/* * Copyright (C) 2010 Kent Overstreet * * Uses a block device as cache for other block devices; optimized for SSDs. * All allocation is done in buckets, which should match the erase block size * of the device. * * Buckets containing cached data are kept on a heap sorted by priority; * bucket priority is increased on cache hit, and periodically all the buckets * on the heap have their priority scaled down. This currently is just used as * an LRU but in the future should allow for more intelligent heuristics. * * Buckets have an 8 bit counter; freeing is accomplished by incrementing the * counter. Garbage collection is used to remove stale pointers. * * Indexing is done via a btree; nodes are not necessarily fully sorted, rather * as keys are inserted we only sort the pages that have not yet been written. * When garbage collection is run, we resort the entire node. * * All configuration is done via sysfs; see Documentation/bcache.txt. */ #include "bcache.h" #include "btree.h" #include "debug.h" #include "writeback.h" #include #include #include #include #include #include #include #include #include /* * Todo: * register_bcache: Return errors out to userspace correctly * * Writeback: don't undirty key until after a cache flush * * Create an iterator for key pointers * * On btree write error, mark bucket such that it won't be freed from the cache * * Journalling: * Check for bad keys in replay * Propagate barriers * Refcount journal entries in journal_replay * * Garbage collection: * Finish incremental gc * Gc should free old UUIDs, data for invalid UUIDs * * Provide a way to list backing device UUIDs we have data cached for, and * probably how long it's been since we've seen them, and a way to invalidate * dirty data for devices that will never be attached again * * Keep 1 min/5 min/15 min statistics of how busy a block device has been, so * that based on that and how much dirty data we have we can keep writeback * from being starved * * Add a tracepoint or somesuch to watch for writeback starvation * * When btree depth > 1 and splitting an interior node, we have to make sure * alloc_bucket() cannot fail. This should be true but is not completely * obvious. * * Make sure all allocations get charged to the root cgroup * * Plugging? * * If data write is less than hard sector size of ssd, round up offset in open * bucket to the next whole sector * * Also lookup by cgroup in get_open_bucket() * * Superblock needs to be fleshed out for multiple cache devices * * Add a sysfs tunable for the number of writeback IOs in flight * * Add a sysfs tunable for the number of open data buckets * * IO tracking: Can we track when one process is doing io on behalf of another? * IO tracking: Don't use just an average, weigh more recent stuff higher * * Test module load/unload */ enum { BTREE_INSERT_STATUS_INSERT, BTREE_INSERT_STATUS_BACK_MERGE, BTREE_INSERT_STATUS_OVERWROTE, BTREE_INSERT_STATUS_FRONT_MERGE, }; #define MAX_NEED_GC 64 #define MAX_SAVE_PRIO 72 #define PTR_DIRTY_BIT (((uint64_t) 1 << 36)) #define PTR_HASH(c, k) \ (((k)->ptr[0] >> c->bucket_bits) | PTR_GEN(k, 0)) static struct workqueue_struct *btree_io_wq; static inline bool should_split(struct btree *b) { struct bset *i = write_block(b); return b->written >= btree_blocks(b) || (b->written + __set_blocks(i, i->keys + 15, b->c) > btree_blocks(b)); } #define insert_lock(s, b) ((b)->level <= (s)->lock) /* * These macros are for recursing down the btree - they handle the details of * locking and looking up nodes in the cache for you. They're best treated as * mere syntax when reading code that uses them. * * op->lock determines whether we take a read or a write lock at a given depth. * If you've got a read lock and find that you need a write lock (i.e. you're * going to have to split), set op->lock and return -EINTR; btree_root() will * call you again and you'll have the correct lock. */ /** * btree - recurse down the btree on a specified key * @fn: function to call, which will be passed the child node * @key: key to recurse on * @b: parent btree node * @op: pointer to struct btree_op */ #define btree(fn, key, b, op, ...) \ ({ \ int _r, l = (b)->level - 1; \ bool _w = l <= (op)->lock; \ struct btree *_child = bch_btree_node_get((b)->c, key, l, _w); \ if (!IS_ERR(_child)) { \ _child->parent = (b); \ _r = bch_btree_ ## fn(_child, op, ##__VA_ARGS__); \ rw_unlock(_w, _child); \ } else \ _r = PTR_ERR(_child); \ _r; \ }) /** * btree_root - call a function on the root of the btree * @fn: function to call, which will be passed the child node * @c: cache set * @op: pointer to struct btree_op */ #define btree_root(fn, c, op, ...) \ ({ \ int _r = -EINTR; \ do { \ struct btree *_b = (c)->root; \ bool _w = insert_lock(op, _b); \ rw_lock(_w, _b, _b->level); \ if (_b == (c)->root && \ _w == insert_lock(op, _b)) { \ _b->parent = NULL; \ _r = bch_btree_ ## fn(_b, op, ##__VA_ARGS__); \ } \ rw_unlock(_w, _b); \ bch_cannibalize_unlock(c); \ if (_r == -ENOSPC) { \ wait_event((c)->try_wait, \ !(c)->try_harder); \ _r = -EINTR; \ } \ } while (_r == -EINTR); \ \ _r; \ }) /* Btree key manipulation */ void __bkey_put(struct cache_set *c, struct bkey *k) { unsigned i; for (i = 0; i < KEY_PTRS(k); i++) if (ptr_available(c, k, i)) atomic_dec_bug(&PTR_BUCKET(c, k, i)->pin); } static void bkey_put(struct cache_set *c, struct bkey *k, int level) { if ((level && KEY_OFFSET(k)) || !level) __bkey_put(c, k); } /* Btree IO */ static uint64_t btree_csum_set(struct btree *b, struct bset *i) { uint64_t crc = b->key.ptr[0]; void *data = (void *) i + 8, *end = end(i); crc = bch_crc64_update(crc, data, end - data); return crc ^ 0xffffffffffffffffULL; } static void bch_btree_node_read_done(struct btree *b) { const char *err = "bad btree header"; struct bset *i = b->sets[0].data; struct btree_iter *iter; iter = mempool_alloc(b->c->fill_iter, GFP_NOWAIT); iter->size = b->c->sb.bucket_size / b->c->sb.block_size; iter->used = 0; #ifdef CONFIG_BCACHE_DEBUG iter->b = b; #endif if (!i->seq) goto err; for (; b->written < btree_blocks(b) && i->seq == b->sets[0].data->seq; i = write_block(b)) { err = "unsupported bset version"; if (i->version > BCACHE_BSET_VERSION) goto err; err = "bad btree header"; if (b->written + set_blocks(i, b->c) > btree_blocks(b)) goto err; err = "bad magic"; if (i->magic != bset_magic(&b->c->sb)) goto err; err = "bad checksum"; switch (i->version) { case 0: if (i->csum != csum_set(i)) goto err; break; case BCACHE_BSET_VERSION: if (i->csum != btree_csum_set(b, i)) goto err; break; } err = "empty set"; if (i != b->sets[0].data && !i->keys) goto err; bch_btree_iter_push(iter, i->start, end(i)); b->written += set_blocks(i, b->c); } err = "corrupted btree"; for (i = write_block(b); index(i, b) < btree_blocks(b); i = ((void *) i) + block_bytes(b->c)) if (i->seq == b->sets[0].data->seq) goto err; bch_btree_sort_and_fix_extents(b, iter); i = b->sets[0].data; err = "short btree key"; if (b->sets[0].size && bkey_cmp(&b->key, &b->sets[0].end) < 0) goto err; if (b->written < btree_blocks(b)) bch_bset_init_next(b); out: mempool_free(iter, b->c->fill_iter); return; err: set_btree_node_io_error(b); bch_cache_set_error(b->c, "%s at bucket %zu, block %zu, %u keys", err, PTR_BUCKET_NR(b->c, &b->key, 0), index(i, b), i->keys); goto out; } static void btree_node_read_endio(struct bio *bio, int error) { struct closure *cl = bio->bi_private; closure_put(cl); } void bch_btree_node_read(struct btree *b) { uint64_t start_time = local_clock(); struct closure cl; struct bio *bio; trace_bcache_btree_read(b); closure_init_stack(&cl); bio = bch_bbio_alloc(b->c); bio->bi_rw = REQ_META|READ_SYNC; bio->bi_size = KEY_SIZE(&b->key) << 9; bio->bi_end_io = btree_node_read_endio; bio->bi_private = &cl; bch_bio_map(bio, b->sets[0].data); bch_submit_bbio(bio, b->c, &b->key, 0); closure_sync(&cl); if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) set_btree_node_io_error(b); bch_bbio_free(bio, b->c); if (btree_node_io_error(b)) goto err; bch_btree_node_read_done(b); spin_lock(&b->c->btree_read_time_lock); bch_time_stats_update(&b->c->btree_read_time, start_time); spin_unlock(&b->c->btree_read_time_lock); return; err: bch_cache_set_error(b->c, "io error reading bucket %zu", PTR_BUCKET_NR(b->c, &b->key, 0)); } static void btree_complete_write(struct btree *b, struct btree_write *w) { if (w->prio_blocked && !atomic_sub_return(w->prio_blocked, &b->c->prio_blocked)) wake_up_allocators(b->c); if (w->journal) { atomic_dec_bug(w->journal); __closure_wake_up(&b->c->journal.wait); } w->prio_blocked = 0; w->journal = NULL; } static void __btree_node_write_done(struct closure *cl) { struct btree *b = container_of(cl, struct btree, io.cl); struct btree_write *w = btree_prev_write(b); bch_bbio_free(b->bio, b->c); b->bio = NULL; btree_complete_write(b, w); if (btree_node_dirty(b)) queue_delayed_work(btree_io_wq, &b->work, msecs_to_jiffies(30000)); closure_return(cl); } static void btree_node_write_done(struct closure *cl) { struct btree *b = container_of(cl, struct btree, io.cl); struct bio_vec *bv; int n; __bio_for_each_segment(bv, b->bio, n, 0) __free_page(bv->bv_page); __btree_node_write_done(cl); } static void btree_node_write_endio(struct bio *bio, int error) { struct closure *cl = bio->bi_private; struct btree *b = container_of(cl, struct btree, io.cl); if (error) set_btree_node_io_error(b); bch_bbio_count_io_errors(b->c, bio, error, "writing btree"); closure_put(cl); } static void do_btree_node_write(struct btree *b) { struct closure *cl = &b->io.cl; struct bset *i = b->sets[b->nsets].data; BKEY_PADDED(key) k; i->version = BCACHE_BSET_VERSION; i->csum = btree_csum_set(b, i); BUG_ON(b->bio); b->bio = bch_bbio_alloc(b->c); b->bio->bi_end_io = btree_node_write_endio; b->bio->bi_private = cl; b->bio->bi_rw = REQ_META|WRITE_SYNC|REQ_FUA; b->bio->bi_size = set_blocks(i, b->c) * block_bytes(b->c); bch_bio_map(b->bio, i); /* * If we're appending to a leaf node, we don't technically need FUA - * this write just needs to be persisted before the next journal write, * which will be marked FLUSH|FUA. * * Similarly if we're writing a new btree root - the pointer is going to * be in the next journal entry. * * But if we're writing a new btree node (that isn't a root) or * appending to a non leaf btree node, we need either FUA or a flush * when we write the parent with the new pointer. FUA is cheaper than a * flush, and writes appending to leaf nodes aren't blocking anything so * just make all btree node writes FUA to keep things sane. */ bkey_copy(&k.key, &b->key); SET_PTR_OFFSET(&k.key, 0, PTR_OFFSET(&k.key, 0) + bset_offset(b, i)); if (!bio_alloc_pages(b->bio, GFP_NOIO)) { int j; struct bio_vec *bv; void *base = (void *) ((unsigned long) i & ~(PAGE_SIZE - 1)); bio_for_each_segment(bv, b->bio, j) memcpy(page_address(bv->bv_page), base + j * PAGE_SIZE, PAGE_SIZE); bch_submit_bbio(b->bio, b->c, &k.key, 0); continue_at(cl, btree_node_write_done, NULL); } else { b->bio->bi_vcnt = 0; bch_bio_map(b->bio, i); bch_submit_bbio(b->bio, b->c, &k.key, 0); closure_sync(cl); __btree_node_write_done(cl); } } void bch_btree_node_write(struct btree *b, struct closure *parent) { struct bset *i = b->sets[b->nsets].data; trace_bcache_btree_write(b); BUG_ON(current->bio_list); BUG_ON(b->written >= btree_blocks(b)); BUG_ON(b->written && !i->keys); BUG_ON(b->sets->data->seq != i->seq); bch_check_keys(b, "writing"); cancel_delayed_work(&b->work); /* If caller isn't waiting for write, parent refcount is cache set */ closure_lock(&b->io, parent ?: &b->c->cl); clear_bit(BTREE_NODE_dirty, &b->flags); change_bit(BTREE_NODE_write_idx, &b->flags); do_btree_node_write(b); b->written += set_blocks(i, b->c); atomic_long_add(set_blocks(i, b->c) * b->c->sb.block_size, &PTR_CACHE(b->c, &b->key, 0)->btree_sectors_written); bch_btree_sort_lazy(b); if (b->written < btree_blocks(b)) bch_bset_init_next(b); } static void btree_node_write_work(struct work_struct *w) { struct btree *b = container_of(to_delayed_work(w), struct btree, work); rw_lock(true, b, b->level); if (btree_node_dirty(b)) bch_btree_node_write(b, NULL); rw_unlock(true, b); } static void bch_btree_leaf_dirty(struct btree *b, atomic_t *journal_ref) { struct bset *i = b->sets[b->nsets].data; struct btree_write *w = btree_current_write(b); BUG_ON(!b->written); BUG_ON(!i->keys); if (!btree_node_dirty(b)) queue_delayed_work(btree_io_wq, &b->work, 30 * HZ); set_btree_node_dirty(b); if (journal_ref) { if (w->journal && journal_pin_cmp(b->c, w->journal, journal_ref)) { atomic_dec_bug(w->journal); w->journal = NULL; } if (!w->journal) { w->journal = journal_ref; atomic_inc(w->journal); } } /* Force write if set is too big */ if (set_bytes(i) > PAGE_SIZE - 48 && !current->bio_list) bch_btree_node_write(b, NULL); } /* * Btree in memory cache - allocation/freeing * mca -> memory cache */ static void mca_reinit(struct btree *b) { unsigned i; b->flags = 0; b->written = 0; b->nsets = 0; for (i = 0; i < MAX_BSETS; i++) b->sets[i].size = 0; /* * Second loop starts at 1 because b->sets[0]->data is the memory we * allocated */ for (i = 1; i < MAX_BSETS; i++) b->sets[i].data = NULL; } #define mca_reserve(c) (((c->root && c->root->level) \ ? c->root->level : 1) * 8 + 16) #define mca_can_free(c) \ max_t(int, 0, c->bucket_cache_used - mca_reserve(c)) static void