/* * Copyright (c) 2000-2006 Silicon Graphics, Inc. * All Rights Reserved. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it would be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ #include "xfs.h" #include "xfs_shared.h" #include "xfs_format.h" #include "xfs_log_format.h" #include "xfs_trans_resv.h" #include "xfs_sb.h" #include "xfs_mount.h" #include "xfs_da_format.h" #include "xfs_inode.h" #include "xfs_btree.h" #include "xfs_bmap.h" #include "xfs_alloc.h" #include "xfs_error.h" #include "xfs_fsops.h" #include "xfs_trans.h" #include "xfs_buf_item.h" #include "xfs_log.h" #include "xfs_log_priv.h" #include "xfs_da_btree.h" #include "xfs_dir2.h" #include "xfs_extfree_item.h" #include "xfs_mru_cache.h" #include "xfs_inode_item.h" #include "xfs_icache.h" #include "xfs_trace.h" #include "xfs_icreate_item.h" #include "xfs_filestream.h" #include "xfs_quota.h" #include "xfs_sysfs.h" #include #include #include #include #include #include #include #include #include static const struct super_operations xfs_super_operations; static kmem_zone_t *xfs_ioend_zone; mempool_t *xfs_ioend_pool; static struct kset *xfs_kset; /* top-level xfs sysfs dir */ #ifdef DEBUG static struct xfs_kobj xfs_dbg_kobj; /* global debug sysfs attrs */ #endif #define MNTOPT_LOGBUFS "logbufs" /* number of XFS log buffers */ #define MNTOPT_LOGBSIZE "logbsize" /* size of XFS log buffers */ #define MNTOPT_LOGDEV "logdev" /* log device */ #define MNTOPT_RTDEV "rtdev" /* realtime I/O device */ #define MNTOPT_BIOSIZE "biosize" /* log2 of preferred buffered io size */ #define MNTOPT_WSYNC "wsync" /* safe-mode nfs compatible mount */ #define MNTOPT_NOALIGN "noalign" /* turn off stripe alignment */ #define MNTOPT_SWALLOC "swalloc" /* turn on stripe width allocation */ #define MNTOPT_SUNIT "sunit" /* data volume stripe unit */ #define MNTOPT_SWIDTH "swidth" /* data volume stripe width */ #define MNTOPT_NOUUID "nouuid" /* ignore filesystem UUID */ #define MNTOPT_MTPT "mtpt" /* filesystem mount point */ #define MNTOPT_GRPID "grpid" /* group-ID from parent directory */ #define MNTOPT_NOGRPID "nogrpid" /* group-ID from current process */ #define MNTOPT_BSDGROUPS "bsdgroups" /* group-ID from parent directory */ #define MNTOPT_SYSVGROUPS "sysvgroups" /* group-ID from current process */ #define MNTOPT_ALLOCSIZE "allocsize" /* preferred allocation size */ #define MNTOPT_NORECOVERY "norecovery" /* don't run XFS recovery */ #define MNTOPT_BARRIER "barrier" /* use writer barriers for log write and * unwritten extent conversion */ #define MNTOPT_NOBARRIER "nobarrier" /* .. disable */ #define MNTOPT_64BITINODE "inode64" /* inodes can be allocated anywhere */ #define MNTOPT_32BITINODE "inode32" /* inode allocation limited to * XFS_MAXINUMBER_32 */ #define MNTOPT_IKEEP "ikeep" /* do not free empty inode clusters */ #define MNTOPT_NOIKEEP "noikeep" /* free empty inode clusters */ #define MNTOPT_LARGEIO "largeio" /* report large I/O sizes in stat() */ #define MNTOPT_NOLARGEIO "nolargeio" /* do not report large I/O sizes * in stat(). */ #define MNTOPT_ATTR2 "attr2" /* do use attr2 attribute format */ #define MNTOPT_NOATTR2 "noattr2" /* do not use attr2 attribute format */ #define MNTOPT_FILESTREAM "filestreams" /* use filestreams allocator */ #define MNTOPT_QUOTA "quota" /* disk quotas (user) */ #define MNTOPT_NOQUOTA "noquota" /* no quotas */ #define MNTOPT_USRQUOTA "usrquota" /* user quota enabled */ #define MNTOPT_GRPQUOTA "grpquota" /* group quota enabled */ #define MNTOPT_PRJQUOTA "prjquota" /* project quota enabled */ #define MNTOPT_UQUOTA "uquota" /* user quota (IRIX variant) */ #define MNTOPT_GQUOTA "gquota" /* group quota (IRIX variant) */ #define MNTOPT_PQUOTA "pquota" /* project quota (IRIX variant) */ #define MNTOPT_UQUOTANOENF "uqnoenforce"/* user quota limit enforcement */ #define MNTOPT_GQUOTANOENF "gqnoenforce"/* group quota limit enforcement */ #define MNTOPT_PQUOTANOENF "pqnoenforce"/* project quota limit enforcement */ #define MNTOPT_QUOTANOENF "qnoenforce" /* same as uqnoenforce */ #define MNTOPT_DISCARD "discard" /* Discard unused blocks */ #define MNTOPT_NODISCARD "nodiscard" /* Do not discard unused blocks */ #define MNTOPT_DAX "dax" /* Enable direct access to bdev pages */ /* * Table driven mount option parser. * * Currently only used for remount, but it will be used for mount * in the future, too. */ enum { Opt_barrier, Opt_nobarrier, Opt_inode64, Opt_inode32, Opt_err }; static const match_table_t tokens = { {Opt_barrier, "barrier"}, {Opt_nobarrier, "nobarrier"}, {Opt_inode64, "inode64"}, {Opt_inode32, "inode32"}, {Opt_err, NULL} }; STATIC unsigned long suffix_kstrtoint(char *s, unsigned int base, int *res) { int last, shift_left_factor = 0, _res; char *value = s; last = strlen(value) - 1; if (value[last] == 'K' || value[last] == 'k') { shift_left_factor = 10; value[last] = '\0'; } if (value[last] == 'M' || value[last] == 'm') { shift_left_factor = 20; value[last] = '\0'; } if (value[last] == 'G' || value[last] == 'g') { shift_left_factor = 30; value[last] = '\0'; } if (kstrtoint(s, base, &_res)) return -EINVAL; *res = _res << shift_left_factor; return 0; } /* * This function fills in xfs_mount_t fields based on mount args. * Note: the superblock has _not_ yet been read in. * * Note that this function leaks the various device name allocations on * failure. The caller takes care of them. */ STATIC int xfs_parseargs( struct xfs_mount *mp, char *options) { struct super_block *sb = mp->m_super; char *this_char, *value; int dsunit = 0; int dswidth = 0; int iosize = 0; __uint8_t iosizelog = 0; /* * set up the mount name first so all the errors will refer to the * correct device. */ mp->m_fsname = kstrndup(sb->s_id, MAXNAMELEN, GFP_KERNEL); if (!mp->m_fsname) return -ENOMEM; mp->m_fsname_len = strlen(mp->m_fsname) + 1; /* * Copy binary VFS mount flags we are interested in. */ if (sb->s_flags & MS_RDONLY) mp->m_flags |= XFS_MOUNT_RDONLY; if (sb->s_flags & MS_DIRSYNC) mp->m_flags |= XFS_MOUNT_DIRSYNC; if (sb->s_flags & MS_SYNCHRONOUS) mp->m_flags |= XFS_MOUNT_WSYNC; /* * Set some default flags that could be cleared by the mount option * parsing. */ mp->m_flags |= XFS_MOUNT_BARRIER; mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE; /* * These can be overridden by the mount option parsing. */ mp->m_logbufs = -1; mp->m_logbsize = -1; if (!options) goto done; while ((this_char = strsep(&options, ",")) != NULL) { if (!