/* * Copyright (c) 2005 Voltaire Inc. All rights reserved. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved. * Copyright (c) 2005-2006 Intel Corporation. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_AUTHOR("Sean Hefty"); MODULE_DESCRIPTION("Generic RDMA CM Agent"); MODULE_LICENSE("Dual BSD/GPL"); #define CMA_CM_RESPONSE_TIMEOUT 20 #define CMA_MAX_CM_RETRIES 15 #define CMA_CM_MRA_SETTING (IB_CM_MRA_FLAG_DELAY | 24) #define CMA_IBOE_PACKET_LIFETIME 18 static void cma_add_one(struct ib_device *device); static void cma_remove_one(struct ib_device *device); static struct ib_client cma_client = { .name = "cma", .add = cma_add_one, .remove = cma_remove_one }; static struct ib_sa_client sa_client; static struct rdma_addr_client addr_client; static LIST_HEAD(dev_list); static LIST_HEAD(listen_any_list); static DEFINE_MUTEX(lock); static struct workqueue_struct *cma_wq; static DEFINE_IDR(tcp_ps); static DEFINE_IDR(udp_ps); static DEFINE_IDR(ipoib_ps); static DEFINE_IDR(ib_ps); struct cma_device { struct list_head list; struct ib_device *device; struct completion comp; atomic_t refcount; struct list_head id_list; }; struct rdma_bind_list { struct idr *ps; struct hlist_head owners; unsigned short port; }; enum { CMA_OPTION_AFONLY, }; /* * Device removal can occur at anytime, so we need extra handling to * serialize notifying the user of device removal with other callbacks. * We do this by disabling removal notification while a callback is in process, * and reporting it after the callback completes. */ struct rdma_id_private { struct rdma_cm_id id; struct rdma_bind_list *bind_list; struct hlist_node node; struct list_head list; /* listen_any_list or cma_device.list */ struct list_head listen_list; /* per device listens */ struct cma_device *cma_dev; struct list_head mc_list; int internal_id; enum rdma_cm_state state; spinlock_t lock; struct mutex qp_mutex; struct completion comp; atomic_t refcount; struct mutex handler_mutex; int backlog; int timeout_ms; struct ib_sa_query *query; int query_id; union { struct ib_cm_id *ib; struct iw_cm_id *iw; } cm_id; u32 seq_num; u32 qkey; u32 qp_num; pid_t owner; u32 options; u8 srq; u8 tos; u8 reuseaddr; u8 afonly; }; struct cma_multicast { struct rdma_id_private *id_priv; union { struct ib_sa_multicast *ib; } multicast; struct list_head list; void *context; struct sockaddr_storage addr; struct kref mcref; }; struct cma_work { struct work_struct work; struct rdma_id_private *id; enum rdma_cm_state old_state; enum rdma_cm_state new_state; struct rdma_cm_event event; }; struct cma_ndev_work { struct work_struct work; struct rdma_id_private *id; struct rdma_cm_event event; }; struct iboe_mcast_work { struct work_struct work; struct rdma_id_private *id; struct cma_multicast *mc; }; union cma_ip_addr { struct in6_addr ip6; struct { __be32 pad[3]; __be32 addr; } ip4; }; struct cma_hdr { u8 cma_version; u8 ip_version; /* IP version: 7:4 */ __be16 port; union cma_ip_addr src_addr; union cma_ip_addr dst_addr; }; #define CMA_VERSION 0x00 static int cma_comp(struct rdma_id_private *id_priv, enum rdma_cm_state comp) { unsigned long flags; int ret; spin_lock_irqsave(&id_priv->lock, flags); ret = (id_priv->state == comp); spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } static int cma_comp_exch(struct rdma_id_private *id_priv, enum rdma_cm_state comp, enum rdma_cm_state exch) { unsigned long flags; int ret; spin_lock_irqsave(&id_priv->lock, flags); if ((ret = (id_priv->state == comp))) id_priv->state = exch; spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } static enum rdma_cm_state cma_exch(struct rdma_id_private *id_priv, enum rdma_cm_state exch) { unsigned long flags; enum rdma_cm_state old; spin_lock_irqsave(&id_priv->lock, flags); old = id_priv->state; id_priv->state = exch; spin_unlock_irqrestore(&id_priv->lock, flags); return old; } static inline u8 cma_get_ip_ver(struct cma_hdr *hdr) { return hdr->ip_version >> 4; } static inline void cma_set_ip_ver(struct cma_hdr *hdr, u8 ip_ver) { hdr->ip_version = (ip_ver << 4) | (hdr->ip_version & 0xF); } static void cma_attach_to_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { atomic_inc(&cma_dev->refcount); id_priv->cma_dev = cma_dev; id_priv->id.device = cma_dev->device; id_priv->id.route.addr.dev_addr.transport = rdma_node_get_transport(cma_dev->device->node_type); list_add_tail(&id_priv->list, &cma_dev->id_list); } static inline void cma_deref_dev(struct cma_device *cma_dev) { if (atomic_dec_and_test(&cma_dev->refcount)) complete(&cma_dev->comp); } static inline void release_mc(struct kref *kref) { struct cma_multicast *mc = container_of(kref, struct cma_multicast, mcref); kfree(mc->multicast.ib); kfree(mc); } static void cma_release_dev(struct rdma_id_private *id_priv) { mutex_lock(&lock); list_del(&id_priv->list); cma_deref_dev(id_priv->cma_dev); id_priv->cma_dev = NULL; mutex_unlock(&lock); } static inline struct sockaddr *cma_src_addr(struct rdma_id_private *id_priv) { return (struct sockaddr *) &id_priv->id.route.addr.src_addr; } static inline struct sockaddr *cma_dst_addr(struct rdma_id_private *id_priv) { return (struct sockaddr *) &id_priv->id.route.addr.dst_addr; } static inline unsigned short cma_family(struct rdma_id_private *id_priv) { return id_priv->id.route.addr.src_addr.ss_family; } static int cma_set_qkey(struct rdma_id_private *id_priv, u32 qkey) { struct ib_sa_mcmember_rec rec; int ret = 0; if (id_priv->qkey) { if (qkey && id_priv->qkey != qkey) return -EINVAL; return 0; } if (qkey) { id_priv->qkey = qkey; return 0; } switch (id_priv->id.ps) { case RDMA_PS_UDP: case RDMA_PS_IB: id_priv->qkey = RDMA_UDP_QKEY; break; case RDMA_PS_IPOIB: ib_addr_get_mgid(&id_priv->id.route.addr.dev_addr, &rec.mgid); ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, &rec.mgid, &rec); if (!ret) id_priv->qkey = be32_to_cpu(rec.qkey); break; default: break; } return ret; } static void cma_translate_ib(struct sockaddr_ib *sib, struct rdma_dev_addr *dev_addr) { dev_addr->dev_type = ARPHRD_INFINIBAND; rdma_addr_set_sgid(dev_addr, (union ib_gid *) &sib->sib_addr); ib_addr_set_pkey(dev_addr, ntohs(sib->sib_pkey)); } static int cma_translate_addr(struct sockaddr *addr, struct rdma_dev_addr *dev_addr) { int ret; if (addr->sa_family != AF_IB) { ret = rdma_translate_ip(addr, dev_addr); } else { cma_translate_ib((struct sockaddr_ib *) addr, dev_addr); ret = 0; } return ret; } static int cma_acquire_dev(struct rdma_id_private *id_priv) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct cma_device *cma_dev; union ib_gid gid, iboe_gid; int ret = -ENODEV; u8 port, found_port; enum rdma_link_layer dev_ll = dev_addr->dev_type == ARPHRD_INFINIBAND ? IB_LINK_LAYER_INFINIBAND : IB_LINK_LAYER_ETHERNET; if (dev_ll != IB_LINK_LAYER_INFINIBAND && id_priv->id.ps == RDMA_PS_IPOIB) return -EINVAL; mutex_lock(&lock); iboe_addr_get_sgid(dev_addr, &iboe_gid); memcpy(&gid, dev_addr->src_dev_addr + rdma_addr_gid_offset(dev_addr), sizeof gid); list_for_each_entry(cma_dev, &dev_list, list) { for (port = 1; port <= cma_dev->device->phys_port_cnt; ++port) if (rdma_port_get_link_layer(cma_dev->device, port) == dev_ll) { if (rdma_node_get_transport(cma_dev->device->node_type) == RDMA_TRANSPORT_IB && rdma_port_get_link_layer(cma_dev->device, port) == IB_LINK_LAYER_ETHERNET) ret = ib_find_cached_gid(cma_dev->device, &iboe_gid, &found_port, NULL); else ret = ib_find_cached_gid(cma_dev->device, &gid, &found_port, NULL); if (!ret && (port == found_port)) { id_priv->id.port_num = found_port; goto out; } } } out: if (!ret) cma_attach_to_dev(id_priv, cma_dev); mutex_unlock(&lock); return ret; } /* * Select the source IB device and address to reach the destination IB address. */ static int cma_resolve_ib_dev(struct rdma_id_private *id_priv) { struct cma_device *cma_dev, *cur_dev; struct sockaddr_ib *addr; union ib_gid gid, sgid, *dgid; u16 pkey, index; u8 p; int i; cma_dev = NULL; addr = (struct sockaddr_ib *) cma_dst_addr(id_priv); dgid = (union ib_gid *) &addr->sib_addr; pkey = ntohs(addr->sib_pkey); list_for_each_entry(cur_dev, &dev_list, list) { if (rdma_node_get_transport(cur_dev->device->node_type) != RDMA_TRANSPORT_IB) continue; for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) { if (ib_find_cached_pkey(cur_dev->device, p, pkey, &index)) continue; for (i = 0; !ib_get_cached_gid(cur_dev->device, p, i, &gid); i++) { if (!memcmp(&gid, dgid, sizeof(gid))) { cma_dev = cur_dev; sgid = gid; id_priv->id.port_num = p; goto found; } if (!cma_dev && (gid.global.subnet_prefix == dgid->global.subnet_prefix)) { cma_dev = cur_dev; sgid = gid; id_priv->id.port_num = p; } } } } if (!cma_dev) return -ENODEV; found: cma_attach_to_dev(id_priv, cma_dev); addr = (struct sockaddr_ib *) cma_src_addr(id_priv); memcpy(&addr->sib_addr, &sgid, sizeof sgid); cma_translate_ib(addr, &id_priv->id.route.addr.dev_addr); return 0; } static void cma_deref_id(struct rdma_id_private *id_priv) { if (atomic_dec_and_test(&id_priv->refcount)) complete(&id_priv->comp); } static int cma_disable_callback(struct rdma_id_private *id_priv, enum rdma_cm_state state) { mutex_lock(&id_priv->handler_mutex); if (id_priv->state != state) { mutex_unlock(&id_priv->handler_mutex); return -EINVAL; } return 0; } struct rdma_cm_id *rdma_create_id(rdma_cm_event_handler event_handler, void *context, enum rdma_port_space ps, enum ib_qp_type qp_type) { struct rdma_id_private *id_priv; id_priv = kzalloc(sizeof *id_priv, GFP_KERNEL); if (!id_priv) return ERR_PTR(-ENOMEM); id_priv->owner = task_pid_nr(current); id_priv->state = RDMA_CM_IDLE; id_priv->id.context = context; id_priv->id.event_handler = event_handler; id_priv->id.ps = ps; id_priv->id.qp_type = qp_type; spin_lock_init(&id_priv->lock); mutex_init(&id_priv->qp_mutex); init_completion(&id_priv->comp); atomic_set(&id_priv->refcount, 1); mutex_init(&id_priv->handler_mutex); INIT_LIST_HEAD(&id_priv->listen_list); INIT_LIST_HEAD(&id_priv->mc_list); get_random_bytes(&id_priv->seq_num, sizeof id_priv->seq_num); return &id_priv->id; } EXPORT_SYMBOL(rdma_create_id); static int cma_init_ud_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) return ret; ret = ib_modify_qp(qp, &qp_attr, qp_attr_mask); if (ret) return ret; qp_attr.qp_state = IB_QPS_RTR; ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE); if (ret) return ret; qp_attr.qp_state = IB_QPS_RTS; qp_attr.sq_psn = 0; ret = ib_modify_qp(qp, &qp_attr, IB_QP_STATE | IB_QP_SQ_PSN); return