mca_data_free(struct btree *b) { struct bset_tree *t = b->sets; BUG_ON(!closure_is_unlocked(&b->io.cl)); if (bset_prev_bytes(b) < PAGE_SIZE) kfree(t->prev); else free_pages((unsigned long) t->prev, get_order(bset_prev_bytes(b))); if (bset_tree_bytes(b) < PAGE_SIZE) kfree(t->tree); else free_pages((unsigned long) t->tree, get_order(bset_tree_bytes(b))); free_pages((unsigned long) t->data, b->page_order); t->prev = NULL; t->tree = NULL; t->data = NULL; list_move(&b->list, &b->c->btree_cache_freed); b->c->bucket_cache_used--; } static void mca_bucket_free(struct btree *b) { BUG_ON(btree_node_dirty(b)); b->key.ptr[0] = 0; hlist_del_init_rcu(&b->hash); list_move(&b->list, &b->c->btree_cache_freeable); } static unsigned btree_order(struct bkey *k) { return ilog2(KEY_SIZE(k) / PAGE_SECTORS ?: 1); } static void mca_data_alloc(struct btree *b, struct bkey *k, gfp_t gfp) { struct bset_tree *t = b->sets; BUG_ON(t->data); b->page_order = max_t(unsigned, ilog2(b->c->btree_pages), btree_order(k)); t->data = (void *) __get_free_pages(gfp, b->page_order); if (!t->data) goto err; t->tree = bset_tree_bytes(b) < PAGE_SIZE ? kmalloc(bset_tree_bytes(b), gfp) : (void *) __get_free_pages(gfp, get_order(bset_tree_bytes(b))); if (!t->tree) goto err; t->prev = bset_prev_bytes(b) < PAGE_SIZE ? kmalloc(bset_prev_bytes(b), gfp) : (void *) __get_free_pages(gfp, get_order(bset_prev_bytes(b))); if (!t->prev) goto err; list_move(&b->list, &b->c->btree_cache); b->c->bucket_cache_used++; return; err: mca_data_free(b); } static struct btree *mca_bucket_alloc(struct cache_set *c, struct bkey *k, gfp_t gfp) { struct btree *b = kzalloc(sizeof(struct btree), gfp); if (!b) return NULL; init_rwsem(&b->lock); lockdep_set_novalidate_class(&b->lock); INIT_LIST_HEAD(&b->list); INIT_DELAYED_WORK(&b->work, btree_node_write_work); b->c = c; closure_init_unlocked(&b->io); mca_data_alloc(b, k, gfp); return b; } static int mca_reap(struct btree *b, unsigned min_order, bool flush) { struct closure cl; closure_init_stack(&cl); lockdep_assert_held(&b->c->bucket_lock); if (!down_write_trylock(&b->lock)) return -ENOMEM; BUG_ON(btree_node_dirty(b) && !b->sets[0].data); if (b->page_order < min_order || (!flush && (btree_node_dirty(b) || atomic_read(&b->io.cl.remaining) != -1))) { rw_unlock(true, b); return -ENOMEM; } if (btree_node_dirty(b)) { bch_btree_node_write(b, &cl); closure_sync(&cl); } /* wait for any in flight btree write */ closure_wait_event(&b->io.wait, &cl, atomic_read(&b->io.cl.remaining) == -1); return 0; } static unsigned long bch_mca_scan(struct shrinker *shrink, struct shrink_control *sc) { struct cache_set *c = container_of(shrink, struct cache_set, shrink); struct btree *b, *t; unsigned long i, nr = sc->nr_to_scan; unsigned long freed = 0; if (c->shrinker_disabled) return SHRINK_STOP; if (c->try_harder) return SHRINK_STOP; /* Return -1 if we can't do anything right now */ if (sc->gfp_mask & __GFP_IO) mutex_lock(&c->bucket_lock); else if (!mutex_trylock(&c->bucket_lock)) return -1; /* * It's _really_ critical that we don't free too many btree nodes - we * have to always leave ourselves a reserve. The reserve is how we * guarantee that allocating memory for a new btree node can always * succeed, so that inserting keys into the btree can always succeed and * IO can always make forward progress: */ nr /= c->btree_pages; nr = min_t(unsigned long, nr, mca_can_free(c)); i = 0; list_for_each_entry_safe(b, t, &c->btree_cache_freeable, list) { if (freed >= nr) break; if (++i > 3 && !mca_reap(b, 0, false)) { mca_data_free(b); rw_unlock(true, b); freed++; } } /* * Can happen right when we first start up, before we've read in any * btree nodes */ if (list_empty(&c->btree_cache)) goto out; for (i = 0; (nr--) && i < c->bucket_cache_used; i++) { b = list_first_entry(&c->btree_cache, struct btree, list); list_rotate_left(&c->btree_cache); if (!b->accessed && !mca_reap(b, 0, false)) { mca_bucket_free(b); mca_data_free(b); rw_unlock(true, b); freed++; } else b->accessed = 0; } out: mutex_unlock(&c->bucket_lock); return freed; } static unsigned long bch_mca_count(struct shrinker *shrink, struct shrink_control *sc) { struct cache_set *c = container_of(shrink, struct cache_set, shrink); if (c->shrinker_disabled) return 0; if (c->try_harder) return 0; return mca_can_free(c) * c->btree_pages; } void bch_btree_cache_free(struct cache_set *c) { struct btree *b; struct closure cl; closure_init_stack(&cl); if (c->shrink.list.next) unregister_shrinker(&c->shrink); mutex_lock(&c->bucket_lock); #ifdef CONFIG_BCACHE_DEBUG if (c->verify_data) list_move(&c->verify_data->list, &c->btree_cache); #endif list_splice(&c->btree_cache_freeable, &c->btree_cache); while (!list_empty(&c->btree_cache)) { b = list_first_entry(&c->btree_cache, struct btree, list); if (btree_node_dirty(b)) btree_complete_write(b, btree_current_write(b)); clear_bit(BTREE_NODE_dirty, &b->flags); mca_data_free(b); } while (!list_empty(&c->btree_cache_freed)) { b = list_first_entry(&c->btree_cache_freed, struct btree, list); list_del(&b->list); cancel_delayed_work_sync(&b->work); kfree(b); } mutex_unlock(&c->bucket_lock); } int bch_btree_cache_alloc(struct cache_set *c) { unsigned i; for (i = 0; i < mca_reserve(c); i++) if (!mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL)) return -ENOMEM; list_splice_init(&c->btree_cache, &c->btree_cache_freeable); #ifdef CONFIG_BCACHE_DEBUG mutex_init(&c->verify_lock); c->verify_data = mca_bucket_alloc(c, &ZERO_KEY, GFP_KERNEL); if (c->verify_data && c->verify_data->sets[0].data) list_del_init(&c->verify_data->list); else c->verify_data = NULL; #endif c->shrink.count_objects = bch_mca_count; c->shrink.scan_objects = bch_mca_scan; c->shrink.seeks = 4; c->shrink.batch = c->btree_pages * 2; register_shrinker(&c->shrink); return 0; } /* Btree in memory cache - hash table */ static struct hlist_head *mca_hash(struct cache_set *c, struct bkey *k) { return &c->bucket_hash[hash_32(PTR_HASH(c, k), BUCKET_HASH_BITS)]; } static struct btree *mca_find(struct cache_set *c, struct bkey *k) { struct btree *b; rcu_read_lock(); hlist_for_each_entry_rcu(b, mca_hash(c, k), hash) if (PTR_HASH(c, &b->key) == PTR_HASH(c, k)) goto out; b = NULL; out: rcu_read_unlock(); return b; } static struct btree *mca_cannibalize(struct cache_set *c, struct bkey *k) { struct btree *b; trace_bcache_btree_cache_cannibalize(c); if (!c->try_harder) { c->try_harder = current; c->try_harder_start = local_clock(); } else if (c->try_harder != current) return ERR_PTR(-ENOSPC); list_for_each_entry_reverse(b, &c->btree_cache, list) if (!mca_reap(b, btree_order(k), false)) return b; list_for_each_entry_reverse(b, &c->btree_cache, list) if (!mca_reap(b, btree_order(k), true)) return b; return ERR_PTR(-ENOMEM); } /* * We can only have one thread cannibalizing other cached btree nodes at a time, * or we'll deadlock. We use an open coded mutex to ensure that, which a * cannibalize_bucket() will take. This means every time we unlock the root of * the btree, we need to release this lock if we have it held. */ static void bch_cannibalize_unlock(struct cache_set *c) { if (c->try_harder == current) { bch_time_stats_update(&c->try_harder_time, c->try_harder_start); c->try_harder = NULL; wake_up(&c->try_wait); } } static struct btree *mca_alloc(struct cache_set *c, struct bkey *k, int level) { struct btree *b; BUG_ON(current->bio_list); lockdep_assert_held(&c->bucket_lock); if (mca_find(c, k)) return NULL; /* btree_free() doesn't free memory; it sticks the node on the end of * the list. Check if there's any freed nodes there: */ list_for_each_entry(b, &c->btree_cache_freeable, list) if (!mca_reap(b, btree_order(k), false)) goto out; /* We never free struct btree itself, just the memory that holds the on * disk node. Check the freed list before allocating a new one: */ list_for_each_entry(b, &c->btree_cache_freed, list) if (!mca_reap(b, 0, false)) { mca_data_alloc(b, k, __GFP_NOWARN|GFP_NOIO); if (!b->sets[0].data) goto err; else goto out; } b = mca_bucket_alloc(c, k, __GFP_NOWARN|GFP_NOIO); if (!b) goto err; BUG_ON(!down_write_trylock(&b->lock)); if (!b->sets->data) goto err; out: BUG_ON(!closure_is_unlocked(&b->io.cl)); bkey_copy(&b->key, k); list_move(&b->list, &c->btree_cache); hlist_del_init_rcu(&b->hash); hlist_add_head_rcu(&b->hash, mca_hash(c, k)); lock_set_subclass(&b->lock.dep_map, level + 1, _THIS_IP_); b->level = level; b->parent = (void *) ~0UL; mca_reinit(b); return b; err: if (b) rw_unlock(true, b); b = mca_cannibalize(c, k); if (!IS_ERR(b)) goto out; return b; } /** * bch_btree_node_get - find a btree node in the cache and lock it, reading it * in from disk if necessary. * * If IO is necessary and running under generic_make_request, returns -EAGAIN. * * The btree node will have either a read or a write lock held, depending on * level and op->lock. */ struct btree *bch_btree_node_get(struct cache_set *c, struct bkey *k, int level, bool write) { int i = 0; struct btree *b; BUG_ON(level < 0); retry: b = mca_find(c, k); if (!b) { if (current->bio_list) return ERR_PTR(-EAGAIN); mutex_lock(&c->bucket_lock); b = mca_alloc(c, k, level); mutex_unlock(&c->bucket_lock); if (!b) goto retry; if (IS_ERR(b)) return b; bch_btree_node_read(b); if (!write) downgrade_write(&b->lock); } else { rw_lock(write, b, level); if (PTR_HASH(c, &b->key) != PTR_HASH(c, k)) { rw_unlock(write, b); goto retry; } BUG_ON(b->level != level); } b->accessed = 1; for (; i <= b->nsets && b->sets[i].size; i++) { prefetch(b->sets[i].tree); prefetch(b->sets[i].data); } for (; i <= b->nsets; i++) prefetch(b->sets[i].data); if (btree_node_io_error(b)) { rw_unlock(write, b); return ERR_PTR(-EIO); } BUG_ON(!b->written); return b; } static void btree_node_prefetch(struct cache_set *c, struct bkey *k, int level) { struct btree *b; mutex_lock(&c->bucket_lock); b = mca_alloc(c, k, level); mutex_unlock(&c->bucket_lock); if (!IS_ERR_OR_NULL(b)) { bch_btree_node_read(b); rw_unlock(true, b); } } /* Btree alloc */ static void btree_node_free(struct btree *b) { unsigned i; trace_bcache_btree_node_free(b); BUG_ON(b == b->c->root); if (btree_node_dirty(b)) btree_complete_write(b, btree_current_write(b)); clear_bit(BTREE_NODE_dirty, &b->flags); cancel_delayed_work(&b->work); mutex_lock(&b->c->bucket_lock); for (i = 0; i < KEY_PTRS(&b->key); i++) { BUG_ON(atomic_read(&PTR_BUCKET(b->c, &b->key, i)->pin)); bch_inc_gen(PTR_CACHE(b->c, &b->key, i), PTR_BUCKET(b->c, &b->key, i)); } bch_bucket_free(b->c, &b->key); mca_bucket_free(b); mutex_unlock(&b->c->bucket_lock); } struct btree *bch_btree_node_alloc(struct cache_set *c, int level) { BKEY_PADDED(key) k; struct btree *b = ERR_PTR(-EAGAIN); mutex_lock(&c->bucket_lock); retry: if (__bch_bucket_alloc_set(c, WATERMARK_METADATA, &k.key, 1, true)) goto err; SET_KEY_SIZE(&k.key, c->btree_pages * PAGE_SECTORS); b = mca_alloc(c, &k.key, level); if (IS_ERR(b)) goto err_free; if (!b) { cache_bug(c, "Tried to allocate bucket that was in btree cache"); __bkey_put(c, &k.key); goto retry; } b->accessed = 1; bch_bset_init_next(b); mutex_unlock(&c->bucket_lock); trace_bcache_btree_node_alloc(b); return b; err_free: bch_bucket_free(c, &k.key); __bkey_put(c, &k.key); err: mutex_unlock(&c->bucket_lock); trace_bcache_btree_node_alloc_fail(b); return b; } static struct btree *btree_node_alloc_replacement(struct btree *b) { struct btree *n = bch_btree_node_alloc(b->c, b->level); if (!IS_ERR_OR_NULL(n)) bch_btree_sort_into(b, n); return n; } /* Garbage collection */ uint8_t __bch_btree_mark_key(struct cache_set *c, int level, struct bkey *k) { uint8_t stale = 0; unsigned i; struct bucket *g; /* * ptr_invalid() can't return true for the keys that mark btree nodes as * freed, but since ptr_bad() returns true we'll never actually use them * for anything and thus we don't want mark their pointers here */ if (!bkey_cmp(k, &ZERO_KEY)) return stale; for (i = 0; i < KEY_PTRS(k); i++) { if (!ptr_available(c, k, i)) continue; g = PTR_BUCKET(c, k, i); if (gen_after(g->gc_gen, PTR_GEN(k, i))) g->gc_gen = PTR_GEN(k, i); if (ptr_stale(c, k, i)) { stale = max(stale, ptr_stale(c, k, i)); continue; } cache_bug_on(GC_MARK(g) && (GC_MARK(g) == GC_MARK_METADATA) != (level != 0), c, "inconsistent ptrs: mark = %llu, level = %i", GC_MARK(g), level); if (level) SET_GC_MARK(g, GC_MARK_METADATA); else if (KEY_DIRTY(k)) SET_GC_MARK(g, GC_MARK_DIRTY); /* guard against overflow */ SET_GC_SECTORS_USED(g, min_t(unsigned, GC_SECTORS_USED(g) + KEY_SIZE(k), (1 << 14) - 1)); BUG_ON(!GC_SECTORS_USED(g)); } return stale; } #define btree_mark_key(b, k) __bch_btree_mark_key(b->c, b->level, k) static int btree_gc_mark_node(struct btree *b, unsigned *keys, struct gc_stat *gc) { uint8_t stale = 0; unsigned last_dev = -1; struct bcache_device *d = NULL; struct bkey *k; struct btree_iter iter; struct bset_tree *t; gc->nodes++; for_each_key_filter(b, k, &iter, bch_ptr_invalid) { if (last_dev != KEY_INODE(k)) { last_dev = KEY_INODE(k); d = KEY_INODE(k) < b->c->nr_uuids ? b->c->devices[last_dev] : NULL; } stale = max(stale, btree_mark_key(b, k)); if (bch_ptr_bad(b, k)) continue; *keys += bkey_u64s(k); gc->key_bytes += bkey_u64s(k); gc->nkeys++; gc->data += KEY_SIZE(k); if (KEY_DIRTY(k)) gc->dirty += KEY_SIZE(k); } for (t = b->sets; t <= &b->sets[b->nsets]; t++) btree_bug_on(t->size && bset_written(b, t) && bkey_cmp(&b->key, &t->end) < 