->gfx_arbiter.mclk) vega10_ps->performance_levels[1].mem_clock = hwmgr->gfx_arbiter.mclk_over_drive; } disable_mclk_switching_for_frame_lock = phm_cap_enabled( hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_DisableMclkSwitchingForFrameLock); disable_mclk_switching_for_vr = PP_CAP(PHM_PlatformCaps_DisableMclkSwitchForVR); force_mclk_high = PP_CAP(PHM_PlatformCaps_ForceMclkHigh); disable_mclk_switching = (info.display_count > 1) || disable_mclk_switching_for_frame_lock || disable_mclk_switching_for_vr || force_mclk_high; sclk = vega10_ps->performance_levels[0].gfx_clock; mclk = vega10_ps->performance_levels[0].mem_clock; if (sclk < minimum_clocks.engineClock) sclk = (minimum_clocks.engineClock > max_limits->sclk) ? max_limits->sclk : minimum_clocks.engineClock; if (mclk < minimum_clocks.memoryClock) mclk = (minimum_clocks.memoryClock > max_limits->mclk) ? max_limits->mclk : minimum_clocks.memoryClock; vega10_ps->performance_levels[0].gfx_clock = sclk; vega10_ps->performance_levels[0].mem_clock = mclk; if (vega10_ps->performance_levels[1].gfx_clock < vega10_ps->performance_levels[0].gfx_clock) vega10_ps->performance_levels[0].gfx_clock = vega10_ps->performance_levels[1].gfx_clock; if (disable_mclk_switching) { /* Set Mclk the max of level 0 and level 1 */ if (mclk < vega10_ps->performance_levels[1].mem_clock) mclk = vega10_ps->performance_levels[1].mem_clock; /* Find the lowest MCLK frequency that is within * the tolerable latency defined in DAL */ latency = 0; for (i = 0; i < data->mclk_latency_table.count; i++) { if ((data->mclk_latency_table.entries[i].latency <= latency) && (data->mclk_latency_table.entries[i].frequency >= vega10_ps->performance_levels[0].mem_clock) && (data->mclk_latency_table.entries[i].frequency <= vega10_ps->performance_levels[1].mem_clock)) mclk = data->mclk_latency_table.entries[i].frequency; } vega10_ps->performance_levels[0].mem_clock = mclk; } else { if (vega10_ps->performance_levels[1].mem_clock < vega10_ps->performance_levels[0].mem_clock) vega10_ps->performance_levels[0].mem_clock = vega10_ps->performance_levels[1].mem_clock; } if (PP_CAP(PHM_PlatformCaps_StablePState)) { for (i = 0; i < vega10_ps->performance_level_count; i++) { vega10_ps->performance_levels[i].gfx_clock = stable_pstate_sclk; vega10_ps->performance_levels[i].mem_clock = stable_pstate_mclk; } } return 0; } static int vega10_find_dpm_states_clocks_in_dpm_table(struct pp_hwmgr *hwmgr, const void *input) { const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct vega10_power_state *vega10_ps = cast_const_phw_vega10_power_state(states->pnew_state); struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); uint32_t sclk = vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock; struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); uint32_t mclk = vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].mem_clock; struct PP_Clocks min_clocks = {0}; uint32_t i; struct cgs_display_info info = {0}; data->need_update_dpm_table = 0; if (PP_CAP(PHM_PlatformCaps_ODNinACSupport) || PP_CAP(PHM_PlatformCaps_ODNinDCSupport)) { for (i = 0; i < sclk_table->count; i++) { if (sclk == sclk_table->dpm_levels[i].value) break; } if (!(data->apply_overdrive_next_settings_mask & DPMTABLE_OD_UPDATE_SCLK) && i >= sclk_table->count) { /* Check SCLK in DAL's minimum clocks * in case DeepSleep divider update is required. */ if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR && (min_clocks.engineClockInSR >= VEGA10_MINIMUM_ENGINE_CLOCK || data->display_timing.min_clock_in_sr >= VEGA10_MINIMUM_ENGINE_CLOCK)) data->need_update_dpm_table |= DPMTABLE_UPDATE_SCLK; } cgs_get_active_displays_info(hwmgr->device, &info); if (data->display_timing.num_existing_displays != info.display_count) data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK; } else { for (i = 0; i < sclk_table->count; i++) { if (sclk == sclk_table->dpm_levels[i].value) break; } if (i >= sclk_table->count) data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_SCLK; else { /* Check SCLK in DAL's minimum clocks * in case DeepSleep divider update is required. */ if (data->display_timing.min_clock_in_sr != min_clocks.engineClockInSR && (min_clocks.engineClockInSR >= VEGA10_MINIMUM_ENGINE_CLOCK || data->display_timing.min_clock_in_sr >= VEGA10_MINIMUM_ENGINE_CLOCK)) data->need_update_dpm_table |= DPMTABLE_UPDATE_SCLK; } for (i = 0; i < mclk_table->count; i++) { if (mclk == mclk_table->dpm_levels[i].value) break; } cgs_get_active_displays_info(hwmgr->device, &info); if (i >= mclk_table->count) data->need_update_dpm_table |= DPMTABLE_OD_UPDATE_MCLK; if (data->display_timing.num_existing_displays != info.display_count || i >= mclk_table->count) data->need_update_dpm_table |= DPMTABLE_UPDATE_MCLK; } return 0; } static int vega10_populate_and_upload_sclk_mclk_dpm_levels( struct pp_hwmgr *hwmgr, const void *input) { int result = 0; const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct vega10_power_state *vega10_ps = cast_const_phw_vega10_power_state(states->pnew_state); struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint32_t sclk = vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock; uint32_t mclk = vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].mem_clock; struct vega10_dpm_table *dpm_table = &data->dpm_table; struct vega10_dpm_table *golden_dpm_table = &data->golden_dpm_table; uint32_t dpm_count, clock_percent; uint32_t i; if (PP_CAP(PHM_PlatformCaps_ODNinACSupport) || PP_CAP(PHM_PlatformCaps_ODNinDCSupport)) { if (!data->need_update_dpm_table && !data->apply_optimized_settings && !data->apply_overdrive_next_settings_mask) return 0; if (data->apply_overdrive_next_settings_mask & DPMTABLE_OD_UPDATE_SCLK) { for (dpm_count = 0; dpm_count < dpm_table->gfx_table.count; dpm_count++) { dpm_table->gfx_table.dpm_levels[dpm_count].enabled = data->odn_dpm_table.odn_core_clock_dpm_levels. performance_level_entries[dpm_count].enabled; dpm_table->gfx_table.dpm_levels[dpm_count].value = data->odn_dpm_table.odn_core_clock_dpm_levels. performance_level_entries[dpm_count].clock; } } if (data->apply_overdrive_next_settings_mask & DPMTABLE_OD_UPDATE_MCLK) { for (dpm_count = 0; dpm_count < dpm_table->mem_table.count; dpm_count++) { dpm_table->mem_table.dpm_levels[dpm_count].enabled = data->odn_dpm_table.odn_memory_clock_dpm_levels. performance_level_entries[dpm_count].enabled; dpm_table->mem_table.dpm_levels[dpm_count].value = data->odn_dpm_table.odn_memory_clock_dpm_levels. performance_level_entries[dpm_count].clock; } } if ((data->need_update_dpm_table & DPMTABLE_UPDATE_SCLK) || data->apply_optimized_settings || (data->apply_overdrive_next_settings_mask & DPMTABLE_OD_UPDATE_SCLK)) { result = vega10_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate SCLK during \ PopulateNewDPMClocksStates Function!", return result); } if ((data->need_update_dpm_table & DPMTABLE_UPDATE_MCLK) || (data->apply_overdrive_next_settings_mask & DPMTABLE_OD_UPDATE_MCLK)){ result = vega10_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate MCLK during \ PopulateNewDPMClocksStates Function!", return result); } } else { if (!data->need_update_dpm_table && !data->apply_optimized_settings) return 0; if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_SCLK && data->smu_features[GNLD_DPM_GFXCLK].supported) { dpm_table-> gfx_table.dpm_levels[dpm_table->gfx_table.count - 1]. value = sclk; if (PP_CAP(PHM_PlatformCaps_OD6PlusinACSupport) || PP_CAP(PHM_PlatformCaps_OD6PlusinDCSupport)) { /* Need to do calculation based on the golden DPM table * as the Heatmap GPU Clock axis is also based on * the default values */ PP_ASSERT_WITH_CODE( golden_dpm_table->gfx_table.dpm_levels [golden_dpm_table->gfx_table.count - 1].value, "Divide by 0!", return -1); dpm_count = dpm_table->gfx_table.count < 2 ? 0 : dpm_table->gfx_table.count - 2; for (i = dpm_count; i > 1; i--) { if (sclk > golden_dpm_table->gfx_table.dpm_levels [golden_dpm_table->gfx_table.count - 1].value) { clock_percent = ((sclk - golden_dpm_table->gfx_table.dpm_levels [golden_dpm_table->gfx_table.count - 1].value) * 100) / golden_dpm_table->gfx_table.dpm_levels [golden_dpm_table->gfx_table.count - 1].value; dpm_table->gfx_table.dpm_levels[i].value = golden_dpm_table->gfx_table.dpm_levels[i].value + (golden_dpm_table->gfx_table.dpm_levels[i].value * clock_percent) / 100; } else if (golden_dpm_table-> gfx_table.dpm_levels[dpm_table->gfx_table.count-1].value > sclk) { clock_percent = ((golden_dpm_table->gfx_table.dpm_levels [golden_dpm_table->gfx_table.count - 1].value - sclk) * 100) / golden_dpm_table->gfx_table.dpm_levels [golden_dpm_table->gfx_table.count-1].value; dpm_table->gfx_table.dpm_levels[i].value = golden_dpm_table->gfx_table.dpm_levels[i].value - (golden_dpm_table->gfx_table.dpm_levels[i].value * clock_percent) / 100; } else dpm_table->gfx_table.dpm_levels[i].value = golden_dpm_table->gfx_table.dpm_levels[i].value; } } } if (data->need_update_dpm_table & DPMTABLE_OD_UPDATE_MCLK && data->smu_features[GNLD_DPM_UCLK].supported) { dpm_table-> mem_table.dpm_levels[dpm_table->mem_table.count - 1]. value = mclk; if (PP_CAP(PHM_PlatformCaps_OD6PlusinACSupport) || PP_CAP(PHM_PlatformCaps_OD6PlusinDCSupport)) { PP_ASSERT_WITH_CODE( golden_dpm_table->mem_table.dpm_levels [golden_dpm_table->mem_table.count - 1].value, "Divide by 0!", return -1); dpm_count = dpm_table->mem_table.count < 2 ? 0 : dpm_table->mem_table.count - 2; for (i = dpm_count; i > 1; i--) { if (mclk > golden_dpm_table->mem_table.dpm_levels [golden_dpm_table->mem_table.count-1].value) { clock_percent = ((mclk - golden_dpm_table->mem_table.dpm_levels [golden_dpm_table->mem_table.count-1].value) * 100) / golden_dpm_table->mem_table.dpm_levels [golden_dpm_table->mem_table.count-1].value; dpm_table->mem_table.dpm_levels[i].value = golden_dpm_table->mem_table.dpm_levels[i].value + (golden_dpm_table->mem_table.dpm_levels[i].value * clock_percent) / 100; } else if (golden_dpm_table->mem_table.dpm_levels [dpm_table->mem_table.count-1].value > mclk) { clock_percent = ((golden_dpm_table->mem_table.dpm_levels [golden_dpm_table->mem_table.count-1].value - mclk) * 100) / golden_dpm_table->mem_table.dpm_levels [golden_dpm_table->mem_table.count-1].value; dpm_table->mem_table.dpm_levels[i].value = golden_dpm_table->mem_table.dpm_levels[i].value - (golden_dpm_table->mem_table.dpm_levels[i].value * clock_percent) / 100; } else dpm_table->mem_table.dpm_levels[i].value = golden_dpm_table->mem_table.dpm_levels[i].value; } } } if ((data->need_update_dpm_table & (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_UPDATE_SCLK)) || data->apply_optimized_settings) { result = vega10_populate_all_graphic_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate SCLK during \ PopulateNewDPMClocksStates Function!", return result); } if (data->need_update_dpm_table & (DPMTABLE_OD_UPDATE_MCLK + DPMTABLE_UPDATE_MCLK)) { result = vega10_populate_all_memory_levels(hwmgr); PP_ASSERT_WITH_CODE(!result, "Failed to populate MCLK during \ PopulateNewDPMClocksStates Function!", return result); } } return result; } static int vega10_trim_single_dpm_states(struct pp_hwmgr *hwmgr, struct vega10_single_dpm_table *dpm_table, uint32_t low_limit, uint32_t high_limit) { uint32_t i; for (i = 0; i < dpm_table->count; i++) { if ((dpm_table->dpm_levels[i].value < low_limit) || (dpm_table->dpm_levels[i].value > high_limit)) dpm_table->dpm_levels[i].enabled = false; else dpm_table->dpm_levels[i].enabled = true; } return 0; } static int vega10_trim_single_dpm_states_with_mask(struct pp_hwmgr *hwmgr, struct vega10_single_dpm_table *dpm_table, uint32_t low_limit, uint32_t high_limit, uint32_t disable_dpm_mask) { uint32_t i; for (i = 0; i < dpm_table->count; i++) { if ((dpm_table->dpm_levels[i].value < low_limit) || (dpm_table->dpm_levels[i].value > high_limit)) dpm_table->dpm_levels[i].enabled = false; else if (!((1 << i) & disable_dpm_mask)) dpm_table->dpm_levels[i].enabled = false; else dpm_table->dpm_levels[i].enabled = true; } return 0; } static int vega10_trim_dpm_states(struct pp_hwmgr *hwmgr, const struct vega10_power_state *vega10_ps) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint32_t high_limit_count; PP_ASSERT_WITH_CODE((vega10_ps->performance_level_count >= 1), "power state did not have any performance level", return -1); high_limit_count = (vega10_ps->performance_level_count == 1) ? 