#ifndef _LINUX_SCHED_H #define _LINUX_SCHED_H #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct sched_attr; struct sched_param; struct futex_pi_state; struct robust_list_head; struct bio_list; struct fs_struct; struct perf_event_context; struct blk_plug; struct filename; struct nameidata; struct signal_struct; struct sighand_struct; extern unsigned long total_forks; extern int nr_threads; DECLARE_PER_CPU(unsigned long, process_counts); extern int nr_processes(void); extern unsigned long nr_running(void); extern bool single_task_running(void); extern unsigned long nr_iowait(void); extern unsigned long nr_iowait_cpu(int cpu); extern void get_iowait_load(unsigned long *nr_waiters, unsigned long *load); #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) extern void cpu_load_update_nohz_start(void); extern void cpu_load_update_nohz_stop(void); #else static inline void cpu_load_update_nohz_start(void) { } static inline void cpu_load_update_nohz_stop(void) { } #endif extern void dump_cpu_task(int cpu); struct seq_file; struct cfs_rq; struct task_group; #ifdef CONFIG_SCHED_DEBUG extern void proc_sched_show_task(struct task_struct *p, struct seq_file *m); extern void proc_sched_set_task(struct task_struct *p); #endif /* * Task state bitmask. NOTE! These bits are also * encoded in fs/proc/array.c: get_task_state(). * * We have two separate sets of flags: task->state * is about runnability, while task->exit_state are * about the task exiting. Confusing, but this way * modifying one set can't modify the other one by * mistake. */ #define TASK_RUNNING 0 #define TASK_INTERRUPTIBLE 1 #define TASK_UNINTERRUPTIBLE 2 #define __TASK_STOPPED 4 #define __TASK_TRACED 8 /* in tsk->exit_state */ #define EXIT_DEAD 16 #define EXIT_ZOMBIE 32 #define EXIT_TRACE (EXIT_ZOMBIE | EXIT_DEAD) /* in tsk->state again */ #define TASK_DEAD 64 #define TASK_WAKEKILL 128 #define TASK_WAKING 256 #define TASK_PARKED 512 #define TASK_NOLOAD 1024 #define TASK_NEW 2048 #define TASK_STATE_MAX 4096 #define TASK_STATE_TO_CHAR_STR "RSDTtXZxKWPNn" /* Convenience macros for the sake of set_current_state */ #define TASK_KILLABLE (TASK_WAKEKILL | TASK_UNINTERRUPTIBLE) #define TASK_STOPPED (TASK_WAKEKILL | __TASK_STOPPED) #define TASK_TRACED (TASK_WAKEKILL | __TASK_TRACED) #define TASK_IDLE (TASK_UNINTERRUPTIBLE | TASK_NOLOAD) /* Convenience macros for the sake of wake_up */ #define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) #define TASK_ALL (TASK_NORMAL | __TASK_STOPPED | __TASK_TRACED) /* get_task_state() */ #define TASK_REPORT (TASK_RUNNING | TASK_INTERRUPTIBLE | \ TASK_UNINTERRUPTIBLE | __TASK_STOPPED | \ __TASK_TRACED | EXIT_ZOMBIE | EXIT_DEAD) #define task_is_traced(task) ((task->state & __TASK_TRACED) != 0) #define task_is_stopped(task) ((task->state & __TASK_STOPPED) != 0) #define task_is_stopped_or_traced(task) \ ((task->state & (__TASK_STOPPED | __TASK_TRACED)) != 0) #define task_contributes_to_load(task) \ ((task->state & TASK_UNINTERRUPTIBLE) != 0 && \ (task->flags & PF_FROZEN) == 0 && \ (task->state & TASK_NOLOAD) == 0) #ifdef CONFIG_DEBUG_ATOMIC_SLEEP #define __set_current_state(state_value) \ do { \ current->task_state_change = _THIS_IP_; \ current->state = (state_value); \ } while (0) #define set_current_state(state_value) \ do { \ current->task_state_change = _THIS_IP_; \ smp_store_mb(current->state, (state_value)); \ } while (0) #else /* * set_current_state() includes a barrier so that the write of current->state * is correctly serialised wrt the caller's subsequent test of whether to * actually sleep: * * for (;;) { * set_current_state(TASK_UNINTERRUPTIBLE); * if (!need_sleep) * break; * * schedule(); * } * __set_current_state(TASK_RUNNING); * * If the caller does not need such serialisation (because, for instance, the * condition test and condition change and wakeup are under the same lock) then * use __set_current_state(). * * The above is typically ordered against the wakeup, which does: * * need_sleep = false; * wake_up_state(p, TASK_UNINTERRUPTIBLE); * * Where wake_up_state() (and all other wakeup primitives) imply enough * barriers to order the store of the variable against wakeup. * * Wakeup will do: if (@state & p->state) p->state = TASK_RUNNING, that is, * once it observes the TASK_UNINTERRUPTIBLE store the waking CPU can issue a * TASK_RUNNING store which can collide with __set_current_state(TASK_RUNNING). * * This is obviously fine, since they both store the exact same value. * * Also see the comments of try_to_wake_up(). */ #define __set_current_state(state_value) \ do { current->state = (state_value); } while (0) #define set_current_state(state_value) \ smp_store_mb(current->state, (state_value)) #endif /* Task command name length */ #define TASK_COMM_LEN 16 #include /* * This serializes "schedule()" and also protects * the run-queue from deletions/modifications (but * _adding_ to the beginning of the run-queue has * a separate lock). */ extern rwlock_t tasklist_lock; extern spinlock_t mmlist_lock; struct task_struct; #ifdef CONFIG_PROVE_RCU extern int lockdep_tasklist_lock_is_held(void); #endif /* #ifdef CONFIG_PROVE_RCU */ extern void sched_init(void); extern void sched_init_smp(void); extern asmlinkage void schedule_tail(struct task_struct *prev); extern void init_idle(struct task_struct *idle, int cpu); extern void init_idle_bootup_task(struct task_struct *idle); extern cpumask_var_t cpu_isolated_map; extern int runqueue_is_locked(int cpu); #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) extern void nohz_balance_enter_idle(int cpu); extern void set_cpu_sd_state_idle(void); extern int get_nohz_timer_target(void); #else static inline void nohz_balance_enter_idle(int cpu) { } static inline void set_cpu_sd_state_idle(void) { } #endif /* * Only dump TASK_* tasks. (0 for all tasks) */ extern void show_state_filter(unsigned long state_filter); static inline void show_state(void) { show_state_filter(0); } extern void show_regs(struct pt_regs *); /* * TASK is a pointer to the task whose backtrace we want to see (or NULL for current * task), SP is the stack pointer of the first frame that should be shown in the back * trace (or NULL if the entire call-chain of the task should be shown). */ extern void show_stack(struct task_struct *task, unsigned long *sp); extern void cpu_init (void); extern void trap_init(void); extern void update_process_times(int user); extern void scheduler_tick(void); extern int sched_cpu_starting(unsigned int cpu); extern int sched_cpu_activate(unsigned int cpu); extern int sched_cpu_deactivate(unsigned int cpu); #ifdef CONFIG_HOTPLUG_CPU extern int sched_cpu_dying(unsigned int cpu); #else # define sched_cpu_dying NULL #endif extern void sched_show_task(struct task_struct *p); /* Attach to any functions which should be ignored in wchan output. */ #define __sched __attribute__((__section__(".sched.text"))) /* Linker adds these: start and end of __sched functions */ extern char __sched_text_start[], __sched_text_end[]; /* Is