#ifndef _LINUX_SWAP_H #define _LINUX_SWAP_H #include #include #include #include #include #include #include #include #include #include struct notifier_block; struct bio; #define SWAP_FLAG_PREFER 0x8000 /* set if swap priority specified */ #define SWAP_FLAG_PRIO_MASK 0x7fff #define SWAP_FLAG_PRIO_SHIFT 0 #define SWAP_FLAG_DISCARD 0x10000 /* discard swap cluster after use */ #define SWAP_FLAGS_VALID (SWAP_FLAG_PRIO_MASK | SWAP_FLAG_PREFER | \ SWAP_FLAG_DISCARD) static inline int current_is_kswapd(void) { return current->flags & PF_KSWAPD; } /* * MAX_SWAPFILES defines the maximum number of swaptypes: things which can * be swapped to. The swap type and the offset into that swap type are * encoded into pte's and into pgoff_t's in the swapcache. Using five bits * for the type means that the maximum number of swapcache pages is 27 bits * on 32-bit-pgoff_t architectures. And that assumes that the architecture packs * the type/offset into the pte as 5/27 as well. */ #define MAX_SWAPFILES_SHIFT 5 /* * Use some of the swap files numbers for other purposes. This * is a convenient way to hook into the VM to trigger special * actions on faults. */ /* * NUMA node memory migration support */ #ifdef CONFIG_MIGRATION #define SWP_MIGRATION_NUM 2 #define SWP_MIGRATION_READ (MAX_SWAPFILES + SWP_HWPOISON_NUM) #define SWP_MIGRATION_WRITE (MAX_SWAPFILES + SWP_HWPOISON_NUM + 1) #else #define SWP_MIGRATION_NUM 0 #endif /* * Handling of hardware poisoned pages with memory corruption. */ #ifdef CONFIG_MEMORY_FAILURE #define SWP_HWPOISON_NUM 1 #define SWP_HWPOISON MAX_SWAPFILES #else #define SWP_HWPOISON_NUM 0 #endif #define MAX_SWAPFILES \ ((1 << MAX_SWAPFILES_SHIFT) - SWP_MIGRATION_NUM - SWP_HWPOISON_NUM) /* * Magic header for a swap area. The first part of the union is * what the swap magic looks like for the old (limited to 128MB) * swap area format, the second part of the union adds - in the * old reserved area - some extra information. Note that the first * kilobyte is reserved for boot loader or disk label stuff... * * Having the magic at the end of the PAGE_SIZE makes detecting swap * areas somewhat tricky on machines that support multiple page sizes. * For 2.5 we'll probably want to move the magic to just beyond the * bootbits... */ union swap_header { struct { char reserved[PAGE_SIZE - 10]; char magic[10]; /* SWAP-SPACE or SWAPSPACE2 */ } magic; struct { char bootbits[1024]; /* Space for disklabel etc. */ __u32 version; __u32 last_page; __u32 nr_badpages; unsigned char sws_uuid[16]; unsigned char sws_volume[16]; __u32 padding[117]; __u32 badpages[1]; } info; }; /* A swap entry has to fit into a "unsigned long", as * the entry is hidden in the "index" field of the * swapper address space. */ typedef struct { unsigned long val; } swp_entry_t; /* * current->reclaim_state points to one of these when a task is running * memory reclaim */ struct reclaim_state { unsigned long reclaimed_slab; }; #ifdef __KERNEL__ struct address_space; struct sysinfo; struct writeback_control; struct zone; /* * A swap extent maps a range of a swapfile's PAGE_SIZE pages onto a range of * disk blocks. A list of swap extents maps the entire swapfile. (Where the * term `swapfile' refers to either a blockdevice or an IS_REG file. Apart * from setup, they're handled identically. * * We always assume that blocks are of size PAGE_SIZE. */ struct swap_extent { struct list_head list; pgoff_t start_page; pgoff_t nr_pages; sector_t start_block; }; /* * Max bad pages in the new format.. */ #define __swapoffset(x) ((unsigned long)&((union swap_header *)0)->x) #define MAX_SWAP_BADPAGES \ ((__swapoffset(magic.magic) - __swapoffset(info.badpages)) / sizeof(int)) enum { SWP_USED = (1 << 0), /* is slot in swap_info[] used? */ SWP_WRITEOK = (1 << 1), /* ok to write to