0 : 1; vega10_trim_single_dpm_states(hwmgr, &(data->dpm_table.soc_table), vega10_ps->performance_levels[0].soc_clock, vega10_ps->performance_levels[high_limit_count].soc_clock); vega10_trim_single_dpm_states_with_mask(hwmgr, &(data->dpm_table.gfx_table), vega10_ps->performance_levels[0].gfx_clock, vega10_ps->performance_levels[high_limit_count].gfx_clock, data->disable_dpm_mask); vega10_trim_single_dpm_states(hwmgr, &(data->dpm_table.mem_table), vega10_ps->performance_levels[0].mem_clock, vega10_ps->performance_levels[high_limit_count].mem_clock); return 0; } static uint32_t vega10_find_lowest_dpm_level( struct vega10_single_dpm_table *table) { uint32_t i; for (i = 0; i < table->count; i++) { if (table->dpm_levels[i].enabled) break; } return i; } static uint32_t vega10_find_highest_dpm_level( struct vega10_single_dpm_table *table) { uint32_t i = 0; if (table->count <= MAX_REGULAR_DPM_NUMBER) { for (i = table->count; i > 0; i--) { if (table->dpm_levels[i - 1].enabled) return i - 1; } } else { pr_info("DPM Table Has Too Many Entries!"); return MAX_REGULAR_DPM_NUMBER - 1; } return i; } static void vega10_apply_dal_minimum_voltage_request( struct pp_hwmgr *hwmgr) { return; } static int vega10_get_soc_index_for_max_uclk(struct pp_hwmgr *hwmgr) { struct phm_ppt_v1_clock_voltage_dependency_table *vdd_dep_table_on_mclk; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); vdd_dep_table_on_mclk = table_info->vdd_dep_on_mclk; return vdd_dep_table_on_mclk->entries[NUM_UCLK_DPM_LEVELS - 1].vddInd + 1; } static int vega10_upload_dpm_bootup_level(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint32_t socclk_idx; vega10_apply_dal_minimum_voltage_request(hwmgr); if (!data->registry_data.sclk_dpm_key_disabled) { if (data->smc_state_table.gfx_boot_level != data->dpm_table.gfx_table.dpm_state.soft_min_level) { PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinGfxclkByIndex, data->smc_state_table.gfx_boot_level), "Failed to set soft min sclk index!", return -EINVAL); data->dpm_table.gfx_table.dpm_state.soft_min_level = data->smc_state_table.gfx_boot_level; } } if (!data->registry_data.mclk_dpm_key_disabled) { if (data->smc_state_table.mem_boot_level != data->dpm_table.mem_table.dpm_state.soft_min_level) { if (data->smc_state_table.mem_boot_level == NUM_UCLK_DPM_LEVELS - 1) { socclk_idx = vega10_get_soc_index_for_max_uclk(hwmgr); PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinSocclkByIndex, socclk_idx), "Failed to set soft min uclk index!", return -EINVAL); } else { PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, data->smc_state_table.mem_boot_level), "Failed to set soft min uclk index!", return -EINVAL); } data->dpm_table.mem_table.dpm_state.soft_min_level = data->smc_state_table.mem_boot_level; } } return 0; } static int vega10_upload_dpm_max_level(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); vega10_apply_dal_minimum_voltage_request(hwmgr); if (!data->registry_data.sclk_dpm_key_disabled) { if (data->smc_state_table.gfx_max_level != data->dpm_table.gfx_table.dpm_state.soft_max_level) { PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxGfxclkByIndex, data->smc_state_table.gfx_max_level), "Failed to set soft max sclk index!", return -EINVAL); data->dpm_table.gfx_table.dpm_state.soft_max_level = data->smc_state_table.gfx_max_level; } } if (!data->registry_data.mclk_dpm_key_disabled) { if (data->smc_state_table.mem_max_level != data->dpm_table.mem_table.dpm_state.soft_max_level) { PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMaxUclkByIndex, data->smc_state_table.mem_max_level), "Failed to set soft max mclk index!", return -EINVAL); data->dpm_table.mem_table.dpm_state.soft_max_level = data->smc_state_table.mem_max_level; } } return 0; } static int vega10_generate_dpm_level_enable_mask( struct pp_hwmgr *hwmgr, const void *input) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); const struct phm_set_power_state_input *states = (const struct phm_set_power_state_input *)input; const struct vega10_power_state *vega10_ps = cast_const_phw_vega10_power_state(states->pnew_state); int i; PP_ASSERT_WITH_CODE(!vega10_trim_dpm_states(hwmgr, vega10_ps), "Attempt to Trim DPM States Failed!", return -1); data->smc_state_table.gfx_boot_level = vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.gfx_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.mem_boot_level = vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); data->smc_state_table.mem_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Attempt to upload DPM Bootup Levels Failed!", return -1); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Attempt to upload DPM Max Levels Failed!", return -1); for(i = data->smc_state_table.gfx_boot_level; i < data->smc_state_table.gfx_max_level; i++) data->dpm_table.gfx_table.dpm_levels[i].enabled = true; for(i = data->smc_state_table.mem_boot_level; i < data->smc_state_table.mem_max_level; i++) data->dpm_table.mem_table.dpm_levels[i].enabled = true; return 0; } int vega10_enable_disable_vce_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DPM_VCE].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_VCE].smu_feature_bitmap), "Attempt to Enable/Disable DPM VCE Failed!", return -1); data->smu_features[GNLD_DPM_VCE].enabled = enable; } return 0; } static int vega10_update_sclk_threshold(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); int result = 0; uint32_t low_sclk_interrupt_threshold = 0; if (PP_CAP(PHM_PlatformCaps_SclkThrottleLowNotification) && (hwmgr->gfx_arbiter.sclk_threshold != data->low_sclk_interrupt_threshold)) { data->low_sclk_interrupt_threshold = hwmgr->gfx_arbiter.sclk_threshold; low_sclk_interrupt_threshold = data->low_sclk_interrupt_threshold; data->smc_state_table.pp_table.LowGfxclkInterruptThreshold = cpu_to_le32(low_sclk_interrupt_threshold); /* This message will also enable SmcToHost Interrupt */ result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetLowGfxclkInterruptThreshold, (uint32_t)low_sclk_interrupt_threshold); } return result; } static int vega10_set_power_state_tasks(struct pp_hwmgr *hwmgr, const void *input) { int tmp_result, result = 0; struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); PPTable_t *pp_table = &(data->smc_state_table.pp_table); tmp_result = vega10_find_dpm_states_clocks_in_dpm_table(hwmgr, input); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to find DPM states clocks in DPM table!", result = tmp_result); tmp_result = vega10_populate_and_upload_sclk_mclk_dpm_levels(hwmgr, input); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to populate and upload SCLK MCLK DPM levels!", result = tmp_result); tmp_result = vega10_generate_dpm_level_enable_mask(hwmgr, input); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to generate DPM level enabled mask!", result = tmp_result); tmp_result = vega10_update_sclk_threshold(hwmgr); PP_ASSERT_WITH_CODE(!tmp_result, "Failed to update SCLK threshold!", result = tmp_result); result = vega10_copy_table_to_smc(hwmgr, (uint8_t *)pp_table, PPTABLE); PP_ASSERT_WITH_CODE(!result, "Failed to upload PPtable!", return result); data->apply_optimized_settings = false; data->apply_overdrive_next_settings_mask = 0; return 0; } static uint32_t vega10_dpm_get_sclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct vega10_power_state *vega10_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; vega10_ps = cast_phw_vega10_power_state(&ps->hardware); if (low) return vega10_ps->performance_levels[0].gfx_clock; else return vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock; } static uint32_t vega10_dpm_get_mclk(struct pp_hwmgr *hwmgr, bool low) { struct pp_power_state *ps; struct vega10_power_state *vega10_ps; if (hwmgr == NULL) return -EINVAL; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; vega10_ps = cast_phw_vega10_power_state(&ps->hardware); if (low) return vega10_ps->performance_levels[0].mem_clock; else return vega10_ps->performance_levels [vega10_ps->performance_level_count-1].mem_clock; } static int vega10_get_gpu_power(struct pp_hwmgr *hwmgr, struct pp_gpu_power *query) { uint32_t value; PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrPkgPwr), "Failed to get current package power!", return -EINVAL); vega10_read_arg_from_smc(hwmgr, &value); /* power value is an integer */ query->average_gpu_power = value << 8; return 0; } static int vega10_read_sensor(struct pp_hwmgr *hwmgr, int idx, void *value, int *size) { uint32_t sclk_idx, mclk_idx, activity_percent = 0; struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_dpm_table *dpm_table = &data->dpm_table; int ret = 0; switch (idx) { case AMDGPU_PP_SENSOR_GFX_SCLK: ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex); if (!ret) { vega10_read_arg_from_smc(hwmgr, &sclk_idx); *((uint32_t *)value) = dpm_table->gfx_table.dpm_levels[sclk_idx].value; *size = 4; } break; case AMDGPU_PP_SENSOR_GFX_MCLK: ret = smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex); if (!ret) { vega10_read_arg_from_smc(hwmgr, &mclk_idx); *((uint32_t *)value) = dpm_table->mem_table.dpm_levels[mclk_idx].value; *size = 4; } break; case AMDGPU_PP_SENSOR_GPU_LOAD: ret = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_GetAverageGfxActivity, 0); if (!ret) { vega10_read_arg_from_smc(hwmgr, &activity_percent); *((uint32_t *)value) = activity_percent > 100 ? 100 : activity_percent; *size = 4; } break; case AMDGPU_PP_SENSOR_GPU_TEMP: *((uint32_t *)value) = vega10_thermal_get_temperature(hwmgr); *size = 4; break; case AMDGPU_PP_SENSOR_UVD_POWER: *((uint32_t *)value) = data->uvd_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_VCE_POWER: *((uint32_t *)value) = data->vce_power_gated ? 0 : 1; *size = 4; break; case AMDGPU_PP_SENSOR_GPU_POWER: if (*size < sizeof(struct pp_gpu_power)) ret = -EINVAL; else { *size = sizeof(struct pp_gpu_power); ret = vega10_get_gpu_power(hwmgr, (struct pp_gpu_power *)value); } break; default: ret = -EINVAL; break; } return ret; } static int vega10_notify_smc_display_change(struct pp_hwmgr *hwmgr, bool has_disp) { return smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetUclkFastSwitch, has_disp ? 0 : 1); } int vega10_display_clock_voltage_request(struct pp_hwmgr *hwmgr, struct pp_display_clock_request *clock_req) { int result = 0; enum amd_pp_clock_type clk_type = clock_req->clock_type; uint32_t clk_freq = clock_req->clock_freq_in_khz / 1000; DSPCLK_e clk_select = 0; uint32_t clk_request = 0; switch (clk_type) { case amd_pp_dcef_clock: clk_select = DSPCLK_DCEFCLK; break; case amd_pp_disp_clock: clk_select = DSPCLK_DISPCLK; break; case amd_pp_pixel_clock: clk_select = DSPCLK_PIXCLK; break; case amd_pp_phy_clock: clk_select = DSPCLK_PHYCLK; break; default: pr_info("[DisplayClockVoltageRequest]Invalid Clock Type!"); result = -1; break; } if (!result) { clk_request = (clk_freq << 16) | clk_select; result = smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_RequestDisplayClockByFreq, clk_request); } return result; } static uint8_t vega10_get_uclk_index(struct pp_hwmgr *hwmgr, struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table, uint32_t frequency) { uint8_t count; uint8_t i; if (mclk_table == NULL || mclk_table->count == 0) return 0; count = (uint8_t)(mclk_table->count); for(i = 0; i < count; i++) { if(mclk_table->entries[i].clk >= frequency) return i; } return i-1; } static int vega10_notify_smc_display_config_after_ps_adjustment( struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_single_dpm_table *dpm_table = &data->dpm_table.dcef_table; struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *mclk_table = table_info->vdd_dep_on_mclk; uint32_t idx; uint32_t num_active_disps = 0; struct cgs_display_info info = {0}; struct PP_Clocks min_clocks = {0}; uint32_t i; struct pp_display_clock_request clock_req; info.mode_info = NULL; cgs_get_active_displays_info(hwmgr->device, &info); num_active_disps = info.display_count; if (num_active_disps > 1) vega10_notify_smc_display_change(hwmgr, false); else vega10_notify_smc_display_change(hwmgr, true); min_clocks.dcefClock = hwmgr->display_config.min_dcef_set_clk; min_clocks.dcefClockInSR = hwmgr->display_config.min_dcef_deep_sleep_set_clk; min_clocks.memoryClock = hwmgr->display_config.min_mem_set_clock; for (i = 0; i < dpm_table->count; i++) { if (dpm_table->dpm_levels[i].value == min_clocks.dcefClock) break; } if (i < dpm_table->count) { clock_req.clock_type = amd_pp_dcef_clock; clock_req.clock_freq_in_khz = dpm_table->dpm_levels[i].value; if (!vega10_display_clock_voltage_request(hwmgr, &clock_req)) { PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetMinDeepSleepDcefclk, min_clocks.dcefClockInSR /100), "Attempt to set divider for DCEFCLK Failed!",); } else { pr_info("Attempt to set Hard Min for DCEFCLK Failed!"); } } else { pr_debug("Cannot find requested DCEFCLK!"); } if (min_clocks.memoryClock != 0) { idx = vega10_get_uclk_index(hwmgr, mclk_table, min_clocks.memoryClock); smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, idx); data->dpm_table.mem_table.dpm_state.soft_min_level= idx; } return 0; } static int vega10_force_dpm_highest(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); data->smc_state_table.gfx_boot_level = data->smc_state_table.gfx_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.mem_boot_level = data->smc_state_table.mem_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload boot level to highest!", return -1); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -1); return 0; } static int vega10_force_dpm_lowest(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); data->smc_state_table.gfx_boot_level = data->smc_state_table.gfx_max_level = vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.mem_boot_level = data->smc_state_table.mem_max_level = vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload boot level to highest!", return -1); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -1); return 0; } static int vega10_unforce_dpm_levels(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); data->smc_state_table.gfx_boot_level = vega10_find_lowest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.gfx_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.gfx_table)); data->smc_state_table.mem_boot_level = vega10_find_lowest_dpm_level(&(data->dpm_table.mem_table)); data->smc_state_table.mem_max_level = vega10_find_highest_dpm_level(&(data->dpm_table.mem_table)); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload DPM Bootup Levels!", return -1); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload DPM Max Levels!", return -1); return 0; } static int vega10_get_profiling_clk_mask(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level, uint32_t *sclk_mask, uint32_t *mclk_mask, uint32_t *soc_mask) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)(hwmgr->pptable); if (table_info->vdd_dep_on_sclk->count > VEGA10_UMD_PSTATE_GFXCLK_LEVEL && table_info->vdd_dep_on_socclk->count > VEGA10_UMD_PSTATE_SOCCLK_LEVEL && table_info->vdd_dep_on_mclk->count > VEGA10_UMD_PSTATE_MCLK_LEVEL) { *sclk_mask = VEGA10_UMD_PSTATE_GFXCLK_LEVEL; *soc_mask = VEGA10_UMD_PSTATE_SOCCLK_LEVEL; *mclk_mask = VEGA10_UMD_PSTATE_MCLK_LEVEL; } if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK) { *sclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK) { *mclk_mask = 0; } else if (level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) { *sclk_mask = table_info->vdd_dep_on_sclk->count - 1; *soc_mask = table_info->vdd_dep_on_socclk->count - 1; *mclk_mask = table_info->vdd_dep_on_mclk->count - 1; } return 0; } static void vega10_set_fan_control_mode(struct pp_hwmgr *hwmgr, uint32_t mode) { switch (mode) { case AMD_FAN_CTRL_NONE: vega10_fan_ctrl_set_fan_speed_percent(hwmgr, 100); break; case AMD_FAN_CTRL_MANUAL: if (PP_CAP(PHM_PlatformCaps_MicrocodeFanControl)) vega10_fan_ctrl_stop_smc_fan_control(hwmgr); break; case AMD_FAN_CTRL_AUTO: if (!vega10_fan_ctrl_set_static_mode(hwmgr, mode)) vega10_fan_ctrl_start_smc_fan_control(hwmgr); break; default: break; } } static int vega10_dpm_force_dpm_level(struct pp_hwmgr *hwmgr, enum amd_dpm_forced_level level) { int ret = 0; uint32_t sclk_mask = 0; uint32_t mclk_mask = 0; uint32_t soc_mask = 0; switch (level) { case AMD_DPM_FORCED_LEVEL_HIGH: ret = vega10_force_dpm_highest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_LOW: ret = vega10_force_dpm_lowest(hwmgr); break; case AMD_DPM_FORCED_LEVEL_AUTO: ret = vega10_unforce_dpm_levels(hwmgr); break; case AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK: case AMD_DPM_FORCED_LEVEL_PROFILE_PEAK: ret = vega10_get_profiling_clk_mask(hwmgr, level, &sclk_mask, &mclk_mask, &soc_mask); if (ret) return ret; vega10_force_clock_level(hwmgr, PP_SCLK, 1<dpm_level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_NONE); else if (level != AMD_DPM_FORCED_LEVEL_PROFILE_PEAK && hwmgr->dpm_level == AMD_DPM_FORCED_LEVEL_PROFILE_PEAK) vega10_set_fan_control_mode(hwmgr, AMD_FAN_CTRL_AUTO); } return ret; } static uint32_t vega10_get_fan_control_mode(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_FAN_CONTROL].enabled == false) return AMD_FAN_CTRL_MANUAL; else return AMD_FAN_CTRL_AUTO; } static int vega10_get_dal_power_level(struct pp_hwmgr *hwmgr, struct amd_pp_simple_clock_info *info) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_clock_and_voltage_limits *max_limits = &table_info->max_clock_voltage_on_ac; info->engine_max_clock = max_limits->sclk; info->memory_max_clock = max_limits->mclk; return 0; } static void vega10_get_sclks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_sclk; uint32_t i; for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].clk) { clocks->data[clocks->num_levels].clocks_in_khz = dep_table->entries[i].clk; clocks->num_levels++; } } } static uint32_t vega10_get_mem_latency(struct pp_hwmgr *hwmgr, uint32_t clock) { if (clock >= MEM_FREQ_LOW_LATENCY && clock < MEM_FREQ_HIGH_LATENCY) return MEM_LATENCY_HIGH; else if (clock >= MEM_FREQ_HIGH_LATENCY) return MEM_LATENCY_LOW; else return MEM_LATENCY_ERR; } static void vega10_get_memclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_mclk; struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint32_t i; clocks->num_levels = 0; data->mclk_latency_table.count = 0; for (i = 0; i < dep_table->count; i++) { if (dep_table->entries[i].clk) { clocks->data[clocks->num_levels].clocks_in_khz = data->mclk_latency_table.entries [data->mclk_latency_table.count].frequency = dep_table->entries[i].clk; clocks->data[clocks->num_levels].latency_in_us = data->mclk_latency_table.entries [data->mclk_latency_table.count].latency = vega10_get_mem_latency(hwmgr, dep_table->entries[i].clk); clocks->num_levels++; data->mclk_latency_table.count++; } } } static void vega10_get_dcefclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_dcefclk; uint32_t i; for (i = 0; i < dep_table->count; i++) { clocks->data[i].clocks_in_khz = dep_table->entries[i].clk; clocks->data[i].latency_in_us = 0; clocks->num_levels++; } } static void vega10_get_socclocks(struct pp_hwmgr *hwmgr, struct pp_clock_levels_with_latency *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table = table_info->vdd_dep_on_socclk; uint32_t i; for (i = 0; i < dep_table->count; i++) { clocks->data[i].clocks_in_khz = dep_table->entries[i].clk; clocks->data[i].latency_in_us = 0; clocks->num_levels++; } } static int vega10_get_clock_by_type_with_latency(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_latency *clocks) { switch (type) { case amd_pp_sys_clock: vega10_get_sclks(hwmgr, clocks); break; case amd_pp_mem_clock: vega10_get_memclocks(hwmgr, clocks); break; case amd_pp_dcef_clock: vega10_get_dcefclocks(hwmgr, clocks); break; case amd_pp_soc_clock: vega10_get_socclocks(hwmgr, clocks); break; default: return -1; } return 0; } static int vega10_get_clock_by_type_with_voltage(struct pp_hwmgr *hwmgr, enum amd_pp_clock_type type, struct pp_clock_levels_with_voltage *clocks) { struct phm_ppt_v2_information *table_info = (struct phm_ppt_v2_information *)hwmgr->pptable; struct phm_ppt_v1_clock_voltage_dependency_table *dep_table; uint32_t i; switch (type) { case amd_pp_mem_clock: dep_table = table_info->vdd_dep_on_mclk; break; case amd_pp_dcef_clock: dep_table = table_info->vdd_dep_on_dcefclk; break; case amd_pp_disp_clock: dep_table = table_info->vdd_dep_on_dispclk; break; case amd_pp_pixel_clock: dep_table = table_info->vdd_dep_on_pixclk; break; case amd_pp_phy_clock: dep_table = table_info->vdd_dep_on_phyclk; break; default: return -1; } for (i = 0; i < dep_table->count; i++) { clocks->data[i].clocks_in_khz = dep_table->entries[i].clk; clocks->data[i].voltage_in_mv = (uint32_t)(table_info->vddc_lookup_table-> entries[dep_table->entries[i].vddInd].us_vdd); clocks->num_levels++; } if (i < dep_table->count) return -1; return 0; } static int vega10_set_watermarks_for_clocks_ranges(struct pp_hwmgr *hwmgr, struct pp_wm_sets_with_clock_ranges_soc15 *wm_with_clock_ranges) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); Watermarks_t *table = &(data->smc_state_table.water_marks_table); int result = 0; uint32_t i; if (!data->registry_data.disable_water_mark) { for (i = 0; i < wm_with_clock_ranges->num_wm_sets_dmif; i++) { table->WatermarkRow[WM_DCEFCLK][i].MinClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_sets_dmif[i].wm_min_dcefclk_in_khz) / 100); table->WatermarkRow[WM_DCEFCLK][i].MaxClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_sets_dmif[i].wm_max_dcefclk_in_khz) / 100); table->WatermarkRow[WM_DCEFCLK][i].MinUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_sets_dmif[i].wm_min_memclk_in_khz) / 100); table->WatermarkRow[WM_DCEFCLK][i].MaxUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_sets_dmif[i].wm_max_memclk_in_khz) / 100); table->WatermarkRow[WM_DCEFCLK][i].WmSetting = (uint8_t) wm_with_clock_ranges->wm_sets_dmif[i].wm_set_id; } for (i = 0; i < wm_with_clock_ranges->num_wm_sets_mcif; i++) { table->WatermarkRow[WM_SOCCLK][i].MinClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_sets_mcif[i].wm_min_socclk_in_khz) / 100); table->WatermarkRow[WM_SOCCLK][i].MaxClock = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_sets_mcif[i].wm_max_socclk_in_khz) / 100); table->WatermarkRow[WM_SOCCLK][i].MinUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_sets_mcif[i].wm_min_memclk_in_khz) / 100); table->WatermarkRow[WM_SOCCLK][i].MaxUclk = cpu_to_le16((uint16_t) (wm_with_clock_ranges->wm_sets_mcif[i].wm_max_memclk_in_khz) / 100); table->WatermarkRow[WM_SOCCLK][i].WmSetting = (uint8_t) wm_with_clock_ranges->wm_sets_mcif[i].wm_set_id; } data->water_marks_bitmap = WaterMarksExist; } return result; } static int vega10_force_clock_level(struct pp_hwmgr *hwmgr, enum pp_clock_type type, uint32_t mask) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); int i; if (hwmgr->request_dpm_level & (AMD_DPM_FORCED_LEVEL_AUTO | AMD_DPM_FORCED_LEVEL_LOW | AMD_DPM_FORCED_LEVEL_HIGH)) return -EINVAL; switch (type) { case PP_SCLK: for (i = 0; i < 32; i++) { if (mask & (1 << i)) break; } data->smc_state_table.gfx_boot_level = i; for (i = 31; i >= 0; i--) { if (mask & (1 << i)) break; } data->smc_state_table.gfx_max_level = i; PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload boot level to lowest!", return -EINVAL); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -EINVAL); break; case PP_MCLK: for (i = 0; i < 32; i++) { if (mask & (1 << i)) break; } data->smc_state_table.mem_boot_level = i; for (i = 31; i >= 0; i--) { if (mask & (1 << i)) break; } data->smc_state_table.mem_max_level = i; PP_ASSERT_WITH_CODE(!vega10_upload_dpm_bootup_level(hwmgr), "Failed to upload boot level to lowest!", return -EINVAL); PP_ASSERT_WITH_CODE(!vega10_upload_dpm_max_level(hwmgr), "Failed to upload dpm max level to highest!", return -EINVAL); break; case PP_PCIE: default: break; } return 0; } static int vega10_print_clock_levels(struct pp_hwmgr *hwmgr, enum pp_clock_type type, char *buf) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); struct vega10_pcie_table *pcie_table = &(data->dpm_table.pcie_table); int i, now, size = 0; switch (type) { case PP_SCLK: if (data->registry_data.sclk_dpm_key_disabled) break; PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentGfxclkIndex), "Attempt to get current sclk index Failed!", return -1); PP_ASSERT_WITH_CODE(!vega10_read_arg_from_smc(hwmgr, &now), "Attempt to read sclk index Failed!", return -1); for (i = 0; i < sclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, sclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_MCLK: if (data->registry_data.mclk_dpm_key_disabled) break; PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentUclkIndex), "Attempt to get current mclk index Failed!", return -1); PP_ASSERT_WITH_CODE(!vega10_read_arg_from_smc(hwmgr, &now), "Attempt to read mclk index Failed!", return -1); for (i = 0; i < mclk_table->count; i++) size += sprintf(buf + size, "%d: %uMhz %s\n", i, mclk_table->dpm_levels[i].value / 100, (i == now) ? "*" : ""); break; case PP_PCIE: PP_ASSERT_WITH_CODE(!smum_send_msg_to_smc(hwmgr, PPSMC_MSG_GetCurrentLinkIndex), "Attempt to get current mclk index Failed!", return -1); PP_ASSERT_WITH_CODE(!vega10_read_arg_from_smc(hwmgr, &now), "Attempt to read mclk index Failed!", return -1); for (i = 0; i < pcie_table->count; i++) size += sprintf(buf + size, "%d: %s %s\n", i, (pcie_table->pcie_gen[i] == 0) ? "2.5GB, x1" : (pcie_table->pcie_gen[i] == 1) ? "5.0GB, x16" : (pcie_table->pcie_gen[i] == 2) ? "8.0GB, x16" : "", (i == now) ? "*" : ""); break; default: break; } return size; } static int vega10_display_configuration_changed_task(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); int result = 0; uint32_t num_turned_on_displays = 1; Watermarks_t *wm_table = &(data->smc_state_table.water_marks_table); struct cgs_display_info info = {0}; if ((data->water_marks_bitmap & WaterMarksExist) && !