0, b, "found short btree key in gc"); return stale; } static struct btree *btree_gc_alloc(struct btree *b, struct bkey *k) { /* * We block priorities from being written for the duration of garbage * collection, so we can't sleep in btree_alloc() -> * bch_bucket_alloc_set(), or we'd risk deadlock - so we don't pass it * our closure. */ struct btree *n = btree_node_alloc_replacement(b); if (!IS_ERR_OR_NULL(n)) { swap(b, n); __bkey_put(b->c, &b->key); memcpy(k->ptr, b->key.ptr, sizeof(uint64_t) * KEY_PTRS(&b->key)); btree_node_free(n); up_write(&n->lock); } return b; } /* * Leaving this at 2 until we've got incremental garbage collection done; it * could be higher (and has been tested with 4) except that garbage collection * could take much longer, adversely affecting latency. */ #define GC_MERGE_NODES 2U struct gc_merge_info { struct btree *b; struct bkey *k; unsigned keys; }; static void btree_gc_coalesce(struct btree *b, struct gc_stat *gc, struct gc_merge_info *r) { unsigned nodes = 0, keys = 0, blocks; int i; struct closure cl; closure_init_stack(&cl); while (nodes < GC_MERGE_NODES && r[nodes].b) keys += r[nodes++].keys; blocks = btree_default_blocks(b->c) * 2 / 3; if (nodes < 2 || __set_blocks(b->sets[0].data, keys, b->c) > blocks * (nodes - 1)) return; for (i = nodes - 1; i >= 0; --i) { if (r[i].b->written) r[i].b = btree_gc_alloc(r[i].b, r[i].k); if (r[i].b->written) return; } for (i = nodes - 1; i > 0; --i) { struct bset *n1 = r[i].b->sets->data; struct bset *n2 = r[i - 1].b->sets->data; struct bkey *k, *last = NULL; keys = 0; if (i == 1) { /* * Last node we're not getting rid of - we're getting * rid of the node at r[0]. Have to try and fit all of * the remaining keys into this node; we can't ensure * they will always fit due to rounding and variable * length keys (shouldn't be possible in practice, * though) */ if (__set_blocks(n1, n1->keys + r->keys, b->c) > btree_blocks(r[i].b)) return; keys = n2->keys; last = &r->b->key; } else for (k = n2->start; k < end(n2); k = bkey_next(k)) { if (__set_blocks(n1, n1->keys + keys + bkey_u64s(k), b->c) > blocks) break; last = k; keys += bkey_u64s(k); } BUG_ON(__set_blocks(n1, n1->keys + keys, b->c) > btree_blocks(r[i].b)); if (last) { bkey_copy_key(&r[i].b->key, last); bkey_copy_key(r[i].k, last); } memcpy(end(n1), n2->start, (void *) node(n2, keys) - (void *) n2->start); n1->keys += keys; memmove(n2->start, node(n2, keys), (void *) end(n2) - (void *) node(n2, keys)); n2->keys -= keys; r[i].keys = n1->keys; r[i - 1].keys = n2->keys; } btree_node_free(r->b); up_write(&r->b->lock); trace_bcache_btree_gc_coalesce(nodes); gc->nodes--; nodes--; memmove(&r[0], &r[1], sizeof(struct gc_merge_info) * nodes); memset(&r[nodes], 0, sizeof(struct gc_merge_info)); } static int btree_gc_recurse(struct btree *b, struct btree_op *op, struct closure *writes, struct gc_stat *gc) { void write(struct btree *r) { if (!r->written || btree_node_dirty(r)) bch_btree_node_write(r, writes); up_write(&r->lock); } int ret = 0, stale; unsigned i; struct gc_merge_info r[GC_MERGE_NODES]; memset(r, 0, sizeof(r)); while ((r->k = bch_next_recurse_key(b, &b->c->gc_done))) { r->b = bch_btree_node_get(b->c, r->k, b->level - 1, true); if (IS_ERR(r->b)) { ret = PTR_ERR(r->b); break; } r->keys = 0; stale = btree_gc_mark_node(r->b, &r->keys, gc); if (!b->written && (r->b->level || stale > 10 || b->c->gc_always_rewrite)) r->b = btree_gc_alloc(r->b, r->k); if (r->b->level) ret = btree_gc_recurse(r->b, op, writes, gc); if (ret) { write(r->b); break; } bkey_copy_key(&b->c->gc_done, r->k); if (!b->written) btree_gc_coalesce(b, gc, r); if (r[GC_MERGE_NODES - 1].b) write(r[GC_MERGE_NODES - 1].b); memmove(&r[1], &r[0], sizeof(struct gc_merge_info) * (GC_MERGE_NODES - 1)); /* When we've got incremental GC working, we'll want to do * if (should_resched()) * return -EAGAIN; */ cond_resched(); #if 0 if (need_resched()) { ret = -EAGAIN; break; } #endif } for (i = 1; i < GC_MERGE_NODES && r[i].b; i++) write(r[i].b); /* Might have freed some children, must remove their keys */ if (!b->written) bch_btree_sort(b); return ret; } static int bch_btree_gc_root(struct btree *b, struct btree_op *op, struct closure *writes, struct gc_stat *gc) { struct btree *n = NULL; unsigned keys = 0; int ret = 0, stale = btree_gc_mark_node(b, &keys, gc); struct closure cl; closure_init_stack(&cl); if (b->level || stale > 10) n = btree_node_alloc_replacement(b); if (!IS_ERR_OR_NULL(n)) swap(b, n); if (b->level) ret = btree_gc_recurse(b, op, writes, gc); if (!b->written || btree_node_dirty(b)) { bch_btree_node_write(b, n ? &cl : NULL); } if (!IS_ERR_OR_NULL(n)) { closure_sync(&cl); bch_btree_set_root(b); btree_node_free(n); rw_unlock(true, b); } return ret; } static void btree_gc_start(struct cache_set *c) { struct cache *ca; struct bucket *b; unsigned i; if (!c->gc_mark_valid) return; mutex_lock(&c->bucket_lock); c->gc_mark_valid = 0; c->gc_done = ZERO_KEY; for_each_cache(ca, c, i) for_each_bucket(b, ca) { b->gc_gen = b->gen; if (!atomic_read(&b->pin)) { SET_GC_MARK(b, GC_MARK_RECLAIMABLE); SET_GC_SECTORS_USED(b, 0); } } mutex_unlock(&c->bucket_lock); } size_t bch_btree_gc_finish(struct cache_set *c) { size_t available = 0; struct bucket *b; struct cache *ca; unsigned i; mutex_lock(&c->bucket_lock); set_gc_sectors(c); c->gc_mark_valid = 1; c->need_gc = 0; if (c->root) for (i = 0; i < KEY_PTRS(&c->root->key); i++) SET_GC_MARK(PTR_BUCKET(c, &c->root->key, i), GC_MARK_METADATA); for (i = 0; i < KEY_PTRS(&c->uuid_bucket); i++) SET_GC_MARK(PTR_BUCKET(c, &c->uuid_bucket, i), GC_MARK_METADATA); for_each_cache(ca, c, i) { uint64_t *i; ca->invalidate_needs_gc = 0; for (i = ca->sb.d; i < ca->sb.d + ca->sb.keys; i++) SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); for (i = ca->prio_buckets; i < ca->prio_buckets + prio_buckets(ca) * 2; i++) SET_GC_MARK(ca->buckets + *i, GC_MARK_METADATA); for_each_bucket(b, ca) { b->last_gc = b->gc_gen; c->need_gc = max(c->need_gc, bucket_gc_gen(b)); if (!atomic_read(&b->pin) && GC_MARK(b) == GC_MARK_RECLAIMABLE) { available++; if (!GC_SECTORS_USED(b)) bch_bucket_add_unused(ca, b); } } } mutex_unlock(&c->bucket_lock); return available; } static void bch_btree_gc(struct cache_set *c) { int ret; unsigned long available; struct gc_stat stats; struct closure writes; struct btree_op op; uint64_t start_time = local_clock(); trace_bcache_gc_start(c); memset(&stats, 0, sizeof(struct gc_stat)); closure_init_stack(&writes); bch_btree_op_init(&op, SHRT_MAX); btree_gc_start(c); atomic_inc(&c->prio_blocked); ret = btree_root(gc_root, c, &op, &writes, &stats); closure_sync(&writes); if (ret) { pr_warn("gc