this address in the __sched functions? */ extern int in_sched_functions(unsigned long addr); #define MAX_SCHEDULE_TIMEOUT LONG_MAX extern signed long schedule_timeout(signed long timeout); extern signed long schedule_timeout_interruptible(signed long timeout); extern signed long schedule_timeout_killable(signed long timeout); extern signed long schedule_timeout_uninterruptible(signed long timeout); extern signed long schedule_timeout_idle(signed long timeout); asmlinkage void schedule(void); extern void schedule_preempt_disabled(void); extern int __must_check io_schedule_prepare(void); extern void io_schedule_finish(int token); extern long io_schedule_timeout(long timeout); extern void io_schedule(void); void __noreturn do_task_dead(void); struct nsproxy; /** * struct prev_cputime - snaphsot of system and user cputime * @utime: time spent in user mode * @stime: time spent in system mode * @lock: protects the above two fields * * Stores previous user/system time values such that we can guarantee * monotonicity. */ struct prev_cputime { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE u64 utime; u64 stime; raw_spinlock_t lock; #endif }; static inline void prev_cputime_init(struct prev_cputime *prev) { #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE prev->utime = prev->stime = 0; raw_spin_lock_init(&prev->lock); #endif } /** * struct task_cputime - collected CPU time counts * @utime: time spent in user mode, in nanoseconds * @stime: time spent in kernel mode, in nanoseconds * @sum_exec_runtime: total time spent on the CPU, in nanoseconds * * This structure groups together three kinds of CPU time that are tracked for * threads and thread groups. Most things considering CPU time want to group * these counts together and treat all three of them in parallel. */ struct task_cputime { u64 utime; u64 stime; unsigned long long sum_exec_runtime; }; /* Alternate field names when used to cache expirations. */ #define virt_exp utime #define prof_exp stime #define sched_exp sum_exec_runtime /* * This is the atomic variant of task_cputime, which can be used for * storing and updating task_cputime statistics without locking. */ struct task_cputime_atomic { atomic64_t utime; atomic64_t stime; atomic64_t sum_exec_runtime; }; #define INIT_CPUTIME_ATOMIC \ (struct task_cputime_atomic) { \ .utime = ATOMIC64_INIT(0), \ .stime = ATOMIC64_INIT(0), \ .sum_exec_runtime = ATOMIC64_INIT(0), \ } #define PREEMPT_DISABLED (PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) /* * Disable preemption until the scheduler is running -- use an unconditional * value so that it also works on !PREEMPT_COUNT kernels. * * Reset by start_kernel()->sched_init()->init_idle()->init_idle_preempt_count(). */ #define INIT_PREEMPT_COUNT PREEMPT_OFFSET /* * Initial preempt_count value; reflects the preempt_count schedule invariant * which states that during context switches: * * preempt_count() == 2*PREEMPT_DISABLE_OFFSET * * Note: PREEMPT_DISABLE_OFFSET is 0 for !PREEMPT_COUNT kernels. * Note: See finish_task_switch(). */ #define FORK_PREEMPT_COUNT (2*PREEMPT_DISABLE_OFFSET + PREEMPT_ENABLED) /** * struct thread_group_cputimer - thread group interval timer counts * @cputime_atomic: atomic thread group interval timers. * @running: true when there are timers running and * @cputime_atomic receives updates. * @checking_timer: true when a thread in the group is in the * process of checking for thread group timers. * * This structure contains the version of task_cputime, above, that is * used for thread group CPU timer calculations. */ struct thread_group_cputimer { struct task_cputime_atomic cputime_atomic; bool running; bool checking_timer; }; #include struct autogroup; struct backing_dev_info; struct reclaim_state; #ifdef CONFIG_SCHED_INFO struct sched_info { /* cumulative counters */ unsigned long pcount; /* # of times run on this cpu */ unsigned long long run_delay; /* time spent waiting on a runqueue */ /* timestamps */ unsigned long long last_arrival,/* when we last ran on a cpu */ last_queued; /* when we were last queued to run */ }; #endif /* CONFIG_SCHED_INFO */ struct task_delay_info; static inline int sched_info_on(void) { #ifdef CONFIG_SCHEDSTATS return 1; #elif defined(CONFIG_TASK_DELAY_ACCT) extern int delayacct_on; return delayacct_on; #else return 0; #endif } #ifdef CONFIG_SCHEDSTATS void force_schedstat_enabled(void); #endif /* * Integer metrics need fixed point arithmetic, e.g., sched/fair * has a few: load, load_avg, util_avg, freq, and capacity. * * We define a basic fixed point arithmetic range, and then formalize * all these metrics based on that basic range. */ # define SCHED_FIXEDPOINT_SHIFT 10 # define SCHED_FIXEDPOINT_SCALE (1L << SCHED_FIXEDPOINT_SHIFT) struct io_context; /* See blkdev.h */ #ifdef ARCH_HAS_PREFETCH_SWITCH_STACK extern void prefetch_stack(struct task_struct *t); #else static inline void prefetch_stack(struct task_struct *t) { } #endif struct audit_context; /* See audit.c */ struct mempolicy; struct pipe_inode_info; struct uts_namespace; struct load_weight { unsigned long weight; u32 inv_weight; }; /* * The load_avg/util_avg accumulates an infinite geometric series * (see __update_load_avg() in kernel/sched/fair.c). * * [load_avg definition] * * load_avg = runnable% * scale_load_down(load) * * where runnable% is the time ratio that a sched_entity is runnable. * For cfs_rq, it is the aggregated load_avg of all runnable and * blocked sched_entities. * * load_avg may also take frequency scaling into account: * * load_avg = runnable% * scale_load_down(load) * freq% * * where freq% is the CPU frequency normalized to the highest frequency. * * [util_avg definition] * * util_avg = running% * SCHED_CAPACITY_SCALE * * where running% is the time ratio that a sched_entity is running on * a CPU. For cfs_rq, it is the aggregated util_avg of all runnable * and blocked sched_entities. * * util_avg may also factor frequency scaling and CPU capacity scaling: * * util_avg = running% * SCHED_CAPACITY_SCALE * freq% * capacity% * * where freq% is the same as above, and capacity% is the CPU capacity * normalized to the greatest capacity (due to uarch differences, etc). * * N.B., the above ratios (runnable%, running%, freq%, and capacity%) * themselves are in the range of [0, 1]. To do fixed point arithmetics, * we therefore scale them to as large a range as necessary. This is for * example reflected by util_avg's SCHED_CAPACITY_SCALE. * * [Overflow issue] * * The 64-bit load_sum can have 4353082796 (=2^64/47742/88761) entities * with the highest load (=88761), always runnable on a single cfs_rq, * and should not overflow as the number already hits PID_MAX_LIMIT. * * For all other cases (including 32-bit kernels), struct load_weight's * weight will overflow first before we do, because: * * Max(load_avg) <= Max(load.weight) * * Then it is the load_weight's responsibility to consider overflow * issues. */ struct sched_avg { u64 