ret; } static int cma_init_conn_qp(struct rdma_id_private *id_priv, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) return ret; return ib_modify_qp(qp, &qp_attr, qp_attr_mask); } int rdma_create_qp(struct rdma_cm_id *id, struct ib_pd *pd, struct ib_qp_init_attr *qp_init_attr) { struct rdma_id_private *id_priv; struct ib_qp *qp; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id->device != pd->device) return -EINVAL; qp = ib_create_qp(pd, qp_init_attr); if (IS_ERR(qp)) return PTR_ERR(qp); if (id->qp_type == IB_QPT_UD) ret = cma_init_ud_qp(id_priv, qp); else ret = cma_init_conn_qp(id_priv, qp); if (ret) goto err; id->qp = qp; id_priv->qp_num = qp->qp_num; id_priv->srq = (qp->srq != NULL); return 0; err: ib_destroy_qp(qp); return ret; } EXPORT_SYMBOL(rdma_create_qp); void rdma_destroy_qp(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; id_priv = container_of(id, struct rdma_id_private, id); mutex_lock(&id_priv->qp_mutex); ib_destroy_qp(id_priv->id.qp); id_priv->id.qp = NULL; mutex_unlock(&id_priv->qp_mutex); } EXPORT_SYMBOL(rdma_destroy_qp); static int cma_modify_qp_rtr(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } /* Need to update QP attributes from default values. */ qp_attr.qp_state = IB_QPS_INIT; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); if (ret) goto out; qp_attr.qp_state = IB_QPS_RTR; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; if (conn_param) qp_attr.max_dest_rd_atomic = conn_param->responder_resources; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_modify_qp_rts(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_qp_attr qp_attr; int qp_attr_mask, ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } qp_attr.qp_state = IB_QPS_RTS; ret = rdma_init_qp_attr(&id_priv->id, &qp_attr, &qp_attr_mask); if (ret) goto out; if (conn_param) qp_attr.max_rd_atomic = conn_param->initiator_depth; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, qp_attr_mask); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_modify_qp_err(struct rdma_id_private *id_priv) { struct ib_qp_attr qp_attr; int ret; mutex_lock(&id_priv->qp_mutex); if (!id_priv->id.qp) { ret = 0; goto out; } qp_attr.qp_state = IB_QPS_ERR; ret = ib_modify_qp(id_priv->id.qp, &qp_attr, IB_QP_STATE); out: mutex_unlock(&id_priv->qp_mutex); return ret; } static int cma_ib_init_qp_attr(struct rdma_id_private *id_priv, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; int ret; u16 pkey; if (rdma_port_get_link_layer(id_priv->id.device, id_priv->id.port_num) == IB_LINK_LAYER_INFINIBAND) pkey = ib_addr_get_pkey(dev_addr); else pkey = 0xffff; ret = ib_find_cached_pkey(id_priv->id.device, id_priv->id.port_num, pkey, &qp_attr->pkey_index); if (ret) return ret; qp_attr->port_num = id_priv->id.port_num; *qp_attr_mask = IB_QP_STATE | IB_QP_PKEY_INDEX | IB_QP_PORT; if (id_priv->id.qp_type == IB_QPT_UD) { ret = cma_set_qkey(id_priv, 0); if (ret) return ret; qp_attr->qkey = id_priv->qkey; *qp_attr_mask |= IB_QP_QKEY; } else { qp_attr->qp_access_flags = 0; *qp_attr_mask |= IB_QP_ACCESS_FLAGS; } return 0; } int rdma_init_qp_attr(struct rdma_cm_id *id, struct ib_qp_attr *qp_attr, int *qp_attr_mask) { struct rdma_id_private *id_priv; int ret = 0; id_priv = container_of(id, struct rdma_id_private, id); switch (rdma_node_get_transport(id_priv->id.device->node_type)) { case RDMA_TRANSPORT_IB: if (!id_priv->cm_id.ib || (id_priv->id.qp_type == IB_QPT_UD)) ret = cma_ib_init_qp_attr(id_priv, qp_attr, qp_attr_mask); else ret = ib_cm_init_qp_attr(id_priv->cm_id.ib, qp_attr, qp_attr_mask); if (qp_attr->qp_state == IB_QPS_RTR) qp_attr->rq_psn = id_priv->seq_num; break; case RDMA_TRANSPORT_IWARP: if (!id_priv->cm_id.iw) { qp_attr->qp_access_flags = 0; *qp_attr_mask = IB_QP_STATE | IB_QP_ACCESS_FLAGS; } else ret = iw_cm_init_qp_attr(id_priv->cm_id.iw, qp_attr, qp_attr_mask); break; default: ret = -ENOSYS; break; } return ret; } EXPORT_SYMBOL(rdma_init_qp_attr); static inline int cma_zero_addr(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return ipv4_is_zeronet(((struct sockaddr_in *)addr)->sin_addr.s_addr); case AF_INET6: return ipv6_addr_any(&((struct sockaddr_in6 *) addr)->sin6_addr); case AF_IB: return ib_addr_any(&((struct sockaddr_ib *) addr)->sib_addr); default: return 0; } } static inline int cma_loopback_addr(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: return ipv4_is_loopback(((struct sockaddr_in *) addr)->sin_addr.s_addr); case AF_INET6: return ipv6_addr_loopback(&((struct sockaddr_in6 *) addr)->sin6_addr); case AF_IB: return ib_addr_loopback(&((struct sockaddr_ib *) addr)->sib_addr); default: return 0; } } static inline int cma_any_addr(struct sockaddr *addr) { return cma_zero_addr(addr) || cma_loopback_addr(addr); } static int cma_addr_cmp(struct sockaddr *src, struct sockaddr *dst) { if (src->sa_family != dst->sa_family) return -1; switch (src->sa_family) { case AF_INET: return ((struct sockaddr_in *) src)->sin_addr.s_addr != ((struct sockaddr_in *) dst)->sin_addr.s_addr; case AF_INET6: return ipv6_addr_cmp(&((struct sockaddr_in6 *) src)->sin6_addr, &((struct sockaddr_in6 *) dst)->sin6_addr); default: return ib_addr_cmp(&((struct sockaddr_ib *) src)->sib_addr, &((struct sockaddr_ib *) dst)->sib_addr); } } static __be16 cma_port(struct sockaddr *addr) { struct sockaddr_ib *sib; switch (addr->sa_family) { case AF_INET: return ((struct sockaddr_in *) addr)->sin_port; case AF_INET6: return ((struct sockaddr_in6 *) addr)->sin6_port; case AF_IB: sib = (struct sockaddr_ib *) addr; return htons((u16) (be64_to_cpu(sib->sib_sid) & be64_to_cpu(sib->sib_sid_mask))); default: return 0; } } static inline int cma_any_port(struct sockaddr *addr) { return !cma_port(addr); } static void cma_save_ib_info(struct rdma_cm_id *id, struct rdma_cm_id *listen_id, struct ib_sa_path_rec *path) { struct sockaddr_ib *listen_ib, *ib; listen_ib = (struct sockaddr_ib *) &listen_id->route.addr.src_addr; ib = (struct sockaddr_ib *) &id->route.addr.src_addr; ib->sib_family = listen_ib->sib_family; ib->sib_pkey = path->pkey; ib->sib_flowinfo = path->flow_label; memcpy(&ib->sib_addr, &path->sgid, 16); ib->sib_sid = listen_ib->sib_sid; ib->sib_sid_mask = cpu_to_be64(0xffffffffffffffffULL); ib->sib_scope_id = listen_ib->sib_scope_id; ib = (struct sockaddr_ib *) &id->route.addr.dst_addr; ib->sib_family = listen_ib->sib_family; ib->sib_pkey = path->pkey; ib->sib_flowinfo = path->flow_label; memcpy(&ib->sib_addr, &path->dgid, 16); } static void cma_save_ip4_info(struct rdma_cm_id *id, struct rdma_cm_id *listen_id, struct cma_hdr *hdr) { struct sockaddr_in *listen4, *ip4; listen4 = (struct sockaddr_in *) &listen_id->route.addr.src_addr; ip4 = (struct sockaddr_in *) &id->route.addr.src_addr; ip4->sin_family = listen4->sin_family; ip4->sin_addr.s_addr = hdr->dst_addr.ip4.addr; ip4->sin_port = listen4->sin_port; ip4 = (struct sockaddr_in *) &id->route.addr.dst_addr; ip4->sin_family = listen4->sin_family; ip4->sin_addr.s_addr = hdr->src_addr.ip4.addr; ip4->sin_port = hdr->port; } static void cma_save_ip6_info(struct rdma_cm_id *id, struct rdma_cm_id *listen_id, struct cma_hdr *hdr) { struct sockaddr_in6 *listen6, *ip6; listen6 = (struct sockaddr_in6 *) &listen_id->route.addr.src_addr; ip6 = (struct sockaddr_in6 *) &id->route.addr.src_addr; ip6->sin6_family = listen6->sin6_family; ip6->sin6_addr = hdr->dst_addr.ip6; ip6->sin6_port = listen6->sin6_port; ip6 = (struct sockaddr_in6 *) &id->route.addr.dst_addr; ip6->sin6_family = listen6->sin6_family; ip6->sin6_addr = hdr->src_addr.ip6; ip6->sin6_port = hdr->port; } static int cma_save_net_info(struct rdma_cm_id *id, struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event) { struct cma_hdr *hdr; if ((listen_id->route.addr.src_addr.ss_family == AF_IB) && (ib_event->event == IB_CM_REQ_RECEIVED)) { cma_save_ib_info(id, listen_id, ib_event->param.req_rcvd.primary_path); return 0; } hdr = ib_event->private_data; if (hdr->cma_version != CMA_VERSION) return -EINVAL; switch (cma_get_ip_ver(hdr)) { case 4: cma_save_ip4_info(id, listen_id, hdr); break; case 6: cma_save_ip6_info(id, listen_id, hdr); break; default: return -EINVAL; } return 0; } static inline int cma_user_data_offset(struct rdma_id_private *id_priv) { return cma_family(id_priv) == AF_IB ? 0 : sizeof(struct cma_hdr); } static void cma_cancel_route(struct rdma_id_private *id_priv) { switch (rdma_port_get_link_layer(id_priv->id.device, id_priv->id.port_num)) { case IB_LINK_LAYER_INFINIBAND: if (id_priv->query) ib_sa_cancel_query(id_priv->query_id, id_priv->query); break; default: break; } } static void cma_cancel_listens(struct rdma_id_private *id_priv) { struct rdma_id_private *dev_id_priv; /* * Remove from listen_any_list to prevent added devices from spawning * additional listen requests. */ mutex_lock(&lock); list_del(&id_priv->list); while (!list_empty(&id_priv->listen_list)) { dev_id_priv = list_entry(id_priv->listen_list.next, struct rdma_id_private, listen_list); /* sync with device removal to avoid duplicate destruction */ list_del_init(&dev_id_priv->list); list_del(&dev_id_priv->listen_list); mutex_unlock(&lock); rdma_destroy_id(&dev_id_priv->id); mutex_lock(&lock); } mutex_unlock(&lock); } static void cma_cancel_operation(struct rdma_id_private *id_priv, enum rdma_cm_state state) { switch (state) { case RDMA_CM_ADDR_QUERY: rdma_addr_cancel(&id_priv->id.route.addr.dev_addr); break; case RDMA_CM_ROUTE_QUERY: cma_cancel_route(id_priv); break; case RDMA_CM_LISTEN: if (cma_any_addr(cma_src_addr(id_priv)) && !id_priv->cma_dev) cma_cancel_listens(id_priv); break; default: break; } } static void cma_release_port(struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list = id_priv->bind_list; if (!bind_list) return; mutex_lock(&lock); hlist_del(&id_priv->node); if (hlist_empty(&bind_list->owners)) { idr_remove(bind_list->ps, bind_list->port); kfree(bind_list); } mutex_unlock(&lock); } static void cma_leave_mc_groups(struct rdma_id_private *id_priv) { struct cma_multicast *mc; while (!list_empty(&id_priv->mc_list)) { mc = container_of(id_priv->mc_list.next, struct cma_multicast, list); list_del(&mc->list); switch (rdma_port_get_link_layer(id_priv->cma_dev->device, id_priv->id.port_num)) { case IB_LINK_LAYER_INFINIBAND: ib_sa_free_multicast(mc->multicast.ib); kfree(mc); break; case IB_LINK_LAYER_ETHERNET: kref_put(&mc->mcref, release_mc); break; default: break; } } } void rdma_destroy_id(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; enum