failed!"); return; } /* Possibly wait for new UUIDs or whatever to hit disk */ bch_journal_meta(c, &writes); closure_sync(&writes); available = bch_btree_gc_finish(c); atomic_dec(&c->prio_blocked); wake_up_allocators(c); bch_time_stats_update(&c->btree_gc_time, start_time); stats.key_bytes *= sizeof(uint64_t); stats.dirty <<= 9; stats.data <<= 9; stats.in_use = (c->nbuckets - available) * 100 / c->nbuckets; memcpy(&c->gc_stats, &stats, sizeof(struct gc_stat)); trace_bcache_gc_end(c); bch_moving_gc(c); } static int bch_gc_thread(void *arg) { struct cache_set *c = arg; while (1) { bch_btree_gc(c); set_current_state(TASK_INTERRUPTIBLE); if (kthread_should_stop()) break; try_to_freeze(); schedule(); } return 0; } int bch_gc_thread_start(struct cache_set *c) { c->gc_thread = kthread_create(bch_gc_thread, c, "bcache_gc"); if (IS_ERR(c->gc_thread)) return PTR_ERR(c->gc_thread); set_task_state(c->gc_thread, TASK_INTERRUPTIBLE); return 0; } /* Initial partial gc */ static int bch_btree_check_recurse(struct btree *b, struct btree_op *op, unsigned long **seen) { int ret; unsigned i; struct bkey *k; struct bucket *g; struct btree_iter iter; for_each_key_filter(b, k, &iter, bch_ptr_invalid) { for (i = 0; i < KEY_PTRS(k); i++) { if (!ptr_available(b->c, k, i)) continue; g = PTR_BUCKET(b->c, k, i); if (!__test_and_set_bit(PTR_BUCKET_NR(b->c, k, i), seen[PTR_DEV(k, i)]) || !ptr_stale(b->c, k, i)) { g->gen = PTR_GEN(k, i); if (b->level) g->prio = BTREE_PRIO; else if (g->prio == BTREE_PRIO) g->prio = INITIAL_PRIO; } } btree_mark_key(b, k); } if (b->level) { k = bch_next_recurse_key(b, &ZERO_KEY); while (k) { struct bkey *p = bch_next_recurse_key(b, k); if (p) btree_node_prefetch(b->c, p, b->level - 1); ret = btree(check_recurse, k, b, op, seen); if (ret) return ret; k = p; } } return 0; } int bch_btree_check(struct cache_set *c) { int ret = -ENOMEM; unsigned i; unsigned long *seen[MAX_CACHES_PER_SET]; struct btree_op op; memset(seen, 0, sizeof(seen)); bch_btree_op_init(&op, SHRT_MAX); for (i = 0; c->cache[i]; i++) { size_t n = DIV_ROUND_UP(c->cache[i]->sb.nbuckets, 8); seen[i] = kmalloc(n, GFP_KERNEL); if (!seen[i]) goto err; /* Disables the seen array until prio_read() uses it too */ memset(seen[i], 0xFF, n); } ret = btree_root(check_recurse, c, &op, seen); err: for (i = 0; i < MAX_CACHES_PER_SET; i++) kfree(seen[i]); return ret; } /* Btree insertion */ static void shift_keys(struct btree *b, struct bkey *where, struct bkey *insert) { struct bset *i = b->sets[b->nsets].data; memmove((uint64_t *) where + bkey_u64s(insert), where, (void *) end(i) - (void *) where); i->keys += bkey_u64s(insert); bkey_copy(where, insert); bch_bset_fix_lookup_table(b, where); } static bool fix_overlapping_extents(struct btree *b, struct bkey *insert, struct btree_iter *iter, struct bkey *replace_key) { void subtract_dirty(struct bkey *k, uint64_t offset, int sectors) { if (KEY_DIRTY(k)) bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), offset, -sectors); } uint64_t old_offset; unsigned old_size, sectors_found = 0; while (1) { struct bkey *k = bch_btree_iter_next(iter); if (!k || bkey_cmp(&START_KEY(k), insert) >= 0) break; if (bkey_cmp(k, &START_KEY(insert)) <= 0) continue; old_offset = KEY_START(k); old_size = KEY_SIZE(k); /* * We might overlap with 0 size extents; we can't skip these * because if they're in the set we're inserting to we have to * adjust them so they don't overlap with the key we're * inserting. But we don't want to check them for replace * operations. */ if (replace_key && KEY_SIZE(k)) { /* * k might have been split since we inserted/found the * key we're replacing */ unsigned i; uint64_t offset = KEY_START(k) - KEY_START(replace_key); /* But it must be a subset of the replace key */ if (KEY_START(k) < KEY_START(replace_key) || KEY_OFFSET(k) > KEY_OFFSET(replace_key)) goto check_failed; /* We didn't find a key that we were supposed to */ if (KEY_START(k) > KEY_START(insert) + sectors_found) goto check_failed; if (KEY_PTRS(replace_key) != KEY_PTRS(k)) goto check_failed; /* skip past gen */ offset <<= 8; BUG_ON(!KEY_PTRS(replace_key)); for (i = 0; i < KEY_PTRS(replace_key); i++) if (k->ptr[i] != replace_key->ptr[i] + offset) goto check_failed; sectors_found = KEY_OFFSET(k) - KEY_START(insert); } if (bkey_cmp(insert, k) < 0 && bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) { /* * We overlapped in the middle of an existing key: that * means we have to split the old key. But we have to do * slightly different things depending on whether the * old key has been written out yet. */ struct bkey *top; subtract_dirty(k, KEY_START(insert), KEY_SIZE(insert)); if (bkey_written(b, k)) { /* * We insert a new key to cover the top of the * old key, and the old key is modified in place * to represent the bottom split. * * It's completely arbitrary whether the new key * is the top or the bottom, but it has to match * up with what btree_sort_fixup() does - it * doesn't check for this kind of overlap, it * depends on us inserting a new key for the top * here. */ top = bch_bset_search(b, &b->sets[b->nsets], insert); shift_keys(b, top, k); } else { BKEY_PADDED(key) temp; bkey_copy(&temp.key, k); shift_keys(b, k, &temp.key); top = bkey_next(k); } bch_cut_front(insert, top); bch_cut_back(&START_KEY(insert), k); bch_bset_fix_invalidated_key(b, k); return false; } if (bkey_cmp(insert, k) < 0) { bch_cut_front(insert, k); } else { if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) old_offset = KEY_START(insert); if (bkey_written(b, k) && bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) { /* * Completely overwrote, so we don't have to * invalidate the binary search tree */ bch_cut_front(k, k); } else { __bch_cut_back(&START_KEY(insert), k); bch_bset_fix_invalidated_key(b, k); } } subtract_dirty(k, old_offset, old_size - KEY_SIZE(k)); } check_failed: if (replace_key) { if (!sectors_found) { return true; } else if (sectors_found < KEY_SIZE(insert)) { SET_KEY_OFFSET(insert, KEY_OFFSET(insert) - (KEY_SIZE(insert) - sectors_found)); SET_KEY_SIZE(insert, sectors_found); } } return false; } static bool btree_insert_key(struct btree *b, struct btree_op *op, struct bkey *k, struct bkey *replace_key) { struct bset *i = b->sets[b->nsets].data; struct bkey *m, *prev; unsigned status = BTREE_INSERT_STATUS_INSERT; BUG_ON(bkey_cmp(k, &b->key) > 0); BUG_ON(b->level && !KEY_PTRS(k)); BUG_ON(!b->level && !KEY_OFFSET(k)); if (!b->level) { struct btree_iter iter; struct bkey search = KEY(KEY_INODE(k), KEY_START(k), 0); /* * bset_search() returns the first key that is strictly greater * than the search key - but for back merging, we want to find * the first