/* * Copyright (c) 2005-2011 Atheros Communications Inc. * Copyright (c) 2011-2013 Qualcomm Atheros, Inc. * * Permission to use, copy, modify, and/or distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */ #include #include #include #include #include "core.h" #include "debug.h" #include "targaddrs.h" #include "bmi.h" #include "hif.h" #include "htc.h" #include "ce.h" #include "pci.h" static unsigned int ath10k_target_ps; module_param(ath10k_target_ps, uint, 0644); MODULE_PARM_DESC(ath10k_target_ps, "Enable ath10k Target (SoC) PS option"); #define QCA988X_2_0_DEVICE_ID (0x003c) static DEFINE_PCI_DEVICE_TABLE(ath10k_pci_id_table) = { { PCI_VDEVICE(ATHEROS, QCA988X_2_0_DEVICE_ID) }, /* PCI-E QCA988X V2 */ {0} }; static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address, u32 *data); static void ath10k_pci_process_ce(struct ath10k *ar); static int ath10k_pci_post_rx(struct ath10k *ar); static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info, int num); static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info); static void ath10k_pci_stop_ce(struct ath10k *ar); static int ath10k_pci_device_reset(struct ath10k *ar); static int ath10k_pci_wait_for_target_init(struct ath10k *ar); static int ath10k_pci_start_intr(struct ath10k *ar); static void ath10k_pci_stop_intr(struct ath10k *ar); static const struct ce_attr host_ce_config_wlan[] = { /* CE0: host->target HTC control and raw streams */ { .flags = CE_ATTR_FLAGS, .src_nentries = 16, .src_sz_max = 256, .dest_nentries = 0, }, /* CE1: target->host HTT + HTC control */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 512, .dest_nentries = 512, }, /* CE2: target->host WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 2048, .dest_nentries = 32, }, /* CE3: host->target WMI */ { .flags = CE_ATTR_FLAGS, .src_nentries = 32, .src_sz_max = 2048, .dest_nentries = 0, }, /* CE4: host->target HTT */ { .flags = CE_ATTR_FLAGS | CE_ATTR_DIS_INTR, .src_nentries = CE_HTT_H2T_MSG_SRC_NENTRIES, .src_sz_max = 256, .dest_nentries = 0, }, /* CE5: unused */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, /* CE6: target autonomous hif_memcpy */ { .flags = CE_ATTR_FLAGS, .src_nentries = 0, .src_sz_max = 0, .dest_nentries = 0, }, /* CE7: ce_diag, the Diagnostic Window */ { .flags = CE_ATTR_FLAGS, .src_nentries = 2, .src_sz_max = DIAG_TRANSFER_LIMIT, .dest_nentries = 2, }, }; /* Target firmware's Copy Engine configuration. */ static const struct ce_pipe_config target_ce_config_wlan[] = { /* CE0: host->target HTC control and raw streams */ { .pipenum = 0, .pipedir = PIPEDIR_OUT, .nentries = 32, .nbytes_max = 256, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE1: target->host HTT + HTC control */ { .pipenum = 1, .pipedir = PIPEDIR_IN, .nentries = 32, .nbytes_max = 512, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE2: target->host WMI */ { .pipenum = 2, .pipedir = PIPEDIR_IN, .nentries = 32, .nbytes_max = 2048, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE3: host->target WMI */ { .pipenum = 3, .pipedir = PIPEDIR_OUT, .nentries = 32, .nbytes_max = 2048, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE4: host->target HTT */ { .pipenum = 4, .pipedir = PIPEDIR_OUT, .nentries = 256, .nbytes_max = 256, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* NB: 50% of src nentries, since tx has 2 frags */ /* CE5: unused */ { .pipenum = 5, .pipedir = PIPEDIR_OUT, .nentries = 32, .nbytes_max = 2048, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE6: Reserved for target autonomous hif_memcpy */ { .pipenum = 6, .pipedir = PIPEDIR_INOUT, .nentries = 32, .nbytes_max = 4096, .flags = CE_ATTR_FLAGS, .reserved = 0, }, /* CE7 used only by Host */ }; /* * Diagnostic read/write access is provided for startup/config/debug usage. * Caller must guarantee proper alignment, when applicable, and single user * at any moment. */ static int ath10k_pci_diag_read_mem(struct ath10k *ar, u32 address, void *data, int nbytes) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret = 0; u32 buf; unsigned int completed_nbytes, orig_nbytes, remaining_bytes; unsigned int id; unsigned int flags; struct ath10k_ce_pipe *ce_diag; /* Host buffer address in CE space */ u32 ce_data; dma_addr_t ce_data_base = 0; void *data_buf = NULL; int i; /* * This code cannot handle reads to non-memory space. Redirect to the * register read fn but preserve the multi word read capability of * this fn */ if (address < DRAM_BASE_ADDRESS) { if (!IS_ALIGNED(address, 4) || !IS_ALIGNED((unsigned long)data, 4)) return -EIO; while ((nbytes >= 4) && ((ret = ath10k_pci_diag_read_access( ar, address, (u32 *)data)) == 0)) { nbytes -= sizeof(u32); address += sizeof(u32); data += sizeof(u32); } return ret; } ce_diag = ar_pci->ce_diag; /* * Allocate a temporary bounce buffer to hold caller's data * to be DMA'ed from Target. This guarantees * 1) 4-byte alignment * 2) Buffer in DMA-able space */ orig_nbytes = nbytes; data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev, orig_nbytes, &ce_data_base); if (!data_buf) { ret = -ENOMEM; goto done; } memset(data_buf, 0, orig_nbytes); remaining_bytes = orig_nbytes; ce_data = ce_data_base; while (remaining_bytes) { nbytes = min_t(unsigned int, remaining_bytes, DIAG_TRANSFER_LIMIT); ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, ce_data); if (ret != 0) goto done; /* Request CE to send from Target(!) address to Host buffer */ /* * The address supplied by the caller is in the * Target CPU virtual address space. * * In order to use this address with the diagnostic CE, * convert it from Target CPU virtual address space * to CE address space */ ath10k_pci_wake(ar); address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address); ath10k_pci_sleep(ar); ret = ath10k_ce_send(ce_diag, NULL, (u32)address, nbytes, 0, 0); if (ret) goto done; i = 0; while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf, &completed_nbytes, &id) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (buf != (u32) address) { ret = -EIO; goto done; } i = 0; while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf, &completed_nbytes, &id, &flags) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (buf != ce_data) { ret = -EIO; goto done; } remaining_bytes -= nbytes; address += nbytes; ce_data += nbytes; } done: if (ret == 0) { /* Copy data from allocated DMA buf to caller's buf */ WARN_ON_ONCE(orig_nbytes & 3); for (i = 0; i < orig_nbytes / sizeof(__le32); i++) { ((u32 *)data)[i] = __le32_to_cpu(((__le32 *)data_buf)[i]); } } else ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__, address); if (data_buf) pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf, ce_data_base); return ret; } /* Read 4-byte aligned data from Target memory or register */ static int ath10k_pci_diag_read_access(struct ath10k *ar, u32 address, u32 *data) { /* Assume range doesn't cross this boundary */ if (address >= DRAM_BASE_ADDRESS) return