last_update_time, load_sum; u32 util_sum, period_contrib; unsigned long load_avg, util_avg; }; #ifdef CONFIG_SCHEDSTATS struct sched_statistics { u64 wait_start; u64 wait_max; u64 wait_count; u64 wait_sum; u64 iowait_count; u64 iowait_sum; u64 sleep_start; u64 sleep_max; s64 sum_sleep_runtime; u64 block_start; u64 block_max; u64 exec_max; u64 slice_max; u64 nr_migrations_cold; u64 nr_failed_migrations_affine; u64 nr_failed_migrations_running; u64 nr_failed_migrations_hot; u64 nr_forced_migrations; u64 nr_wakeups; u64 nr_wakeups_sync; u64 nr_wakeups_migrate; u64 nr_wakeups_local; u64 nr_wakeups_remote; u64 nr_wakeups_affine; u64 nr_wakeups_affine_attempts; u64 nr_wakeups_passive; u64 nr_wakeups_idle; }; #endif struct sched_entity { struct load_weight load; /* for load-balancing */ struct rb_node run_node; struct list_head group_node; unsigned int on_rq; u64 exec_start; u64 sum_exec_runtime; u64 vruntime; u64 prev_sum_exec_runtime; u64 nr_migrations; #ifdef CONFIG_SCHEDSTATS struct sched_statistics statistics; #endif #ifdef CONFIG_FAIR_GROUP_SCHED int depth; struct sched_entity *parent; /* rq on which this entity is (to be) queued: */ struct cfs_rq *cfs_rq; /* rq "owned" by this entity/group: */ struct cfs_rq *my_q; #endif #ifdef CONFIG_SMP /* * Per entity load average tracking. * * Put into separate cache line so it does not * collide with read-mostly values above. */ struct sched_avg avg ____cacheline_aligned_in_smp; #endif }; struct sched_rt_entity { struct list_head run_list; unsigned long timeout; unsigned long watchdog_stamp; unsigned int time_slice; unsigned short on_rq; unsigned short on_list; struct sched_rt_entity *back; #ifdef CONFIG_RT_GROUP_SCHED struct sched_rt_entity *parent; /* rq on which this entity is (to be) queued: */ struct rt_rq *rt_rq; /* rq "owned" by this entity/group: */ struct rt_rq *my_q; #endif }; struct sched_dl_entity { struct rb_node rb_node; /* * Original scheduling parameters. Copied here from sched_attr * during sched_setattr(), they will remain the same until * the next sched_setattr(). */ u64 dl_runtime; /* maximum runtime for each instance */ u64 dl_deadline; /* relative deadline of each instance */ u64 dl_period; /* separation of two instances (period) */ u64 dl_bw; /* dl_runtime / dl_deadline */ /* * Actual scheduling parameters. Initialized with the values above, * they are continously updated during task execution. Note that * the remaining runtime could be < 0 in case we are in overrun. */ s64 runtime; /* remaining runtime for this instance */ u64 deadline; /* absolute deadline for this instance */ unsigned int flags; /* specifying the scheduler behaviour */ /* * Some bool flags: * * @dl_throttled tells if we exhausted the runtime. If so, the * task has to wait for a replenishment to be performed at the * next firing of dl_timer. * * @dl_boosted tells if we are boosted due to DI. If so we are * outside bandwidth enforcement mechanism (but only until we * exit the critical section); * * @dl_yielded tells if task gave up the cpu before consuming * all its available runtime during the last job. */ int dl_throttled, dl_boosted, dl_yielded; /* * Bandwidth enforcement timer. Each -deadline task has its * own bandwidth to be enforced, thus we need one timer per task. */ struct hrtimer dl_timer; }; union rcu_special { struct { u8 blocked; u8 need_qs; u8 exp_need_qs; u8 pad; /* Otherwise the compiler can store garbage here. */ } b; /* Bits. */ u32 s; /* Set of bits. */ }; struct rcu_node; enum perf_event_task_context { perf_invalid_context = -1, perf_hw_context = 0, perf_sw_context, perf_nr_task_contexts, }; struct wake_q_node { struct wake_q_node *next; }; /* Track pages that require TLB flushes */ struct tlbflush_unmap_batch { /* * Each bit set is a CPU that potentially has a TLB entry for one of * the PFNs being flushed. See set_tlb_ubc_flush_pending(). */ struct cpumask cpumask; /* True if any bit in cpumask is set */ bool flush_required; /* * If true then the PTE was dirty when unmapped. The entry must be * flushed before IO is initiated or a stale TLB entry potentially * allows an update without redirtying the page. */ bool writable; }; struct task_struct { #ifdef CONFIG_THREAD_INFO_IN_TASK /* * For reasons of header soup (see current_thread_info()), this * must be the first element of task_struct. */ struct thread_info thread_info; #endif volatile long state; /* -1 unrunnable, 0 runnable, >0 stopped */ void *stack; atomic_t usage; unsigned int flags; /* per process flags, defined below */ unsigned int ptrace; #ifdef CONFIG_SMP struct llist_node wake_entry; int on_cpu; #ifdef CONFIG_THREAD_INFO_IN_TASK unsigned int cpu; /* current CPU */ #endif unsigned int wakee_flips; unsigned long wakee_flip_decay_ts; struct task_struct *last_wakee; int wake_cpu; #endif int on_rq; int prio, static_prio, normal_prio; unsigned int rt_priority; const struct sched_class *sched_class; struct sched_entity se; struct sched_rt_entity rt; #ifdef CONFIG_CGROUP_SCHED struct task_group *sched_task_group; #endif struct sched_dl_entity dl; #ifdef CONFIG_PREEMPT_NOTIFIERS /* list of struct preempt_notifier: */ struct hlist_head preempt_notifiers; #endif #ifdef CONFIG_BLK_DEV_IO_TRACE unsigned int btrace_seq; #endif unsigned int policy; int nr_cpus_allowed; cpumask_t cpus_allowed; #ifdef CONFIG_PREEMPT_RCU int rcu_read_lock_nesting; union rcu_special rcu_read_unlock_special; struct list_head rcu_node_entry; struct rcu_node *rcu_blocked_node; #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TASKS_RCU unsigned long rcu_tasks_nvcsw; bool rcu_tasks_holdout; struct list_head rcu_tasks_holdout_list; int rcu_tasks_idle_cpu; #endif /* #ifdef CONFIG_TASKS_RCU */ #ifdef CONFIG_SCHED_INFO struct sched_info sched_info; #endif struct list_head tasks; #ifdef CONFIG_SMP struct plist_node pushable_tasks; struct rb_node pushable_dl_tasks; #endif struct mm_struct *mm, *active_mm; /* Per-thread vma caching: */ struct vmacache vmacache; #if defined(SPLIT_RSS_COUNTING) struct task_rss_stat rss_stat; #endif /* task state */ int exit_state; int exit_code, exit_signal; int pdeath_signal; /* The signal sent when the parent dies */ unsigned long jobctl; /* JOBCTL_*, siglock protected */ /* Used for emulating ABI behavior of previous Linux versions */ unsigned int personality; /* scheduler bits, serialized by scheduler locks */ unsigned sched_reset_on_fork:1; unsigned sched_contributes_to_load:1; unsigned sched_migrated:1; unsigned sched_remote_wakeup:1; unsigned :0; /* force alignment to the next boundary */ /* unserialized, strictly 'current' */ unsigned in_execve:1; /* bit to tell LSMs we're in execve */ unsigned in_iowait:1; #if !defined(TIF_RESTORE_SIGMASK) unsigned restore_sigmask:1; #endif #ifdef CONFIG_MEMCG unsigned memcg_may_oom:1; #ifndef CONFIG_SLOB unsigned memcg_kmem_skip_account:1; #endif #endif #ifdef CONFIG_COMPAT_BRK unsigned brk_randomized:1; #endif unsigned long atomic_flags; /* Flags needing atomic access. */ struct restart_block