rdma_cm_state state; id_priv = container_of(id, struct rdma_id_private, id); state = cma_exch(id_priv, RDMA_CM_DESTROYING); cma_cancel_operation(id_priv, state); /* * Wait for any active callback to finish. New callbacks will find * the id_priv state set to destroying and abort. */ mutex_lock(&id_priv->handler_mutex); mutex_unlock(&id_priv->handler_mutex); if (id_priv->cma_dev) { switch (rdma_node_get_transport(id_priv->id.device->node_type)) { case RDMA_TRANSPORT_IB: if (id_priv->cm_id.ib) ib_destroy_cm_id(id_priv->cm_id.ib); break; case RDMA_TRANSPORT_IWARP: if (id_priv->cm_id.iw) iw_destroy_cm_id(id_priv->cm_id.iw); break; default: break; } cma_leave_mc_groups(id_priv); cma_release_dev(id_priv); } cma_release_port(id_priv); cma_deref_id(id_priv); wait_for_completion(&id_priv->comp); if (id_priv->internal_id) cma_deref_id(id_priv->id.context); kfree(id_priv->id.route.path_rec); kfree(id_priv); } EXPORT_SYMBOL(rdma_destroy_id); static int cma_rep_recv(struct rdma_id_private *id_priv) { int ret; ret = cma_modify_qp_rtr(id_priv, NULL); if (ret) goto reject; ret = cma_modify_qp_rts(id_priv, NULL); if (ret) goto reject; ret = ib_send_cm_rtu(id_priv->cm_id.ib, NULL, 0); if (ret) goto reject; return 0; reject: cma_modify_qp_err(id_priv); ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, NULL, 0); return ret; } static void cma_set_rep_event_data(struct rdma_cm_event *event, struct ib_cm_rep_event_param *rep_data, void *private_data) { event->param.conn.private_data = private_data; event->param.conn.private_data_len = IB_CM_REP_PRIVATE_DATA_SIZE; event->param.conn.responder_resources = rep_data->responder_resources; event->param.conn.initiator_depth = rep_data->initiator_depth; event->param.conn.flow_control = rep_data->flow_control; event->param.conn.rnr_retry_count = rep_data->rnr_retry_count; event->param.conn.srq = rep_data->srq; event->param.conn.qp_num = rep_data->remote_qpn; } static int cma_ib_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv = cm_id->context; struct rdma_cm_event event; int ret = 0; if ((ib_event->event != IB_CM_TIMEWAIT_EXIT && cma_disable_callback(id_priv, RDMA_CM_CONNECT)) || (ib_event->event == IB_CM_TIMEWAIT_EXIT && cma_disable_callback(id_priv, RDMA_CM_DISCONNECT))) return 0; memset(&event, 0, sizeof event); switch (ib_event->event) { case IB_CM_REQ_ERROR: case IB_CM_REP_ERROR: event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = -ETIMEDOUT; break; case IB_CM_REP_RECEIVED: if (id_priv->id.qp) { event.status = cma_rep_recv(id_priv); event.event = event.status ? RDMA_CM_EVENT_CONNECT_ERROR : RDMA_CM_EVENT_ESTABLISHED; } else { event.event = RDMA_CM_EVENT_CONNECT_RESPONSE; } cma_set_rep_event_data(&event, &ib_event->param.rep_rcvd, ib_event->private_data); break; case IB_CM_RTU_RECEIVED: case IB_CM_USER_ESTABLISHED: event.event = RDMA_CM_EVENT_ESTABLISHED; break; case IB_CM_DREQ_ERROR: event.status = -ETIMEDOUT; /* fall through */ case IB_CM_DREQ_RECEIVED: case IB_CM_DREP_RECEIVED: if (!cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_DISCONNECT)) goto out; event.event = RDMA_CM_EVENT_DISCONNECTED; break; case IB_CM_TIMEWAIT_EXIT: event.event = RDMA_CM_EVENT_TIMEWAIT_EXIT; break; case IB_CM_MRA_RECEIVED: /* ignore event */ goto out; case IB_CM_REJ_RECEIVED: cma_modify_qp_err(id_priv); event.status = ib_event->param.rej_rcvd.reason; event.event = RDMA_CM_EVENT_REJECTED; event.param.conn.private_data = ib_event->private_data; event.param.conn.private_data_len = IB_CM_REJ_PRIVATE_DATA_SIZE; break; default: printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n", ib_event->event); goto out; } ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.ib = NULL; cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static struct rdma_id_private *cma_new_conn_id(struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv; struct rdma_cm_id *id; struct rdma_route *rt; int ret; id = rdma_create_id(listen_id->event_handler, listen_id->context, listen_id->ps, ib_event->param.req_rcvd.qp_type); if (IS_ERR(id)) return NULL; id_priv = container_of(id, struct rdma_id_private, id); if (cma_save_net_info(id, listen_id, ib_event)) goto err; rt = &id->route; rt->num_paths = ib_event->param.req_rcvd.alternate_path ? 2 : 1; rt->path_rec = kmalloc(sizeof *rt->path_rec * rt->num_paths, GFP_KERNEL); if (!rt->path_rec) goto err; rt->path_rec[0] = *ib_event->param.req_rcvd.primary_path; if (rt->num_paths == 2) rt->path_rec[1] = *ib_event->param.req_rcvd.alternate_path; if (cma_any_addr(cma_src_addr(id_priv))) { rt->addr.dev_addr.dev_type = ARPHRD_INFINIBAND; rdma_addr_set_sgid(&rt->addr.dev_addr, &rt->path_rec[0].sgid); ib_addr_set_pkey(&rt->addr.dev_addr, be16_to_cpu(rt->path_rec[0].pkey)); } else { ret = cma_translate_addr(cma_src_addr(id_priv), &rt->addr.dev_addr); if (ret) goto err; } rdma_addr_set_dgid(&rt->addr.dev_addr, &rt->path_rec[0].dgid); id_priv->state = RDMA_CM_CONNECT; return id_priv; err: rdma_destroy_id(id); return NULL; } static struct rdma_id_private *cma_new_udp_id(struct rdma_cm_id *listen_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv; struct rdma_cm_id *id; int ret; id = rdma_create_id(listen_id->event_handler, listen_id->context, listen_id->ps, IB_QPT_UD); if (IS_ERR(id)) return NULL; id_priv = container_of(id, struct rdma_id_private, id); if (cma_save_net_info(id, listen_id, ib_event)) goto err; if (!cma_any_addr((struct sockaddr *) &id->route.addr.src_addr)) { ret = cma_translate_addr(cma_src_addr(id_priv), &id->route.addr.dev_addr); if (ret) goto err; } id_priv->state = RDMA_CM_CONNECT; return id_priv; err: rdma_destroy_id(id); return NULL; } static void cma_set_req_event_data(struct rdma_cm_event *event, struct ib_cm_req_event_param *req_data, void *private_data, int offset) { event->param.conn.private_data = private_data + offset; event->param.conn.private_data_len = IB_CM_REQ_PRIVATE_DATA_SIZE - offset; event->param.conn.responder_resources = req_data->responder_resources; event->param.conn.initiator_depth = req_data->initiator_depth; event->param.conn.flow_control = req_data->flow_control; event->param.conn.retry_count = req_data->retry_count; event->param.conn.rnr_retry_count = req_data->rnr_retry_count; event->param.conn.srq = req_data->srq; event->param.conn.qp_num = req_data->remote_qpn; } static int cma_check_req_qp_type(struct rdma_cm_id *id, struct ib_cm_event *ib_event) { return (((ib_event->event == IB_CM_REQ_RECEIVED) && (ib_event->param.req_rcvd.qp_type == id->qp_type)) || ((ib_event->event == IB_CM_SIDR_REQ_RECEIVED) && (id->qp_type == IB_QPT_UD)) || (!id->qp_type)); } static int cma_req_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *listen_id, *conn_id; struct rdma_cm_event event; int offset, ret; listen_id = cm_id->context; if (!cma_check_req_qp_type(&listen_id->id, ib_event)) return -EINVAL; if (cma_disable_callback(listen_id, RDMA_CM_LISTEN)) return -ECONNABORTED; memset(&event, 0, sizeof event); offset = cma_user_data_offset(listen_id); event.event = RDMA_CM_EVENT_CONNECT_REQUEST; if (ib_event->event == IB_CM_SIDR_REQ_RECEIVED) { conn_id = cma_new_udp_id(&listen_id->id, ib_event); event.param.ud.private_data = ib_event->private_data + offset; event.param.ud.private_data_len = IB_CM_SIDR_REQ_PRIVATE_DATA_SIZE - offset; } else { conn_id = cma_new_conn_id(&listen_id->id, ib_event); cma_set_req_event_data(&event, &ib_event->param.req_rcvd, ib_event->private_data, offset); } if (!conn_id) { ret = -ENOMEM; goto err1; } mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); ret = cma_acquire_dev(conn_id); if (ret) goto err2; conn_id->cm_id.ib = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_ib_handler; /* * Protect against the user destroying conn_id from another thread * until we're done accessing it. */ atomic_inc(&conn_id->refcount); ret = conn_id->id.event_handler(&conn_id->id, &event); if (ret) goto err3; /* * Acquire mutex to prevent user executing rdma_destroy_id() * while we're accessing the cm_id. */ mutex_lock(&lock); if (cma_comp(conn_id, RDMA_CM_CONNECT) && (conn_id->id.qp_type != IB_QPT_UD)) ib_send_cm_mra(cm_id, CMA_CM_MRA_SETTING, NULL, 0); mutex_unlock(&lock); mutex_unlock(&conn_id->handler_mutex); mutex_unlock(&listen_id->handler_mutex); cma_deref_id(conn_id); return 0; err3: cma_deref_id(conn_id); /* Destroy the CM ID by returning a non-zero value. */ conn_id->cm_id.ib = NULL; err2: cma_exch(conn_id, RDMA_CM_DESTROYING); mutex_unlock(&conn_id->handler_mutex); err1: mutex_unlock(&listen_id->handler_mutex); if (conn_id) rdma_destroy_id(&conn_id->id); return ret; } __be64 rdma_get_service_id(struct rdma_cm_id *id, struct sockaddr *addr) { if (addr->sa_family == AF_IB) return ((struct sockaddr_ib *) addr)->sib_sid; return cpu_to_be64(((u64)id->ps << 16) + be16_to_cpu(cma_port(addr))); } EXPORT_SYMBOL(rdma_get_service_id); static void cma_set_compare_data(enum rdma_port_space ps, struct sockaddr *addr, struct ib_cm_compare_data *compare) { struct cma_hdr *cma_data, *cma_mask; __be32 ip4_addr; struct in6_addr ip6_addr; memset(compare, 0, sizeof *compare); cma_data = (void *) compare->data; cma_mask = (void *) compare->mask; switch (addr->sa_family) { case AF_INET: ip4_addr = ((struct sockaddr_in *) addr)->sin_addr.s_addr; cma_set_ip_ver(cma_data, 4); cma_set_ip_ver(cma_mask, 0xF); if (!cma_any_addr(addr)) { cma_data->dst_addr.ip4.addr = ip4_addr; cma_mask->dst_addr.ip4.addr = htonl(~0); } break; case AF_INET6: ip6_addr = ((struct sockaddr_in6 *) addr)->sin6_addr; cma_set_ip_ver(cma_data, 6); cma_set_ip_ver(cma_mask, 0xF); if (!cma_any_addr(addr)) { cma_data->dst_addr.ip6 = ip6_addr; memset(&cma_mask->dst_addr.ip6, 0xFF, sizeof cma_mask->dst_addr.ip6); } break; default: break; } } static int cma_iw_handler(struct iw_cm_id *iw_id, struct iw_cm_event *iw_event) { struct rdma_id_private *id_priv = iw_id->context; struct rdma_cm_event event; int ret = 0; struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; if (cma_disable_callback(id_priv, RDMA_CM_CONNECT)) return 0; memset(&event, 0, sizeof event); switch (iw_event->event) { case IW_CM_EVENT_CLOSE: event.event = RDMA_CM_EVENT_DISCONNECTED; break; case IW_CM_EVENT_CONNECT_REPLY: memcpy(cma_src_addr(id_priv), laddr, rdma_addr_size(laddr)); memcpy(cma_dst_addr(id_priv), raddr, rdma_addr_size(raddr)); switch (iw_event->status) { case 0: event.event = RDMA_CM_EVENT_ESTABLISHED; event.param.conn.initiator_depth = iw_event->ird; event.param.conn.responder_resources = iw_event->ord; break; case -ECONNRESET: case -ECONNREFUSED: event.event = RDMA_CM_EVENT_REJECTED; break; case -ETIMEDOUT: event.event = RDMA_CM_EVENT_UNREACHABLE; break; default: event.event = RDMA_CM_EVENT_CONNECT_ERROR; break; } break; case IW_CM_EVENT_ESTABLISHED: event.event = RDMA_CM_EVENT_ESTABLISHED; event.param.conn.initiator_depth = iw_event->ird; event.param.conn.responder_resources = iw_event->ord; break; default: BUG_ON(1); } event.status = iw_event->status; event.param.conn.private_data = iw_event->private_data; event.param.conn.private_data_len = iw_event->private_data_len; ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.iw = NULL; cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } mutex_unlock(&id_priv->handler_mutex); return ret; } static int iw_conn_req_handler(struct iw_cm_id *cm_id, struct iw_cm_event *iw_event) { struct rdma_cm_id *new_cm_id; struct rdma_id_private *listen_id, *conn_id; struct net_device *dev = NULL; struct rdma_cm_event event; int ret; struct ib_device_attr attr; struct sockaddr *laddr = (struct sockaddr *)&iw_event->local_addr; struct sockaddr *raddr = (struct sockaddr *)&iw_event->remote_addr; listen_id = cm_id->context; if (cma_disable_callback(listen_id, RDMA_CM_LISTEN)) return -ECONNABORTED; /* Create a new RDMA id for the new IW CM ID */ new_cm_id = rdma_create_id(listen_id->id.event_handler, listen_id->id.context, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(new_cm_id)) { ret = -ENOMEM; goto out; } conn_id = container_of(new_cm_id, struct rdma_id_private, id); mutex_lock_nested(&conn_id->handler_mutex, SINGLE_DEPTH_NESTING); conn_id->state = RDMA_CM_CONNECT; ret = rdma_translate_ip(laddr, &conn_id->id.route.addr.dev_addr); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } ret = cma_acquire_dev(conn_id); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } conn_id->cm_id.iw = cm_id; cm_id->context = conn_id; cm_id->cm_handler = cma_iw_handler; memcpy(cma_src_addr(conn_id), laddr, rdma_addr_size(laddr)); memcpy(cma_dst_addr(conn_id), raddr, rdma_addr_size(raddr)); ret = ib_query_device(conn_id->id.device, &attr); if (ret) { mutex_unlock(&conn_id->handler_mutex); rdma_destroy_id(new_cm_id); goto out; } memset(&event, 0, sizeof event); event.event = RDMA_CM_EVENT_CONNECT_REQUEST; event.param.conn.private_data = iw_event->private_data; event.param.conn.private_data_len = iw_event->private_data_len; event.param.conn.initiator_depth = iw_event->ird; event.param.conn.responder_resources = iw_event->ord; /* * Protect against the user destroying conn_id from another thread * until we're done accessing it. */ atomic_inc(&conn_id->refcount); ret = conn_id->id.event_handler(&conn_id->id, &event); if (ret) { /* User wants to destroy the CM ID */ conn_id->cm_id.iw = NULL; cma_exch(conn_id, RDMA_CM_DESTROYING); mutex_unlock(&conn_id->handler_mutex); cma_deref_id(conn_id); rdma_destroy_id(&conn_id->id); goto out; } mutex_unlock(&conn_id->handler_mutex); cma_deref_id(conn_id); out: if (dev) dev_put(dev); mutex_unlock(&listen_id->handler_mutex); return ret; } static int cma_ib_listen(struct rdma_id_private *id_priv) { struct ib_cm_compare_data compare_data; struct sockaddr *addr; struct ib_cm_id *id; __be64 svc_id; int ret; id = ib_create_cm_id(id_priv->id.device, cma_req_handler, id_priv); if (IS_ERR(id)) return PTR_ERR(id); id_priv->cm_id.ib = id; addr = cma_src_addr(id_priv); svc_id = rdma_get_service_id(&id_priv->id, addr); if (cma_any_addr(addr) && !id_priv->afonly) ret = ib_cm_listen(id_priv->cm_id.ib, svc_id, 0, NULL); else { cma_set_compare_data(id_priv->id.ps, addr, &compare_data); ret = ib_cm_listen(id_priv->cm_id.ib, svc_id, 0, &compare_data); } if (ret) { ib_destroy_cm_id(id_priv->cm_id.ib); id_priv->cm_id.ib = NULL; } return ret; } static int cma_iw_listen(struct rdma_id_private *id_priv, int backlog) { int ret; struct iw_cm_id *id; id = iw_create_cm_id(id_priv->id.device, iw_conn_req_handler, id_priv); if (IS_ERR(id)) return PTR_ERR(id); id_priv->cm_id.iw = id; memcpy(&id_priv->cm_id.iw->local_addr, cma_src_addr(id_priv), rdma_addr_size(cma_src_addr(id_priv))); ret = iw_cm_listen(id_priv->cm_id.iw, backlog); if (ret) { iw_destroy_cm_id(id_priv->cm_id.iw); id_priv->cm_id.iw = NULL; } return ret; } static int cma_listen_handler(struct rdma_cm_id *id, struct rdma_cm_event *event) { struct rdma_id_private *id_priv = id->context; id->context = id_priv->id.context; id->event_handler = id_priv->id.event_handler; return id_priv->id.event_handler(id, event); } static void cma_listen_on_dev(struct rdma_id_private *id_priv, struct cma_device *cma_dev) { struct rdma_id_private *dev_id_priv; struct rdma_cm_id *id; int ret; if (cma_family(id_priv) == AF_IB && rdma_node_get_transport(cma_dev->device->node_type) != RDMA_TRANSPORT_IB) return; id = rdma_create_id(cma_listen_handler, id_priv, id_priv->id.ps, id_priv->id.qp_type); if (IS_ERR(id)) return; dev_id_priv = container_of(id, struct rdma_id_private, id); dev_id_priv->state = RDMA_CM_ADDR_BOUND; memcpy(cma_src_addr(dev_id_priv), cma_src_addr(id_priv), rdma_addr_size(cma_src_addr(id_priv))); cma_attach_to_dev(dev_id_priv, cma_dev); list_add_tail(&dev_id_priv->listen_list, &id_priv->listen_list); atomic_inc(&id_priv->refcount); dev_id_priv->internal_id = 1; dev_id_priv->afonly = id_priv->afonly; ret = rdma_listen(id, id_priv->backlog); if (ret) printk(KERN_WARNING "RDMA CMA: cma_listen_on_dev, error %d, " "listening on device %s\n", ret, cma_dev->device->name); } static void cma_listen_on_all(struct rdma_id_private *id_priv) { struct cma_device *cma_dev; mutex_lock(&lock); list_add_tail(&id_priv->list, &listen_any_list); list_for_each_entry(cma_dev, &dev_list, list) cma_listen_on_dev(id_priv, cma_dev); mutex_unlock(&lock); } void rdma_set_service_type(struct rdma_cm_id *id, int tos) { struct rdma_id_private *id_priv; id_priv = container_of(id, struct rdma_id_private, id); id_priv->tos = (u8) tos; } EXPORT_SYMBOL(rdma_set_service_type); static void cma_query_handler(int status, struct ib_sa_path_rec *path_rec, void *context) { struct cma_work *work = context; struct rdma_route *route; route = &work->id->id.route; if (!status) { route->num_paths = 1; *route->path_rec = *path_rec; } else { work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_ERROR; work->event.status = status; } queue_work(cma_wq, &work->work); } static int cma_query_ib_route(struct rdma_id_private *id_priv, int timeout_ms, struct cma_work *work) { struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct ib_sa_path_rec path_rec; ib_sa_comp_mask comp_mask; struct sockaddr_in6 *sin6; struct sockaddr_ib *sib; memset(&path_rec, 0, sizeof path_rec); rdma_addr_get_sgid(dev_addr, &path_rec.sgid); rdma_addr_get_dgid(dev_addr, &path_rec.dgid); path_rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); path_rec.numb_path = 1; path_rec.reversible = 1; path_rec.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); comp_mask = IB_SA_PATH_REC_DGID | IB_SA_PATH_REC_SGID | IB_SA_PATH_REC_PKEY | IB_SA_PATH_REC_NUMB_PATH | IB_SA_PATH_REC_REVERSIBLE | IB_SA_PATH_REC_SERVICE_ID; switch (cma_family(id_priv)) { case AF_INET: path_rec.qos_class = cpu_to_be16((u16) id_priv->tos); comp_mask |= IB_SA_PATH_REC_QOS_CLASS; break; case AF_INET6: sin6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); path_rec.traffic_class = (u8) (be32_to_cpu(sin6->sin6_flowinfo) >> 20); comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; break; case AF_IB: sib = (struct sockaddr_ib *) cma_src_addr(id_priv); path_rec.traffic_class = (u8) (be32_to_cpu(sib->sib_flowinfo) >> 20); comp_mask |= IB_SA_PATH_REC_TRAFFIC_CLASS; break; } id_priv->query_id = ib_sa_path_rec_get(&sa_client, id_priv->id.device, id_priv->id.port_num, &path_rec, comp_mask, timeout_ms, GFP_KERNEL, cma_query_handler, work, &id_priv->query); return (id_priv->query_id < 0) ? id_priv->query_id : 0; } static void cma_work_handler(struct work_struct *_work) { struct cma_work *work = container_of(_work, struct cma_work, work); struct rdma_id_private *id_priv = work->id; int destroy = 0; mutex_lock(&id_priv->handler_mutex); if (!cma_comp_exch(id_priv, work->old_state, work->new_state)) goto out; if (id_priv->id.event_handler(&id_priv->id, &work->event)) { cma_exch(id_priv, RDMA_CM_DESTROYING); destroy = 1; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); if (destroy) rdma_destroy_id(&id_priv->id); kfree(work); } static void cma_ndev_work_handler(struct work_struct *_work) { struct cma_ndev_work *work = container_of(_work, struct cma_ndev_work, work); struct rdma_id_private *id_priv = work->id; int destroy = 0; mutex_lock(&id_priv->handler_mutex); if (id_priv->state == RDMA_CM_DESTROYING || id_priv->state == RDMA_CM_DEVICE_REMOVAL) goto out; if (id_priv->id.event_handler(&id_priv->id, &work->event)) { cma_exch(id_priv, RDMA_CM_DESTROYING); destroy = 1; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); if (destroy) rdma_destroy_id(&id_priv->id); kfree(work); } static int cma_resolve_ib_route(struct rdma_id_private *id_priv, int timeout_ms) { struct rdma_route *route = &id_priv->id.route; struct cma_work *work; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; route->path_rec = kmalloc(sizeof *route->path_rec, GFP_KERNEL); if (!route->path_rec) { ret = -ENOMEM; goto err1; } ret = cma_query_ib_route(id_priv, timeout_ms, work); if (ret) goto err2; return 0; err2: kfree(route->path_rec); route->path_rec = NULL; err1: kfree(work); return ret; } int rdma_set_ib_paths(struct rdma_cm_id *id, struct ib_sa_path_rec *path_rec, int num_paths) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_RESOLVED)) return -EINVAL; id->route.path_rec = kmemdup(path_rec, sizeof *path_rec * num_paths, GFP_KERNEL); if (!id->route.path_rec) { ret = -ENOMEM; goto err; } id->route.num_paths = num_paths; return 0; err: cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_ADDR_RESOLVED); return ret; } EXPORT_SYMBOL(rdma_set_ib_paths); static int cma_resolve_iw_route(struct rdma_id_private *id_priv, int timeout_ms) { struct cma_work *work; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; queue_work(cma_wq, &work->work); return 0; } static int cma_resolve_iboe_route(struct rdma_id_private *id_priv) { struct rdma_route *route = &id_priv->id.route; struct rdma_addr *addr = &route->addr; struct cma_work *work; int ret; struct net_device *ndev = NULL; u16 