*this_char) continue; if ((value = strchr(this_char, '=')) != NULL) *value++ = 0; if (!strcmp(this_char, MNTOPT_LOGBUFS)) { if (!value || !*value) { xfs_warn(mp, "%s option requires an argument", this_char); return -EINVAL; } if (kstrtoint(value, 10, &mp->m_logbufs)) return -EINVAL; } else if (!strcmp(this_char, MNTOPT_LOGBSIZE)) { if (!value || !*value) { xfs_warn(mp, "%s option requires an argument", this_char); return -EINVAL; } if (suffix_kstrtoint(value, 10, &mp->m_logbsize)) return -EINVAL; } else if (!strcmp(this_char, MNTOPT_LOGDEV)) { if (!value || !*value) { xfs_warn(mp, "%s option requires an argument", this_char); return -EINVAL; } mp->m_logname = kstrndup(value, MAXNAMELEN, GFP_KERNEL); if (!mp->m_logname) return -ENOMEM; } else if (!strcmp(this_char, MNTOPT_MTPT)) { xfs_warn(mp, "%s option not allowed on this system", this_char); return -EINVAL; } else if (!strcmp(this_char, MNTOPT_RTDEV)) { if (!value || !*value) { xfs_warn(mp, "%s option requires an argument", this_char); return -EINVAL; } mp->m_rtname = kstrndup(value, MAXNAMELEN, GFP_KERNEL); if (!mp->m_rtname) return -ENOMEM; } else if (!strcmp(this_char, MNTOPT_ALLOCSIZE) || !strcmp(this_char, MNTOPT_BIOSIZE)) { if (!value || !*value) { xfs_warn(mp, "%s option requires an argument", this_char); return -EINVAL; } if (suffix_kstrtoint(value, 10, &iosize)) return -EINVAL; iosizelog = ffs(iosize) - 1; } else if (!strcmp(this_char, MNTOPT_GRPID) || !strcmp(this_char, MNTOPT_BSDGROUPS)) { mp->m_flags |= XFS_MOUNT_GRPID; } else if (!strcmp(this_char, MNTOPT_NOGRPID) || !strcmp(this_char, MNTOPT_SYSVGROUPS)) { mp->m_flags &= ~XFS_MOUNT_GRPID; } else if (!strcmp(this_char, MNTOPT_WSYNC)) { mp->m_flags |= XFS_MOUNT_WSYNC; } else if (!strcmp(this_char, MNTOPT_NORECOVERY)) { mp->m_flags |= XFS_MOUNT_NORECOVERY; } else if (!strcmp(this_char, MNTOPT_NOALIGN)) { mp->m_flags |= XFS_MOUNT_NOALIGN; } else if (!strcmp(this_char, MNTOPT_SWALLOC)) { mp->m_flags |= XFS_MOUNT_SWALLOC; } else if (!strcmp(this_char, MNTOPT_SUNIT)) { if (!value || !*value) { xfs_warn(mp, "%s option requires an argument", this_char); return -EINVAL; } if (kstrtoint(value, 10, &dsunit)) return -EINVAL; } else if (!strcmp(this_char, MNTOPT_SWIDTH)) { if (!value || !*value) { xfs_warn(mp, "%s option requires an argument", this_char); return -EINVAL; } if (kstrtoint(value, 10, &dswidth)) return -EINVAL; } else if (!strcmp(this_char, MNTOPT_32BITINODE)) { mp->m_flags |= XFS_MOUNT_SMALL_INUMS; } else if (!strcmp(this_char, MNTOPT_64BITINODE)) { mp->m_flags &= ~XFS_MOUNT_SMALL_INUMS; } else if (!strcmp(this_char, MNTOPT_NOUUID)) { mp->m_flags |= XFS_MOUNT_NOUUID; } else if (!strcmp(this_char, MNTOPT_BARRIER)) { mp->m_flags |= XFS_MOUNT_BARRIER; } else if (!strcmp(this_char, MNTOPT_NOBARRIER)) { mp->m_flags &= ~XFS_MOUNT_BARRIER; } else if (!strcmp(this_char, MNTOPT_IKEEP)) { mp->m_flags |= XFS_MOUNT_IKEEP; } else if (!strcmp(this_char, MNTOPT_NOIKEEP)) { mp->m_flags &= ~XFS_MOUNT_IKEEP; } else if (!strcmp(this_char, MNTOPT_LARGEIO)) { mp->m_flags &= ~XFS_MOUNT_COMPAT_IOSIZE; } else if (!strcmp(this_char, MNTOPT_NOLARGEIO)) { mp->m_flags |= XFS_MOUNT_COMPAT_IOSIZE; } else if (!strcmp(this_char, MNTOPT_ATTR2)) { mp->m_flags |= XFS_MOUNT_ATTR2; } else if (!strcmp(this_char, MNTOPT_NOATTR2)) { mp->m_flags &= ~XFS_MOUNT_ATTR2; mp->m_flags |= XFS_MOUNT_NOATTR2; } else if (!strcmp(this_char, MNTOPT_FILESTREAM)) { mp->m_flags |= XFS_MOUNT_FILESTREAMS; } else if (!strcmp(this_char, MNTOPT_NOQUOTA)) { mp->m_qflags &= ~XFS_ALL_QUOTA_ACCT; mp->m_qflags &= ~XFS_ALL_QUOTA_ENFD; mp->m_qflags &= ~XFS_ALL_QUOTA_ACTIVE; } else if (!strcmp(this_char, MNTOPT_QUOTA) || !strcmp(this_char, MNTOPT_UQUOTA) || !strcmp(this_char, MNTOPT_USRQUOTA)) { mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE | XFS_UQUOTA_ENFD); } else if (!strcmp(this_char, MNTOPT_QUOTANOENF) || !strcmp(this_char, MNTOPT_UQUOTANOENF)) { mp->m_qflags |= (XFS_UQUOTA_ACCT | XFS_UQUOTA_ACTIVE); mp->m_qflags &= ~XFS_UQUOTA_ENFD; } else if (!strcmp(this_char, MNTOPT_PQUOTA) || !strcmp(this_char, MNTOPT_PRJQUOTA)) { mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE | XFS_PQUOTA_ENFD); } else if (!strcmp(this_char, MNTOPT_PQUOTANOENF)) { mp->m_qflags |= (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE); mp->m_qflags &= ~XFS_PQUOTA_ENFD; } else if (!strcmp(this_char, MNTOPT_GQUOTA) || !strcmp(this_char, MNTOPT_GRPQUOTA)) { mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE | XFS_GQUOTA_ENFD); } else if (!strcmp(this_char, MNTOPT_GQUOTANOENF)) { mp->m_qflags |= (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE); mp->m_qflags &= ~XFS_GQUOTA_ENFD; } else if (!strcmp(this_char, MNTOPT_DISCARD)) { mp->m_flags |= XFS_MOUNT_DISCARD; } else if (!strcmp(this_char, MNTOPT_NODISCARD)) { mp->m_flags &= ~XFS_MOUNT_DISCARD; #ifdef CONFIG_FS_DAX } else if (!strcmp(this_char, MNTOPT_DAX)) { mp->m_flags |= XFS_MOUNT_DAX; #endif } else { xfs_warn(mp, "unknown mount option [%s].", this_char); return -EINVAL; } } /* * no recovery flag requires a read-only mount */ if ((mp->m_flags & XFS_MOUNT_NORECOVERY) && !(mp->m_flags & XFS_MOUNT_RDONLY)) { xfs_warn(mp, "no-recovery mounts must be read-only."); return -EINVAL; } if ((mp->m_flags & XFS_MOUNT_NOALIGN) && (dsunit || dswidth)) { xfs_warn(mp, "sunit and swidth options incompatible with the noalign option"); return -EINVAL; } #ifndef CONFIG_XFS_QUOTA if (XFS_IS_QUOTA_RUNNING(mp)) { xfs_warn(mp, "quota support not available in this kernel."); return -EINVAL; } #endif if ((dsunit && !dswidth) || (!dsunit && dswidth)) { xfs_warn(mp, "sunit and swidth must be specified together"); return -EINVAL; } if (dsunit && (dswidth % dsunit != 0)) { xfs_warn(mp, "stripe width (%d) must be a multiple of the stripe unit (%d)", dswidth, dsunit); return -EINVAL; } done: if (dsunit && !