restart_block; pid_t pid; pid_t tgid; #ifdef CONFIG_CC_STACKPROTECTOR /* Canary value for the -fstack-protector gcc feature */ unsigned long stack_canary; #endif /* * pointers to (original) parent process, youngest child, younger sibling, * older sibling, respectively. (p->father can be replaced with * p->real_parent->pid) */ struct task_struct __rcu *real_parent; /* real parent process */ struct task_struct __rcu *parent; /* recipient of SIGCHLD, wait4() reports */ /* * children/sibling forms the list of my natural children */ struct list_head children; /* list of my children */ struct list_head sibling; /* linkage in my parent's children list */ struct task_struct *group_leader; /* threadgroup leader */ /* * ptraced is the list of tasks this task is using ptrace on. * This includes both natural children and PTRACE_ATTACH targets. * p->ptrace_entry is p's link on the p->parent->ptraced list. */ struct list_head ptraced; struct list_head ptrace_entry; /* PID/PID hash table linkage. */ struct pid_link pids[PIDTYPE_MAX]; struct list_head thread_group; struct list_head thread_node; struct completion *vfork_done; /* for vfork() */ int __user *set_child_tid; /* CLONE_CHILD_SETTID */ int __user *clear_child_tid; /* CLONE_CHILD_CLEARTID */ u64 utime, stime; #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME u64 utimescaled, stimescaled; #endif u64 gtime; struct prev_cputime prev_cputime; #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN seqcount_t vtime_seqcount; unsigned long long vtime_snap; enum { /* Task is sleeping or running in a CPU with VTIME inactive */ VTIME_INACTIVE = 0, /* Task runs in userspace in a CPU with VTIME active */ VTIME_USER, /* Task runs in kernelspace in a CPU with VTIME active */ VTIME_SYS, } vtime_snap_whence; #endif #ifdef CONFIG_NO_HZ_FULL atomic_t tick_dep_mask; #endif unsigned long nvcsw, nivcsw; /* context switch counts */ u64 start_time; /* monotonic time in nsec */ u64 real_start_time; /* boot based time in nsec */ /* mm fault and swap info: this can arguably be seen as either mm-specific or thread-specific */ unsigned long min_flt, maj_flt; #ifdef CONFIG_POSIX_TIMERS struct task_cputime cputime_expires; struct list_head cpu_timers[3]; #endif /* process credentials */ const struct cred __rcu *ptracer_cred; /* Tracer's credentials at attach */ const struct cred __rcu *real_cred; /* objective and real subjective task * credentials (COW) */ const struct cred __rcu *cred; /* effective (overridable) subjective task * credentials (COW) */ char comm[TASK_COMM_LEN]; /* executable name excluding path - access with [gs]et_task_comm (which lock it with task_lock()) - initialized normally by setup_new_exec */ /* file system info */ struct nameidata *nameidata; #ifdef CONFIG_SYSVIPC /* ipc stuff */ struct sysv_sem sysvsem; struct sysv_shm sysvshm; #endif #ifdef CONFIG_DETECT_HUNG_TASK /* hung task detection */ unsigned long last_switch_count; #endif /* filesystem information */ struct fs_struct *fs; /* open file information */ struct files_struct *files; /* namespaces */ struct nsproxy *nsproxy; /* signal handlers */ struct signal_struct *signal; struct sighand_struct *sighand; sigset_t blocked, real_blocked; sigset_t saved_sigmask; /* restored if set_restore_sigmask() was used */ struct sigpending pending; unsigned long sas_ss_sp; size_t sas_ss_size; unsigned sas_ss_flags; struct callback_head *task_works; struct audit_context *audit_context; #ifdef CONFIG_AUDITSYSCALL kuid_t loginuid; unsigned int sessionid; #endif struct seccomp seccomp; /* Thread group tracking */ u32 parent_exec_id; u32 self_exec_id; /* Protection of (de-)allocation: mm, files, fs, tty, keyrings, mems_allowed, * mempolicy */ spinlock_t alloc_lock; /* Protection of the PI data structures: */ raw_spinlock_t pi_lock; struct wake_q_node wake_q; #ifdef CONFIG_RT_MUTEXES /* PI waiters blocked on a rt_mutex held by this task */ struct rb_root pi_waiters; struct rb_node *pi_waiters_leftmost; /* Deadlock detection and priority inheritance handling */ struct rt_mutex_waiter *pi_blocked_on; #endif #ifdef CONFIG_DEBUG_MUTEXES /* mutex deadlock detection */ struct mutex_waiter *blocked_on; #endif #ifdef CONFIG_TRACE_IRQFLAGS unsigned int irq_events; unsigned long hardirq_enable_ip; unsigned long hardirq_disable_ip; unsigned int hardirq_enable_event; unsigned int hardirq_disable_event; int hardirqs_enabled; int hardirq_context; unsigned long softirq_disable_ip; unsigned long softirq_enable_ip; unsigned int softirq_disable_event; unsigned int softirq_enable_event; int softirqs_enabled; int softirq_context; #endif #ifdef CONFIG_LOCKDEP # define MAX_LOCK_DEPTH 48UL u64 curr_chain_key; int lockdep_depth; unsigned int lockdep_recursion; struct held_lock held_locks[MAX_LOCK_DEPTH]; gfp_t lockdep_reclaim_gfp; #endif #ifdef CONFIG_UBSAN unsigned int in_ubsan; #endif /* journalling filesystem info */ void *journal_info; /* stacked block device info */ struct bio_list *bio_list; #ifdef CONFIG_BLOCK /* stack plugging */ struct blk_plug *plug; #endif /* VM state */ struct reclaim_state *reclaim_state; struct backing_dev_info *backing_dev_info; struct io_context *io_context; unsigned long ptrace_message; siginfo_t *last_siginfo; /* For ptrace use. */ struct task_io_accounting ioac; #if defined(CONFIG_TASK_XACCT) u64 acct_rss_mem1; /* accumulated rss usage */ u64 acct_vm_mem1; /* accumulated virtual memory usage */ u64 acct_timexpd; /* stime + utime since last update */ #endif #ifdef CONFIG_CPUSETS nodemask_t mems_allowed; /* Protected by alloc_lock */ seqcount_t mems_allowed_seq; /* Seqence no to catch updates */ int cpuset_mem_spread_rotor; int cpuset_slab_spread_rotor; #endif #ifdef CONFIG_CGROUPS /* Control Group info protected by css_set_lock */ struct css_set __rcu *cgroups; /* cg_list protected by css_set_lock and tsk->alloc_lock */ struct list_head cg_list; #endif #ifdef CONFIG_INTEL_RDT_A int closid; #endif #ifdef CONFIG_FUTEX struct robust_list_head __user *robust_list; #ifdef CONFIG_COMPAT struct compat_robust_list_head __user *compat_robust_list; #endif struct list_head pi_state_list; struct futex_pi_state *pi_state_cache; #endif #ifdef CONFIG_PERF_EVENTS struct perf_event_context *perf_event_ctxp[perf_nr_task_contexts]; struct mutex perf_event_mutex; struct list_head perf_event_list; #endif #ifdef CONFIG_DEBUG_PREEMPT unsigned long preempt_disable_ip; #endif #ifdef CONFIG_NUMA struct mempolicy *mempolicy; /* Protected by alloc_lock */ short il_next; short pref_node_fork; #endif #ifdef CONFIG_NUMA_BALANCING int numa_scan_seq; unsigned int numa_scan_period; unsigned int numa_scan_period_max; int numa_preferred_nid; unsigned long numa_migrate_retry; u64 node_stamp; /* migration stamp */ u64 last_task_numa_placement; u64 last_sum_exec_runtime; struct callback_head numa_work; struct list_head numa_entry; struct numa_group *numa_group; /* * numa_faults is an array split into four regions: * faults_memory, faults_cpu, faults_memory_buffer, faults_cpu_buffer * in this