vid; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); route->path_rec = kzalloc(sizeof *route->path_rec, GFP_KERNEL); if (!route->path_rec) { ret = -ENOMEM; goto err1; } route->num_paths = 1; if (addr->dev_addr.bound_dev_if) ndev = dev_get_by_index(&init_net, addr->dev_addr.bound_dev_if); if (!ndev) { ret = -ENODEV; goto err2; } vid = rdma_vlan_dev_vlan_id(ndev); iboe_mac_vlan_to_ll(&route->path_rec->sgid, addr->dev_addr.src_dev_addr, vid); iboe_mac_vlan_to_ll(&route->path_rec->dgid, addr->dev_addr.dst_dev_addr, vid); route->path_rec->hop_limit = 1; route->path_rec->reversible = 1; route->path_rec->pkey = cpu_to_be16(0xffff); route->path_rec->mtu_selector = IB_SA_EQ; route->path_rec->sl = netdev_get_prio_tc_map( ndev->priv_flags & IFF_802_1Q_VLAN ? vlan_dev_real_dev(ndev) : ndev, rt_tos2priority(id_priv->tos)); route->path_rec->mtu = iboe_get_mtu(ndev->mtu); route->path_rec->rate_selector = IB_SA_EQ; route->path_rec->rate = iboe_get_rate(ndev); dev_put(ndev); route->path_rec->packet_life_time_selector = IB_SA_EQ; route->path_rec->packet_life_time = CMA_IBOE_PACKET_LIFETIME; if (!route->path_rec->mtu) { ret = -EINVAL; goto err2; } work->old_state = RDMA_CM_ROUTE_QUERY; work->new_state = RDMA_CM_ROUTE_RESOLVED; work->event.event = RDMA_CM_EVENT_ROUTE_RESOLVED; work->event.status = 0; queue_work(cma_wq, &work->work); return 0; err2: kfree(route->path_rec); route->path_rec = NULL; err1: kfree(work); return ret; } int rdma_resolve_route(struct rdma_cm_id *id, int timeout_ms) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ROUTE_QUERY)) return -EINVAL; atomic_inc(&id_priv->refcount); switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: switch (rdma_port_get_link_layer(id->device, id->port_num)) { case IB_LINK_LAYER_INFINIBAND: ret = cma_resolve_ib_route(id_priv, timeout_ms); break; case IB_LINK_LAYER_ETHERNET: ret = cma_resolve_iboe_route(id_priv); break; default: ret = -ENOSYS; } break; case RDMA_TRANSPORT_IWARP: ret = cma_resolve_iw_route(id_priv, timeout_ms); break; default: ret = -ENOSYS; break; } if (ret) goto err; return 0; err: cma_comp_exch(id_priv, RDMA_CM_ROUTE_QUERY, RDMA_CM_ADDR_RESOLVED); cma_deref_id(id_priv); return ret; } EXPORT_SYMBOL(rdma_resolve_route); static void cma_set_loopback(struct sockaddr *addr) { switch (addr->sa_family) { case AF_INET: ((struct sockaddr_in *) addr)->sin_addr.s_addr = htonl(INADDR_LOOPBACK); break; case AF_INET6: ipv6_addr_set(&((struct sockaddr_in6 *) addr)->sin6_addr, 0, 0, 0, htonl(1)); break; default: ib_addr_set(&((struct sockaddr_ib *) addr)->sib_addr, 0, 0, 0, htonl(1)); break; } } static int cma_bind_loopback(struct rdma_id_private *id_priv) { struct cma_device *cma_dev, *cur_dev; struct ib_port_attr port_attr; union ib_gid gid; u16 pkey; int ret; u8 p; cma_dev = NULL; mutex_lock(&lock); list_for_each_entry(cur_dev, &dev_list, list) { if (cma_family(id_priv) == AF_IB && rdma_node_get_transport(cur_dev->device->node_type) != RDMA_TRANSPORT_IB) continue; if (!cma_dev) cma_dev = cur_dev; for (p = 1; p <= cur_dev->device->phys_port_cnt; ++p) { if (!ib_query_port(cur_dev->device, p, &port_attr) && port_attr.state == IB_PORT_ACTIVE) { cma_dev = cur_dev; goto port_found; } } } if (!cma_dev) { ret = -ENODEV; goto out; } p = 1; port_found: ret = ib_get_cached_gid(cma_dev->device, p, 0, &gid); if (ret) goto out; ret = ib_get_cached_pkey(cma_dev->device, p, 0, &pkey); if (ret) goto out; id_priv->id.route.addr.dev_addr.dev_type = (rdma_port_get_link_layer(cma_dev->device, p) == IB_LINK_LAYER_INFINIBAND) ? ARPHRD_INFINIBAND : ARPHRD_ETHER; rdma_addr_set_sgid(&id_priv->id.route.addr.dev_addr, &gid); ib_addr_set_pkey(&id_priv->id.route.addr.dev_addr, pkey); id_priv->id.port_num = p; cma_attach_to_dev(id_priv, cma_dev); cma_set_loopback(cma_src_addr(id_priv)); out: mutex_unlock(&lock); return ret; } static void addr_handler(int status, struct sockaddr *src_addr, struct rdma_dev_addr *dev_addr, void *context) { struct rdma_id_private *id_priv = context; struct rdma_cm_event event; memset(&event, 0, sizeof event); mutex_lock(&id_priv->handler_mutex); if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_RESOLVED)) goto out; if (!status && !id_priv->cma_dev) status = cma_acquire_dev(id_priv); if (status) { if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_RESOLVED, RDMA_CM_ADDR_BOUND)) goto out; event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = status; } else { memcpy(cma_src_addr(id_priv), src_addr, rdma_addr_size(src_addr)); event.event = RDMA_CM_EVENT_ADDR_RESOLVED; } if (id_priv->id.event_handler(&id_priv->id, &event)) { cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); rdma_destroy_id(&id_priv->id); return; } out: mutex_unlock(&id_priv->handler_mutex); cma_deref_id(id_priv); } static int cma_resolve_loopback(struct rdma_id_private *id_priv) { struct cma_work *work; union ib_gid gid; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; if (!id_priv->cma_dev) { ret = cma_bind_loopback(id_priv); if (ret) goto err; } rdma_addr_get_sgid(&id_priv->id.route.addr.dev_addr, &gid); rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, &gid); work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ADDR_QUERY; work->new_state = RDMA_CM_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; queue_work(cma_wq, &work->work); return 0; err: kfree(work); return ret; } static int cma_resolve_ib_addr(struct rdma_id_private *id_priv) { struct cma_work *work; int ret; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; if (!id_priv->cma_dev) { ret = cma_resolve_ib_dev(id_priv); if (ret) goto err; } rdma_addr_set_dgid(&id_priv->id.route.addr.dev_addr, (union ib_gid *) &(((struct sockaddr_ib *) &id_priv->id.route.addr.dst_addr)->sib_addr)); work->id = id_priv; INIT_WORK(&work->work, cma_work_handler); work->old_state = RDMA_CM_ADDR_QUERY; work->new_state = RDMA_CM_ADDR_RESOLVED; work->event.event = RDMA_CM_EVENT_ADDR_RESOLVED; queue_work(cma_wq, &work->work); return 0; err: kfree(work); return ret; } static int cma_bind_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr *dst_addr) { if (!src_addr || !src_addr->sa_family) { src_addr = (struct sockaddr *) &id->route.addr.src_addr; src_addr->sa_family = dst_addr->sa_family; if (dst_addr->sa_family == AF_INET6) { ((struct sockaddr_in6 *) src_addr)->sin6_scope_id = ((struct sockaddr_in6 *) dst_addr)->sin6_scope_id; } else if (dst_addr->sa_family == AF_IB) { ((struct sockaddr_ib *) src_addr)->sib_pkey = ((struct sockaddr_ib *) dst_addr)->sib_pkey; } } return rdma_bind_addr(id, src_addr); } int rdma_resolve_addr(struct rdma_cm_id *id, struct sockaddr *src_addr, struct sockaddr *dst_addr, int timeout_ms) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id_priv->state == RDMA_CM_IDLE) { ret = cma_bind_addr(id, src_addr, dst_addr); if (ret) return ret; } if (cma_family(id_priv) != dst_addr->sa_family) return -EINVAL; if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_ADDR_QUERY)) return -EINVAL; atomic_inc(&id_priv->refcount); memcpy(cma_dst_addr(id_priv), dst_addr, rdma_addr_size(dst_addr)); if (cma_any_addr(dst_addr)) { ret = cma_resolve_loopback(id_priv); } else { if (dst_addr->sa_family == AF_IB) { ret = cma_resolve_ib_addr(id_priv); } else { ret = rdma_resolve_ip(&addr_client, cma_src_addr(id_priv), dst_addr, &id->route.addr.dev_addr, timeout_ms, addr_handler, id_priv); } } if (ret) goto err; return 0; err: cma_comp_exch(id_priv, RDMA_CM_ADDR_QUERY, RDMA_CM_ADDR_BOUND); cma_deref_id(id_priv); return ret; } EXPORT_SYMBOL(rdma_resolve_addr); int rdma_set_reuseaddr(struct rdma_cm_id *id, int reuse) { struct rdma_id_private *id_priv; unsigned long flags; int ret; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irqsave(&id_priv->lock, flags); if (reuse || id_priv->state == RDMA_CM_IDLE) { id_priv->reuseaddr = reuse; ret = 0; } else { ret = -EINVAL; } spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } EXPORT_SYMBOL(rdma_set_reuseaddr); int rdma_set_afonly(struct rdma_cm_id *id, int afonly) { struct rdma_id_private *id_priv; unsigned long flags; int ret; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irqsave(&id_priv->lock, flags); if (id_priv->state == RDMA_CM_IDLE || id_priv->state == RDMA_CM_ADDR_BOUND) { id_priv->options |= (1 << CMA_OPTION_AFONLY); id_priv->afonly = afonly; ret = 0; } else { ret = -EINVAL; } spin_unlock_irqrestore(&id_priv->lock, flags); return ret; } EXPORT_SYMBOL(rdma_set_afonly); static void cma_bind_port(struct rdma_bind_list *bind_list, struct rdma_id_private *id_priv) { struct sockaddr *addr; struct sockaddr_ib *sib; u64 sid, mask; __be16 port; addr = cma_src_addr(id_priv); port = htons(bind_list->port); switch (addr->sa_family) { case AF_INET: ((struct sockaddr_in *) addr)->sin_port = port; break; case AF_INET6: ((struct sockaddr_in6 *) addr)->sin6_port = port; break; case AF_IB: sib = (struct sockaddr_ib *) addr; sid = be64_to_cpu(sib->sib_sid); mask = be64_to_cpu(sib->sib_sid_mask); sib->sib_sid = cpu_to_be64((sid & mask) | (u64) ntohs(port)); sib->sib_sid_mask = cpu_to_be64(~0ULL); break; } id_priv->bind_list = bind_list; hlist_add_head(&id_priv->node, &bind_list->owners); } static int cma_alloc_port(struct idr *ps, struct rdma_id_private *id_priv, unsigned short snum) { struct rdma_bind_list *bind_list; int ret; bind_list = kzalloc(sizeof *bind_list, GFP_KERNEL); if (!bind_list) return -ENOMEM; ret = idr_alloc(ps, bind_list, snum, snum + 1, GFP_KERNEL); if (ret < 0) goto err; bind_list->ps = ps; bind_list->port = (unsigned short)ret; cma_bind_port(bind_list, id_priv); return 0; err: kfree(bind_list); return ret == -ENOSPC ? -EADDRNOTAVAIL : ret; } static int cma_alloc_any_port(struct idr *ps, struct rdma_id_private *id_priv) { static unsigned int last_used_port; int low, high, remaining; unsigned int rover; inet_get_local_port_range(&low, &high); remaining = (high - low) + 1; rover = net_random() % remaining + low; retry: if (last_used_port != rover && !idr_find(ps, (unsigned short) rover)) { int ret = cma_alloc_port(ps, id_priv, rover); /* * Remember previously used port number in order to avoid * re-using same port immediately after it is closed. */ if (!ret) last_used_port = rover; if (ret != -EADDRNOTAVAIL) return ret; } if (--remaining) { rover++; if ((rover < low) || (rover > high)) rover = low; goto retry; } return -EADDRNOTAVAIL; } /* * Check that the requested port is available. This is called when trying to * bind to a specific port, or when trying