this swap? */ SWP_DISCARDABLE = (1 << 2), /* swapon+blkdev support discard */ SWP_DISCARDING = (1 << 3), /* now discarding a free cluster */ SWP_SOLIDSTATE = (1 << 4), /* blkdev seeks are cheap */ SWP_CONTINUED = (1 << 5), /* swap_map has count continuation */ SWP_BLKDEV = (1 << 6), /* its a block device */ SWP_FILE = (1 << 7), /* set after swap_activate success */ /* add others here before... */ SWP_SCANNING = (1 << 8), /* refcount in scan_swap_map */ }; #define SWAP_CLUSTER_MAX 32UL #define COMPACT_CLUSTER_MAX SWAP_CLUSTER_MAX /* * Ratio between the present memory in the zone and the "gap" that * we're allowing kswapd to shrink in addition to the per-zone high * wmark, even for zones that already have the high wmark satisfied, * in order to provide better per-zone lru behavior. We are ok to * spend not more than 1% of the memory for this zone balancing "gap". */ #define KSWAPD_ZONE_BALANCE_GAP_RATIO 100 #define SWAP_MAP_MAX 0x3e /* Max duplication count, in first swap_map */ #define SWAP_MAP_BAD 0x3f /* Note pageblock is bad, in first swap_map */ #define SWAP_HAS_CACHE 0x40 /* Flag page is cached, in first swap_map */ #define SWAP_CONT_MAX 0x7f /* Max count, in each swap_map continuation */ #define COUNT_CONTINUED 0x80 /* See swap_map continuation for full count */ #define SWAP_MAP_SHMEM 0xbf /* Owned by shmem/tmpfs, in first swap_map */ /* * The in-memory structure used to track swap areas. */ struct swap_info_struct { unsigned long flags; /* SWP_USED etc: see above */ signed short prio; /* swap priority of this type */ signed char type; /* strange name for an index */ signed char next; /* next type on the swap list */ unsigned int max; /* extent of the swap_map */ unsigned char *swap_map; /* vmalloc'ed array of usage counts */ unsigned int lowest_bit; /* index of first free in swap_map */ unsigned int highest_bit; /* index of last free in swap_map */ unsigned int pages; /* total of usable pages of swap */ unsigned int inuse_pages; /* number of those currently in use */ unsigned int cluster_next; /* likely index for next allocation */ unsigned int cluster_nr; /* countdown to next cluster search */ unsigned int lowest_alloc; /* while preparing discard cluster */ unsigned int highest_alloc; /* while preparing discard cluster */ struct swap_extent *curr_swap_extent; struct swap_extent first_swap_extent; struct block_device *bdev; /* swap device or bdev of swap file */ struct file *swap_file; /* seldom referenced */ unsigned int old_block_size; /* seldom referenced */ #ifdef CONFIG_FRONTSWAP unsigned long *frontswap_map; /* frontswap in-use, one bit per page */ atomic_t frontswap_pages; /* frontswap pages in-use counter */ #endif spinlock_t lock; /* * protect map scan related fields like * swap_map, lowest_bit, highest_bit, * inuse_pages, cluster_next, * cluster_nr, lowest_alloc and * highest_alloc. other fields are only * changed at swapon/swapoff, so are * protected by swap_lock. changing * flags need hold this lock and * swap_lock. If both locks need hold, * hold swap_lock first. */ }; struct swap_list_t { int head; /* head of priority-ordered swapfile list */ int next; /* swapfile to be used next */ }; /* linux/mm/page_alloc.c */ extern unsigned long totalram_pages; extern unsigned long totalreserve_pages; extern unsigned long dirty_balance_reserve; extern unsigned long nr_free_buffer_pages(void); extern unsigned long nr_free_pagecache_pages(void); /* Definition of global_page_state not available yet */ #define nr_free_pages() global_page_state(NR_FREE_PAGES) /* linux/mm/swap.c */ extern void __lru_cache_add(struct page *, enum lru_list lru); extern void lru_cache_add_lru(struct page *, enum lru_list lru); extern void lru_add_page_tail(struct page *page, struct page *page_tail, struct lruvec *lruvec); extern