precise order. * * faults_memory: Exponential decaying average of faults on a per-node * basis. Scheduling placement decisions are made based on these * counts. The values remain static for the duration of a PTE scan. * faults_cpu: Track the nodes the process was running on when a NUMA * hinting fault was incurred. * faults_memory_buffer and faults_cpu_buffer: Record faults per node * during the current scan window. When the scan completes, the counts * in faults_memory and faults_cpu decay and these values are copied. */ unsigned long *numa_faults; unsigned long total_numa_faults; /* * numa_faults_locality tracks if faults recorded during the last * scan window were remote/local or failed to migrate. The task scan * period is adapted based on the locality of the faults with different * weights depending on whether they were shared or private faults */ unsigned long numa_faults_locality[3]; unsigned long numa_pages_migrated; #endif /* CONFIG_NUMA_BALANCING */ #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH struct tlbflush_unmap_batch tlb_ubc; #endif struct rcu_head rcu; /* * cache last used pipe for splice */ struct pipe_inode_info *splice_pipe; struct page_frag task_frag; #ifdef CONFIG_TASK_DELAY_ACCT struct task_delay_info *delays; #endif #ifdef CONFIG_FAULT_INJECTION int make_it_fail; #endif /* * when (nr_dirtied >= nr_dirtied_pause), it's time to call * balance_dirty_pages() for some dirty throttling pause */ int nr_dirtied; int nr_dirtied_pause; unsigned long dirty_paused_when; /* start of a write-and-pause period */ #ifdef CONFIG_LATENCYTOP int latency_record_count; struct latency_record latency_record[LT_SAVECOUNT]; #endif /* * time slack values; these are used to round up poll() and * select() etc timeout values. These are in nanoseconds. */ u64 timer_slack_ns; u64 default_timer_slack_ns; #ifdef CONFIG_KASAN unsigned int kasan_depth; #endif #ifdef CONFIG_FUNCTION_GRAPH_TRACER /* Index of current stored address in ret_stack */ int curr_ret_stack; /* Stack of return addresses for return function tracing */ struct ftrace_ret_stack *ret_stack; /* time stamp for last schedule */ unsigned long long ftrace_timestamp; /* * Number of functions that haven't been traced * because of depth overrun. */ atomic_t trace_overrun; /* Pause for the tracing */ atomic_t tracing_graph_pause; #endif #ifdef CONFIG_TRACING /* state flags for use by tracers */ unsigned long trace; /* bitmask and counter of trace recursion */ unsigned long trace_recursion; #endif /* CONFIG_TRACING */ #ifdef CONFIG_KCOV /* Coverage collection mode enabled for this task (0 if disabled). */ enum kcov_mode kcov_mode; /* Size of the kcov_area. */ unsigned kcov_size; /* Buffer for coverage collection. */ void *kcov_area; /* kcov desciptor wired with this task or NULL. */ struct kcov *kcov; #endif #ifdef CONFIG_MEMCG struct mem_cgroup *memcg_in_oom; gfp_t memcg_oom_gfp_mask; int memcg_oom_order; /* number of pages to reclaim on returning to userland */ unsigned int memcg_nr_pages_over_high; #endif #ifdef CONFIG_UPROBES struct uprobe_task *utask; #endif #if defined(CONFIG_BCACHE) || defined(CONFIG_BCACHE_MODULE) unsigned int sequential_io; unsigned int sequential_io_avg; #endif #ifdef CONFIG_DEBUG_ATOMIC_SLEEP unsigned long task_state_change; #endif int pagefault_disabled; #ifdef CONFIG_MMU struct task_struct *oom_reaper_list; #endif #ifdef CONFIG_VMAP_STACK struct vm_struct *stack_vm_area; #endif #ifdef CONFIG_THREAD_INFO_IN_TASK /* A live task holds one reference. */ atomic_t stack_refcount; #endif /* CPU-specific state of this task */ struct thread_struct thread; /* * WARNING: on x86, 'thread_struct' contains a variable-sized * structure. It *MUST* be at the end of 'task_struct'. * * Do not put anything below here! */ }; #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT extern int arch_task_struct_size __read_mostly; #else # define arch_task_struct_size (sizeof(struct task_struct)) #endif #ifdef CONFIG_VMAP_STACK static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return t->stack_vm_area; } #else static inline struct vm_struct *task_stack_vm_area(const struct task_struct *t) { return NULL; } #endif static inline struct pid *task_pid(struct task_struct *task) { return task->pids[PIDTYPE_PID].pid; } static inline struct pid *task_tgid(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PID].pid; } /* * Without tasklist or rcu lock it is not safe to dereference * the result of task_pgrp/task_session even if task == current, * we can race with another thread doing sys_setsid/sys_setpgid. */ static inline struct pid *task_pgrp(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_PGID].pid; } static inline struct pid *task_session(struct task_struct *task) { return task->group_leader->pids[PIDTYPE_SID].pid; } struct pid_namespace; /* * the helpers to get the task's different pids as they are seen * from various namespaces * * task_xid_nr() : global id, i.e. the id seen from the init namespace; * task_xid_vnr() : virtual id, i.e. the id seen from the pid namespace of * current. * task_xid_nr_ns() : id seen from the ns specified; * * set_task_vxid() : assigns a virtual id to a task; * * see also pid_nr() etc in include/linux/pid.h */ pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, struct pid_namespace *ns); static inline pid_t task_pid_nr(struct task_struct *tsk) { return tsk->pid; } static inline pid_t task_pid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, ns); } static inline pid_t task_pid_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PID, NULL); } static inline pid_t task_tgid_nr(struct task_struct *tsk) { return tsk->tgid; } pid_t task_tgid_nr_ns(struct task_struct *tsk, struct pid_namespace *ns); static inline pid_t task_tgid_vnr(struct task_struct *tsk) { return pid_vnr(task_tgid(tsk)); } static inline int pid_alive(const struct task_struct *p); static inline pid_t task_ppid_nr_ns(const struct task_struct *tsk, struct pid_namespace *ns) { pid_t pid = 0; rcu_read_lock(); if (pid_alive(tsk)) pid = task_tgid_nr_ns(rcu_dereference(tsk->real_parent), ns); rcu_read_unlock(); return pid; } static inline pid_t task_ppid_nr(const struct task_struct *tsk) { return task_ppid_nr_ns(tsk, &init_pid_ns); } static inline pid_t task_pgrp_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, ns); } static inline pid_t task_pgrp_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_PGID, NULL); } static inline pid_t task_session_nr_ns(struct task_struct *tsk, struct pid_namespace *ns) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, ns); } static inline pid_t task_session_vnr(struct task_struct *tsk) { return __task_pid_nr_ns(tsk, PIDTYPE_SID, NULL); } /* obsolete, do not use */ static inline pid_t task_pgrp_nr(struct task_struct *tsk) { return task_pgrp_nr_ns(tsk, &init_pid_ns); } /** * pid_alive - check that a task structure is not stale * @p: Task structure to be checked. * * Test if a process is not yet dead (at most zombie state) * If pid_alive fails, then pointers within the task structure * can be stale and must not be dereferenced. * * Return: 1 if the process is alive. 