to listen on a bound port. In * the latter case, the provided id_priv may already be on the bind_list, but * we still need to check that it's okay to start listening. */ static int cma_check_port(struct rdma_bind_list *bind_list, struct rdma_id_private *id_priv, uint8_t reuseaddr) { struct rdma_id_private *cur_id; struct sockaddr *addr, *cur_addr; addr = cma_src_addr(id_priv); hlist_for_each_entry(cur_id, &bind_list->owners, node) { if (id_priv == cur_id) continue; if ((cur_id->state != RDMA_CM_LISTEN) && reuseaddr && cur_id->reuseaddr) continue; cur_addr = cma_src_addr(cur_id); if (id_priv->afonly && cur_id->afonly && (addr->sa_family != cur_addr->sa_family)) continue; if (cma_any_addr(addr) || cma_any_addr(cur_addr)) return -EADDRNOTAVAIL; if (!cma_addr_cmp(addr, cur_addr)) return -EADDRINUSE; } return 0; } static int cma_use_port(struct idr *ps, struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list; unsigned short snum; int ret; snum = ntohs(cma_port(cma_src_addr(id_priv))); if (snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE)) return -EACCES; bind_list = idr_find(ps, snum); if (!bind_list) { ret = cma_alloc_port(ps, id_priv, snum); } else { ret = cma_check_port(bind_list, id_priv, id_priv->reuseaddr); if (!ret) cma_bind_port(bind_list, id_priv); } return ret; } static int cma_bind_listen(struct rdma_id_private *id_priv) { struct rdma_bind_list *bind_list = id_priv->bind_list; int ret = 0; mutex_lock(&lock); if (bind_list->owners.first->next) ret = cma_check_port(bind_list, id_priv, 0); mutex_unlock(&lock); return ret; } static struct idr *cma_select_inet_ps(struct rdma_id_private *id_priv) { switch (id_priv->id.ps) { case RDMA_PS_TCP: return &tcp_ps; case RDMA_PS_UDP: return &udp_ps; case RDMA_PS_IPOIB: return &ipoib_ps; case RDMA_PS_IB: return &ib_ps; default: return NULL; } } static struct idr *cma_select_ib_ps(struct rdma_id_private *id_priv) { struct idr *ps = NULL; struct sockaddr_ib *sib; u64 sid_ps, mask, sid; sib = (struct sockaddr_ib *) cma_src_addr(id_priv); mask = be64_to_cpu(sib->sib_sid_mask) & RDMA_IB_IP_PS_MASK; sid = be64_to_cpu(sib->sib_sid) & mask; if ((id_priv->id.ps == RDMA_PS_IB) && (sid == (RDMA_IB_IP_PS_IB & mask))) { sid_ps = RDMA_IB_IP_PS_IB; ps = &ib_ps; } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_TCP)) && (sid == (RDMA_IB_IP_PS_TCP & mask))) { sid_ps = RDMA_IB_IP_PS_TCP; ps = &tcp_ps; } else if (((id_priv->id.ps == RDMA_PS_IB) || (id_priv->id.ps == RDMA_PS_UDP)) && (sid == (RDMA_IB_IP_PS_UDP & mask))) { sid_ps = RDMA_IB_IP_PS_UDP; ps = &udp_ps; } if (ps) { sib->sib_sid = cpu_to_be64(sid_ps | ntohs(cma_port((struct sockaddr *) sib))); sib->sib_sid_mask = cpu_to_be64(RDMA_IB_IP_PS_MASK | be64_to_cpu(sib->sib_sid_mask)); } return ps; } static int cma_get_port(struct rdma_id_private *id_priv) { struct idr *ps; int ret; if (cma_family(id_priv) != AF_IB) ps = cma_select_inet_ps(id_priv); else ps = cma_select_ib_ps(id_priv); if (!ps) return -EPROTONOSUPPORT; mutex_lock(&lock); if (cma_any_port(cma_src_addr(id_priv))) ret = cma_alloc_any_port(ps, id_priv); else ret = cma_use_port(ps, id_priv); mutex_unlock(&lock); return ret; } static int cma_check_linklocal(struct rdma_dev_addr *dev_addr, struct sockaddr *addr) { #if IS_ENABLED(CONFIG_IPV6) struct sockaddr_in6 *sin6; if (addr->sa_family != AF_INET6) return 0; sin6 = (struct sockaddr_in6 *) addr; if ((ipv6_addr_type(&sin6->sin6_addr) & IPV6_ADDR_LINKLOCAL) && !sin6->sin6_scope_id) return -EINVAL; dev_addr->bound_dev_if = sin6->sin6_scope_id; #endif return 0; } int rdma_listen(struct rdma_cm_id *id, int backlog) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (id_priv->state == RDMA_CM_IDLE) { id->route.addr.src_addr.ss_family = AF_INET; ret = rdma_bind_addr(id, cma_src_addr(id_priv)); if (ret) return ret; } if (!cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_LISTEN)) return -EINVAL; if (id_priv->reuseaddr) { ret = cma_bind_listen(id_priv); if (ret) goto err; } id_priv->backlog = backlog; if (id->device) { switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: ret = cma_ib_listen(id_priv); if (ret) goto err; break; case RDMA_TRANSPORT_IWARP: ret = cma_iw_listen(id_priv, backlog); if (ret) goto err; break; default: ret = -ENOSYS; goto err; } } else cma_listen_on_all(id_priv); return 0; err: id_priv->backlog = 0; cma_comp_exch(id_priv, RDMA_CM_LISTEN, RDMA_CM_ADDR_BOUND); return ret; } EXPORT_SYMBOL(rdma_listen); int rdma_bind_addr(struct rdma_cm_id *id, struct sockaddr *addr) { struct rdma_id_private *id_priv; int ret; if (addr->sa_family != AF_INET && addr->sa_family != AF_INET6 && addr->sa_family != AF_IB) return -EAFNOSUPPORT; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_IDLE, RDMA_CM_ADDR_BOUND)) return -EINVAL; ret = cma_check_linklocal(&id->route.addr.dev_addr, addr); if (ret) goto err1; if (!cma_any_addr(addr)) { ret = cma_translate_addr(addr, &id->route.addr.dev_addr); if (ret) goto err1; ret = cma_acquire_dev(id_priv); if (ret) goto err1; } memcpy(cma_src_addr(id_priv), addr, rdma_addr_size(addr)); if (!(id_priv->options & (1 << CMA_OPTION_AFONLY))) { if (addr->sa_family == AF_INET) id_priv->afonly = 1; #if IS_ENABLED(CONFIG_IPV6) else if (addr->sa_family == AF_INET6) id_priv->afonly = init_net.ipv6.sysctl.bindv6only; #endif } ret = cma_get_port(id_priv); if (ret) goto err2; return 0; err2: if (id_priv->cma_dev) cma_release_dev(id_priv); err1: cma_comp_exch(id_priv, RDMA_CM_ADDR_BOUND, RDMA_CM_IDLE); return ret; } EXPORT_SYMBOL(rdma_bind_addr); static int cma_format_hdr(void *hdr, struct rdma_id_private *id_priv) { struct cma_hdr *cma_hdr; cma_hdr = hdr; cma_hdr->cma_version = CMA_VERSION; if (cma_family(id_priv) == AF_INET) { struct sockaddr_in *src4, *dst4; src4 = (struct sockaddr_in *) cma_src_addr(id_priv); dst4 = (struct sockaddr_in *) cma_dst_addr(id_priv); cma_set_ip_ver(cma_hdr, 4); cma_hdr->src_addr.ip4.addr = src4->sin_addr.s_addr; cma_hdr->dst_addr.ip4.addr = dst4->sin_addr.s_addr; cma_hdr->port = src4->sin_port; } else if (cma_family(id_priv) == AF_INET6) { struct sockaddr_in6 *src6, *dst6; src6 = (struct sockaddr_in6 *) cma_src_addr(id_priv); dst6 = (struct sockaddr_in6 *) cma_dst_addr(id_priv); cma_set_ip_ver(cma_hdr, 6); cma_hdr->src_addr.ip6 = src6->sin6_addr; cma_hdr->dst_addr.ip6 = dst6->sin6_addr; cma_hdr->port = src6->sin6_port; } return 0; } static int cma_sidr_rep_handler(struct ib_cm_id *cm_id, struct ib_cm_event *ib_event) { struct rdma_id_private *id_priv = cm_id->context; struct rdma_cm_event event; struct ib_cm_sidr_rep_event_param *rep = &ib_event->param.sidr_rep_rcvd; int ret = 0; if (cma_disable_callback(id_priv, RDMA_CM_CONNECT)) return 0; memset(&event, 0, sizeof event); switch (ib_event->event) { case IB_CM_SIDR_REQ_ERROR: event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = -ETIMEDOUT; break; case IB_CM_SIDR_REP_RECEIVED: event.param.ud.private_data = ib_event->private_data; event.param.ud.private_data_len = IB_CM_SIDR_REP_PRIVATE_DATA_SIZE; if (rep->status != IB_SIDR_SUCCESS) { event.event = RDMA_CM_EVENT_UNREACHABLE; event.status = ib_event->param.sidr_rep_rcvd.status; break; } ret = cma_set_qkey(id_priv, rep->qkey); if (ret) { event.event = RDMA_CM_EVENT_ADDR_ERROR; event.status = ret; break; } ib_init_ah_from_path(id_priv->id.device, id_priv->id.port_num, id_priv->id.route.path_rec, &event.param.ud.ah_attr); event.param.ud.qp_num = rep->qpn; event.param.ud.qkey = rep->qkey; event.event = RDMA_CM_EVENT_ESTABLISHED; event.status = 0; break; default: printk(KERN_ERR "RDMA CMA: unexpected IB CM event: %d\n", ib_event->event); goto out; } ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { /* Destroy the CM ID by returning a non-zero value. */ id_priv->cm_id.ib = NULL; cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return ret; } out: mutex_unlock(&id_priv->handler_mutex); return ret; } static int cma_resolve_ib_udp(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_sidr_req_param req; struct ib_cm_id *id; void *private_data; int offset, ret; memset(&req, 0, sizeof req); offset = cma_user_data_offset(id_priv); req.private_data_len = offset + conn_param->private_data_len; if (req.private_data_len < conn_param->private_data_len) return -EINVAL; if (req.private_data_len) { private_data = kzalloc(req.private_data_len, GFP_ATOMIC); if (!private_data) return -ENOMEM; } else { private_data = NULL; } if (conn_param->private_data && conn_param->private_data_len) memcpy(private_data + offset, conn_param->private_data, conn_param->private_data_len); if (private_data) { ret = cma_format_hdr(private_data, id_priv); if (ret) goto out; req.private_data = private_data; } id = ib_create_cm_id(id_priv->id.device, cma_sidr_rep_handler, id_priv); if (IS_ERR(id)) { ret = PTR_ERR(id); goto out; } id_priv->cm_id.ib = id; req.path = id_priv->id.route.path_rec; req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); req.timeout_ms = 1 << (CMA_CM_RESPONSE_TIMEOUT - 8); req.max_cm_retries = CMA_MAX_CM_RETRIES; ret = ib_send_cm_sidr_req(id_priv->cm_id.ib, &req); if (ret) { ib_destroy_cm_id(id_priv->cm_id.ib); id_priv->cm_id.ib = NULL; } out: kfree(private_data); return ret; } static int cma_connect_ib(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_req_param req; struct rdma_route *route; void *private_data; struct ib_cm_id *id; int offset, ret; memset(&req, 0, sizeof req); offset = cma_user_data_offset(id_priv); req.private_data_len = offset + conn_param->private_data_len; if (req.private_data_len < conn_param->private_data_len) return -EINVAL; if (req.private_data_len) { private_data = kzalloc(req.private_data_len, GFP_ATOMIC); if (!private_data) return -ENOMEM; } else { private_data = NULL; } if (conn_param->private_data && conn_param->private_data_len) memcpy(private_data + offset, conn_param->private_data, conn_param->private_data_len); id = ib_create_cm_id(id_priv->id.device, cma_ib_handler, id_priv); if (IS_ERR(id)) { ret = PTR_ERR(id); goto out; } id_priv->cm_id.ib = id; route = &id_priv->id.route; if (private_data) { ret = cma_format_hdr(private_data, id_priv); if (ret) goto out; req.private_data = private_data; } req.primary_path = &route->path_rec[0]; if (route->num_paths == 2) req.alternate_path = &route->path_rec[1]; req.service_id = rdma_get_service_id(&id_priv->id, cma_dst_addr(id_priv)); req.qp_num = id_priv->qp_num; req.qp_type = id_priv->id.qp_type; req.starting_psn = id_priv->seq_num; req.responder_resources = conn_param->responder_resources; req.initiator_depth = conn_param->initiator_depth; req.flow_control = conn_param->flow_control; req.retry_count = min_t(u8, 7, conn_param->retry_count); req.