ath10k_pci_diag_read_mem(ar, address, data, sizeof(u32)); ath10k_pci_wake(ar); *data = ath10k_pci_read32(ar, address); ath10k_pci_sleep(ar); return 0; } static int ath10k_pci_diag_write_mem(struct ath10k *ar, u32 address, const void *data, int nbytes) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret = 0; u32 buf; unsigned int completed_nbytes, orig_nbytes, remaining_bytes; unsigned int id; unsigned int flags; struct ath10k_ce_pipe *ce_diag; void *data_buf = NULL; u32 ce_data; /* Host buffer address in CE space */ dma_addr_t ce_data_base = 0; int i; ce_diag = ar_pci->ce_diag; /* * Allocate a temporary bounce buffer to hold caller's data * to be DMA'ed to Target. This guarantees * 1) 4-byte alignment * 2) Buffer in DMA-able space */ orig_nbytes = nbytes; data_buf = (unsigned char *)pci_alloc_consistent(ar_pci->pdev, orig_nbytes, &ce_data_base); if (!data_buf) { ret = -ENOMEM; goto done; } /* Copy caller's data to allocated DMA buf */ WARN_ON_ONCE(orig_nbytes & 3); for (i = 0; i < orig_nbytes / sizeof(__le32); i++) ((__le32 *)data_buf)[i] = __cpu_to_le32(((u32 *)data)[i]); /* * The address supplied by the caller is in the * Target CPU virtual address space. * * In order to use this address with the diagnostic CE, * convert it from * Target CPU virtual address space * to * CE address space */ ath10k_pci_wake(ar); address = TARG_CPU_SPACE_TO_CE_SPACE(ar, ar_pci->mem, address); ath10k_pci_sleep(ar); remaining_bytes = orig_nbytes; ce_data = ce_data_base; while (remaining_bytes) { /* FIXME: check cast */ nbytes = min_t(int, remaining_bytes, DIAG_TRANSFER_LIMIT); /* Set up to receive directly into Target(!) address */ ret = ath10k_ce_recv_buf_enqueue(ce_diag, NULL, address); if (ret != 0) goto done; /* * Request CE to send caller-supplied data that * was copied to bounce buffer to Target(!) address. */ ret = ath10k_ce_send(ce_diag, NULL, (u32) ce_data, nbytes, 0, 0); if (ret != 0) goto done; i = 0; while (ath10k_ce_completed_send_next(ce_diag, NULL, &buf, &completed_nbytes, &id) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (buf != ce_data) { ret = -EIO; goto done; } i = 0; while (ath10k_ce_completed_recv_next(ce_diag, NULL, &buf, &completed_nbytes, &id, &flags) != 0) { mdelay(1); if (i++ > DIAG_ACCESS_CE_TIMEOUT_MS) { ret = -EBUSY; goto done; } } if (nbytes != completed_nbytes) { ret = -EIO; goto done; } if (buf != address) { ret = -EIO; goto done; } remaining_bytes -= nbytes; address += nbytes; ce_data += nbytes; } done: if (data_buf) { pci_free_consistent(ar_pci->pdev, orig_nbytes, data_buf, ce_data_base); } if (ret != 0) ath10k_dbg(ATH10K_DBG_PCI, "%s failure (0x%x)\n", __func__, address); return ret; } /* Write 4B data to Target memory or register */ static int ath10k_pci_diag_write_access(struct ath10k *ar, u32 address, u32 data) { /* Assume range doesn't cross this boundary */ if (address >= DRAM_BASE_ADDRESS) return ath10k_pci_diag_write_mem(ar, address, &data, sizeof(u32)); ath10k_pci_wake(ar); ath10k_pci_write32(ar, address, data); ath10k_pci_sleep(ar); return 0; } static bool ath10k_pci_target_is_awake(struct ath10k *ar) { void __iomem *mem = ath10k_pci_priv(ar)->mem; u32 val; val = ioread32(mem + PCIE_LOCAL_BASE_ADDRESS + RTC_STATE_ADDRESS); return (RTC_STATE_V_GET(val) == RTC_STATE_V_ON); } int ath10k_do_pci_wake(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); void __iomem *pci_addr = ar_pci->mem; int tot_delay = 0; int curr_delay = 5; if (atomic_read(&ar_pci->keep_awake_count) == 0) { /* Force AWAKE */ iowrite32(PCIE_SOC_WAKE_V_MASK, pci_addr + PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS); } atomic_inc(&ar_pci->keep_awake_count); if (ar_pci->verified_awake) return 0; for (;;) { if (ath10k_pci_target_is_awake(ar)) { ar_pci->verified_awake = true; return 0; } if (tot_delay > PCIE_WAKE_TIMEOUT) { ath10k_warn("target took longer %d us to wake up (awake count %d)\n", PCIE_WAKE_TIMEOUT, atomic_read(&ar_pci->keep_awake_count)); return -ETIMEDOUT; } udelay(curr_delay); tot_delay += curr_delay; if (curr_delay < 50) curr_delay += 5; } } void ath10k_do_pci_sleep(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); void __iomem *pci_addr = ar_pci->mem; if (atomic_dec_and_test(&ar_pci->keep_awake_count)) { /* Allow sleep */ ar_pci->verified_awake = false; iowrite32(PCIE_SOC_WAKE_RESET, pci_addr + PCIE_LOCAL_BASE_ADDRESS + PCIE_SOC_WAKE_ADDRESS); } } /* * FIXME: Handle OOM properly. */ static inline struct ath10k_pci_compl *get_free_compl(struct ath10k_pci_pipe *pipe_info) { struct ath10k_pci_compl *compl = NULL; spin_lock_bh(&pipe_info->pipe_lock); if (list_empty(&pipe_info->compl_free)) { ath10k_warn("Completion buffers are full\n"); goto exit; } compl = list_first_entry(&pipe_info->compl_free, struct ath10k_pci_compl, list); list_del(&compl->list); exit: spin_unlock_bh(&pipe_info->pipe_lock); return compl; } /* Called by lower (CE) layer when a send to Target completes. */ static void ath10k_pci_ce_send_done(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; struct ath10k_pci_compl *compl; void *transfer_context; u32 ce_data; unsigned int nbytes; unsigned int transfer_id; while (ath10k_ce_completed_send_next(ce_state, &transfer_context, &ce_data, &nbytes, &transfer_id) == 0) { compl = get_free_compl(pipe_info); if (!compl) break; compl->state = ATH10K_PCI_COMPL_SEND; compl->ce_state = ce_state; compl->pipe_info = pipe_info; compl->skb = transfer_context; compl->nbytes = nbytes; compl->transfer_id = transfer_id; compl->flags = 0; /* * Add the completion to the processing queue. */ spin_lock_bh(&ar_pci->compl_lock); list_add_tail(&compl->list, &ar_pci->compl_process); spin_unlock_bh(&ar_pci->compl_lock); } ath10k_pci_process_ce(ar); } /* Called by lower (CE) layer when data is received from the Target. */ static void ath10k_pci_ce_recv_data(struct ath10k_ce_pipe *ce_state) { struct ath10k *ar = ce_state->ar; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info = &ar_pci->pipe_info[ce_state->id]; struct ath10k_pci_compl *compl; struct sk_buff *skb; void *transfer_context; u32 ce_data; unsigned int nbytes; unsigned int transfer_id; unsigned int flags; while (ath10k_ce_completed_recv_next(ce_state, &transfer_context, &ce_data, &nbytes, &transfer_id, &flags) == 0) { compl = get_free_compl(pipe_info); if (!compl) break; compl->state = ATH10K_PCI_COMPL_RECV; compl->ce_state = ce_state; compl->pipe_info = pipe_info; compl->skb = transfer_context; compl->nbytes = nbytes; compl->transfer_id = transfer_id; compl->flags = flags; skb = transfer_context; dma_unmap_single(ar->dev, ATH10K_SKB_CB(skb)->paddr, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); /* * Add the completion to the processing queue. */ spin_lock_bh(&ar_pci->compl_lock); list_add_tail(&compl->list, &ar_pci->compl_process); spin_unlock_bh(&ar_pci->compl_lock); } ath10k_pci_process_ce(ar); } /* Send the first nbytes bytes of the buffer */ static int ath10k_pci_hif_send_head(struct