(mp->m_flags & XFS_MOUNT_NOALIGN)) { /* * At this point the superblock has not been read * in, therefore we do not know the block size. * Before the mount call ends we will convert * these to FSBs. */ mp->m_dalign = dsunit; mp->m_swidth = dswidth; } if (mp->m_logbufs != -1 && mp->m_logbufs != 0 && (mp->m_logbufs < XLOG_MIN_ICLOGS || mp->m_logbufs > XLOG_MAX_ICLOGS)) { xfs_warn(mp, "invalid logbufs value: %d [not %d-%d]", mp->m_logbufs, XLOG_MIN_ICLOGS, XLOG_MAX_ICLOGS); return -EINVAL; } if (mp->m_logbsize != -1 && mp->m_logbsize != 0 && (mp->m_logbsize < XLOG_MIN_RECORD_BSIZE || mp->m_logbsize > XLOG_MAX_RECORD_BSIZE || !is_power_of_2(mp->m_logbsize))) { xfs_warn(mp, "invalid logbufsize: %d [not 16k,32k,64k,128k or 256k]", mp->m_logbsize); return -EINVAL; } if (iosizelog) { if (iosizelog > XFS_MAX_IO_LOG || iosizelog < XFS_MIN_IO_LOG) { xfs_warn(mp, "invalid log iosize: %d [not %d-%d]", iosizelog, XFS_MIN_IO_LOG, XFS_MAX_IO_LOG); return -EINVAL; } mp->m_flags |= XFS_MOUNT_DFLT_IOSIZE; mp->m_readio_log = iosizelog; mp->m_writeio_log = iosizelog; } return 0; } struct proc_xfs_info { uint64_t flag; char *str; }; STATIC int xfs_showargs( struct xfs_mount *mp, struct seq_file *m) { static struct proc_xfs_info xfs_info_set[] = { /* the few simple ones we can get from the mount struct */ { XFS_MOUNT_IKEEP, "," MNTOPT_IKEEP }, { XFS_MOUNT_WSYNC, "," MNTOPT_WSYNC }, { XFS_MOUNT_NOALIGN, "," MNTOPT_NOALIGN }, { XFS_MOUNT_SWALLOC, "," MNTOPT_SWALLOC }, { XFS_MOUNT_NOUUID, "," MNTOPT_NOUUID }, { XFS_MOUNT_NORECOVERY, "," MNTOPT_NORECOVERY }, { XFS_MOUNT_ATTR2, "," MNTOPT_ATTR2 }, { XFS_MOUNT_FILESTREAMS, "," MNTOPT_FILESTREAM }, { XFS_MOUNT_GRPID, "," MNTOPT_GRPID }, { XFS_MOUNT_DISCARD, "," MNTOPT_DISCARD }, { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_32BITINODE }, { XFS_MOUNT_DAX, "," MNTOPT_DAX }, { 0, NULL } }; static struct proc_xfs_info xfs_info_unset[] = { /* the few simple ones we can get from the mount struct */ { XFS_MOUNT_COMPAT_IOSIZE, "," MNTOPT_LARGEIO }, { XFS_MOUNT_BARRIER, "," MNTOPT_NOBARRIER }, { XFS_MOUNT_SMALL_INUMS, "," MNTOPT_64BITINODE }, { 0, NULL } }; struct proc_xfs_info *xfs_infop; for (xfs_infop = xfs_info_set; xfs_infop->flag; xfs_infop++) { if (mp->m_flags & xfs_infop->flag) seq_puts(m, xfs_infop->str); } for (xfs_infop = xfs_info_unset; xfs_infop->flag; xfs_infop++) { if (!(mp->m_flags & xfs_infop->flag)) seq_puts(m, xfs_infop->str); } if (mp->m_flags & XFS_MOUNT_DFLT_IOSIZE) seq_printf(m, "," MNTOPT_ALLOCSIZE "=%dk", (int)(1 << mp->m_writeio_log) >> 10); if (mp->m_logbufs > 0) seq_printf(m, "," MNTOPT_LOGBUFS "=%d", mp->m_logbufs); if (mp->m_logbsize > 0) seq_printf(m, "," MNTOPT_LOGBSIZE "=%dk", mp->m_logbsize >> 10); if (mp->m_logname) seq_show_option(m, MNTOPT_LOGDEV, mp->m_logname); if (mp->m_rtname) seq_show_option(m, MNTOPT_RTDEV, mp->m_rtname); if (mp->m_dalign > 0) seq_printf(m, "," MNTOPT_SUNIT "=%d", (int)XFS_FSB_TO_BB(mp, mp->m_dalign)); if (mp->m_swidth > 0) seq_printf(m, "," MNTOPT_SWIDTH "=%d", (int)XFS_FSB_TO_BB(mp, mp->m_swidth)); if (mp->m_qflags & (XFS_UQUOTA_ACCT|XFS_UQUOTA_ENFD)) seq_puts(m, "," MNTOPT_USRQUOTA); else if (mp->m_qflags & XFS_UQUOTA_ACCT) seq_puts(m, "," MNTOPT_UQUOTANOENF); if (mp->m_qflags & XFS_PQUOTA_ACCT) { if (mp->m_qflags & XFS_PQUOTA_ENFD) seq_puts(m, "," MNTOPT_PRJQUOTA); else seq_puts(m, "," MNTOPT_PQUOTANOENF); } if (mp->m_qflags & XFS_GQUOTA_ACCT) { if (mp->m_qflags & XFS_GQUOTA_ENFD) seq_puts(m, "," MNTOPT_GRPQUOTA); else seq_puts(m, "," MNTOPT_GQUOTANOENF); } if (!(mp->m_qflags & XFS_ALL_QUOTA_ACCT)) seq_puts(m, "," MNTOPT_NOQUOTA); return 0; } __uint64_t xfs_max_file_offset( unsigned int blockshift) { unsigned int pagefactor = 1; unsigned int bitshift = BITS_PER_LONG - 1; /* Figure out maximum filesize, on Linux this can depend on * the filesystem blocksize (on 32 bit platforms). * __block_write_begin does this in an [unsigned] long... * page->index << (PAGE_CACHE_SHIFT - bbits) * So, for page sized blocks (4K on 32 bit platforms), * this wraps at around 8Tb (hence MAX_LFS_FILESIZE which is * (((u64)PAGE_CACHE_SIZE << (BITS_PER_LONG-1))-1) * but for smaller blocksizes it is less (bbits = log2 bsize). * Note1: get_block_t takes a long (implicit cast from above) * Note2: The Large Block Device (LBD and HAVE_SECTOR_T) patch * can optionally convert the [unsigned] long from above into * an [unsigned] long long. */ #if BITS_PER_LONG == 32 # if defined(CONFIG_LBDAF) ASSERT(sizeof(sector_t) == 8); pagefactor = PAGE_CACHE_SIZE; bitshift = BITS_PER_LONG; # else pagefactor = PAGE_CACHE_SIZE >> (PAGE_CACHE_SHIFT - blockshift); # endif #endif return (((__uint64_t)pagefactor) << bitshift) - 1; } /* * xfs_set_inode32() and xfs_set_inode64() are passed an agcount * because in the growfs case, mp->m_sb.sb_agcount is not updated * yet to the potentially higher ag count. */ xfs_agnumber_t xfs_set_inode32(struct xfs_mount *mp, xfs_agnumber_t agcount) { xfs_agnumber_t index = 0; xfs_agnumber_t maxagi = 0; xfs_sb_t *sbp = &mp->m_sb; xfs_agnumber_t max_metadata; xfs_agino_t agino; xfs_ino_t ino; xfs_perag_t *pag; /* Calculate how much should be reserved for inodes to meet * the max inode percentage. */ if (mp->m_maxicount) { __uint64_t icount; icount = sbp->sb_dblocks * sbp->sb_imax_pct; do_div(icount, 100); icount += sbp->sb_agblocks - 1; do_div(icount, sbp->sb_agblocks); max_metadata = icount; } else { max_metadata = agcount; } agino = XFS_OFFBNO_TO_AGINO(mp, sbp->sb_agblocks - 1, 0); for (index = 0; index < agcount; index++) { ino = XFS_AGINO_TO_INO(mp, index, agino); if (ino > XFS_MAXINUMBER_32) { pag = xfs_perag_get(mp, index); pag->pagi_inodeok = 0; pag->pagf_metadata = 0; xfs_perag_put(pag); continue; } pag = xfs_perag_get(mp, index); pag->pagi_inodeok = 1; maxagi++; if (index < max_metadata) pag->pagf_metadata = 1; xfs_perag_put(pag); } mp->m_flags |= (XFS_MOUNT_32BITINODES | XFS_MOUNT_SMALL_INUMS); return maxagi; } xfs_agnumber_t