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); req.remote_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; req.local_cm_response_timeout = CMA_CM_RESPONSE_TIMEOUT; req.max_cm_retries = CMA_MAX_CM_RETRIES; req.srq = id_priv->srq ? 1 : 0; ret = ib_send_cm_req(id_priv->cm_id.ib, &req); out: if (ret && !IS_ERR(id)) { ib_destroy_cm_id(id); id_priv->cm_id.ib = NULL; } kfree(private_data); return ret; } static int cma_connect_iw(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct iw_cm_id *cm_id; int ret; struct iw_cm_conn_param iw_param; cm_id = iw_create_cm_id(id_priv->id.device, cma_iw_handler, id_priv); if (IS_ERR(cm_id)) return PTR_ERR(cm_id); id_priv->cm_id.iw = cm_id; memcpy(&cm_id->local_addr, cma_src_addr(id_priv), rdma_addr_size(cma_src_addr(id_priv))); memcpy(&cm_id->remote_addr, cma_dst_addr(id_priv), rdma_addr_size(cma_dst_addr(id_priv))); ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) goto out; if (conn_param) { iw_param.ord = conn_param->initiator_depth; iw_param.ird = conn_param->responder_resources; iw_param.private_data = conn_param->private_data; iw_param.private_data_len = conn_param->private_data_len; iw_param.qpn = id_priv->id.qp ? id_priv->qp_num : conn_param->qp_num; } else { memset(&iw_param, 0, sizeof iw_param); iw_param.qpn = id_priv->qp_num; } ret = iw_cm_connect(cm_id, &iw_param); out: if (ret) { iw_destroy_cm_id(cm_id); id_priv->cm_id.iw = NULL; } return ret; } int rdma_connect(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp_exch(id_priv, RDMA_CM_ROUTE_RESOLVED, RDMA_CM_CONNECT)) return -EINVAL; if (!id->qp) { id_priv->qp_num = conn_param->qp_num; id_priv->srq = conn_param->srq; } switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: if (id->qp_type == IB_QPT_UD) ret = cma_resolve_ib_udp(id_priv, conn_param); else ret = cma_connect_ib(id_priv, conn_param); break; case RDMA_TRANSPORT_IWARP: ret = cma_connect_iw(id_priv, conn_param); break; default: ret = -ENOSYS; break; } if (ret) goto err; return 0; err: cma_comp_exch(id_priv, RDMA_CM_CONNECT, RDMA_CM_ROUTE_RESOLVED); return ret; } EXPORT_SYMBOL(rdma_connect); static int cma_accept_ib(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct ib_cm_rep_param rep; int ret; ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) goto out; ret = cma_modify_qp_rts(id_priv, conn_param); if (ret) goto out; memset(&rep, 0, sizeof rep); rep.qp_num = id_priv->qp_num; rep.starting_psn = id_priv->seq_num; rep.private_data = conn_param->private_data; rep.private_data_len = conn_param->private_data_len; rep.responder_resources = conn_param->responder_resources; rep.initiator_depth = conn_param->initiator_depth; rep.failover_accepted = 0; rep.flow_control = conn_param->flow_control; rep.rnr_retry_count = min_t(u8, 7, conn_param->rnr_retry_count); rep.srq = id_priv->srq ? 1 : 0; ret = ib_send_cm_rep(id_priv->cm_id.ib, &rep); out: return ret; } static int cma_accept_iw(struct rdma_id_private *id_priv, struct rdma_conn_param *conn_param) { struct iw_cm_conn_param iw_param; int ret; ret = cma_modify_qp_rtr(id_priv, conn_param); if (ret) return ret; iw_param.ord = conn_param->initiator_depth; iw_param.ird = conn_param->responder_resources; iw_param.private_data = conn_param->private_data; iw_param.private_data_len = conn_param->private_data_len; if (id_priv->id.qp) { iw_param.qpn = id_priv->qp_num; } else iw_param.qpn = conn_param->qp_num; return iw_cm_accept(id_priv->cm_id.iw, &iw_param); } static int cma_send_sidr_rep(struct rdma_id_private *id_priv, enum ib_cm_sidr_status status, u32 qkey, const void *private_data, int private_data_len) { struct ib_cm_sidr_rep_param rep; int ret; memset(&rep, 0, sizeof rep); rep.status = status; if (status == IB_SIDR_SUCCESS) { ret = cma_set_qkey(id_priv, qkey); if (ret) return ret; rep.qp_num = id_priv->qp_num; rep.qkey = id_priv->qkey; } rep.private_data = private_data; rep.private_data_len = private_data_len; return ib_send_cm_sidr_rep(id_priv->cm_id.ib, &rep); } int rdma_accept(struct rdma_cm_id *id, struct rdma_conn_param *conn_param) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); id_priv->owner = task_pid_nr(current); if (!cma_comp(id_priv, RDMA_CM_CONNECT)) return -EINVAL; if (!id->qp && conn_param) { id_priv->qp_num = conn_param->qp_num; id_priv->srq = conn_param->srq; } switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: if (id->qp_type == IB_QPT_UD) { if (conn_param) ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, conn_param->qkey, conn_param->private_data, conn_param->private_data_len); else ret = cma_send_sidr_rep(id_priv, IB_SIDR_SUCCESS, 0, NULL, 0); } else { if (conn_param) ret = cma_accept_ib(id_priv, conn_param); else ret = cma_rep_recv(id_priv); } break; case RDMA_TRANSPORT_IWARP: ret = cma_accept_iw(id_priv, conn_param); break; default: ret = -ENOSYS; break; } if (ret) goto reject; return 0; reject: cma_modify_qp_err(id_priv); rdma_reject(id, NULL, 0); return ret; } EXPORT_SYMBOL(rdma_accept); int rdma_notify(struct rdma_cm_id *id, enum ib_event_type event) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!id_priv->cm_id.ib) return -EINVAL; switch (id->device->node_type) { case RDMA_NODE_IB_CA: ret = ib_cm_notify(id_priv->cm_id.ib, event); break; default: ret = 0; break; } return ret; } EXPORT_SYMBOL(rdma_notify); int rdma_reject(struct rdma_cm_id *id, const void *private_data, u8 private_data_len) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!id_priv->cm_id.ib) return -EINVAL; switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: if (id->qp_type == IB_QPT_UD) ret = cma_send_sidr_rep(id_priv, IB_SIDR_REJECT, 0, private_data, private_data_len); else ret = ib_send_cm_rej(id_priv->cm_id.ib, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, private_data, private_data_len); break; case RDMA_TRANSPORT_IWARP: ret = iw_cm_reject(id_priv->cm_id.iw, private_data, private_data_len); break; default: ret = -ENOSYS; break; } return ret; } EXPORT_SYMBOL(rdma_reject); int rdma_disconnect(struct rdma_cm_id *id) { struct rdma_id_private *id_priv; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!id_priv->cm_id.ib) return -EINVAL; switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: ret = cma_modify_qp_err(id_priv); if (ret) goto out; /* Initiate or respond to a disconnect. */ if (ib_send_cm_dreq(id_priv->cm_id.ib, NULL, 0)) ib_send_cm_drep(id_priv->cm_id.ib, NULL, 0); break; case RDMA_TRANSPORT_IWARP: ret = iw_cm_disconnect(id_priv->cm_id.iw, 0); break; default: ret = -EINVAL; break; } out: return ret; } EXPORT_SYMBOL(rdma_disconnect); static int cma_ib_mc_handler(int status, struct ib_sa_multicast *multicast) { struct rdma_id_private *id_priv; struct cma_multicast *mc = multicast->context; struct rdma_cm_event event; int ret; id_priv = mc->id_priv; if (cma_disable_callback(id_priv, RDMA_CM_ADDR_BOUND) && cma_disable_callback(id_priv, RDMA_CM_ADDR_RESOLVED)) return 0; if (!status) status = cma_set_qkey(id_priv, be32_to_cpu(multicast->rec.qkey)); mutex_lock(&id_priv->qp_mutex); if (!status && id_priv->id.qp) status = ib_attach_mcast(id_priv->id.qp, &multicast->rec.mgid, be16_to_cpu(multicast->rec.mlid)); mutex_unlock(&id_priv->qp_mutex); memset(&event, 0, sizeof event); event.status = status; event.param.ud.private_data = mc->context; if (!status) { event.event = RDMA_CM_EVENT_MULTICAST_JOIN; ib_init_ah_from_mcmember(id_priv->id.device, id_priv->id.port_num, &multicast->rec, &event.param.ud.ah_attr); event.param.ud.qp_num = 0xFFFFFF; event.param.ud.qkey = be32_to_cpu(multicast->rec.qkey); } else event.event = RDMA_CM_EVENT_MULTICAST_ERROR; ret = id_priv->id.event_handler(&id_priv->id, &event); if (ret) { cma_exch(id_priv, RDMA_CM_DESTROYING); mutex_unlock(&id_priv->handler_mutex); rdma_destroy_id(&id_priv->id); return 0; } mutex_unlock(&id_priv->handler_mutex); return 0; } static void cma_set_mgid(struct rdma_id_private *id_priv, struct sockaddr *addr, union ib_gid *mgid) { unsigned char mc_map[MAX_ADDR_LEN]; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; struct sockaddr_in *sin = (struct sockaddr_in *) addr; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *) addr; if (cma_any_addr(addr)) { memset(mgid, 0, sizeof *mgid); } else if ((addr->sa_family == AF_INET6) && ((be32_to_cpu(sin6->sin6_addr.s6_addr32[0]) & 0xFFF0FFFF) == 0xFF10A01B)) { /* IPv6 address is an SA assigned MGID. */ memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); } else if (addr->sa_family == AF_IB) { memcpy(mgid, &((struct sockaddr_ib *) addr)->sib_addr, sizeof *mgid); } else if ((addr->sa_family == AF_INET6)) { ipv6_ib_mc_map(&sin6->sin6_addr, dev_addr->broadcast, mc_map); if (id_priv->id.ps == RDMA_PS_UDP) mc_map[7] = 0x01; /* Use RDMA CM signature */ *mgid = *(union ib_gid *) (mc_map + 4); } else { ip_ib_mc_map(sin->sin_addr.s_addr, dev_addr->broadcast, mc_map); if (id_priv->id.ps == RDMA_PS_UDP) mc_map[7] = 0x01; /* Use RDMA CM signature */ *mgid = *(union ib_gid *) (mc_map + 4); } } static int cma_join_ib_multicast(struct rdma_id_private *id_priv, struct cma_multicast *mc) { struct ib_sa_mcmember_rec rec; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; ib_sa_comp_mask comp_mask; int ret; ib_addr_get_mgid(dev_addr, &rec.mgid); ret = ib_sa_get_mcmember_rec(id_priv->id.device, id_priv->id.port_num, &rec.mgid, &rec); if (ret) return ret; ret = cma_set_qkey(id_priv, 0); if (ret) return ret; cma_set_mgid(id_priv, (struct sockaddr *) &mc->addr, &rec.mgid); rec.qkey = cpu_to_be32(id_priv->qkey); rdma_addr_get_sgid(dev_addr, &rec.port_gid); rec.pkey = cpu_to_be16(ib_addr_get_pkey(dev_addr)); rec.join_state = 1; comp_mask = IB_SA_MCMEMBER_REC_MGID | IB_SA_MCMEMBER_REC_PORT_GID | IB_SA_MCMEMBER_REC_PKEY | IB_SA_MCMEMBER_REC_JOIN_STATE | IB_SA_MCMEMBER_REC_QKEY | IB_SA_MCMEMBER_REC_SL | IB_SA_MCMEMBER_REC_FLOW_LABEL | IB_SA_MCMEMBER_REC_TRAFFIC_CLASS; if (id_priv->id.ps == RDMA_PS_IPOIB) comp_mask |= IB_SA_MCMEMBER_REC_RATE | IB_SA_MCMEMBER_REC_RATE_SELECTOR | IB_SA_MCMEMBER_REC_MTU_SELECTOR | IB_SA_MCMEMBER_REC_MTU | IB_SA_MCMEMBER_REC_HOP_LIMIT; mc->multicast.ib = ib_sa_join_multicast(&sa_client, id_priv->id.device, id_priv->id.port_num, &rec, comp_mask, GFP_KERNEL, cma_ib_mc_handler, mc); return PTR_ERR_OR_ZERO(mc->multicast.ib); } static void