ath10k *ar, u8 pipe_id, unsigned int transfer_id, unsigned int bytes, struct sk_buff *nbuf) { struct ath10k_skb_cb *skb_cb = ATH10K_SKB_CB(nbuf); struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info = &(ar_pci->pipe_info[pipe_id]); struct ath10k_ce_pipe *ce_hdl = pipe_info->ce_hdl; unsigned int len; u32 flags = 0; int ret; len = min(bytes, nbuf->len); bytes -= len; if (len & 3) ath10k_warn("skb not aligned to 4-byte boundary (%d)\n", len); ath10k_dbg(ATH10K_DBG_PCI, "pci send data vaddr %p paddr 0x%llx len %d as %d bytes\n", nbuf->data, (unsigned long long) skb_cb->paddr, nbuf->len, len); ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL, "ath10k tx: data: ", nbuf->data, nbuf->len); ret = ath10k_ce_send(ce_hdl, nbuf, skb_cb->paddr, len, transfer_id, flags); if (ret) ath10k_warn("CE send failed: %p\n", nbuf); return ret; } static u16 ath10k_pci_hif_get_free_queue_number(struct ath10k *ar, u8 pipe) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); return ath10k_ce_num_free_src_entries(ar_pci->pipe_info[pipe].ce_hdl); } static void ath10k_pci_hif_dump_area(struct ath10k *ar) { u32 reg_dump_area = 0; u32 reg_dump_values[REG_DUMP_COUNT_QCA988X] = {}; u32 host_addr; int ret; u32 i; ath10k_err("firmware crashed!\n"); ath10k_err("hardware name %s version 0x%x\n", ar->hw_params.name, ar->target_version); ath10k_err("firmware version: %u.%u.%u.%u\n", ar->fw_version_major, ar->fw_version_minor, ar->fw_version_release, ar->fw_version_build); host_addr = host_interest_item_address(HI_ITEM(hi_failure_state)); if (ath10k_pci_diag_read_mem(ar, host_addr, ®_dump_area, sizeof(u32)) != 0) { ath10k_warn("could not read hi_failure_state\n"); return; } ath10k_err("target register Dump Location: 0x%08X\n", reg_dump_area); ret = ath10k_pci_diag_read_mem(ar, reg_dump_area, ®_dump_values[0], REG_DUMP_COUNT_QCA988X * sizeof(u32)); if (ret != 0) { ath10k_err("could not dump FW Dump Area\n"); return; } BUILD_BUG_ON(REG_DUMP_COUNT_QCA988X % 4); ath10k_err("target Register Dump\n"); for (i = 0; i < REG_DUMP_COUNT_QCA988X; i += 4) ath10k_err("[%02d]: 0x%08X 0x%08X 0x%08X 0x%08X\n", i, reg_dump_values[i], reg_dump_values[i + 1], reg_dump_values[i + 2], reg_dump_values[i + 3]); queue_work(ar->workqueue, &ar->restart_work); } static void ath10k_pci_hif_send_complete_check(struct ath10k *ar, u8 pipe, int force) { if (!force) { int resources; /* * Decide whether to actually poll for completions, or just * wait for a later chance. * If there seem to be plenty of resources left, then just wait * since checking involves reading a CE register, which is a * relatively expensive operation. */ resources = ath10k_pci_hif_get_free_queue_number(ar, pipe); /* * If at least 50% of the total resources are still available, * don't bother checking again yet. */ if (resources > (host_ce_config_wlan[pipe].src_nentries >> 1)) return; } ath10k_ce_per_engine_service(ar, pipe); } static void ath10k_pci_hif_set_callbacks(struct ath10k *ar, struct ath10k_hif_cb *callbacks) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); memcpy(&ar_pci->msg_callbacks_current, callbacks, sizeof(ar_pci->msg_callbacks_current)); } static int ath10k_pci_start_ce(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_pipe *ce_diag = ar_pci->ce_diag; const struct ce_attr *attr; struct ath10k_pci_pipe *pipe_info; struct ath10k_pci_compl *compl; int i, pipe_num, completions, disable_interrupts; spin_lock_init(&ar_pci->compl_lock); INIT_LIST_HEAD(&ar_pci->compl_process); for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { pipe_info = &ar_pci->pipe_info[pipe_num]; spin_lock_init(&pipe_info->pipe_lock); INIT_LIST_HEAD(&pipe_info->compl_free); /* Handle Diagnostic CE specially */ if (pipe_info->ce_hdl == ce_diag) continue; attr = &host_ce_config_wlan[pipe_num]; completions = 0; if (attr->src_nentries) { disable_interrupts = attr->flags & CE_ATTR_DIS_INTR; ath10k_ce_send_cb_register(pipe_info->ce_hdl, ath10k_pci_ce_send_done, disable_interrupts); completions += attr->src_nentries; } if (attr->dest_nentries) { ath10k_ce_recv_cb_register(pipe_info->ce_hdl, ath10k_pci_ce_recv_data); completions += attr->dest_nentries; } if (completions == 0) continue; for (i = 0; i < completions; i++) { compl = kmalloc(sizeof(*compl), GFP_KERNEL); if (!compl) { ath10k_warn("No memory for completion state\n"); ath10k_pci_stop_ce(ar); return -ENOMEM; } compl->state = ATH10K_PCI_COMPL_FREE; list_add_tail(&compl->list, &pipe_info->compl_free); } } return 0; } static void ath10k_pci_kill_tasklet(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int i; tasklet_kill(&ar_pci->intr_tq); tasklet_kill(&ar_pci->msi_fw_err); for (i = 0; i < CE_COUNT; i++) tasklet_kill(&ar_pci->pipe_info[i].intr); } static void ath10k_pci_stop_ce(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_compl *compl; struct sk_buff *skb; int ret; ret = ath10k_ce_disable_interrupts(ar); if (ret) ath10k_warn("failed to disable CE interrupts: %d\n", ret); ath10k_pci_kill_tasklet(ar); /* Mark pending completions as aborted, so that upper layers free up * their associated resources */ spin_lock_bh(&ar_pci->compl_lock); list_for_each_entry(compl, &ar_pci->compl_process, list) { skb = compl->skb; ATH10K_SKB_CB(skb)->is_aborted = true; } spin_unlock_bh(&ar_pci->compl_lock); } static void ath10k_pci_cleanup_ce(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_compl *compl, *tmp; struct ath10k_pci_pipe *pipe_info; struct sk_buff *netbuf; int pipe_num; /* Free pending completions. */ spin_lock_bh(&ar_pci->compl_lock); if (!list_empty(&ar_pci->compl_process)) ath10k_warn("pending completions still present! possible memory leaks.\n"); list_for_each_entry_safe(compl, tmp, &ar_pci->compl_process, list) { list_del(&compl->list); netbuf = compl->skb; dev_kfree_skb_any(netbuf); kfree(compl); } spin_unlock_bh(&ar_pci->compl_lock); /* Free unused completions for each pipe. */ for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { pipe_info = &ar_pci->pipe_info[pipe_num]; spin_lock_bh(&pipe_info->pipe_lock); list_for_each_entry_safe(compl, tmp, &pipe_info->compl_free, list) { list_del(&compl->list); kfree(compl); } spin_unlock_bh(&pipe_info->pipe_lock); } } static void ath10k_pci_process_ce(struct ath10k *ar) { struct ath10k_pci *ar_pci = ar->hif.priv; struct ath10k_hif_cb *cb = &ar_pci->msg_callbacks_current; struct ath10k_pci_compl *compl; struct sk_buff *skb; unsigned int nbytes; int ret, send_done = 0; /* Upper layers aren't ready to handle tx/rx completions in parallel so * we must serialize all completion processing. */ spin_lock_bh(&ar_pci->compl_lock); if (ar_pci->compl_processing) { spin_unlock_bh(&ar_pci->compl_lock); return; } ar_pci->compl_processing = true; spin_unlock_bh(&ar_pci->compl_lock); for (;;) { spin_lock_bh(&ar_pci->compl_lock); if (list_empty(&ar_pci->compl_process)) { spin_unlock_bh(&ar_pci->compl_lock); break; } compl = list_first_entry(&ar_pci->compl_process, struct