xfs_set_inode64(struct xfs_mount *mp, xfs_agnumber_t agcount) { xfs_agnumber_t index = 0; for (index = 0; index < agcount; index++) { struct xfs_perag *pag; pag = xfs_perag_get(mp, index); pag->pagi_inodeok = 1; pag->pagf_metadata = 0; xfs_perag_put(pag); } /* There is no need for lock protection on m_flags, * the rw_semaphore of the VFS superblock is locked * during mount/umount/remount operations, so this is * enough to avoid concurency on the m_flags field */ mp->m_flags &= ~(XFS_MOUNT_32BITINODES | XFS_MOUNT_SMALL_INUMS); return index; } STATIC int xfs_blkdev_get( xfs_mount_t *mp, const char *name, struct block_device **bdevp) { int error = 0; *bdevp = blkdev_get_by_path(name, FMODE_READ|FMODE_WRITE|FMODE_EXCL, mp); if (IS_ERR(*bdevp)) { error = PTR_ERR(*bdevp); xfs_warn(mp, "Invalid device [%s], error=%d", name, error); } return error; } STATIC void xfs_blkdev_put( struct block_device *bdev) { if (bdev) blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL); } void xfs_blkdev_issue_flush( xfs_buftarg_t *buftarg) { blkdev_issue_flush(buftarg->bt_bdev, GFP_NOFS, NULL); } STATIC void xfs_close_devices( struct xfs_mount *mp) { if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { struct block_device *logdev = mp->m_logdev_targp->bt_bdev; xfs_free_buftarg(mp, mp->m_logdev_targp); xfs_blkdev_put(logdev); } if (mp->m_rtdev_targp) { struct block_device *rtdev = mp->m_rtdev_targp->bt_bdev; xfs_free_buftarg(mp, mp->m_rtdev_targp); xfs_blkdev_put(rtdev); } xfs_free_buftarg(mp, mp->m_ddev_targp); } /* * The file system configurations are: * (1) device (partition) with data and internal log * (2) logical volume with data and log subvolumes. * (3) logical volume with data, log, and realtime subvolumes. * * We only have to handle opening the log and realtime volumes here if * they are present. The data subvolume has already been opened by * get_sb_bdev() and is stored in sb->s_bdev. */ STATIC int xfs_open_devices( struct xfs_mount *mp) { struct block_device *ddev = mp->m_super->s_bdev; struct block_device *logdev = NULL, *rtdev = NULL; int error; /* * Open real time and log devices - order is important. */ if (mp->m_logname) { error = xfs_blkdev_get(mp, mp->m_logname, &logdev); if (error) goto out; } if (mp->m_rtname) { error = xfs_blkdev_get(mp, mp->m_rtname, &rtdev); if (error) goto out_close_logdev; if (rtdev == ddev || rtdev == logdev) { xfs_warn(mp, "Cannot mount filesystem with identical rtdev and ddev/logdev."); error = -EINVAL; goto out_close_rtdev; } } /* * Setup xfs_mount buffer target pointers */ error = -ENOMEM; mp->m_ddev_targp = xfs_alloc_buftarg(mp, ddev); if (!mp->m_ddev_targp) goto out_close_rtdev; if (rtdev) { mp->m_rtdev_targp = xfs_alloc_buftarg(mp, rtdev); if (!mp->m_rtdev_targp) goto out_free_ddev_targ; } if (logdev && logdev != ddev) { mp->m_logdev_targp = xfs_alloc_buftarg(mp, logdev); if (!mp->m_logdev_targp) goto out_free_rtdev_targ; } else { mp->m_logdev_targp = mp->m_ddev_targp; } return 0; out_free_rtdev_targ: if (mp->m_rtdev_targp) xfs_free_buftarg(mp, mp->m_rtdev_targp); out_free_ddev_targ: xfs_free_buftarg(mp, mp->m_ddev_targp); out_close_rtdev: xfs_blkdev_put(rtdev); out_close_logdev: if (logdev && logdev != ddev) xfs_blkdev_put(logdev); out: return error; } /* * Setup xfs_mount buffer target pointers based on superblock */ STATIC int xfs_setup_devices( struct xfs_mount *mp) { int error; error = xfs_setsize_buftarg(mp->m_ddev_targp, mp->m_sb.sb_sectsize); if (error) return error; if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) { unsigned int log_sector_size = BBSIZE; if (xfs_sb_version_hassector(&mp->m_sb)) log_sector_size = mp->m_sb.sb_logsectsize; error = xfs_setsize_buftarg(mp->m_logdev_targp, log_sector_size); if (error) return error; } if (mp->m_rtdev_targp) { error = xfs_setsize_buftarg(mp->m_rtdev_targp, mp->m_sb.sb_sectsize); if (error) return error; } return 0; } STATIC int xfs_init_mount_workqueues( struct xfs_mount *mp) { mp->m_buf_workqueue = alloc_workqueue("xfs-buf/%s", WQ_MEM_RECLAIM|WQ_FREEZABLE, 1, mp->m_fsname); if (!mp->m_buf_workqueue) goto out; mp->m_data_workqueue = alloc_workqueue("xfs-data/%s", WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname); if (!mp->m_data_workqueue) goto out_destroy_buf; mp->m_unwritten_workqueue = alloc_workqueue("xfs-conv/%s", WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname); if (!mp->m_unwritten_workqueue) goto out_destroy_data_iodone_queue; mp->m_cil_workqueue = alloc_workqueue("xfs-cil/%s", WQ_MEM_RECLAIM|WQ_FREEZABLE, 0, mp->m_fsname); if (!mp->m_cil_workqueue) goto out_destroy_unwritten; mp->m_reclaim_workqueue = alloc_workqueue("xfs-reclaim/%s", WQ_FREEZABLE, 0, mp->m_fsname); if (!mp->m_reclaim_workqueue) goto out_destroy_cil; mp->m_log_workqueue = alloc_workqueue("xfs-log/%s", WQ_FREEZABLE|WQ_HIGHPRI, 0, mp->m_fsname); if (!mp->m_log_workqueue) goto out_destroy_reclaim; mp->m_eofblocks_workqueue = alloc_workqueue("xfs-eofblocks/%s", WQ_FREEZABLE, 0, mp->m_fsname); if (!mp->m_eofblocks_workqueue) goto out_destroy_log; return 0; out_destroy_log: destroy_workqueue(mp->m_log_workqueue); out_destroy_reclaim: destroy_workqueue(mp->m_reclaim_workqueue); out_destroy_cil: destroy_workqueue(mp->m_cil_workqueue); out_destroy_unwritten: destroy_workqueue(mp->m_unwritten_workqueue); out_destroy_data_iodone_queue: destroy_workqueue(mp->m_data_workqueue); out_destroy_buf: destroy_workqueue(mp->m_buf_workqueue); out: return -ENOMEM; } STATIC void xfs_destroy_mount_workqueues( struct xfs_mount *mp) { destroy_workqueue(mp->m_eofblocks_workqueue); destroy_workqueue(mp->m_log_workqueue); destroy_workqueue(mp->m_reclaim_workqueue); destroy_workqueue(mp->m_cil_workqueue); destroy_workqueue(mp->m_data_workqueue); destroy_workqueue(mp->m_unwritten_workqueue); destroy_workqueue(mp->m_buf_workqueue); } /* * Flush all dirty data to disk. Must not be called while holding an XFS_ILOCK * or a page lock. We use sync_inodes_sb() here to ensure we block while waiting * for IO to complete so that we effectively throttle multiple