void activate_page(struct page *); extern void mark_page_accessed(struct page *); extern void lru_add_drain(void); extern void lru_add_drain_cpu(int cpu); extern int lru_add_drain_all(void); extern void rotate_reclaimable_page(struct page *page); extern void deactivate_page(struct page *page); extern void swap_setup(void); extern void add_page_to_unevictable_list(struct page *page); /** * lru_cache_add: add a page to the page lists * @page: the page to add */ static inline void lru_cache_add_anon(struct page *page) { __lru_cache_add(page, LRU_INACTIVE_ANON); } static inline void lru_cache_add_file(struct page *page) { __lru_cache_add(page, LRU_INACTIVE_FILE); } /* linux/mm/vmscan.c */ extern unsigned long try_to_free_pages(struct zonelist *zonelist, int order, gfp_t gfp_mask, nodemask_t *mask); extern int __isolate_lru_page(struct page *page, isolate_mode_t mode); extern unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem, gfp_t gfp_mask, bool noswap); extern unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem, gfp_t gfp_mask, bool noswap, struct zone *zone, unsigned long *nr_scanned); extern unsigned long shrink_all_memory(unsigned long nr_pages); extern int vm_swappiness; extern int remove_mapping(struct address_space *mapping, struct page *page); extern unsigned long vm_total_pages; #ifdef CONFIG_NUMA extern int zone_reclaim_mode; extern int sysctl_min_unmapped_ratio; extern int sysctl_min_slab_ratio; extern int zone_reclaim(struct zone *, gfp_t, unsigned int); #else #define zone_reclaim_mode 0 static inline int zone_reclaim(struct zone *z, gfp_t mask, unsigned int order) { return 0; } #endif extern int page_evictable(struct page *page); extern void check_move_unevictable_pages(struct page **, int nr_pages); extern unsigned long scan_unevictable_pages; extern int scan_unevictable_handler(struct ctl_table *, int, void __user *, size_t *, loff_t *); #ifdef CONFIG_NUMA extern int scan_unevictable_register_node(struct node *node); extern void scan_unevictable_unregister_node(struct node *node); #else static inline int scan_unevictable_register_node(struct node *node) { return 0; } static inline void scan_unevictable_unregister_node(struct node *node) { } #endif extern int kswapd_run(int nid); extern void kswapd_stop(int nid); #ifdef CONFIG_MEMCG extern int mem_cgroup_swappiness(struct mem_cgroup *mem); #else static inline int mem_cgroup_swappiness(struct mem_cgroup *mem) { return vm_swappiness; } #endif #ifdef CONFIG_MEMCG_SWAP extern void mem_cgroup_uncharge_swap(swp_entry_t ent); #else static inline void mem_cgroup_uncharge_swap(swp_entry_t ent) { } #endif #ifdef CONFIG_SWAP /* linux/mm/page_io.c */ extern int swap_readpage(struct page *); extern int swap_writepage(struct page *page, struct writeback_control *wbc); extern int __swap_writepage(struct page *page, struct writeback_control *wbc); extern int swap_set_page_dirty(struct page *page); extern void end_swap_bio_read(struct bio *bio, int err); int add_swap_extent(struct swap_info_struct *sis, unsigned long start_page, unsigned long nr_pages, sector_t start_block); int generic_swapfile_activate(struct swap_info_struct *, struct file *, sector_t *); /* linux/mm/swap_state.c */ extern struct address_space swapper_spaces[]; #define swap_address_space(entry) (&swapper_spaces[swp_type(entry)]) extern unsigned long total_swapcache_pages(void); extern void show_swap_cache_info(void); extern int add_to_swap(struct page *); extern int add_to_swap_cache(struct page *, swp_entry_t, gfp_t); extern int __add_to_swap_cache(struct page *page, swp_entry_t entry); extern void __delete_from_swap_cache(struct page *); extern void delete_from_swap_cache(struct page *); extern void free_page_and_swap_cache(struct page *); extern void free_pages_and_swap_cache(struct