ath10k_pci_compl, list); list_del(&compl->list); spin_unlock_bh(&ar_pci->compl_lock); switch (compl->state) { case ATH10K_PCI_COMPL_SEND: cb->tx_completion(ar, compl->skb, compl->transfer_id); send_done = 1; break; case ATH10K_PCI_COMPL_RECV: ret = ath10k_pci_post_rx_pipe(compl->pipe_info, 1); if (ret) { ath10k_warn("Unable to post recv buffer for pipe: %d\n", compl->pipe_info->pipe_num); break; } skb = compl->skb; nbytes = compl->nbytes; ath10k_dbg(ATH10K_DBG_PCI, "ath10k_pci_ce_recv_data netbuf=%p nbytes=%d\n", skb, nbytes); ath10k_dbg_dump(ATH10K_DBG_PCI_DUMP, NULL, "ath10k rx: ", skb->data, nbytes); if (skb->len + skb_tailroom(skb) >= nbytes) { skb_trim(skb, 0); skb_put(skb, nbytes); cb->rx_completion(ar, skb, compl->pipe_info->pipe_num); } else { ath10k_warn("rxed more than expected (nbytes %d, max %d)", nbytes, skb->len + skb_tailroom(skb)); } break; case ATH10K_PCI_COMPL_FREE: ath10k_warn("free completion cannot be processed\n"); break; default: ath10k_warn("invalid completion state (%d)\n", compl->state); break; } compl->state = ATH10K_PCI_COMPL_FREE; /* * Add completion back to the pipe's free list. */ spin_lock_bh(&compl->pipe_info->pipe_lock); list_add_tail(&compl->list, &compl->pipe_info->compl_free); spin_unlock_bh(&compl->pipe_info->pipe_lock); } spin_lock_bh(&ar_pci->compl_lock); ar_pci->compl_processing = false; spin_unlock_bh(&ar_pci->compl_lock); } /* TODO - temporary mapping while we have too few CE's */ static int ath10k_pci_hif_map_service_to_pipe(struct ath10k *ar, u16 service_id, u8 *ul_pipe, u8 *dl_pipe, int *ul_is_polled, int *dl_is_polled) { int ret = 0; /* polling for received messages not supported */ *dl_is_polled = 0; switch (service_id) { case ATH10K_HTC_SVC_ID_HTT_DATA_MSG: /* * Host->target HTT gets its own pipe, so it can be polled * while other pipes are interrupt driven. */ *ul_pipe = 4; /* * Use the same target->host pipe for HTC ctrl, HTC raw * streams, and HTT. */ *dl_pipe = 1; break; case ATH10K_HTC_SVC_ID_RSVD_CTRL: case ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS: /* * Note: HTC_RAW_STREAMS_SVC is currently unused, and * HTC_CTRL_RSVD_SVC could share the same pipe as the * WMI services. So, if another CE is needed, change * this to *ul_pipe = 3, which frees up CE 0. */ /* *ul_pipe = 3; */ *ul_pipe = 0; *dl_pipe = 1; break; case ATH10K_HTC_SVC_ID_WMI_DATA_BK: case ATH10K_HTC_SVC_ID_WMI_DATA_BE: case ATH10K_HTC_SVC_ID_WMI_DATA_VI: case ATH10K_HTC_SVC_ID_WMI_DATA_VO: case ATH10K_HTC_SVC_ID_WMI_CONTROL: *ul_pipe = 3; *dl_pipe = 2; break; /* pipe 5 unused */ /* pipe 6 reserved */ /* pipe 7 reserved */ default: ret = -1; break; } *ul_is_polled = (host_ce_config_wlan[*ul_pipe].flags & CE_ATTR_DIS_INTR) != 0; return ret; } static void ath10k_pci_hif_get_default_pipe(struct ath10k *ar, u8 *ul_pipe, u8 *dl_pipe) { int ul_is_polled, dl_is_polled; (void)ath10k_pci_hif_map_service_to_pipe(ar, ATH10K_HTC_SVC_ID_RSVD_CTRL, ul_pipe, dl_pipe, &ul_is_polled, &dl_is_polled); } static int ath10k_pci_post_rx_pipe(struct ath10k_pci_pipe *pipe_info, int num) { struct ath10k *ar = pipe_info->hif_ce_state; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_ce_pipe *ce_state = pipe_info->ce_hdl; struct sk_buff *skb; dma_addr_t ce_data; int i, ret = 0; if (pipe_info->buf_sz == 0) return 0; for (i = 0; i < num; i++) { skb = dev_alloc_skb(pipe_info->buf_sz); if (!skb) { ath10k_warn("could not allocate skbuff for pipe %d\n", num); ret = -ENOMEM; goto err; } WARN_ONCE((unsigned long)skb->data & 3, "unaligned skb"); ce_data = dma_map_single(ar->dev, skb->data, skb->len + skb_tailroom(skb), DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(ar->dev, ce_data))) { ath10k_warn("could not dma map skbuff\n"); dev_kfree_skb_any(skb); ret = -EIO; goto err; } ATH10K_SKB_CB(skb)->paddr = ce_data; pci_dma_sync_single_for_device(ar_pci->pdev, ce_data, pipe_info->buf_sz, PCI_DMA_FROMDEVICE); ret = ath10k_ce_recv_buf_enqueue(ce_state, (void *)skb, ce_data); if (ret) { ath10k_warn("could not enqueue to pipe %d (%d)\n", num, ret); goto err; } } return ret; err: ath10k_pci_rx_pipe_cleanup(pipe_info); return ret; } static int ath10k_pci_post_rx(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info; const struct ce_attr *attr; int pipe_num, ret = 0; for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { pipe_info = &ar_pci->pipe_info[pipe_num]; attr = &host_ce_config_wlan[pipe_num]; if (attr->dest_nentries == 0) continue; ret = ath10k_pci_post_rx_pipe(pipe_info, attr->dest_nentries - 1); if (ret) { ath10k_warn("Unable to replenish recv buffers for pipe: %d\n", pipe_num); for (; pipe_num >= 0; pipe_num--) { pipe_info = &ar_pci->pipe_info[pipe_num]; ath10k_pci_rx_pipe_cleanup(pipe_info); } return ret; } } return 0; } static int ath10k_pci_hif_start(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ret = ath10k_pci_start_ce(ar); if (ret) { ath10k_warn("could not start CE (%d)\n", ret); return ret; } /* Post buffers once to start things off. */ ret = ath10k_pci_post_rx(ar); if (ret) { ath10k_warn("could not post rx pipes (%d)\n", ret); return ret; } ar_pci->started = 1; return 0; } static void ath10k_pci_rx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info) { struct ath10k *ar; struct ath10k_pci *ar_pci; struct ath10k_ce_pipe *ce_hdl; u32 buf_sz; struct sk_buff *netbuf; u32 ce_data; buf_sz = pipe_info->buf_sz; /* Unused Copy Engine */ if (buf_sz == 0) return; ar = pipe_info->hif_ce_state; ar_pci = ath10k_pci_priv(ar); if (!ar_pci->started) return; ce_hdl = pipe_info->ce_hdl; while (ath10k_ce_revoke_recv_next(ce_hdl, (void **)&netbuf, &ce_data) == 0) { dma_unmap_single(ar->dev, ATH10K_SKB_CB(netbuf)->paddr, netbuf->len + skb_tailroom(netbuf), DMA_FROM_DEVICE); dev_kfree_skb_any(netbuf); } } static void ath10k_pci_tx_pipe_cleanup(struct ath10k_pci_pipe *pipe_info) { struct ath10k *ar; struct ath10k_pci *ar_pci; struct ath10k_ce_pipe *ce_hdl; struct sk_buff *netbuf; u32 ce_data; unsigned int nbytes; unsigned int id; u32 buf_sz; buf_sz = pipe_info->buf_sz; /* Unused Copy Engine */ if (buf_sz == 0) return; ar = pipe_info->hif_ce_state; ar_pci = ath10k_pci_priv(ar); if (!ar_pci->started) return; ce_hdl = pipe_info->ce_hdl; while (ath10k_ce_cancel_send_next(ce_hdl, (void **)&netbuf, &ce_data, &nbytes, &id) == 0) { /* * Indicate the completion to higer layer to free * the buffer */ ATH10K_SKB_CB(netbuf)->is_aborted = true; ar_pci->msg_callbacks_current.tx_completion(ar, netbuf, id); } } /* * Cleanup residual buffers for device shutdown: * buffers that were enqueued for receive * buffers that were to be sent * Note: Buffers that had completed but which were * not yet processed are on a completion queue. They * are handled when the completion thread shuts down. */ static void ath10k_pci_buffer_cleanup(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int pipe_num; for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { struct ath10k_pci_pipe *pipe_info; pipe_info = &ar_pci->pipe_info[pipe_num]; ath10k_pci_rx_pipe_cleanup(pipe_info); ath10k_pci_tx_pipe_cleanup(pipe_info); } } static void ath10k_pci_ce_deinit(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info; int pipe_num; for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { pipe_info = &ar_pci->pipe_info[pipe_num]; if (pipe_info->ce_hdl) { ath10k_ce_deinit(pipe_info->ce_hdl); pipe_info->ce_hdl = NULL; pipe_info->buf_sz = 0; } } } static void ath10k_pci_disable_irqs(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int i; for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++) disable_irq(ar_pci->pdev->irq + i); } static void ath10k_pci_hif_stop(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); /* Irqs are never explicitly re-enabled. They are implicitly re-enabled * by ath10k_pci_start_intr(). */ ath10k_pci_disable_irqs(ar); ath10k_pci_stop_ce(ar); /* At this point, asynchronous threads are stopped, the target should * not DMA nor interrupt. We process the leftovers and then free * everything else up. */ ath10k_pci_process_ce(ar); ath10k_pci_cleanup_ce(ar); ath10k_pci_buffer_cleanup(ar); ar_pci->started = 0; } static int ath10k_pci_hif_exchange_bmi_msg(struct ath10k *ar, void *req, u32 req_len, void *resp, u32 *resp_len) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pci_tx = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; struct ath10k_pci_pipe *pci_rx = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; struct ath10k_ce_pipe *ce_tx = pci_tx->ce_hdl; struct ath10k_ce_pipe *ce_rx = pci_rx->ce_hdl; dma_addr_t req_paddr = 0; dma_addr_t resp_paddr = 0; struct bmi_xfer xfer = {}; void *treq, *tresp = NULL; int ret = 0; if (resp && !resp_len) return -EINVAL; if (resp && resp_len && *resp_len == 0) return -EINVAL; treq = kmemdup(req, req_len, GFP_KERNEL); if (!treq) return -ENOMEM; req_paddr = dma_map_single(ar->dev, treq, req_len, DMA_TO_DEVICE); ret = dma_mapping_error(ar->dev, req_paddr); if (ret) goto err_dma; if (resp && resp_len) { tresp = kzalloc(*resp_len, GFP_KERNEL); if (!tresp) { ret = -ENOMEM; goto err_req; } resp_paddr = dma_map_single(ar->dev, tresp, *resp_len, DMA_FROM_DEVICE); ret = dma_mapping_error(ar->dev, resp_paddr); if (ret) goto err_req; xfer.wait_for_resp = true; xfer.resp_len = 0; ath10k_ce_recv_buf_enqueue(ce_rx, &xfer, resp_paddr); } init_completion(&xfer.done); ret = ath10k_ce_send(ce_tx, &xfer, req_paddr, req_len, -1, 0); if (ret) goto err_resp; ret = wait_for_completion_timeout(&xfer.done, BMI_COMMUNICATION_TIMEOUT_HZ); if (ret <= 0) { u32 unused_buffer; unsigned int unused_nbytes; unsigned int unused_id; ret = -ETIMEDOUT; ath10k_ce_cancel_send_next(ce_tx, NULL, &unused_buffer, &unused_nbytes, &unused_id); } else { /* non-zero means we did not time out */ ret = 0; } err_resp: if (resp) { u32 unused_buffer; ath10k_ce_revoke_recv_next(ce_rx, NULL, &unused_buffer); dma_unmap_single(ar->dev, resp_paddr, *resp_len, DMA_FROM_DEVICE); } err_req: dma_unmap_single(ar->dev, req_paddr, req_len, DMA_TO_DEVICE); if (ret == 0 && resp_len) { *resp_len = min(*resp_len, xfer.resp_len); memcpy(resp, tresp, xfer.resp_len); } err_dma: kfree(treq); kfree(tresp); return ret; } static void ath10k_pci_bmi_send_done(struct ath10k_ce_pipe *ce_state) { struct bmi_xfer *xfer; u32 ce_data; unsigned int nbytes; unsigned int transfer_id; if (ath10k_ce_completed_send_next(ce_state, (void **)&xfer, &ce_data, &nbytes, &transfer_id)) return; if (xfer->wait_for_resp) return; complete(&xfer->done); } static void ath10k_pci_bmi_recv_data(struct ath10k_ce_pipe *ce_state) { struct bmi_xfer *xfer; u32 ce_data; unsigned int nbytes; unsigned int transfer_id; unsigned int flags; if (ath10k_ce_completed_recv_next(ce_state, (void **)&xfer, &ce_data, &nbytes, &transfer_id, &flags)) return; if (!xfer->wait_for_resp) { ath10k_warn("unexpected: BMI data received; ignoring\n"); return; } xfer->resp_len = nbytes; complete(&xfer->done); } /* * Map from service/endpoint to Copy Engine. * This table is derived from the CE_PCI TABLE, above. * It is passed to the Target at startup for use by firmware. */ static const struct service_to_pipe target_service_to_ce_map_wlan[] = { { ATH10K_HTC_SVC_ID_WMI_DATA_VO, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_DATA_VO, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_WMI_DATA_BK, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_DATA_BK, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_WMI_DATA_BE, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_DATA_BE, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_WMI_DATA_VI, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_DATA_VI, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_WMI_CONTROL, PIPEDIR_OUT, /* out = UL = host -> target */ 3, }, { ATH10K_HTC_SVC_ID_WMI_CONTROL, PIPEDIR_IN, /* in = DL = target -> host */ 2, }, { ATH10K_HTC_SVC_ID_RSVD_CTRL, PIPEDIR_OUT, /* out = UL = host -> target */ 0, /* could be moved to 3 (share with WMI) */ }, { ATH10K_HTC_SVC_ID_RSVD_CTRL, PIPEDIR_IN, /* in = DL = target -> host */ 1, }, { ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */ PIPEDIR_OUT, /* out = UL = host -> target */ 0, }, { ATH10K_HTC_SVC_ID_TEST_RAW_STREAMS, /* not currently used */ PIPEDIR_IN, /* in = DL = target -> host */ 1, }, { ATH10K_HTC_SVC_ID_HTT_DATA_MSG, PIPEDIR_OUT, /* out = UL = host -> target */ 4, }, { ATH10K_HTC_SVC_ID_HTT_DATA_MSG, PIPEDIR_IN, /* in = DL = target -> host */ 1, }, /* (Additions here) */ { /* Must be last */ 0, 0, 0, }, }; /* * Send an interrupt to the device to wake up the Target CPU * so it has an opportunity to notice any changed state. */ static int ath10k_pci_wake_target_cpu(struct ath10k *ar) { int ret; u32 core_ctrl; ret = ath10k_pci_diag_read_access(ar, SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS, &core_ctrl); if (ret) { ath10k_warn("Unable to read core ctrl\n"); return ret; } /* A_INUM_FIRMWARE interrupt to Target CPU */ core_ctrl |= CORE_CTRL_CPU_INTR_MASK; ret = ath10k_pci_diag_write_access(ar, SOC_CORE_BASE_ADDRESS | CORE_CTRL_ADDRESS, core_ctrl); if (ret) ath10k_warn("Unable to set interrupt mask\n"); return ret; } static int ath10k_pci_init_config(struct ath10k *ar) { u32 interconnect_targ_addr; u32 pcie_state_targ_addr = 0; u32 pipe_cfg_targ_addr = 0; u32 svc_to_pipe_map = 0; u32 pcie_config_flags = 0; u32 ealloc_value; u32 ealloc_targ_addr; u32 flag2_value; u32 flag2_targ_addr; int ret = 0; /* Download to Target the CE Config and the service-to-CE map */ interconnect_targ_addr = host_interest_item_address(HI_ITEM(hi_interconnect_state)); /* Supply Target-side CE configuration */ ret = ath10k_pci_diag_read_access(ar, interconnect_targ_addr, &pcie_state_targ_addr); if (ret != 0) { ath10k_err("Failed to get pcie state addr: %d\n", ret); return ret; } if (pcie_state_targ_addr == 0) { ret = -EIO; ath10k_err("Invalid pcie state addr\n"); return ret; } ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + offsetof(struct pcie_state, pipe_cfg_addr), &pipe_cfg_targ_addr); if (ret != 0) { ath10k_err("Failed to get pipe cfg addr: %d\n", ret); return ret; } if (pipe_cfg_targ_addr == 0) { ret = -EIO; ath10k_err("Invalid pipe cfg addr\n"); return ret; } ret = ath10k_pci_diag_write_mem(ar, pipe_cfg_targ_addr, target_ce_config_wlan, sizeof(target_ce_config_wlan)); if (ret != 0) { ath10k_err("Failed to write pipe cfg: %d\n", ret); return ret; } ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + offsetof(struct pcie_state, svc_to_pipe_map), &svc_to_pipe_map); if (ret != 0) { ath10k_err("Failed to get svc/pipe map: %d\n", ret); return ret; } if (svc_to_pipe_map == 0) { ret = -EIO; ath10k_err("Invalid svc_to_pipe map\n"); return ret; } ret = ath10k_pci_diag_write_mem(ar, svc_to_pipe_map, target_service_to_ce_map_wlan, sizeof(target_service_to_ce_map_wlan)); if (ret != 0) { ath10k_err("Failed to write svc/pipe map: %d\n", ret); return ret; } ret = ath10k_pci_diag_read_access(ar, pcie_state_targ_addr + offsetof(struct pcie_state, config_flags), &pcie_config_flags); if (ret != 0) { ath10k_err("Failed to get pcie config_flags: %d\n", ret); return ret; } pcie_config_flags &= ~PCIE_CONFIG_FLAG_ENABLE_L1; ret = ath10k_pci_diag_write_mem(ar, pcie_state_targ_addr + offsetof(struct pcie_state, config_flags), &pcie_config_flags, sizeof(pcie_config_flags)); if (ret != 0) { ath10k_err("Failed to write pcie config_flags: %d\n", ret); return ret; } /* configure early allocation */ ealloc_targ_addr = host_interest_item_address(HI_ITEM(hi_early_alloc)); ret = ath10k_pci_diag_read_access(ar, ealloc_targ_addr, &ealloc_value); if (ret != 0) { ath10k_err("Faile to get early alloc val: %d\n", ret); return ret; } /* first bank is switched to IRAM */ ealloc_value |= ((HI_EARLY_ALLOC_MAGIC << HI_EARLY_ALLOC_MAGIC_SHIFT) & HI_EARLY_ALLOC_MAGIC_MASK); ealloc_value |= ((1 << HI_EARLY_ALLOC_IRAM_BANKS_SHIFT) & HI_EARLY_ALLOC_IRAM_BANKS_MASK); ret = ath10k_pci_diag_write_access(ar, ealloc_targ_addr, ealloc_value); if (ret != 0) { ath10k_err("Failed to set early alloc val: %d\n", ret); return ret; } /* Tell Target to proceed with initialization */ flag2_targ_addr = host_interest_item_address(HI_ITEM(hi_option_flag2)); ret = ath10k_pci_diag_read_access(ar, flag2_targ_addr, &flag2_value); if (ret != 0) { ath10k_err("Failed to get option val: %d\n", ret); return ret; } flag2_value |= HI_OPTION_EARLY_CFG_DONE; ret = ath10k_pci_diag_write_access(ar, flag2_targ_addr, flag2_value); if (ret != 0) { ath10k_err("Failed to set option val: %d\n", ret); return ret; } return 0; } static int ath10k_pci_ce_init(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct ath10k_pci_pipe *pipe_info; const struct ce_attr *attr; int pipe_num; for (pipe_num = 0; pipe_num < CE_COUNT; pipe_num++) { pipe_info = &ar_pci->pipe_info[pipe_num]; pipe_info->pipe_num = pipe_num; pipe_info->hif_ce_state = ar; attr = &host_ce_config_wlan[pipe_num]; pipe_info->ce_hdl = ath10k_ce_init(ar, pipe_num, attr); if (pipe_info->ce_hdl == NULL) { ath10k_err("Unable to initialize CE for pipe: %d\n", pipe_num); /* It is safe to call it here. It checks if ce_hdl is * valid for each pipe */ ath10k_pci_ce_deinit(ar); return -1; } if (pipe_num == CE_COUNT - 1) { /* * Reserve the ultimate CE for * diagnostic Window support */ ar_pci->ce_diag = pipe_info->ce_hdl; continue; } pipe_info->buf_sz = (size_t) (attr->src_sz_max); } /* * Initially, establish CE completion handlers for use with BMI. * These are overwritten with generic handlers after we exit BMI phase. */ pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_TARG]; ath10k_ce_send_cb_register(pipe_info->ce_hdl, ath10k_pci_bmi_send_done, 0); pipe_info = &ar_pci->pipe_info[BMI_CE_NUM_TO_HOST]; ath10k_ce_recv_cb_register(pipe_info->ce_hdl, ath10k_pci_bmi_recv_data); return 0; } static void ath10k_pci_fw_interrupt_handler(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); u32 fw_indicator_address, fw_indicator; ath10k_pci_wake(ar); fw_indicator_address = ar_pci->fw_indicator_address; fw_indicator = ath10k_pci_read32(ar, fw_indicator_address); if (fw_indicator & FW_IND_EVENT_PENDING) { /* ACK: clear Target-side pending event */ ath10k_pci_write32(ar, fw_indicator_address, fw_indicator & ~FW_IND_EVENT_PENDING); if (ar_pci->started) { ath10k_pci_hif_dump_area(ar); } else { /* * Probable Target failure before we're prepared * to handle it. Generally unexpected. */ ath10k_warn("early firmware event indicated\n"); } } ath10k_pci_sleep(ar); } static int ath10k_pci_hif_power_up(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ret = ath10k_pci_start_intr(ar); if (ret) { ath10k_err("could not start interrupt handling (%d)\n", ret); goto err; } /* * Bring the target up cleanly. * * The target may be in an undefined state with an AUX-powered Target * and a Host in WoW mode. If the Host crashes, loses power, or is * restarted (without unloading the driver) then the Target is left * (aux) powered and running. On a subsequent driver load, the Target * is in an unexpected state. We try to catch that here in order to * reset the Target and retry the probe. */ ret = ath10k_pci_device_reset(ar); if (ret) { ath10k_err("failed to reset target: %d\n", ret); goto err_irq; } ret = ath10k_pci_wait_for_target_init(ar); if (ret) goto err_irq; if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features)) /* Force AWAKE forever */ ath10k_do_pci_wake(ar); ret = ath10k_pci_ce_init(ar); if (ret) goto err_ps; ret = ath10k_pci_init_config(ar); if (ret) goto err_ce; ret = ath10k_pci_wake_target_cpu(ar); if (ret) { ath10k_err("could not wake up target CPU (%d)\n", ret); goto err_ce; } return 0; err_ce: ath10k_pci_ce_deinit(ar); err_ps: if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features)) ath10k_do_pci_sleep(ar); err_irq: ath10k_pci_stop_intr(ar); err: return ret; } static void ath10k_pci_hif_power_down(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_pci_stop_intr(ar); ath10k_pci_ce_deinit(ar); if (!test_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features)) ath10k_do_pci_sleep(ar); } #ifdef CONFIG_PM #define ATH10K_PCI_PM_CONTROL 0x44 static int ath10k_pci_hif_suspend(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct pci_dev *pdev = ar_pci->pdev; u32 val; pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val); if ((val & 0x000000ff) != 0x3) { pci_save_state(pdev); pci_disable_device(pdev); pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL, (val & 0xffffff00) | 0x03); } return 0; } static int ath10k_pci_hif_resume(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); struct pci_dev *pdev = ar_pci->pdev; u32 val; pci_read_config_dword(pdev, ATH10K_PCI_PM_CONTROL, &val); if ((val & 0x000000ff) != 0) { pci_restore_state(pdev); pci_write_config_dword(pdev, ATH10K_PCI_PM_CONTROL, val & 0xffffff00); /* * Suspend/Resume resets the PCI configuration space, * so