callers to the * rate at which IO is completing. */ void xfs_flush_inodes( struct xfs_mount *mp) { struct super_block *sb = mp->m_super; if (down_read_trylock(&sb->s_umount)) { sync_inodes_sb(sb); up_read(&sb->s_umount); } } /* Catch misguided souls that try to use this interface on XFS */ STATIC struct inode * xfs_fs_alloc_inode( struct super_block *sb) { BUG(); return NULL; } /* * Now that the generic code is guaranteed not to be accessing * the linux inode, we can reclaim the inode. */ STATIC void xfs_fs_destroy_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); trace_xfs_destroy_inode(ip); XFS_STATS_INC(ip->i_mount, vn_reclaim); ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || ip->i_delayed_blks == 0); /* * We should never get here with one of the reclaim flags already set. */ ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIMABLE)); ASSERT_ALWAYS(!xfs_iflags_test(ip, XFS_IRECLAIM)); /* * We always use background reclaim here because even if the * inode is clean, it still may be under IO and hence we have * to take the flush lock. The background reclaim path handles * this more efficiently than we can here, so simply let background * reclaim tear down all inodes. */ xfs_inode_set_reclaim_tag(ip); } /* * Slab object creation initialisation for the XFS inode. * This covers only the idempotent fields in the XFS inode; * all other fields need to be initialised on allocation * from the slab. This avoids the need to repeatedly initialise * fields in the xfs inode that left in the initialise state * when freeing the inode. */ STATIC void xfs_fs_inode_init_once( void *inode) { struct xfs_inode *ip = inode; memset(ip, 0, sizeof(struct xfs_inode)); /* vfs inode */ inode_init_once(VFS_I(ip)); /* xfs inode */ atomic_set(&ip->i_pincount, 0); spin_lock_init(&ip->i_flags_lock); mrlock_init(&ip->i_mmaplock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, "xfsino", ip->i_ino); mrlock_init(&ip->i_lock, MRLOCK_ALLOW_EQUAL_PRI|MRLOCK_BARRIER, "xfsino", ip->i_ino); } STATIC void xfs_fs_evict_inode( struct inode *inode) { xfs_inode_t *ip = XFS_I(inode); ASSERT(!rwsem_is_locked(&ip->i_iolock.mr_lock)); trace_xfs_evict_inode(ip); truncate_inode_pages_final(&inode->i_data); clear_inode(inode); XFS_STATS_INC(ip->i_mount, vn_rele); XFS_STATS_INC(ip->i_mount, vn_remove); xfs_inactive(ip); } /* * We do an unlocked check for XFS_IDONTCACHE here because we are already * serialised against cache hits here via the inode->i_lock and igrab() in * xfs_iget_cache_hit(). Hence a lookup that might clear this flag will not be * racing with us, and it avoids needing to grab a spinlock here for every inode * we drop the final reference on. */ STATIC int xfs_fs_drop_inode( struct inode *inode) { struct xfs_inode *ip = XFS_I(inode); return generic_drop_inode(inode) || (ip->i_flags & XFS_IDONTCACHE); } STATIC void xfs_free_fsname( struct xfs_mount *mp) { kfree(mp->m_fsname); kfree(mp->m_rtname); kfree(mp->m_logname); } STATIC int xfs_fs_sync_fs( struct super_block *sb, int wait) { struct xfs_mount *mp = XFS_M(sb); /* * Doing anything during the async pass would be counterproductive. */ if (!wait) return 0; xfs_log_force(mp, XFS_LOG_SYNC); if (laptop_mode) { /* * The disk must be active because we're syncing. * We schedule log work now (now that the disk is * active) instead of later (when it might not be). */ flush_delayed_work(&mp->m_log->l_work); } return 0; } STATIC int xfs_fs_statfs( struct dentry *dentry, struct kstatfs *statp) { struct xfs_mount *mp = XFS_M(dentry->d_sb); xfs_sb_t *sbp = &mp->m_sb; struct xfs_inode *ip = XFS_I(d_inode(dentry)); __uint64_t fakeinos, id; __uint64_t icount; __uint64_t ifree; __uint64_t fdblocks; xfs_extlen_t lsize; __int64_t ffree; statp->f_type = XFS_SB_MAGIC; statp->f_namelen = MAXNAMELEN - 1; id = huge_encode_dev(mp->m_ddev_targp->bt_dev); statp->f_fsid.val[0] = (u32)id; statp->f_fsid.val[1] = (u32)(id >> 32); icount = percpu_counter_sum(&mp->m_icount); ifree = percpu_counter_sum(&mp->m_ifree); fdblocks = percpu_counter_sum(&mp->m_fdblocks); spin_lock(&mp->m_sb_lock); statp->f_bsize = sbp->sb_blocksize; lsize = sbp->sb_logstart ? sbp->sb_logblocks : 0; statp->f_blocks = sbp->sb_dblocks - lsize; spin_unlock(&mp->m_sb_lock); statp->f_bfree = fdblocks - XFS_ALLOC_SET_ASIDE(mp); statp->f_bavail = statp->f_bfree; fakeinos = statp->f_bfree << sbp->sb_inopblog; statp->f_files = MIN(icount + fakeinos, (__uint64_t)XFS_MAXINUMBER); if (mp->m_maxicount) statp->f_files = min_t(typeof(statp->f_files), statp->f_files, mp->m_maxicount); /* If sb_icount overshot maxicount, report actual allocation */ statp->f_files = max_t(typeof(statp->f_files), statp->f_files, sbp->sb_icount); /* make sure statp->f_ffree does not underflow */ ffree = statp->f_files - (icount - ifree); statp->f_ffree = max_t(__int64_t, ffree, 0); if ((ip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) && ((mp->m_qflags & (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD))) == (XFS_PQUOTA_ACCT|XFS_PQUOTA_ENFD)) xfs_qm_statvfs(ip, statp); return 0; } STATIC void xfs_save_resvblks(struct xfs_mount *mp) { __uint64_t resblks = 0; mp->m_resblks_save = mp->m_resblks; xfs_reserve_blocks(mp, &resblks, NULL); } STATIC void xfs_restore_resvblks(struct xfs_mount *mp) { __uint64_t resblks; if (mp->m_resblks_save) { resblks = mp->m_resblks_save; mp->m_resblks_save = 0; } else resblks = xfs_default_resblks(mp); xfs_reserve_blocks(mp, &resblks, NULL); } /* * Trigger writeback of all the dirty metadata in the file system. * * This ensures that the metadata is written to their location on disk rather * than just existing in transactions in the log. This means after a quiesce * there is no log replay required to write the inodes to disk - this is the * primary difference between a sync and a quiesce. * * Note: xfs_log_quiesce() stops background log work - the callers must ensure * it is started again when appropriate. */ static void xfs_quiesce_attr( struct xfs_mount *mp) { int error = 0; /* wait for all modifications to complete */ while (atomic_read(&mp->m_active_trans) > 0) delay(100); /* force the log to unpin objects from the now complete transactions */ xfs_log_force(mp, XFS_LOG_SYNC); /* reclaim inodes to do any IO before the freeze completes */ xfs_reclaim_inodes(mp, 0); xfs_reclaim_inodes(mp, SYNC_WAIT); /* Push the superblock and write an unmount record */ error = xfs_log_sbcount(mp); if (error) xfs_warn(mp, "xfs_attr_quiesce: failed to log sb changes. " "Frozen image may not be consistent."); /* * Just warn here till VFS can correctly support * read-only remount without racing. */ WARN_ON(atomic_read(&mp->m_active_trans) != 0); xfs_log_quiesce(mp); } STATIC int xfs_fs_remount( struct super_block *sb, int *flags, char *options) { struct xfs_mount *mp = XFS_M(sb); xfs_sb_t *sbp = &mp->m_sb; substring_t args[MAX_OPT_ARGS]; char *p; int error; sync_filesystem(sb); while ((p = strsep(&options, ",")) != NULL) { int token; if (!