0 otherwise. */ static inline int pid_alive(const struct task_struct *p) { return p->pids[PIDTYPE_PID].pid != NULL; } /** * is_global_init - check if a task structure is init. Since init * is free to have sub-threads we need to check tgid. * @tsk: Task structure to be checked. * * Check if a task structure is the first user space task the kernel created. * * Return: 1 if the task structure is init. 0 otherwise. */ static inline int is_global_init(struct task_struct *tsk) { return task_tgid_nr(tsk) == 1; } extern struct pid *cad_pid; extern void free_task(struct task_struct *tsk); #define get_task_struct(tsk) do { atomic_inc(&(tsk)->usage); } while(0) extern void __put_task_struct(struct task_struct *t); static inline void put_task_struct(struct task_struct *t) { if (atomic_dec_and_test(&t->usage)) __put_task_struct(t); } struct task_struct *task_rcu_dereference(struct task_struct **ptask); struct task_struct *try_get_task_struct(struct task_struct **ptask); #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN extern void task_cputime(struct task_struct *t, u64 *utime, u64 *stime); extern u64 task_gtime(struct task_struct *t); #else static inline void task_cputime(struct task_struct *t, u64 *utime, u64 *stime) { *utime = t->utime; *stime = t->stime; } static inline u64 task_gtime(struct task_struct *t) { return t->gtime; } #endif #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { *utimescaled = t->utimescaled; *stimescaled = t->stimescaled; } #else static inline void task_cputime_scaled(struct task_struct *t, u64 *utimescaled, u64 *stimescaled) { task_cputime(t, utimescaled, stimescaled); } #endif extern void task_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); extern void thread_group_cputime_adjusted(struct task_struct *p, u64 *ut, u64 *st); /* * Per process flags */ #define PF_IDLE 0x00000002 /* I am an IDLE thread */ #define PF_EXITING 0x00000004 /* getting shut down */ #define PF_EXITPIDONE 0x00000008 /* pi exit done on shut down */ #define PF_VCPU 0x00000010 /* I'm a virtual CPU */ #define PF_WQ_WORKER 0x00000020 /* I'm a workqueue worker */ #define PF_FORKNOEXEC 0x00000040 /* forked but didn't exec */ #define PF_MCE_PROCESS 0x00000080 /* process policy on mce errors */ #define PF_SUPERPRIV 0x00000100 /* used super-user privileges */ #define PF_DUMPCORE 0x00000200 /* dumped core */ #define PF_SIGNALED 0x00000400 /* killed by a signal */ #define PF_MEMALLOC 0x00000800 /* Allocating memory */ #define PF_NPROC_EXCEEDED 0x00001000 /* set_user noticed that RLIMIT_NPROC was exceeded */ #define PF_USED_MATH 0x00002000 /* if unset the fpu must be initialized before use */ #define PF_USED_ASYNC 0x00004000 /* used async_schedule*(), used by module init */ #define PF_NOFREEZE 0x00008000 /* this thread should not be frozen */ #define PF_FROZEN 0x00010000 /* frozen for system suspend */ #define PF_FSTRANS 0x00020000 /* inside a filesystem transaction */ #define PF_KSWAPD 0x00040000 /* I am kswapd */ #define PF_MEMALLOC_NOIO 0x00080000 /* Allocating memory without IO involved */ #define PF_LESS_THROTTLE 0x00100000 /* Throttle me less: I clean memory */ #define PF_KTHREAD 0x00200000 /* I am a kernel thread */ #define PF_RANDOMIZE 0x00400000 /* randomize virtual address space */ #define PF_SWAPWRITE 0x00800000 /* Allowed to write to swap */ #define PF_NO_SETAFFINITY 0x04000000 /* Userland is not allowed to meddle with cpus_allowed */ #define PF_MCE_EARLY 0x08000000 /* Early kill for mce process policy */ #define PF_MUTEX_TESTER 0x20000000 /* Thread belongs to the rt mutex tester */ #define PF_FREEZER_SKIP 0x40000000 /* Freezer should not count it as freezable */ #define PF_SUSPEND_TASK 0x80000000 /* this thread called freeze_processes and should not be frozen */ /* * Only the _current_ task can read/write to tsk->flags, but other * tasks can access tsk->flags in readonly mode for example * with tsk_used_math (like during threaded core dumping). * There is however an exception to this rule during ptrace * or during fork: the ptracer task is allowed to write to the * child->flags of its traced child (same goes for fork, the parent * can write to the child->flags), because we're guaranteed the * child is not running and in turn not changing child->flags * at the same time the parent does it. */ #define clear_stopped_child_used_math(child) do { (child)->flags &= ~PF_USED_MATH; } while (0) #define set_stopped_child_used_math(child) do { (child)->flags |= PF_USED_MATH; } while (0) #define clear_used_math() clear_stopped_child_used_math(current) #define set_used_math() set_stopped_child_used_math(current) #define conditional_stopped_child_used_math(condition, child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= (condition) ? PF_USED_MATH : 0; } while (0) #define conditional_used_math(condition) \ conditional_stopped_child_used_math(condition, current) #define copy_to_stopped_child_used_math(child) \ do { (child)->flags &= ~PF_USED_MATH, (child)->flags |= current->flags & PF_USED_MATH; } while (0) /* NOTE: this will return 0 or PF_USED_MATH, it will never return 1 */ #define tsk_used_math(p) ((p)->flags & PF_USED_MATH) #define used_math() tsk_used_math(current) /* __GFP_IO isn't allowed if PF_MEMALLOC_NOIO is set in current->flags * __GFP_FS is also cleared as it implies __GFP_IO. */ static inline gfp_t memalloc_noio_flags(gfp_t flags) { if (unlikely(current->flags & PF_MEMALLOC_NOIO)) flags &= ~(__GFP_IO | __GFP_FS); return flags; } static inline unsigned int memalloc_noio_save(void) { unsigned int flags = current->flags & PF_MEMALLOC_NOIO; current->flags |= PF_MEMALLOC_NOIO; return flags; } static inline void memalloc_noio_restore(unsigned int flags) { current->flags = (current->flags & ~PF_MEMALLOC_NOIO) | flags; } /* Per-process atomic flags. */ #define PFA_NO_NEW_PRIVS 0 /* May not gain new privileges. */ #define PFA_SPREAD_PAGE 1 /* Spread page cache over cpuset */ #define PFA_SPREAD_SLAB 2 /* Spread some slab caches over cpuset */ #define PFA_LMK_WAITING 3 /* Lowmemorykiller is waiting */ #define TASK_PFA_TEST(name, func) \ static inline bool task_##func(struct task_struct *p) \ { return test_bit(PFA_##name, &p->atomic_flags); } #define TASK_PFA_SET(name, func) \ static inline void task_set_##func(struct task_struct *p) \ { set_bit(PFA_##name, &p->atomic_flags); } #define TASK_PFA_CLEAR(name, func) \ static inline void task_clear_##func(struct task_struct *p) \ { clear_bit(PFA_##name, &p->atomic_flags); } TASK_PFA_TEST(NO_NEW_PRIVS, no_new_privs) TASK_PFA_SET(NO_NEW_PRIVS, no_new_privs) TASK_PFA_TEST(SPREAD_PAGE, spread_page) TASK_PFA_SET(SPREAD_PAGE, spread_page) TASK_PFA_CLEAR(SPREAD_PAGE, spread_page) TASK_PFA_TEST(SPREAD_SLAB, spread_slab) TASK_PFA_SET(SPREAD_SLAB, spread_slab) TASK_PFA_CLEAR(SPREAD_SLAB, spread_slab) TASK_PFA_TEST(LMK_WAITING, lmk_waiting) TASK_PFA_SET(LMK_WAITING, lmk_waiting) static