we have to re-disable the RETRY_TIMEOUT register (0x41) * to keep PCI Tx retries from interfering with C3 CPU state */ pci_read_config_dword(pdev, 0x40, &val); if ((val & 0x0000ff00) != 0) pci_write_config_dword(pdev, 0x40, val & 0xffff00ff); } return 0; } #endif static const struct ath10k_hif_ops ath10k_pci_hif_ops = { .send_head = ath10k_pci_hif_send_head, .exchange_bmi_msg = ath10k_pci_hif_exchange_bmi_msg, .start = ath10k_pci_hif_start, .stop = ath10k_pci_hif_stop, .map_service_to_pipe = ath10k_pci_hif_map_service_to_pipe, .get_default_pipe = ath10k_pci_hif_get_default_pipe, .send_complete_check = ath10k_pci_hif_send_complete_check, .set_callbacks = ath10k_pci_hif_set_callbacks, .get_free_queue_number = ath10k_pci_hif_get_free_queue_number, .power_up = ath10k_pci_hif_power_up, .power_down = ath10k_pci_hif_power_down, #ifdef CONFIG_PM .suspend = ath10k_pci_hif_suspend, .resume = ath10k_pci_hif_resume, #endif }; static void ath10k_pci_ce_tasklet(unsigned long ptr) { struct ath10k_pci_pipe *pipe = (struct ath10k_pci_pipe *)ptr; struct ath10k_pci *ar_pci = pipe->ar_pci; ath10k_ce_per_engine_service(ar_pci->ar, pipe->pipe_num); } static void ath10k_msi_err_tasklet(unsigned long data) { struct ath10k *ar = (struct ath10k *)data; ath10k_pci_fw_interrupt_handler(ar); } /* * Handler for a per-engine interrupt on a PARTICULAR CE. * This is used in cases where each CE has a private MSI interrupt. */ static irqreturn_t ath10k_pci_per_engine_handler(int irq, void *arg) { struct ath10k *ar = arg; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ce_id = irq - ar_pci->pdev->irq - MSI_ASSIGN_CE_INITIAL; if (ce_id < 0 || ce_id >= ARRAY_SIZE(ar_pci->pipe_info)) { ath10k_warn("unexpected/invalid irq %d ce_id %d\n", irq, ce_id); return IRQ_HANDLED; } /* * NOTE: We are able to derive ce_id from irq because we * use a one-to-one mapping for CE's 0..5. * CE's 6 & 7 do not use interrupts at all. * * This mapping must be kept in sync with the mapping * used by firmware. */ tasklet_schedule(&ar_pci->pipe_info[ce_id].intr); return IRQ_HANDLED; } static irqreturn_t ath10k_pci_msi_fw_handler(int irq, void *arg) { struct ath10k *ar = arg; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); tasklet_schedule(&ar_pci->msi_fw_err); return IRQ_HANDLED; } /* * Top-level interrupt handler for all PCI interrupts from a Target. * When a block of MSI interrupts is allocated, this top-level handler * is not used; instead, we directly call the correct sub-handler. */ static irqreturn_t ath10k_pci_interrupt_handler(int irq, void *arg) { struct ath10k *ar = arg; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); if (ar_pci->num_msi_intrs == 0) { /* * IMPORTANT: INTR_CLR regiser has to be set after * INTR_ENABLE is set to 0, otherwise interrupt can not be * really cleared. */ iowrite32(0, ar_pci->mem + (SOC_CORE_BASE_ADDRESS | PCIE_INTR_ENABLE_ADDRESS)); iowrite32(PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL, ar_pci->mem + (SOC_CORE_BASE_ADDRESS | PCIE_INTR_CLR_ADDRESS)); /* * IMPORTANT: this extra read transaction is required to * flush the posted write buffer. */ (void) ioread32(ar_pci->mem + (SOC_CORE_BASE_ADDRESS | PCIE_INTR_ENABLE_ADDRESS)); } tasklet_schedule(&ar_pci->intr_tq); return IRQ_HANDLED; } static void ath10k_pci_tasklet(unsigned long data) { struct ath10k *ar = (struct ath10k *)data; struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); ath10k_pci_fw_interrupt_handler(ar); /* FIXME: Handle FW error */ ath10k_ce_per_engine_service_any(ar); if (ar_pci->num_msi_intrs == 0) { /* Enable Legacy PCI line interrupts */ iowrite32(PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL, ar_pci->mem + (SOC_CORE_BASE_ADDRESS | PCIE_INTR_ENABLE_ADDRESS)); /* * IMPORTANT: this extra read transaction is required to * flush the posted write buffer */ (void) ioread32(ar_pci->mem + (SOC_CORE_BASE_ADDRESS | PCIE_INTR_ENABLE_ADDRESS)); } } static int ath10k_pci_start_intr_msix(struct ath10k *ar, int num) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; int i; ret = pci_enable_msi_block(ar_pci->pdev, num); if (ret) return ret; ret = request_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ath10k_pci_msi_fw_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret) { ath10k_warn("request_irq(%d) failed %d\n", ar_pci->pdev->irq + MSI_ASSIGN_FW, ret); pci_disable_msi(ar_pci->pdev); return ret; } for (i = MSI_ASSIGN_CE_INITIAL; i <= MSI_ASSIGN_CE_MAX; i++) { ret = request_irq(ar_pci->pdev->irq + i, ath10k_pci_per_engine_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret) { ath10k_warn("request_irq(%d) failed %d\n", ar_pci->pdev->irq + i, ret); for (i--; i >= MSI_ASSIGN_CE_INITIAL; i--) free_irq(ar_pci->pdev->irq + i, ar); free_irq(ar_pci->pdev->irq + MSI_ASSIGN_FW, ar); pci_disable_msi(ar_pci->pdev); return ret; } } ath10k_info("MSI-X interrupt handling (%d intrs)\n", num); return 0; } static int ath10k_pci_start_intr_msi(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ret = pci_enable_msi(ar_pci->pdev); if (ret < 0) return ret; ret = request_irq(ar_pci->pdev->irq, ath10k_pci_interrupt_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret < 0) { pci_disable_msi(ar_pci->pdev); return ret; } ath10k_info("MSI interrupt handling\n"); return 0; } static int ath10k_pci_start_intr_legacy(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int ret; ret = request_irq(ar_pci->pdev->irq, ath10k_pci_interrupt_handler, IRQF_SHARED, "ath10k_pci", ar); if (ret < 0) return ret; ret = ath10k_do_pci_wake(ar); if (ret) { free_irq(ar_pci->pdev->irq, ar); ath10k_err("failed to wake up target: %d\n", ret); return ret; } /* * A potential race occurs here: The CORE_BASE write * depends on target correctly decoding AXI address but * host won't know when target writes BAR to CORE_CTRL. * This write might get lost if target has NOT written BAR. * For now, fix the race by repeating the write in below * synchronization checking. */ iowrite32(PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL, ar_pci->mem + (SOC_CORE_BASE_ADDRESS | PCIE_INTR_ENABLE_ADDRESS)); ath10k_do_pci_sleep(ar); ath10k_info("legacy interrupt handling\n"); return 0; } static int ath10k_pci_start_intr(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int num = MSI_NUM_REQUEST; int ret; int i; tasklet_init(&ar_pci->intr_tq, ath10k_pci_tasklet, (unsigned long) ar); tasklet_init(&ar_pci->msi_fw_err, ath10k_msi_err_tasklet, (unsigned long) ar); for (i = 0; i < CE_COUNT; i++) { ar_pci->pipe_info[i].ar_pci = ar_pci; tasklet_init(&ar_pci->pipe_info[i].intr, ath10k_pci_ce_tasklet, (unsigned long)&ar_pci->pipe_info[i]); } if (!test_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features)) num = 1; if (num > 1) { ret = ath10k_pci_start_intr_msix(ar, num); if (ret == 0) goto exit; ath10k_warn("MSI-X didn't succeed (%d), trying MSI\n", ret); num = 1; } if (num == 1) { ret = ath10k_pci_start_intr_msi(ar); if (ret == 0) goto exit; ath10k_warn("MSI didn't succeed (%d), trying legacy INTR\n", ret); num = 0; } ret = ath10k_pci_start_intr_legacy(ar); if (ret) { ath10k_warn("Failed to start legacy interrupts: %d\n", ret); return ret; } exit: ar_pci->num_msi_intrs = num; return ret; } static void ath10k_pci_stop_intr(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int i; /* There's at least one interrupt irregardless whether its legacy INTR * or MSI or MSI-X */ for (i = 0; i < max(1, ar_pci->num_msi_intrs); i++) free_irq(ar_pci->pdev->irq + i, ar); if (ar_pci->num_msi_intrs > 0) pci_disable_msi(ar_pci->pdev); } static int ath10k_pci_wait_for_target_init(struct ath10k *ar) { struct ath10k_pci *ar_pci = ath10k_pci_priv(ar); int wait_limit = 300; /* 3 sec */ int ret; ret = ath10k_do_pci_wake(ar); if (ret) { ath10k_err("failed to wake up target: %d\n", ret); return ret; } while (wait_limit-- && !