*p) continue; token = match_token(p, tokens, args); switch (token) { case Opt_barrier: mp->m_flags |= XFS_MOUNT_BARRIER; break; case Opt_nobarrier: mp->m_flags &= ~XFS_MOUNT_BARRIER; break; case Opt_inode64: mp->m_maxagi = xfs_set_inode64(mp, sbp->sb_agcount); break; case Opt_inode32: mp->m_maxagi = xfs_set_inode32(mp, sbp->sb_agcount); break; default: /* * Logically we would return an error here to prevent * users from believing they might have changed * mount options using remount which can't be changed. * * But unfortunately mount(8) adds all options from * mtab and fstab to the mount arguments in some cases * so we can't blindly reject options, but have to * check for each specified option if it actually * differs from the currently set option and only * reject it if that's the case. * * Until that is implemented we return success for * every remount request, and silently ignore all * options that we can't actually change. */ #if 0 xfs_info(mp, "mount option \"%s\" not supported for remount", p); return -EINVAL; #else break; #endif } } /* ro -> rw */ if ((mp->m_flags & XFS_MOUNT_RDONLY) && !(*flags & MS_RDONLY)) { if (mp->m_flags & XFS_MOUNT_NORECOVERY) { xfs_warn(mp, "ro->rw transition prohibited on norecovery mount"); return -EINVAL; } mp->m_flags &= ~XFS_MOUNT_RDONLY; /* * If this is the first remount to writeable state we * might have some superblock changes to update. */ if (mp->m_update_sb) { error = xfs_sync_sb(mp, false); if (error) { xfs_warn(mp, "failed to write sb changes"); return error; } mp->m_update_sb = false; } /* * Fill out the reserve pool if it is empty. Use the stashed * value if it is non-zero, otherwise go with the default. */ xfs_restore_resvblks(mp); xfs_log_work_queue(mp); } /* rw -> ro */ if (!(mp->m_flags & XFS_MOUNT_RDONLY) && (*flags & MS_RDONLY)) { /* * Before we sync the metadata, we need to free up the reserve * block pool so that the used block count in the superblock on * disk is correct at the end of the remount. Stash the current * reserve pool size so that if we get remounted rw, we can * return it to the same size. */ xfs_save_resvblks(mp); xfs_quiesce_attr(mp); mp->m_flags |= XFS_MOUNT_RDONLY; } return 0; } /* * Second stage of a freeze. The data is already frozen so we only * need to take care of the metadata. Once that's done sync the superblock * to the log to dirty it in case of a crash while frozen. This ensures that we * will recover the unlinked inode lists on the next mount. */ STATIC int xfs_fs_freeze( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); xfs_save_resvblks(mp); xfs_quiesce_attr(mp); return xfs_sync_sb(mp, true); } STATIC int xfs_fs_unfreeze( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); xfs_restore_resvblks(mp); xfs_log_work_queue(mp); return 0; } STATIC int xfs_fs_show_options( struct seq_file *m, struct dentry *root) { return xfs_showargs(XFS_M(root->d_sb), m); } /* * This function fills in xfs_mount_t fields based on mount args. * Note: the superblock _has_ now been read in. */ STATIC int xfs_finish_flags( struct xfs_mount *mp) { int ronly = (mp->m_flags & XFS_MOUNT_RDONLY); /* Fail a mount where the logbuf is smaller than the log stripe */ if (xfs_sb_version_haslogv2(&mp->m_sb)) { if (mp->m_logbsize <= 0 && mp->m_sb.sb_logsunit > XLOG_BIG_RECORD_BSIZE) { mp->m_logbsize = mp->m_sb.sb_logsunit; } else if (mp->m_logbsize > 0 && mp->m_logbsize < mp->m_sb.sb_logsunit) { xfs_warn(mp, "logbuf size must be greater than or equal to log stripe size"); return -EINVAL; } } else { /* Fail a mount if the logbuf is larger than 32K */ if (mp->m_logbsize > XLOG_BIG_RECORD_BSIZE) { xfs_warn(mp, "logbuf size for version 1 logs must be 16K or 32K"); return -EINVAL; } } /* * V5 filesystems always use attr2 format for attributes. */ if (xfs_sb_version_hascrc(&mp->m_sb) && (mp->m_flags & XFS_MOUNT_NOATTR2)) { xfs_warn(mp, "Cannot mount a V5 filesystem as %s. %s is always enabled for V5 filesystems.", MNTOPT_NOATTR2, MNTOPT_ATTR2); return -EINVAL; } /* * mkfs'ed attr2 will turn on attr2 mount unless explicitly * told by noattr2 to turn it off */ if (xfs_sb_version_hasattr2(&mp->m_sb) && !(mp->m_flags & XFS_MOUNT_NOATTR2)) mp->m_flags |= XFS_MOUNT_ATTR2; /* * prohibit r/w mounts of read-only filesystems */ if ((mp->m_sb.sb_flags & XFS_SBF_READONLY) && !ronly) { xfs_warn(mp, "cannot mount a read-only filesystem as read-write"); return -EROFS; } if ((mp->m_qflags & (XFS_GQUOTA_ACCT | XFS_GQUOTA_ACTIVE)) && (mp->m_qflags & (XFS_PQUOTA_ACCT | XFS_PQUOTA_ACTIVE)) && !xfs_sb_version_has_pquotino(&mp->m_sb)) { xfs_warn(mp, "Super block does not support project and group quota together"); return -EINVAL; } return 0; } static int xfs_init_percpu_counters( struct xfs_mount *mp) { int error; error = percpu_counter_init(&mp->m_icount, 0, GFP_KERNEL); if (error) return -ENOMEM; error = percpu_counter_init(&mp->m_ifree, 0, GFP_KERNEL); if (error) goto free_icount; error = percpu_counter_init(&mp->m_fdblocks, 0, GFP_KERNEL); if (error) goto free_ifree; return 0; free_ifree: percpu_counter_destroy(&mp->m_ifree); free_icount: percpu_counter_destroy(&mp->m_icount); return -ENOMEM; } void