iboe_mcast_work_handler(struct work_struct *work) { struct iboe_mcast_work *mw = container_of(work, struct iboe_mcast_work, work); struct cma_multicast *mc = mw->mc; struct ib_sa_multicast *m = mc->multicast.ib; mc->multicast.ib->context = mc; cma_ib_mc_handler(0, m); kref_put(&mc->mcref, release_mc); kfree(mw); } static void cma_iboe_set_mgid(struct sockaddr *addr, union ib_gid *mgid) { struct sockaddr_in *sin = (struct sockaddr_in *)addr; struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)addr; if (cma_any_addr(addr)) { memset(mgid, 0, sizeof *mgid); } else if (addr->sa_family == AF_INET6) { memcpy(mgid, &sin6->sin6_addr, sizeof *mgid); } else { mgid->raw[0] = 0xff; mgid->raw[1] = 0x0e; mgid->raw[2] = 0; mgid->raw[3] = 0; mgid->raw[4] = 0; mgid->raw[5] = 0; mgid->raw[6] = 0; mgid->raw[7] = 0; mgid->raw[8] = 0; mgid->raw[9] = 0; mgid->raw[10] = 0xff; mgid->raw[11] = 0xff; *(__be32 *)(&mgid->raw[12]) = sin->sin_addr.s_addr; } } static int cma_iboe_join_multicast(struct rdma_id_private *id_priv, struct cma_multicast *mc) { struct iboe_mcast_work *work; struct rdma_dev_addr *dev_addr = &id_priv->id.route.addr.dev_addr; int err; struct sockaddr *addr = (struct sockaddr *)&mc->addr; struct net_device *ndev = NULL; if (cma_zero_addr((struct sockaddr *)&mc->addr)) return -EINVAL; work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; mc->multicast.ib = kzalloc(sizeof(struct ib_sa_multicast), GFP_KERNEL); if (!mc->multicast.ib) { err = -ENOMEM; goto out1; } cma_iboe_set_mgid(addr, &mc->multicast.ib->rec.mgid); mc->multicast.ib->rec.pkey = cpu_to_be16(0xffff); if (id_priv->id.ps == RDMA_PS_UDP) mc->multicast.ib->rec.qkey = cpu_to_be32(RDMA_UDP_QKEY); if (dev_addr->bound_dev_if) ndev = dev_get_by_index(&init_net, dev_addr->bound_dev_if); if (!ndev) { err = -ENODEV; goto out2; } mc->multicast.ib->rec.rate = iboe_get_rate(ndev); mc->multicast.ib->rec.hop_limit = 1; mc->multicast.ib->rec.mtu = iboe_get_mtu(ndev->mtu); dev_put(ndev); if (!mc->multicast.ib->rec.mtu) { err = -EINVAL; goto out2; } iboe_addr_get_sgid(dev_addr, &mc->multicast.ib->rec.port_gid); work->id = id_priv; work->mc = mc; INIT_WORK(&work->work, iboe_mcast_work_handler); kref_get(&mc->mcref); queue_work(cma_wq, &work->work); return 0; out2: kfree(mc->multicast.ib); out1: kfree(work); return err; } int rdma_join_multicast(struct rdma_cm_id *id, struct sockaddr *addr, void *context) { struct rdma_id_private *id_priv; struct cma_multicast *mc; int ret; id_priv = container_of(id, struct rdma_id_private, id); if (!cma_comp(id_priv, RDMA_CM_ADDR_BOUND) && !cma_comp(id_priv, RDMA_CM_ADDR_RESOLVED)) return -EINVAL; mc = kmalloc(sizeof *mc, GFP_KERNEL); if (!mc) return -ENOMEM; memcpy(&mc->addr, addr, rdma_addr_size(addr)); mc->context = context; mc->id_priv = id_priv; spin_lock(&id_priv->lock); list_add(&mc->list, &id_priv->mc_list); spin_unlock(&id_priv->lock); switch (rdma_node_get_transport(id->device->node_type)) { case RDMA_TRANSPORT_IB: switch (rdma_port_get_link_layer(id->device, id->port_num)) { case IB_LINK_LAYER_INFINIBAND: ret = cma_join_ib_multicast(id_priv, mc); break; case IB_LINK_LAYER_ETHERNET: kref_init(&mc->mcref); ret = cma_iboe_join_multicast(id_priv, mc); break; default: ret = -EINVAL; } break; default: ret = -ENOSYS; break; } if (ret) { spin_lock_irq(&id_priv->lock); list_del(&mc->list); spin_unlock_irq(&id_priv->lock); kfree(mc); } return ret; } EXPORT_SYMBOL(rdma_join_multicast); void rdma_leave_multicast(struct rdma_cm_id *id, struct sockaddr *addr) { struct rdma_id_private *id_priv; struct cma_multicast *mc; id_priv = container_of(id, struct rdma_id_private, id); spin_lock_irq(&id_priv->lock); list_for_each_entry(mc, &id_priv->mc_list, list) { if (!memcmp(&mc->addr, addr, rdma_addr_size(addr))) { list_del(&mc->list); spin_unlock_irq(&id_priv->lock); if (id->qp) ib_detach_mcast(id->qp, &mc->multicast.ib->rec.mgid, be16_to_cpu(mc->multicast.ib->rec.mlid)); if (rdma_node_get_transport(id_priv->cma_dev->device->node_type) == RDMA_TRANSPORT_IB) { switch (rdma_port_get_link_layer(id->device, id->port_num)) { case IB_LINK_LAYER_INFINIBAND: ib_sa_free_multicast(mc->multicast.ib); kfree(mc); break; case IB_LINK_LAYER_ETHERNET: kref_put(&mc->mcref, release_mc); break; default: break; } } return; } } spin_unlock_irq(&id_priv->lock); } EXPORT_SYMBOL(rdma_leave_multicast); static int cma_netdev_change(struct net_device *ndev, struct rdma_id_private *id_priv) { struct rdma_dev_addr *dev_addr; struct cma_ndev_work *work; dev_addr = &id_priv->id.route.addr.dev_addr; if ((dev_addr->bound_dev_if == ndev->ifindex) && memcmp(dev_addr->src_dev_addr, ndev->dev_addr, ndev->addr_len)) { printk(KERN_INFO "RDMA CM addr change for ndev %s used by id %p\n", ndev->name, &id_priv->id); work = kzalloc(sizeof *work, GFP_KERNEL); if (!work) return -ENOMEM; INIT_WORK(&work->work, cma_ndev_work_handler); work->id = id_priv; work->event.event = RDMA_CM_EVENT_ADDR_CHANGE; atomic_inc(&id_priv->refcount); queue_work(cma_wq, &work->work); } return 0; } static int cma_netdev_callback(struct notifier_block *self, unsigned long event, void *ptr) { struct net_device *ndev = netdev_notifier_info_to_dev(ptr); struct cma_device *cma_dev; struct rdma_id_private *id_priv; int ret = NOTIFY_DONE; if (dev_net(ndev) != &init_net) return NOTIFY_DONE; if (event != NETDEV_BONDING_FAILOVER) return NOTIFY_DONE; if (!(ndev->flags & IFF_MASTER) || !(ndev->priv_flags & IFF_BONDING)) return NOTIFY_DONE; mutex_lock(&lock); list_for_each_entry(cma_dev, &dev_list, list) list_for_each_entry(id_priv, &cma_dev->id_list, list) { ret = cma_netdev_change(ndev, id_priv); if (ret) goto out; } out: mutex_unlock(&lock); return ret; } static struct notifier_block cma_nb = { .notifier_call = cma_netdev_callback }; static void cma_add_one(struct ib_device *device) { struct cma_device *cma_dev; struct rdma_id_private *id_priv; cma_dev = kmalloc(sizeof *cma_dev, GFP_KERNEL); if (!cma_dev) return; cma_dev->device = device; init_completion(&cma_dev->comp); atomic_set(&cma_dev->refcount, 1); INIT_LIST_HEAD(&cma_dev->id_list); ib_set_client_data(device, &cma_client, cma_dev); mutex_lock(&lock); list_add_tail(&cma_dev->list, &dev_list); list_for_each_entry(id_priv, &listen_any_list, list) cma_listen_on_dev(id_priv, cma_dev); mutex_unlock(&lock); } static int cma_remove_id_dev(struct rdma_id_private *id_priv) { struct rdma_cm_event event; enum rdma_cm_state state; int ret = 0; /* Record that we want to remove the device */ state = cma_exch(id_priv, RDMA_CM_DEVICE_REMOVAL); if (state == RDMA_CM_DESTROYING) return 0; cma_cancel_operation(id_priv, state); mutex_lock(&id_priv->handler_mutex); /* Check for destruction from another callback. */ if (!cma_comp(id_priv, RDMA_CM_DEVICE_REMOVAL)) goto out; memset(&event, 0, sizeof event); event.event = RDMA_CM_EVENT_DEVICE_REMOVAL; ret = id_priv->id.event_handler(&id_priv->id, &event); out: mutex_unlock(&id_priv->handler_mutex); return ret; } static void cma_process_remove(struct cma_device *cma_dev) { struct rdma_id_private *id_priv; int ret; mutex_lock(&lock); while (!list_empty(&cma_dev->id_list)) { id_priv = list_entry(cma_dev->id_list.next, struct rdma_id_private, list); list_del(&id_priv->listen_list); list_del_init(&id_priv->list); atomic_inc(&id_priv->refcount); mutex_unlock(&lock); ret = id_priv->internal_id ? 1 : cma_remove_id_dev(id_priv); cma_deref_id(id_priv); if (ret) rdma_destroy_id(&id_priv->id); mutex_lock(&lock); } mutex_unlock(&lock); cma_deref_dev(cma_dev); wait_for_completion(&cma_dev->comp); } static void cma_remove_one(struct ib_device *device) { struct cma_device *cma_dev; cma_dev = ib_get_client_data(device, &cma_client); if (!cma_dev) return; mutex_lock(&lock); list_del(&cma_dev->list); mutex_unlock(&lock); cma_process_remove(cma_dev); kfree(cma_dev); } static int cma_get_id_stats(struct sk_buff *skb, struct netlink_callback *cb) { struct nlmsghdr *nlh; struct rdma_cm_id_stats *id_stats; struct rdma_id_private *id_priv; struct rdma_cm_id *id = NULL; struct cma_device *cma_dev; int i_dev = 0, i_id = 0; /* * We export all of the IDs as a sequence of messages. Each * ID gets its own netlink message. */ mutex_lock(&lock); list_for_each_entry(cma_dev, &dev_list, list) { if (i_dev < cb->args[0]) { i_dev++; continue; } i_id = 0; list_for_each_entry(id_priv, &cma_dev->id_list, list) { if (i_id < cb->args[1]) { i_id++; continue; } id_stats = ibnl_put_msg(skb, &nlh, cb->nlh->nlmsg_seq, sizeof *id_stats, RDMA_NL_RDMA_CM, RDMA_NL_RDMA_CM_ID_STATS); if (!id_stats) goto out; memset(id_stats, 0, sizeof *id_stats); id = &id_priv->id; id_stats->node_type = id->route.addr.dev_addr.dev_type; id_stats->port_num = id->port_num; id_stats->bound_dev_if = id->route.addr.dev_addr.bound_dev_if; if (ibnl_put_attr(skb, nlh, rdma_addr_size(cma_src_addr(id_priv)), cma_src_addr(id_priv), RDMA_NL_RDMA_CM_ATTR_SRC_ADDR)) goto out; if (ibnl_put_attr(skb, nlh, rdma_addr_size(cma_src_addr(id_priv)), cma_dst_addr(id_priv), RDMA_NL_RDMA_CM_ATTR_DST_ADDR)) goto out; id_stats->pid = id_priv->owner; id_stats->port_space = id->ps; id_stats->cm_state = id_priv->state; id_stats->qp_num = id_priv->qp_num; id_stats->qp_type = id->qp_type; i_id++; } cb->args[1] = 0; i_dev++; } out: mutex_unlock(&lock); cb->args[0] = i_dev; cb->args[1] = i_id; return skb->len; } static const struct ibnl_client_cbs cma_cb_table[] = { [RDMA_NL_RDMA_CM_ID_STATS] = { .dump = cma_get_id_stats, .module = THIS_MODULE }, }; static int __init cma_init(void) { int ret; cma_wq = create_singlethread_workqueue("rdma_cm"); if (!cma_wq) return -ENOMEM; ib_sa_register_client(&sa_client); rdma_addr_register_client(&addr_client); register_netdevice_notifier(&cma_nb); ret = ib_register_client(&cma_client); if (ret) goto err; if (ibnl_add_client(RDMA_NL_RDMA_CM, RDMA_NL_RDMA_CM_NUM_OPS, cma_cb_table)) printk(KERN_WARNING "RDMA CMA: failed to add netlink callback\n"); return 0; err: unregister_netdevice_notifier(&cma_nb); rdma_addr_unregister_client(&addr_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(cma_wq); return ret; } static void __exit cma_cleanup(void) { ibnl_remove_client(RDMA_NL_RDMA_CM); ib_unregister_client(&cma_client); unregister_netdevice_notifier(&cma_nb); rdma_addr_unregister_client(&addr_client); ib_sa_unregister_client(&sa_client); destroy_workqueue(cma_wq); idr_destroy(&tcp_ps); idr_destroy(&udp_ps); idr_destroy(&ipoib_ps); idr_destroy(&ib_ps); } module_init(cma_init); module_exit(cma_cleanup);