page **, int); extern struct page *lookup_swap_cache(swp_entry_t); extern struct page *read_swap_cache_async(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr); extern struct page *swapin_readahead(swp_entry_t, gfp_t, struct vm_area_struct *vma, unsigned long addr); /* linux/mm/swapfile.c */ extern atomic_long_t nr_swap_pages; extern long total_swap_pages; /* Swap 50% full? Release swapcache more aggressively.. */ static inline bool vm_swap_full(void) { return atomic_long_read(&nr_swap_pages) * 2 < total_swap_pages; } static inline long get_nr_swap_pages(void) { return atomic_long_read(&nr_swap_pages); } extern void si_swapinfo(struct sysinfo *); extern swp_entry_t get_swap_page(void); extern swp_entry_t get_swap_page_of_type(int); extern int add_swap_count_continuation(swp_entry_t, gfp_t); extern void swap_shmem_alloc(swp_entry_t); extern int swap_duplicate(swp_entry_t); extern int swapcache_prepare(swp_entry_t); extern void swap_free(swp_entry_t); extern void swapcache_free(swp_entry_t, struct page *page); extern int free_swap_and_cache(swp_entry_t); extern int swap_type_of(dev_t, sector_t, struct block_device **); extern unsigned int count_swap_pages(int, int); extern sector_t map_swap_page(struct page *, struct block_device **); extern sector_t swapdev_block(int, pgoff_t); extern int page_swapcount(struct page *); extern struct swap_info_struct *page_swap_info(struct page *); extern int reuse_swap_page(struct page *); extern int try_to_free_swap(struct page *); struct backing_dev_info; #ifdef CONFIG_MEMCG extern void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout); #else static inline void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout) { } #endif #else /* CONFIG_SWAP */ #define get_nr_swap_pages() 0L #define total_swap_pages 0L #define total_swapcache_pages() 0UL #define vm_swap_full() 0 #define si_swapinfo(val) \ do { (val)->freeswap = (val)->totalswap = 0; } while (0) /* only sparc can not include linux/pagemap.h in this file * so leave page_cache_release and release_pages undeclared... */ #define free_page_and_swap_cache(page) \ page_cache_release(page) #define free_pages_and_swap_cache(pages, nr) \ release_pages((pages), (nr), 0); static inline void show_swap_cache_info(void) { } #define free_swap_and_cache(swp) is_migration_entry(swp) #define swapcache_prepare(swp) is_migration_entry(swp) static inline int add_swap_count_continuation(swp_entry_t swp, gfp_t gfp_mask) { return 0; } static inline void swap_shmem_alloc(swp_entry_t swp) { } static inline int swap_duplicate(swp_entry_t swp) { return 0; } static inline void swap_free(swp_entry_t swp) { } static inline void swapcache_free(swp_entry_t swp, struct page *page) { } static inline struct page *swapin_readahead(swp_entry_t swp, gfp_t gfp_mask, struct vm_area_struct *vma, unsigned long addr) { return NULL; } static inline int swap_writepage(struct page *p, struct writeback_control *wbc) { return 0; } static inline struct page *lookup_swap_cache(swp_entry_t swp) { return NULL; } static inline int add_to_swap(struct page *page) { return 0; } static inline int add_to_swap_cache(struct page *page, swp_entry_t entry, gfp_t gfp_mask) { return -1; } static inline void __delete_from_swap_cache(struct page *page) { } static inline void delete_from_swap_cache(struct page *page) { } static inline int page_swapcount(struct page *page) { return 0; } #define reuse_swap_page(page) (page_mapcount(page) == 1) static inline int try_to_free_swap(struct page *page) { return 0; } static inline swp_entry_t get_swap_page(void) { swp_entry_t entry; entry.val = 0; return entry; } static inline void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent) { } #endif /* CONFIG_SWAP */ #endif /* __KERNEL__*/ #endif /* _LINUX_SWAP_H */