(ioread32(ar_pci->mem + FW_INDICATOR_ADDRESS) & FW_IND_INITIALIZED)) { if (ar_pci->num_msi_intrs == 0) /* Fix potential race by repeating CORE_BASE writes */ iowrite32(PCIE_INTR_FIRMWARE_MASK | PCIE_INTR_CE_MASK_ALL, ar_pci->mem + (SOC_CORE_BASE_ADDRESS | PCIE_INTR_ENABLE_ADDRESS)); mdelay(10); } if (wait_limit < 0) { ath10k_err("target stalled\n"); ret = -EIO; goto out; } out: ath10k_do_pci_sleep(ar); return ret; } static int ath10k_pci_device_reset(struct ath10k *ar) { int i, ret; u32 val; ret = ath10k_do_pci_wake(ar); if (ret) { ath10k_err("failed to wake up target: %d\n", ret); return ret; } /* Put Target, including PCIe, into RESET. */ val = ath10k_pci_reg_read32(ar, SOC_GLOBAL_RESET_ADDRESS); val |= 1; ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) { if (ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) & RTC_STATE_COLD_RESET_MASK) break; msleep(1); } /* Pull Target, including PCIe, out of RESET. */ val &= ~1; ath10k_pci_reg_write32(ar, SOC_GLOBAL_RESET_ADDRESS, val); for (i = 0; i < ATH_PCI_RESET_WAIT_MAX; i++) { if (!(ath10k_pci_reg_read32(ar, RTC_STATE_ADDRESS) & RTC_STATE_COLD_RESET_MASK)) break; msleep(1); } ath10k_do_pci_sleep(ar); return 0; } static void ath10k_pci_dump_features(struct ath10k_pci *ar_pci) { int i; for (i = 0; i < ATH10K_PCI_FEATURE_COUNT; i++) { if (!test_bit(i, ar_pci->features)) continue; switch (i) { case ATH10K_PCI_FEATURE_MSI_X: ath10k_dbg(ATH10K_DBG_BOOT, "device supports MSI-X\n"); break; case ATH10K_PCI_FEATURE_SOC_POWER_SAVE: ath10k_dbg(ATH10K_DBG_BOOT, "QCA98XX SoC power save enabled\n"); break; } } } static int ath10k_pci_probe(struct pci_dev *pdev, const struct pci_device_id *pci_dev) { void __iomem *mem; int ret = 0; struct ath10k *ar; struct ath10k_pci *ar_pci; u32 lcr_val, chip_id; ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); ar_pci = kzalloc(sizeof(*ar_pci), GFP_KERNEL); if (ar_pci == NULL) return -ENOMEM; ar_pci->pdev = pdev; ar_pci->dev = &pdev->dev; switch (pci_dev->device) { case QCA988X_2_0_DEVICE_ID: set_bit(ATH10K_PCI_FEATURE_MSI_X, ar_pci->features); break; default: ret = -ENODEV; ath10k_err("Unkown device ID: %d\n", pci_dev->device); goto err_ar_pci; } if (ath10k_target_ps) set_bit(ATH10K_PCI_FEATURE_SOC_POWER_SAVE, ar_pci->features); ath10k_pci_dump_features(ar_pci); ar = ath10k_core_create(ar_pci, ar_pci->dev, &ath10k_pci_hif_ops); if (!ar) { ath10k_err("ath10k_core_create failed!\n"); ret = -EINVAL; goto err_ar_pci; } ar_pci->ar = ar; ar_pci->fw_indicator_address = FW_INDICATOR_ADDRESS; atomic_set(&ar_pci->keep_awake_count, 0); pci_set_drvdata(pdev, ar); /* * Without any knowledge of the Host, the Target may have been reset or * power cycled and its Config Space may no longer reflect the PCI * address space that was assigned earlier by the PCI infrastructure. * Refresh it now. */ ret = pci_assign_resource(pdev, BAR_NUM); if (ret) { ath10k_err("cannot assign PCI space: %d\n", ret); goto err_ar; } ret = pci_enable_device(pdev); if (ret) { ath10k_err("cannot enable PCI device: %d\n", ret); goto err_ar; } /* Request MMIO resources */ ret = pci_request_region(pdev, BAR_NUM, "ath"); if (ret) { ath10k_err("PCI MMIO reservation error: %d\n", ret); goto err_device; } /* * Target structures have a limit of 32 bit DMA pointers. * DMA pointers can be wider than 32 bits by default on some systems. */ ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret) { ath10k_err("32-bit DMA not available: %d\n", ret); goto err_region; } ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret) { ath10k_err("cannot enable 32-bit consistent DMA\n"); goto err_region; } /* Set bus master bit in PCI_COMMAND to enable DMA */ pci_set_master(pdev); /* * Temporary FIX: disable ASPM * Will be removed after the OTP is programmed */ pci_read_config_dword(pdev, 0x80, &lcr_val); pci_write_config_dword(pdev, 0x80, (lcr_val & 0xffffff00)); /* Arrange for access to Target SoC registers. */ mem = pci_iomap(pdev, BAR_NUM, 0); if (!mem) { ath10k_err("PCI iomap error\n"); ret = -EIO; goto err_master; } ar_pci->mem = mem; spin_lock_init(&ar_pci->ce_lock); ret = ath10k_do_pci_wake(ar); if (ret) { ath10k_err("Failed to get chip id: %d\n", ret); goto err_iomap; } chip_id = ath10k_pci_soc_read32(ar, SOC_CHIP_ID_ADDRESS); ath10k_do_pci_sleep(ar); ath10k_dbg(ATH10K_DBG_BOOT, "boot pci_mem 0x%p\n", ar_pci->mem); ret = ath10k_core_register(ar, chip_id); if (ret) { ath10k_err("could not register driver core (%d)\n", ret); goto err_iomap; } return 0; err_iomap: pci_iounmap(pdev, mem); err_master: pci_clear_master(pdev); err_region: pci_release_region(pdev, BAR_NUM); err_device: pci_disable_device(pdev); err_ar: ath10k_core_destroy(ar); err_ar_pci: /* call HIF PCI free here */ kfree(ar_pci); return ret; } static void ath10k_pci_remove(struct pci_dev *pdev) { struct ath10k *ar = pci_get_drvdata(pdev); struct ath10k_pci *ar_pci; ath10k_dbg(ATH10K_DBG_PCI, "%s\n", __func__); if (!ar) return; ar_pci = ath10k_pci_priv(ar); if (!ar_pci) return; tasklet_kill(&ar_pci->msi_fw_err); ath10k_core_unregister(ar); pci_iounmap(pdev, ar_pci->mem); pci_release_region(pdev, BAR_NUM); pci_clear_master(pdev); pci_disable_device(pdev); ath10k_core_destroy(ar); kfree(ar_pci); } MODULE_DEVICE_TABLE(pci, ath10k_pci_id_table); static struct pci_driver ath10k_pci_driver = { .name = "ath10k_pci", .id_table = ath10k_pci_id_table, .probe = ath10k_pci_probe, .remove = ath10k_pci_remove, }; static int __init ath10k_pci_init(void) { int ret; ret = pci_register_driver(&ath10k_pci_driver); if (ret) ath10k_err("pci_register_driver failed [%d]\n", ret); return ret; } module_init(ath10k_pci_init); static void __exit ath10k_pci_exit(void) { pci_unregister_driver(&ath10k_pci_driver); } module_exit(ath10k_pci_exit); MODULE_AUTHOR("Qualcomm Atheros"); MODULE_DESCRIPTION("Driver support for Atheros QCA988X PCIe devices"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_FW_FILE); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_OTP_FILE); MODULE_FIRMWARE(QCA988X_HW_2_0_FW_DIR "/" QCA988X_HW_2_0_BOARD_DATA_FILE);