inline void rcu_copy_process(struct task_struct *p) { #ifdef CONFIG_PREEMPT_RCU p->rcu_read_lock_nesting = 0; p->rcu_read_unlock_special.s = 0; p->rcu_blocked_node = NULL; INIT_LIST_HEAD(&p->rcu_node_entry); #endif /* #ifdef CONFIG_PREEMPT_RCU */ #ifdef CONFIG_TASKS_RCU p->rcu_tasks_holdout = false; INIT_LIST_HEAD(&p->rcu_tasks_holdout_list); p->rcu_tasks_idle_cpu = -1; #endif /* #ifdef CONFIG_TASKS_RCU */ } static inline void tsk_restore_flags(struct task_struct *task, unsigned long orig_flags, unsigned long flags) { task->flags &= ~flags; task->flags |= orig_flags & flags; } extern int cpuset_cpumask_can_shrink(const struct cpumask *cur, const struct cpumask *trial); extern int task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed); #ifdef CONFIG_SMP extern void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask); extern int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask); #else static inline void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) { } static inline int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) { if (!cpumask_test_cpu(0, new_mask)) return -EINVAL; return 0; } #endif #ifdef CONFIG_NO_HZ_COMMON void calc_load_enter_idle(void); void calc_load_exit_idle(void); #else static inline void calc_load_enter_idle(void) { } static inline void calc_load_exit_idle(void) { } #endif /* CONFIG_NO_HZ_COMMON */ #ifndef cpu_relax_yield #define cpu_relax_yield() cpu_relax() #endif extern unsigned long long task_sched_runtime(struct task_struct *task); /* sched_exec is called by processes performing an exec */ #ifdef CONFIG_SMP extern void sched_exec(void); #else #define sched_exec() {} #endif #ifdef CONFIG_HOTPLUG_CPU extern void idle_task_exit(void); #else static inline void idle_task_exit(void) {} #endif #if defined(CONFIG_NO_HZ_COMMON) && defined(CONFIG_SMP) extern void wake_up_nohz_cpu(int cpu); #else static inline void wake_up_nohz_cpu(int cpu) { } #endif #ifdef CONFIG_NO_HZ_FULL extern u64 scheduler_tick_max_deferment(void); #endif extern int yield_to(struct task_struct *p, bool preempt); extern void set_user_nice(struct task_struct *p, long nice); extern int task_prio(const struct task_struct *p); /** * task_nice - return the nice value of a given task. * @p: the task in question. * * Return: The nice value [ -20 ... 0 ... 19 ]. */ static inline int task_nice(const struct task_struct *p) { return PRIO_TO_NICE((p)->static_prio); } extern int can_nice(const struct task_struct *p, const int nice); extern int task_curr(const struct task_struct *p); extern int idle_cpu(int cpu); extern int sched_setscheduler(struct task_struct *, int, const struct sched_param *); extern int sched_setscheduler_nocheck(struct task_struct *, int, const struct sched_param *); extern int sched_setattr(struct task_struct *, const struct sched_attr *); extern struct task_struct *idle_task(int cpu); /** * is_idle_task - is the specified task an idle task? * @p: the task in question. * * Return: 1 if @p is an idle task. 0 otherwise. */ static inline bool is_idle_task(const struct task_struct *p) { return !!(p->flags & PF_IDLE); } extern struct task_struct *curr_task(int cpu); extern void ia64_set_curr_task(int cpu, struct task_struct *p); void yield(void); union thread_union { #ifndef CONFIG_THREAD_INFO_IN_TASK struct thread_info thread_info; #endif unsigned long stack[THREAD_SIZE/sizeof(long)]; }; #ifndef __HAVE_ARCH_KSTACK_END static inline int kstack_end(void *addr) { /* Reliable end of stack detection: * Some APM bios versions misalign the stack */ return !(((unsigned long)addr+sizeof(void*)-1) & (THREAD_SIZE-sizeof(void*))); } #endif extern union thread_union init_thread_union; extern struct task_struct init_task; extern struct pid_namespace init_pid_ns; /* * find a task by one of its numerical ids * * find_task_by_pid_ns(): * finds a task by its pid in the specified namespace * find_task_by_vpid(): * finds a task by its virtual pid * * see also find_vpid() etc in include/linux/pid.h */ extern struct task_struct *find_task_by_vpid(pid_t nr); extern struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns); #include extern void xtime_update(unsigned long ticks); extern int wake_up_state(struct task_struct *tsk, unsigned int state); extern int wake_up_process(struct task_struct *tsk); extern void wake_up_new_task(struct task_struct *tsk); #ifdef CONFIG_SMP extern void kick_process(struct task_struct *tsk); #else static inline void kick_process(struct task_struct *tsk) { } #endif extern int sched_fork(unsigned long clone_flags, struct task_struct *p); extern void sched_dead(struct task_struct *p); extern void proc_caches_init(void); extern void release_task(struct task_struct * p); #ifdef CONFIG_HAVE_COPY_THREAD_TLS extern int copy_thread_tls(unsigned long, unsigned long, unsigned long, struct task_struct *, unsigned long); #else extern int copy_thread(unsigned long, unsigned long, unsigned long, struct task_struct *); /* Architectures that haven't opted into copy_thread_tls get the tls argument * via pt_regs, so ignore the tls argument passed via C. */ static inline int copy_thread_tls( unsigned long clone_flags, unsigned long sp, unsigned long arg, struct task_struct *p, unsigned long tls) { return copy_thread(clone_flags, sp, arg, p); } #endif extern void flush_thread(void); #ifdef CONFIG_HAVE_EXIT_THREAD extern void exit_thread(struct task_struct *tsk); #else static inline void exit_thread(struct task_struct *tsk) { } #endif extern void exit_files(struct task_struct *); extern void exit_itimers(struct signal_struct *); extern void do_group_exit(int); extern int do_execve(struct filename *, const char __user * const __user *, const char __user * const __user *); extern int do_execveat(int, struct filename *, const char __user * const __user *, const char __user * const __user *, int); extern long _do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *, unsigned long); extern long do_fork(unsigned long, unsigned long, unsigned long, int __user *, int __user *); struct task_struct *fork_idle(int); extern pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags); extern void __set_task_comm(struct task_struct *tsk, const char *from, bool exec); static inline void set_task_comm(struct task_struct *tsk, const char *from) { __set_task_comm(tsk, from, false); } extern char *get_task_comm(char *to, struct task_struct *tsk); #ifdef CONFIG_SMP void scheduler_ipi(void); extern unsigned long wait_task_inactive(struct task_struct *, long match_state); #else static inline void scheduler_ipi(void) { } static inline unsigned long wait_task_inactive(struct task_struct *p, long match_state) { return 1; } #endif /* * Protects ->fs, ->files, ->mm, ->group_info, ->comm, keyring * subscriptions and synchronises with wait4(). Also used in procfs. Also * pins the final release of task.io_context. Also protects ->cpuset and * ->cgroup.subsys[]. And ->vfork_done. * * Nests both inside and outside of read_lock(&tasklist_lock). * It