xfs_reinit_percpu_counters( struct xfs_mount *mp) { percpu_counter_set(&mp->m_icount, mp->m_sb.sb_icount); percpu_counter_set(&mp->m_ifree, mp->m_sb.sb_ifree); percpu_counter_set(&mp->m_fdblocks, mp->m_sb.sb_fdblocks); } static void xfs_destroy_percpu_counters( struct xfs_mount *mp) { percpu_counter_destroy(&mp->m_icount); percpu_counter_destroy(&mp->m_ifree); percpu_counter_destroy(&mp->m_fdblocks); } STATIC int xfs_fs_fill_super( struct super_block *sb, void *data, int silent) { struct inode *root; struct xfs_mount *mp = NULL; int flags = 0, error = -ENOMEM; mp = kzalloc(sizeof(struct xfs_mount), GFP_KERNEL); if (!mp) goto out; spin_lock_init(&mp->m_sb_lock); mutex_init(&mp->m_growlock); atomic_set(&mp->m_active_trans, 0); INIT_DELAYED_WORK(&mp->m_reclaim_work, xfs_reclaim_worker); INIT_DELAYED_WORK(&mp->m_eofblocks_work, xfs_eofblocks_worker); mp->m_kobj.kobject.kset = xfs_kset; mp->m_super = sb; sb->s_fs_info = mp; error = xfs_parseargs(mp, (char *)data); if (error) goto out_free_fsname; sb_min_blocksize(sb, BBSIZE); sb->s_xattr = xfs_xattr_handlers; sb->s_export_op = &xfs_export_operations; #ifdef CONFIG_XFS_QUOTA sb->s_qcop = &xfs_quotactl_operations; sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; #endif sb->s_op = &xfs_super_operations; if (silent) flags |= XFS_MFSI_QUIET; error = xfs_open_devices(mp); if (error) goto out_free_fsname; error = xfs_init_mount_workqueues(mp); if (error) goto out_close_devices; error = xfs_init_percpu_counters(mp); if (error) goto out_destroy_workqueues; /* Allocate stats memory before we do operations that might use it */ mp->m_stats.xs_stats = alloc_percpu(struct xfsstats); if (!mp->m_stats.xs_stats) { error = -ENOMEM; goto out_destroy_counters; } error = xfs_readsb(mp, flags); if (error) goto out_free_stats; error = xfs_finish_flags(mp); if (error) goto out_free_sb; error = xfs_setup_devices(mp); if (error) goto out_free_sb; error = xfs_filestream_mount(mp); if (error) goto out_free_sb; /* * we must configure the block size in the superblock before we run the * full mount process as the mount process can lookup and cache inodes. */ sb->s_magic = XFS_SB_MAGIC; sb->s_blocksize = mp->m_sb.sb_blocksize; sb->s_blocksize_bits = ffs(sb->s_blocksize) - 1; sb->s_maxbytes = xfs_max_file_offset(sb->s_blocksize_bits); sb->s_max_links = XFS_MAXLINK; sb->s_time_gran = 1; set_posix_acl_flag(sb); /* version 5 superblocks support inode version counters. */ if (XFS_SB_VERSION_NUM(&mp->m_sb) == XFS_SB_VERSION_5) sb->s_flags |= MS_I_VERSION; if (mp->m_flags & XFS_MOUNT_DAX) { xfs_warn(mp, "DAX enabled. Warning: EXPERIMENTAL, use at your own risk"); if (sb->s_blocksize != PAGE_SIZE) { xfs_alert(mp, "Filesystem block size invalid for DAX Turning DAX off."); mp->m_flags &= ~XFS_MOUNT_DAX; } else if (!sb->s_bdev->bd_disk->fops->direct_access) { xfs_alert(mp, "Block device does not support DAX Turning DAX off."); mp->m_flags &= ~XFS_MOUNT_DAX; } } if (xfs_sb_version_hassparseinodes(&mp->m_sb)) xfs_alert(mp, "EXPERIMENTAL sparse inode feature enabled. Use at your own risk!"); error = xfs_mountfs(mp); if (error) goto out_filestream_unmount; root = igrab(VFS_I(mp->m_rootip)); if (!root) { error = -ENOENT; goto out_unmount; } sb->s_root = d_make_root(root); if (!sb->s_root) { error = -ENOMEM; goto out_unmount; } return 0; out_filestream_unmount: xfs_filestream_unmount(mp); out_free_sb: xfs_freesb(mp); out_free_stats: free_percpu(mp->m_stats.xs_stats); out_destroy_counters: xfs_destroy_percpu_counters(mp); out_destroy_workqueues: xfs_destroy_mount_workqueues(mp); out_close_devices: xfs_close_devices(mp); out_free_fsname: xfs_free_fsname(mp); kfree(mp); out: return error; out_unmount: xfs_filestream_unmount(mp); xfs_unmountfs(mp); goto out_free_sb; } STATIC void xfs_fs_put_super( struct super_block *sb) { struct xfs_mount *mp = XFS_M(sb); xfs_notice(mp, "Unmounting Filesystem"); xfs_filestream_unmount(mp); xfs_unmountfs(mp); xfs_freesb(mp); free_percpu(mp->m_stats.xs_stats); xfs_destroy_percpu_counters(mp); xfs_destroy_mount_workqueues(mp); xfs_close_devices(mp); xfs_free_fsname(mp); kfree(mp); } STATIC struct dentry * xfs_fs_mount( struct file_system_type *fs_type, int flags, const char *dev_name, void *data) { return mount_bdev(fs_type, flags, dev_name, data, xfs_fs_fill_super); } static long xfs_fs_nr_cached_objects( struct super_block *sb, struct shrink_control *sc) { return xfs_reclaim_inodes_count(XFS_M(sb)); } static long xfs_fs_free_cached_objects( struct super_block *sb, struct shrink_control *sc) { return xfs_reclaim_inodes_nr(XFS_M(sb), sc->nr_to_scan); } static const struct super_operations xfs_super_operations = { .alloc_inode = xfs_fs_alloc_inode, .destroy_inode = xfs_fs_destroy_inode, .evict_inode = xfs_fs_evict_inode, .drop_inode = xfs_fs_drop_inode, .put_super = xfs_fs_put_super, .sync_fs = xfs_fs_sync_fs, .freeze_fs = xfs_fs_freeze, .unfreeze_fs = xfs_fs_unfreeze, .statfs = xfs_fs_statfs, .remount_fs = xfs_fs_remount, .show_options = xfs_fs_show_options, .nr_cached_objects = xfs_fs_nr_cached_objects, .free_cached_objects = xfs_fs_free_cached_objects, }; static struct file_system_type xfs_fs_type = { .owner = THIS_MODULE, .name = "xfs", .mount = xfs_fs_mount, .kill_sb = kill_block_super, .fs_flags = FS_REQUIRES_DEV, }; MODULE_ALIAS_FS("xfs"); STATIC int __init xfs_init_zones(void) { xfs_ioend_zone = kmem_zone_init(sizeof(xfs_ioend_t), "xfs_ioend"); if (!xfs_ioend_zone) goto out; xfs_ioend_pool = mempool_create_slab_pool(4 * MAX_BUF_PER_PAGE, xfs_ioend_zone); if (!xfs_ioend_pool) goto out_destroy_ioend_zone; xfs_log_ticket_zone = kmem_zone_init(sizeof(xlog_ticket_t), "xfs_log_ticket"); if (!xfs_log_ticket_zone) goto out_destroy_ioend_pool; xfs_bmap_free_item_zone = kmem_zone_init(sizeof(xfs_bmap_free_item_t), "xfs_bmap_free_item"); if (!xfs_bmap_free_item_zone) goto out_destroy_log_ticket_zone; xfs_btree_cur_zone = kmem_zone_init(sizeof(xfs_btree_cur_t), "xfs_btree_cur"); if (!xfs_btree_cur_zone) goto out_destroy_bmap_free_item_zone; xfs_da_state_zone = kmem_zone_init(sizeof(xfs_da_state_t), "xfs_da_state"); if (!xfs_da_state_zone) goto out_destroy_btree_cur_zone; xfs_ifork_zone = kmem_zone_init(sizeof(xfs_ifork_t), "xfs_ifork"); if (!xfs_ifork_zone) goto out_destroy_da_state_zone; xfs_trans_zone = kmem_zone_init(sizeof(xfs_trans_t), "xfs_trans"); if (!xfs_trans_zone) goto out_destroy_ifork_zone; xfs_log_item_desc_zone = kmem_zone_init(sizeof(struct xfs_log_item_desc), "xfs_log_item_desc"); if (!xfs_log_item_desc_zone) goto out_destroy_trans_zone; /* * The size of the zone allocated buf log item is the maximum * size possible under XFS. This wastes a little bit of memory, * but it is much faster. */ xfs_buf_item_zone = kmem_zone_init(sizeof(struct xfs_buf_log_item), "xfs_buf_item"); if (!xfs_buf_item_zone) goto out_destroy_log_item_desc_zone; xfs_efd_zone = kmem_zone_init((sizeof(xfs_efd_log_item_t) + ((XFS_EFD_MAX_FAST_EXTENTS - 1) * sizeof(xfs_extent_t))), "xfs_efd_item"); if (!xfs_efd_zone) goto out_destroy_buf_item_zone; xfs_efi_zone = kmem_zone_init((sizeof(xfs_efi_log_item_t) + ((XFS_EFI_MAX_FAST_EXTENTS - 1) * sizeof(xfs_extent_t))), "xfs_efi_item"); if (!xfs_efi_zone) goto out_destroy_efd_zone; xfs_inode_zone = kmem_zone_init_flags(sizeof(xfs_inode_t), "xfs_inode", KM_ZONE_HWALIGN | KM_ZONE_RECLAIM | KM_ZONE_SPREAD, xfs_fs_inode_init_once); if (!xfs_inode_zone) goto out_destroy_efi_zone; xfs_ili_zone = kmem_zone_init_flags(sizeof(xfs_inode_log_item_t), "xfs_ili", KM_ZONE_SPREAD, NULL); if (!xfs_ili_zone) goto out_destroy_inode_zone; xfs_icreate_zone = kmem_zone_init(sizeof(struct xfs_icreate_item), "xfs_icr"); if (!xfs_icreate_zone) goto out_destroy_ili_zone; return 0; out_destroy_ili_zone: kmem_zone_destroy(xfs_ili_zone); out_destroy_inode_zone: kmem_zone_destroy(xfs_inode_zone); out_destroy_efi_zone: kmem_zone_destroy(xfs_efi_zone); out_destroy_efd_zone: kmem_zone_destroy(xfs_efd_zone); out_destroy_buf_item_zone: kmem_zone_destroy(xfs_buf_item_zone); out_destroy_log_item_desc_zone: kmem_zone_destroy(xfs_log_item_desc_zone); out_destroy_trans_zone: kmem_zone_destroy(xfs_trans_zone); out_destroy_ifork_zone: kmem_zone_destroy(xfs_ifork_zone); out_destroy_da_state_zone: kmem_zone_destroy(xfs_da_state_zone); out_destroy_btree_cur_zone: kmem_zone_destroy(xfs_btree_cur_zone); out_destroy_bmap_free_item_zone: kmem_zone_destroy(xfs_bmap_free_item_zone); out_destroy_log_ticket_zone: kmem_zone_destroy(xfs_log_ticket_zone); out_destroy_ioend_pool: mempool_destroy(xfs_ioend_pool); out_destroy_ioend_zone: kmem_zone_destroy(xfs_ioend_zone); out: return -ENOMEM; } STATIC void xfs_destroy_zones(void) { /* * Make sure all delayed rcu free are flushed before we * destroy caches. */ rcu_barrier(); kmem_zone_destroy(xfs_icreate_zone); kmem_zone_destroy(xfs_ili_zone); kmem_zone_destroy(xfs_inode_zone); kmem_zone_destroy(xfs_efi_zone); kmem_zone_destroy(xfs_efd_zone); kmem_zone_destroy(xfs_buf_item_zone); kmem_zone_destroy(xfs_log_item_desc_zone); kmem_zone_destroy(xfs_trans_zone); kmem_zone_destroy(xfs_ifork_zone); kmem_zone_destroy(xfs_da_state_zone); kmem_zone_destroy(xfs_btree_cur_zone); kmem_zone_destroy(xfs_bmap_free_item_zone); kmem_zone_destroy(xfs_log_ticket_zone); mempool_destroy(xfs_ioend_pool); kmem_zone_destroy(xfs_ioend_zone); } STATIC int __init xfs_init_workqueues(void) { /* * The allocation workqueue can be used in memory reclaim situations * (writepage path), and parallelism is only limited by the number of * AGs in all the filesystems mounted. Hence use the default large * max_active value for this workqueue. */ xfs_alloc_wq = alloc_workqueue("xfsalloc", WQ_MEM_RECLAIM|WQ_FREEZABLE, 0); if (!xfs_alloc_wq) return -ENOMEM; return 0; } STATIC void xfs_destroy_workqueues(void) { destroy_workqueue(xfs_alloc_wq); } STATIC int __init init_xfs_fs(void) { int error; printk(KERN_INFO XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled\n"); xfs_dir_startup(); error = xfs_init_zones(); if (error) goto out; error = xfs_init_workqueues(); if (error) goto out_destroy_zones; error = xfs_mru_cache_init(); if (error) goto out_destroy_wq; error = xfs_buf_init(); if (error) goto out_mru_cache_uninit; error = xfs_init_procfs(); if (error) goto out_buf_terminate; error = xfs_sysctl_register(); if (error) goto out_cleanup_procfs; xfs_kset = kset_create_and_add("xfs", NULL, fs_kobj); if (!xfs_kset) { error = -ENOMEM; goto out_sysctl_unregister; } xfsstats.xs_kobj.kobject.kset = xfs_kset; xfsstats.xs_stats = alloc_percpu(struct xfsstats); if (!xfsstats.xs_stats) { error = -ENOMEM; goto out_kset_unregister; } error = xfs_sysfs_init(&xfsstats.xs_kobj, &xfs_stats_ktype, NULL, "stats"); if (error) goto out_free_stats; #ifdef DEBUG xfs_dbg_kobj.kobject.kset = xfs_kset; error = xfs_sysfs_init(&xfs_dbg_kobj, &xfs_dbg_ktype, NULL, "debug"); if (error) goto out_remove_stats_kobj; #endif error = xfs_qm_init(); if (error) goto out_remove_dbg_kobj; error = register_filesystem(&xfs_fs_type); if (error) goto out_qm_exit; return 0; out_qm_exit: xfs_qm_exit(); out_remove_dbg_kobj: #ifdef DEBUG xfs_sysfs_del(&xfs_dbg_kobj); out_remove_stats_kobj: #endif xfs_sysfs_del(&xfsstats.xs_kobj); out_free_stats: free_percpu(xfsstats.xs_stats); out_kset_unregister: kset_unregister(xfs_kset); out_sysctl_unregister: xfs_sysctl_unregister(); out_cleanup_procfs: xfs_cleanup_procfs(); out_buf_terminate: xfs_buf_terminate(); out_mru_cache_uninit: xfs_mru_cache_uninit(); out_destroy_wq: xfs_destroy_workqueues(); out_destroy_zones: xfs_destroy_zones(); out: return error; } STATIC void __exit exit_xfs_fs(void) { xfs_qm_exit(); unregister_filesystem(&xfs_fs_type); #ifdef DEBUG xfs_sysfs_del(&xfs_dbg_kobj); #endif xfs_sysfs_del(&xfsstats.xs_kobj); free_percpu(xfsstats.xs_stats); kset_unregister(xfs_kset); xfs_sysctl_unregister(); xfs_cleanup_procfs(); xfs_buf_terminate(); xfs_mru_cache_uninit(); xfs_destroy_workqueues(); xfs_destroy_zones(); xfs_uuid_table_free(); } module_init(init_xfs_fs); module_exit(exit_xfs_fs); MODULE_AUTHOR("Silicon Graphics, Inc."); MODULE_DESCRIPTION(XFS_VERSION_STRING " with " XFS_BUILD_OPTIONS " enabled"); MODULE_LICENSE("GPL");