(data->water_marks_bitmap & WaterMarksLoaded)) { result = vega10_copy_table_to_smc(hwmgr, (uint8_t *)wm_table, WMTABLE); PP_ASSERT_WITH_CODE(result, "Failed to update WMTABLE!", return EINVAL); data->water_marks_bitmap |= WaterMarksLoaded; } if (data->water_marks_bitmap & WaterMarksLoaded) { cgs_get_active_displays_info(hwmgr->device, &info); num_turned_on_displays = info.display_count; smum_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_NumOfDisplays, num_turned_on_displays); } return result; } int vega10_enable_disable_uvd_dpm(struct pp_hwmgr *hwmgr, bool enable) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); if (data->smu_features[GNLD_DPM_UVD].supported) { PP_ASSERT_WITH_CODE(!vega10_enable_smc_features(hwmgr, enable, data->smu_features[GNLD_DPM_UVD].smu_feature_bitmap), "Attempt to Enable/Disable DPM UVD Failed!", return -1); data->smu_features[GNLD_DPM_UVD].enabled = enable; } return 0; } static void vega10_power_gate_vce(struct pp_hwmgr *hwmgr, bool bgate) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); data->vce_power_gated = bgate; vega10_enable_disable_vce_dpm(hwmgr, !bgate); } static void vega10_power_gate_uvd(struct pp_hwmgr *hwmgr, bool bgate) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); data->uvd_power_gated = bgate; vega10_enable_disable_uvd_dpm(hwmgr, !bgate); } static inline bool vega10_are_power_levels_equal( const struct vega10_performance_level *pl1, const struct vega10_performance_level *pl2) { return ((pl1->soc_clock == pl2->soc_clock) && (pl1->gfx_clock == pl2->gfx_clock) && (pl1->mem_clock == pl2->mem_clock)); } static int vega10_check_states_equal(struct pp_hwmgr *hwmgr, const struct pp_hw_power_state *pstate1, const struct pp_hw_power_state *pstate2, bool *equal) { const struct vega10_power_state *psa; const struct vega10_power_state *psb; int i; if (pstate1 == NULL || pstate2 == NULL || equal == NULL) return -EINVAL; psa = cast_const_phw_vega10_power_state(pstate1); psb = cast_const_phw_vega10_power_state(pstate2); /* If the two states don't even have the same number of performance levels they cannot be the same state. */ if (psa->performance_level_count != psb->performance_level_count) { *equal = false; return 0; } for (i = 0; i < psa->performance_level_count; i++) { if (!vega10_are_power_levels_equal(&(psa->performance_levels[i]), &(psb->performance_levels[i]))) { /* If we have found even one performance level pair that is different the states are different. */ *equal = false; return 0; } } /* If all performance levels are the same try to use the UVD clocks to break the tie.*/ *equal = ((psa->uvd_clks.vclk == psb->uvd_clks.vclk) && (psa->uvd_clks.dclk == psb->uvd_clks.dclk)); *equal &= ((psa->vce_clks.evclk == psb->vce_clks.evclk) && (psa->vce_clks.ecclk == psb->vce_clks.ecclk)); *equal &= (psa->sclk_threshold == psb->sclk_threshold); return 0; } static bool vega10_check_smc_update_required_for_display_configuration(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); bool is_update_required = false; struct cgs_display_info info = {0, 0, NULL}; cgs_get_active_displays_info(hwmgr->device, &info); if (data->display_timing.num_existing_displays != info.display_count) is_update_required = true; if (PP_CAP(PHM_PlatformCaps_SclkDeepSleep)) { if (data->display_timing.min_clock_in_sr != hwmgr->display_config.min_core_set_clock_in_sr) is_update_required = true; } return is_update_required; } static int vega10_disable_dpm_tasks(struct pp_hwmgr *hwmgr) { int tmp_result, result = 0; tmp_result = (vega10_is_dpm_running(hwmgr)) ? 0 : -1; PP_ASSERT_WITH_CODE(tmp_result == 0, "DPM is not running right now, no need to disable DPM!", return 0); if (PP_CAP(PHM_PlatformCaps_ThermalController)) vega10_disable_thermal_protection(hwmgr); tmp_result = vega10_disable_power_containment(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable power containment!", result = tmp_result); tmp_result = vega10_disable_didt_config(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable didt config!", result = tmp_result); tmp_result = vega10_avfs_enable(hwmgr, false); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable AVFS!", result = tmp_result); tmp_result = vega10_stop_dpm(hwmgr, SMC_DPM_FEATURES); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to stop DPM!", result = tmp_result); tmp_result = vega10_disable_deep_sleep_master_switch(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable deep sleep!", result = tmp_result); tmp_result = vega10_disable_ulv(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable ulv!", result = tmp_result); tmp_result = vega10_acg_disable(hwmgr); PP_ASSERT_WITH_CODE((tmp_result == 0), "Failed to disable acg!", result = tmp_result); return result; } static int vega10_power_off_asic(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); int result; result = vega10_disable_dpm_tasks(hwmgr); PP_ASSERT_WITH_CODE((0 == result), "[disable_dpm_tasks] Failed to disable DPM!", ); data->water_marks_bitmap &= ~(WaterMarksLoaded); return result; } static void vega10_find_min_clock_index(struct pp_hwmgr *hwmgr, uint32_t *sclk_idx, uint32_t *mclk_idx, uint32_t min_sclk, uint32_t min_mclk) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_dpm_table *dpm_table = &(data->dpm_table); uint32_t i; for (i = 0; i < dpm_table->gfx_table.count; i++) { if (dpm_table->gfx_table.dpm_levels[i].enabled && dpm_table->gfx_table.dpm_levels[i].value >= min_sclk) { *sclk_idx = i; break; } } for (i = 0; i < dpm_table->mem_table.count; i++) { if (dpm_table->mem_table.dpm_levels[i].enabled && dpm_table->mem_table.dpm_levels[i].value >= min_mclk) { *mclk_idx = i; break; } } } static int vega10_set_power_profile_state(struct pp_hwmgr *hwmgr, struct amd_pp_profile *request) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); uint32_t sclk_idx = ~0, mclk_idx = ~0; if (hwmgr->dpm_level != AMD_DPM_FORCED_LEVEL_AUTO) return -EINVAL; vega10_find_min_clock_index(hwmgr, &sclk_idx, &mclk_idx, request->min_sclk, request->min_mclk); if (sclk_idx != ~0) { if (!data->registry_data.sclk_dpm_key_disabled) PP_ASSERT_WITH_CODE( !smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinGfxclkByIndex, sclk_idx), "Failed to set soft min sclk index!", return -EINVAL); } if (mclk_idx != ~0) { if (!data->registry_data.mclk_dpm_key_disabled) PP_ASSERT_WITH_CODE( !smum_send_msg_to_smc_with_parameter( hwmgr, PPSMC_MSG_SetSoftMinUclkByIndex, mclk_idx), "Failed to set soft min mclk index!", return -EINVAL); } return 0; } static int vega10_get_sclk_od(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_single_dpm_table *sclk_table = &(data->dpm_table.gfx_table); struct vega10_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.gfx_table); int value; value = (sclk_table->dpm_levels[sclk_table->count - 1].value - golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value) * 100 / golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value; return value; } static int vega10_set_sclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_single_dpm_table *golden_sclk_table = &(data->golden_dpm_table.gfx_table); struct pp_power_state *ps; struct vega10_power_state *vega10_ps; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; vega10_ps = cast_phw_vega10_power_state(&ps->hardware); vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock = golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value * value / 100 + golden_sclk_table->dpm_levels [golden_sclk_table->count - 1].value; if (vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock > hwmgr->platform_descriptor.overdriveLimit.engineClock) vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].gfx_clock = hwmgr->platform_descriptor.overdriveLimit.engineClock; return 0; } static int vega10_get_mclk_od(struct pp_hwmgr *hwmgr) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_single_dpm_table *mclk_table = &(data->dpm_table.mem_table); struct vega10_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mem_table); int value; value = (mclk_table->dpm_levels [mclk_table->count - 1].value - golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value) * 100 / golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value; return value; } static int vega10_set_mclk_od(struct pp_hwmgr *hwmgr, uint32_t value) { struct vega10_hwmgr *data = (struct vega10_hwmgr *)(hwmgr->backend); struct vega10_single_dpm_table *golden_mclk_table = &(data->golden_dpm_table.mem_table); struct pp_power_state *ps; struct vega10_power_state *vega10_ps; ps = hwmgr->request_ps; if (ps == NULL) return -EINVAL; vega10_ps = cast_phw_vega10_power_state(&ps->hardware); vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].mem_clock = golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value * value / 100 + golden_mclk_table->dpm_levels [golden_mclk_table->count - 1].value; if (vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].mem_clock > hwmgr->platform_descriptor.overdriveLimit.memoryClock) vega10_ps->performance_levels [vega10_ps->performance_level_count - 1].mem_clock = hwmgr->platform_descriptor.overdriveLimit.memoryClock; return 0; } static int vega10_register_thermal_interrupt(struct pp_hwmgr *hwmgr, const void *info) { struct cgs_irq_src_funcs *irq_src = (struct cgs_irq_src_funcs *)info; if (hwmgr->thermal_controller.ucType == ATOM_VEGA10_PP_THERMALCONTROLLER_VEGA10 || hwmgr->thermal_controller.ucType == ATOM_VEGA10_PP_THERMALCONTROLLER_EMC2103_WITH_INTERNAL) { PP_ASSERT_WITH_CODE(!cgs_add_irq_source(hwmgr->device, 0xf, /* AMDGPU_IH_CLIENTID_THM */ 0, 0, irq_src[0].set, irq_src[0].handler, hwmgr), "Failed to register high thermal interrupt!", return -EINVAL); PP_ASSERT_WITH_CODE(!cgs_add_irq_source(hwmgr->device, 0xf, /* AMDGPU_IH_CLIENTID_THM */ 1, 0, irq_src[1].set, irq_src[1].handler, hwmgr), "Failed to register low thermal interrupt!", return -EINVAL); } /* Register CTF(GPIO_19) interrupt */ PP_ASSERT_WITH_CODE(!cgs_add_irq_source(hwmgr->device, 0x16, /* AMDGPU_IH_CLIENTID_ROM_SMUIO, */ 83, 0, irq_src[2].set, irq_src[2].handler, hwmgr), "Failed to register CTF thermal interrupt!", return -EINVAL); return 0; } static const struct pp_hwmgr_func vega10_hwmgr_funcs = { .backend_init = vega10_hwmgr_backend_init, .backend_fini = vega10_hwmgr_backend_fini, .asic_setup = vega10_setup_asic_task, .dynamic_state_management_enable = vega10_enable_dpm_tasks, .dynamic_state_management_disable = vega10_disable_dpm_tasks, .get_num_of_pp_table_entries = vega10_get_number_of_powerplay_table_entries, .get_power_state_size = vega10_get_power_state_size, .get_pp_table_entry = vega10_get_pp_table_entry, .patch_boot_state = vega10_patch_boot_state, .apply_state_adjust_rules = vega10_apply_state_adjust_rules, .power_state_set = vega10_set_power_state_tasks, .get_sclk = vega10_dpm_get_sclk, .get_mclk = vega10_dpm_get_mclk, .notify_smc_display_config_after_ps_adjustment = vega10_notify_smc_display_config_after_ps_adjustment, .force_dpm_level = vega10_dpm_force_dpm_level, .get_temperature = vega10_thermal_get_temperature, .stop_thermal_controller = vega10_thermal_stop_thermal_controller, .get_fan_speed_info = vega10_fan_ctrl_get_fan_speed_info, .get_fan_speed_percent = vega10_fan_ctrl_get_fan_speed_percent, .set_fan_speed_percent = vega10_fan_ctrl_set_fan_speed_percent, .reset_fan_speed_to_default = vega10_fan_ctrl_reset_fan_speed_to_default, .get_fan_speed_rpm = vega10_fan_ctrl_get_fan_speed_rpm, .set_fan_speed_rpm = vega10_fan_ctrl_set_fan_speed_rpm, .uninitialize_thermal_controller = vega10_thermal_ctrl_uninitialize_thermal_controller, .set_fan_control_mode = vega10_set_fan_control_mode, .get_fan_control_mode = vega10_get_fan_control_mode, .read_sensor = vega10_read_sensor, .get_dal_power_level = vega10_get_dal_power_level, .get_clock_by_type_with_latency = vega10_get_clock_by_type_with_latency, .get_clock_by_type_with_voltage = vega10_get_clock_by_type_with_voltage, .set_watermarks_for_clocks_ranges = vega10_set_watermarks_for_clocks_ranges, .display_clock_voltage_request = vega10_display_clock_voltage_request, .force_clock_level = vega10_force_clock_level, .print_clock_levels = vega10_print_clock_levels, .display_config_changed = vega10_display_configuration_changed_task, .powergate_uvd = vega10_power_gate_uvd, .powergate_vce = vega10_power_gate_vce, .check_states_equal = vega10_check_states_equal, .check_smc_update_required_for_display_configuration = vega10_check_smc_update_required_for_display_configuration, .power_off_asic = vega10_power_off_asic, .disable_smc_firmware_ctf = vega10_thermal_disable_alert, .set_power_profile_state = vega10_set_power_profile_state, .get_sclk_od = vega10_get_sclk_od, .set_sclk_od = vega10_set_sclk_od, .get_mclk_od = vega10_get_mclk_od, .set_mclk_od = vega10_set_mclk_od, .avfs_control = vega10_avfs_enable, .register_internal_thermal_interrupt = vega10_register_thermal_interrupt, }; int vega10_hwmgr_init(struct pp_hwmgr *hwmgr) { hwmgr->hwmgr_func = &vega10_hwmgr_funcs; hwmgr->pptable_func = &vega10_pptable_funcs; return 0; }