must not be nested with write_lock_irq(&tasklist_lock), * neither inside nor outside. */ static inline void task_lock(struct task_struct *p) { spin_lock(&p->alloc_lock); } static inline void task_unlock(struct task_struct *p) { spin_unlock(&p->alloc_lock); } #ifdef CONFIG_THREAD_INFO_IN_TASK static inline struct thread_info *task_thread_info(struct task_struct *task) { return &task->thread_info; } /* * When accessing the stack of a non-current task that might exit, use * try_get_task_stack() instead. task_stack_page will return a pointer * that could get freed out from under you. */ static inline void *task_stack_page(const struct task_struct *task) { return task->stack; } #define setup_thread_stack(new,old) do { } while(0) static inline unsigned long *end_of_stack(const struct task_struct *task) { return task->stack; } #elif !defined(__HAVE_THREAD_FUNCTIONS) #define task_thread_info(task) ((struct thread_info *)(task)->stack) #define task_stack_page(task) ((void *)(task)->stack) static inline void setup_thread_stack(struct task_struct *p, struct task_struct *org) { *task_thread_info(p) = *task_thread_info(org); task_thread_info(p)->task = p; } /* * Return the address of the last usable long on the stack. * * When the stack grows down, this is just above the thread * info struct. Going any lower will corrupt the threadinfo. * * When the stack grows up, this is the highest address. * Beyond that position, we corrupt data on the next page. */ static inline unsigned long *end_of_stack(struct task_struct *p) { #ifdef CONFIG_STACK_GROWSUP return (unsigned long *)((unsigned long)task_thread_info(p) + THREAD_SIZE) - 1; #else return (unsigned long *)(task_thread_info(p) + 1); #endif } #endif #ifdef CONFIG_THREAD_INFO_IN_TASK static inline void *try_get_task_stack(struct task_struct *tsk) { return atomic_inc_not_zero(&tsk->stack_refcount) ? task_stack_page(tsk) : NULL; } extern void put_task_stack(struct task_struct *tsk); #else static inline void *try_get_task_stack(struct task_struct *tsk) { return task_stack_page(tsk); } static inline void put_task_stack(struct task_struct *tsk) {} #endif #define task_stack_end_corrupted(task) \ (*(end_of_stack(task)) != STACK_END_MAGIC) static inline int object_is_on_stack(void *obj) { void *stack = task_stack_page(current); return (obj >= stack) && (obj < (stack + THREAD_SIZE)); } extern void thread_stack_cache_init(void); #ifdef CONFIG_DEBUG_STACK_USAGE static inline unsigned long stack_not_used(struct task_struct *p) { unsigned long *n = end_of_stack(p); do { /* Skip over canary */ # ifdef CONFIG_STACK_GROWSUP n--; # else n++; # endif } while (!*n); # ifdef CONFIG_STACK_GROWSUP return (unsigned long)end_of_stack(p) - (unsigned long)n; # else return (unsigned long)n - (unsigned long)end_of_stack(p); # endif } #endif extern void set_task_stack_end_magic(struct task_struct *tsk); /* set thread flags in other task's structures * - see asm/thread_info.h for TIF_xxxx flags available */ static inline void set_tsk_thread_flag(struct task_struct *tsk, int flag) { set_ti_thread_flag(task_thread_info(tsk), flag); } static inline void clear_tsk_thread_flag(struct task_struct *tsk, int flag) { clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_set_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_set_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_and_clear_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_and_clear_ti_thread_flag(task_thread_info(tsk), flag); } static inline int test_tsk_thread_flag(struct task_struct *tsk, int flag) { return test_ti_thread_flag(task_thread_info(tsk), flag); } static inline void set_tsk_need_resched(struct task_struct *tsk) { set_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline void clear_tsk_need_resched(struct task_struct *tsk) { clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED); } static inline int test_tsk_need_resched(struct task_struct *tsk) { return unlikely(test_tsk_thread_flag(tsk,TIF_NEED_RESCHED)); } /* * cond_resched() and cond_resched_lock(): latency reduction via * explicit rescheduling in places that are safe. The return * value indicates whether a reschedule was done in fact. * cond_resched_lock() will drop the spinlock before scheduling, * cond_resched_softirq() will enable bhs before scheduling. */ #ifndef CONFIG_PREEMPT extern int _cond_resched(void); #else static inline int _cond_resched(void) { return 0; } #endif #define cond_resched() ({ \ ___might_sleep(__FILE__, __LINE__, 0); \ _cond_resched(); \ }) extern int __cond_resched_lock(spinlock_t *lock); #define cond_resched_lock(lock) ({ \ ___might_sleep(__FILE__, __LINE__, PREEMPT_LOCK_OFFSET);\ __cond_resched_lock(lock); \ }) extern int __cond_resched_softirq(void); #define cond_resched_softirq() ({ \ ___might_sleep(__FILE__, __LINE__, SOFTIRQ_DISABLE_OFFSET); \ __cond_resched_softirq(); \ }) static inline void cond_resched_rcu(void) { #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) || !defined(CONFIG_PREEMPT_RCU) rcu_read_unlock(); cond_resched(); rcu_read_lock(); #endif } /* * Does a critical section need to be broken due to another * task waiting?: (technically does not depend on CONFIG_PREEMPT, * but a general need for low latency) */ static inline int spin_needbreak(spinlock_t *lock) { #ifdef CONFIG_PREEMPT return spin_is_contended(lock); #else return 0; #endif } static __always_inline bool need_resched(void) { return unlikely(tif_need_resched()); } /* * Thread group CPU time accounting. */ void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times); void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times); /* * Wrappers for p->thread_info->cpu access. No-op on UP. */ #ifdef CONFIG_SMP static inline unsigned int task_cpu(const struct task_struct *p) { #ifdef CONFIG_THREAD_INFO_IN_TASK return p->cpu; #else return task_thread_info(p)->cpu; #endif } static inline int task_node(const struct task_struct *p) { return cpu_to_node(task_cpu(p)); } extern void set_task_cpu(struct task_struct *p, unsigned int cpu); #else static inline unsigned int task_cpu(const struct task_struct *p) { return 0; } static inline void set_task_cpu(struct task_struct *p, unsigned int cpu) { } #endif /* CONFIG_SMP */ /* * In order to reduce various lock holder preemption latencies provide an * interface to see if a vCPU is currently running or not. * * This allows us to terminate optimistic spin loops and block, analogous to * the native optimistic spin heuristic of testing if the lock owner task is * running or not. */ #ifndef vcpu_is_preempted # define vcpu_is_preempted(cpu) false #endif extern long sched_setaffinity(pid_t pid, const struct cpumask *new_mask); extern long sched_getaffinity(pid_t pid, struct cpumask *mask); #ifdef CONFIG_CGROUP_SCHED extern struct task_group root_task_group; #endif /* CONFIG_CGROUP_SCHED */ extern int task_can_switch_user(struct user_struct *up, struct task_struct *tsk); #ifndef TASK_SIZE_OF #define TASK_SIZE_OF(tsk) TASK_SIZE #endif #endif