key that is greater than or equal to KEY_START(k) - * unless KEY_START(k) is 0. */ if (KEY_OFFSET(&search)) SET_KEY_OFFSET(&search, KEY_OFFSET(&search) - 1); prev = NULL; m = bch_btree_iter_init(b, &iter, &search); if (fix_overlapping_extents(b, k, &iter, replace_key)) { op->insert_collision = true; return false; } if (KEY_DIRTY(k)) bcache_dev_sectors_dirty_add(b->c, KEY_INODE(k), KEY_START(k), KEY_SIZE(k)); while (m != end(i) && bkey_cmp(k, &START_KEY(m)) > 0) prev = m, m = bkey_next(m); if (key_merging_disabled(b->c)) goto insert; /* prev is in the tree, if we merge we're done */ status = BTREE_INSERT_STATUS_BACK_MERGE; if (prev && bch_bkey_try_merge(b, prev, k)) goto merged; status = BTREE_INSERT_STATUS_OVERWROTE; if (m != end(i) && KEY_PTRS(m) == KEY_PTRS(k) && !KEY_SIZE(m)) goto copy; status = BTREE_INSERT_STATUS_FRONT_MERGE; if (m != end(i) && bch_bkey_try_merge(b, k, m)) goto copy; } else { BUG_ON(replace_key); m = bch_bset_search(b, &b->sets[b->nsets], k); } insert: shift_keys(b, m, k); copy: bkey_copy(m, k); merged: bch_check_keys(b, "%u for %s", status, replace_key ? "replace" : "insert"); if (b->level && !KEY_OFFSET(k)) btree_current_write(b)->prio_blocked++; trace_bcache_btree_insert_key(b, k, replace_key != NULL, status); return true; } static bool bch_btree_insert_keys(struct btree *b, struct btree_op *op, struct keylist *insert_keys, struct bkey *replace_key) { bool ret = false; int oldsize = bch_count_data(b); while (!bch_keylist_empty(insert_keys)) { struct bset *i = write_block(b); struct bkey *k = insert_keys->keys; if (b->written + __set_blocks(i, i->keys + bkey_u64s(k), b->c) > btree_blocks(b)) break; if (bkey_cmp(k, &b->key) <= 0) { bkey_put(b->c, k, b->level); ret |= btree_insert_key(b, op, k, replace_key); bch_keylist_pop_front(insert_keys); } else if (bkey_cmp(&START_KEY(k), &b->key) < 0) { #if 0 if (replace_key) { bkey_put(b->c, k, b->level); bch_keylist_pop_front(insert_keys); op->insert_collision = true; break; } #endif BKEY_PADDED(key) temp; bkey_copy(&temp.key, insert_keys->keys); bch_cut_back(&b->key, &temp.key); bch_cut_front(&b->key, insert_keys->keys); ret |= btree_insert_key(b, op, &temp.key, replace_key); break; } else { break; } } BUG_ON(!bch_keylist_empty(insert_keys) && b->level); BUG_ON(bch_count_data(b) < oldsize); return ret; } static int btree_split(struct btree *b, struct btree_op *op, struct keylist *insert_keys, struct keylist *parent_keys, struct bkey *replace_key) { bool split; struct btree *n1, *n2 = NULL, *n3 = NULL; uint64_t start_time = local_clock(); struct closure cl; closure_init_stack(&cl); n1 = btree_node_alloc_replacement(b); if (IS_ERR(n1)) goto err; split = set_blocks(n1->sets[0].data, n1->c) > (btree_blocks(b) * 4) / 5; if (split) { unsigned keys = 0; trace_bcache_btree_node_split(b, n1->sets[0].data->keys); n2 = bch_btree_node_alloc(b->c, b->level); if (IS_ERR(n2)) goto err_free1; if (!b->parent) { n3 = bch_btree_node_alloc(b->c, b->level + 1); if (IS_ERR(n3)) goto err_free2; } bch_btree_insert_keys(n1, op, insert_keys, replace_key); /* * Has to be a linear search because we don't have an auxiliary * search tree yet */ while (keys < (n1->sets[0].data->keys * 3) / 5) keys += bkey_u64s(node(n1->sets[0].data, keys)); bkey_copy_key(&n1->key, node(n1->sets[0].data, keys)); keys += bkey_u64s(node(n1->sets[0].data, keys)); n2->sets[0].data->keys = n1->sets[0].data->keys - keys; n1->sets[0].data->keys = keys; memcpy(n2->sets[0].data->start, end(n1->sets[0].data), n2->sets[0].data->keys * sizeof(uint64_t)); bkey_copy_key(&n2->key, &b->key); bch_keylist_add(parent_keys, &n2->key); bch_btree_node_write(n2, &cl); rw_unlock(true, n2); } else { trace_bcache_btree_node_compact(b, n1->sets[0].data->keys); bch_btree_insert_keys(n1, op, insert_keys, replace_key); } bch_keylist_add(parent_keys, &n1->key); bch_btree_node_write(n1, &cl); if (n3) { /* Depth increases, make a new root */ bkey_copy_key(&n3->key, &MAX_KEY); bch_btree_insert_keys(n3, op, parent_keys, NULL); bch_btree_node_write(n3, &cl); closure_sync(&cl); bch_btree_set_root(n3); rw_unlock(true, n3); } else if (!b->parent) { /* Root filled up but didn't need to be split */ bch_keylist_reset(parent_keys); closure_sync(&cl); bch_btree_set_root(n1); } else { unsigned i; bkey_copy(parent_keys->top, &b->key); bkey_copy_key(parent_keys->top, &ZERO_KEY); for (i = 0; i < KEY_PTRS(&b->key); i++) { uint8_t g = PTR_BUCKET(b->c, &b->key, i)->gen + 1; SET_PTR_GEN(parent_keys->top, i, g); } bch_keylist_push(parent_keys); closure_sync(&cl); atomic_inc(&b->c->prio_blocked); } rw_unlock(true, n1); btree_node_free(b); bch_time_stats_update(&b->c->btree_split_time, start_time); return 0; err_free2: __bkey_put(n2->c, &n2->key); btree_node_free(n2); rw_unlock(true, n2); err_free1: __bkey_put(n1->c, &n1->key); btree_node_free(n1); rw_unlock(true, n1); err: if (n3 == ERR_PTR(-EAGAIN) || n2 == ERR_PTR(-EAGAIN) || n1 == ERR_PTR(-EAGAIN)) return -EAGAIN; pr_warn("couldn't split"); return -ENOMEM; } static int bch_btree_insert_node(struct btree *b, struct btree_op *op, struct keylist *insert_keys, atomic_t *journal_ref, struct bkey *replace_key) { int ret = 0; struct keylist split_keys; bch_keylist_init(&split_keys); BUG_ON(b->level); do { BUG_ON(b->level && replace_key); if (should_split(b)) { if (current->bio_list) { op->lock = b->c->root->level + 1; ret = -EAGAIN; } else if (op->lock <= b->c->root->level) { op->lock = b->c->root->level + 1; ret = -EINTR; } else { struct btree *parent = b->parent; ret = btree_split(b, op, insert_keys, &split_keys, replace_key); insert_keys = &split_keys; replace_key = NULL; b = parent; if (!ret) ret = -EINTR; } } else { BUG_ON(write_block(b) != b->sets[b->nsets].data); if (bch_btree_insert_keys(b, op, insert_keys, replace_key)) { if (!b->level) { bch_btree_leaf_dirty(b, journal_ref); } else { struct closure cl; closure_init_stack(&cl); bch_btree_node_write(b, &cl); closure_sync(&cl); } } } } while (!bch_keylist_empty(&split_keys)); return ret; } int bch_btree_insert_check_key(struct btree *b, struct btree_op *op, struct bkey *check_key) { int ret = -EINTR; uint64_t btree_ptr = b->key.ptr[0]; unsigned long seq = b->seq; struct keylist insert; bool upgrade = op->lock == -1; bch_keylist_init(&insert); if (upgrade) { rw_unlock(false, b); rw_lock(true, b, b->level); if (b->key.ptr[0] != btree_ptr || b->seq != seq + 1) goto out; } SET_KEY_PTRS(check_key, 1); get_random_bytes(&check_key->ptr[0], sizeof(uint64_t)); SET_PTR_DEV(check_key, 0, PTR_CHECK_DEV); bch_keylist_add(&insert, check_key); ret = bch_btree_insert_node(b, op, &insert, NULL, NULL); BUG_ON(!ret && !bch_keylist_empty(&insert)); out: if (upgrade) downgrade_write(&b->lock); return ret; } struct btree_insert_op { struct btree_op op; struct keylist *keys; atomic_t *journal_ref; struct bkey *replace_key; }; int btree_insert_fn(struct btree_op *b_op, struct btree *b) { struct btree_insert_op *op = container_of(b_op, struct btree_insert_op, op); int ret = bch_btree_insert_node(b, &op->op, op->keys, op->journal_ref, op->replace_key); if (ret && !bch_keylist_empty(op->keys)) return ret; else return MAP_DONE; } int bch_btree_insert(struct cache_set *c, struct keylist *keys, atomic_t *journal_ref, struct bkey *replace_key) { struct btree_insert_op op; int ret = 0; BUG_ON(current->bio_list); BUG_ON(bch_keylist_empty(keys)); bch_btree_op_init(&op.op, 0); op.keys = keys; op.journal_ref = journal_ref; op.replace_key = replace_key; while (!ret && !bch_keylist_empty(keys)) { op.op.lock = 0; ret = bch_btree_map_leaf_nodes(&op.op, c, &START_KEY(keys->keys), btree_insert_fn); } if (ret) { struct bkey *k; pr_err("error %i", ret); while ((k = bch_keylist_pop(keys))) bkey_put(c, k, 0); } else if (op.op.insert_collision) ret = -ESRCH; return ret; } void bch_btree_set_root(struct btree *b) { unsigned i; struct closure cl; closure_init_stack(&cl); trace_bcache_btree_set_root(b); BUG_ON(!b->written); for (i = 0; i < KEY_PTRS(&b->key); i++) BUG_ON(PTR_BUCKET(b->c, &b->key, i)->prio != BTREE_PRIO); mutex_lock(&b->c->bucket_lock); list_del_init(&b->list); mutex_unlock(&b->c->bucket_lock); b->c->root = b; __bkey_put(b->c, &b->key); bch_journal_meta(b->c, &cl); closure_sync(&cl); } /* Map across nodes or keys */ static int bch_btree_map_nodes_recurse(struct btree *b, struct btree_op *op, struct bkey *from, btree_map_nodes_fn *fn, int flags) { int ret = MAP_CONTINUE; if (b->level) { struct bkey *k; struct btree_iter iter; bch_btree_iter_init(b, &iter, from); while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad))) { ret = btree(map_nodes_recurse, k, b, op, from, fn, flags); from = NULL; if (ret != MAP_CONTINUE) return ret; } } if (!b->level || flags == MAP_ALL_NODES) ret = fn(op, b); return ret; } int __bch_btree_map_nodes(struct btree_op *op, struct cache_set *c, struct bkey *from, btree_map_nodes_fn *fn, int flags) { return btree_root(map_nodes_recurse, c, op, from, fn, flags); } static int bch_btree_map_keys_recurse(struct btree *b, struct btree_op *op, struct bkey *from, btree_map_keys_fn *fn, int flags) { int ret = MAP_CONTINUE; struct bkey *k; struct btree_iter iter; bch_btree_iter_init(b, &iter, from); while ((k = bch_btree_iter_next_filter(&iter, b, bch_ptr_bad))) { ret = !b->level ? fn(op, b, k) : btree(map_keys_recurse, k, b, op, from, fn, flags); from = NULL; if (ret != MAP_CONTINUE) return ret; } if (!b->level && (flags & MAP_END_KEY)) ret = fn(op, b, &KEY(KEY_INODE(&b->key), KEY_OFFSET(&b->key), 0)); return ret; } int bch_btree_map_keys(struct btree_op *op, struct cache_set *c, struct bkey *from, btree_map_keys_fn *fn, int flags) { return btree_root(map_keys_recurse, c, op, from, fn, flags); } /* Keybuf code */ static inline int keybuf_cmp(struct keybuf_key *l, struct keybuf_key *r) { /* Overlapping keys compare equal */ if (bkey_cmp(&l->key, &START_KEY(&r->key)) <= 0) return -1; if (bkey_cmp(&START_KEY(&l->key), &r->key) >= 0) return 1; return 0; } static inline int keybuf_nonoverlapping_cmp(struct keybuf_key *l, struct keybuf_key *r) { return clamp_t(int64_t, bkey_cmp(&l->key, &r->key), -1, 1); } struct refill { struct btree_op op; struct keybuf *buf; struct bkey *end; keybuf_pred_fn *pred; }; static int refill_keybuf_fn(struct btree_op *op, struct btree *b, struct bkey *k) { struct refill *refill = container_of(op, struct refill, op); struct keybuf *buf = refill->buf; int ret = MAP_CONTINUE; if (bkey_cmp(k, refill->end) >= 0) { ret = MAP_DONE; goto out; } if (!KEY_SIZE(k)) /* end key */ goto out; if (refill->pred(buf, k)) { struct keybuf_key *w; spin_lock(&buf->lock); w = array_alloc(&buf->freelist); if (!w) { spin_unlock(&buf->lock); return MAP_DONE; } w->private = NULL; bkey_copy(&w->key, k); if (RB_INSERT(&buf->keys, w, node, keybuf_cmp)) array_free(&buf->freelist, w); if (array_freelist_empty(&buf->freelist)) ret = MAP_DONE; spin_unlock(&buf->lock); } out: buf->last_scanned = *k; return ret; } void bch_refill_keybuf(struct cache_set *c, struct keybuf *buf, struct bkey *end, keybuf_pred_fn *pred) { struct bkey start = buf->last_scanned; struct refill refill; cond_resched(); bch_btree_op_init(&refill.op, -1); refill.buf = buf; refill.end = end; refill.pred = pred; bch_btree_map_keys(&refill.op, c, &buf->last_scanned, refill_keybuf_fn, MAP_END_KEY); pr_debug("found %s keys from %llu:%llu to %llu:%llu", RB_EMPTY_ROOT(&buf->keys) ? "no" : array_freelist_empty(&buf->freelist) ? "some" : "a few", KEY_INODE(&start), KEY_OFFSET(&start), KEY_INODE(&buf->last_scanned), KEY_OFFSET(&buf->last_scanned)); spin_lock(&buf->lock); if (!RB_EMPTY_ROOT(&buf->keys)) { struct keybuf_key *w; w = RB_FIRST(&buf->keys, struct keybuf_key, node); buf->start = START_KEY(&w->key); w = RB_LAST(&buf->keys, struct keybuf_key, node); buf->end = w->key; } else { buf->start = MAX_KEY; buf->end = MAX_KEY; } spin_unlock(&buf->lock); } static void __bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) { rb_erase(&w->node, &buf->keys); array_free(&buf->freelist, w); } void bch_keybuf_del(struct keybuf *buf, struct keybuf_key *w) { spin_lock(&buf->lock); __bch_keybuf_del(buf, w); spin_unlock(&buf->lock); } bool bch_keybuf_check_overlapping(struct keybuf *buf, struct bkey *start, struct bkey *end) { bool ret = false; struct keybuf_key *p, *w, s; s.key = *start; if (bkey_cmp(end, &buf->start) <= 0 || bkey_cmp(start, &buf->end) >= 0) return false; spin_lock(&buf->lock); w = RB_GREATER(&buf->keys, s, node, keybuf_nonoverlapping_cmp); while (w && bkey_cmp(&START_KEY(&w->key), end) < 0) { p = w; w = RB_NEXT(w, node); if (p->private) ret = true; else __bch_keybuf_del(buf, p); } spin_unlock(&buf->lock); return ret; } struct keybuf_key *bch_keybuf_next(struct keybuf *buf) { struct keybuf_key *w; spin_lock(&buf->lock); w = RB_FIRST(&buf->keys, struct keybuf_key, node); while (w && w->private) w = RB_NEXT(w, node); if (w) w->private = ERR_PTR(-EINTR); spin_unlock(&buf->lock); return w; } struct keybuf_key *bch_keybuf_next_rescan(struct cache_set *c, struct keybuf *buf, struct bkey *end, keybuf_pred_fn *pred) { struct keybuf_key *ret; while (1) { ret = bch_keybuf_next(buf); if (ret) break; if (bkey_cmp(&buf->last_scanned, end) >= 0) { pr_debug("scan finished"); break; } bch_refill_keybuf(c, buf, end, pred); } return ret; } void bch_keybuf_init(struct keybuf *buf) { buf->last_scanned = MAX_KEY; buf->keys = RB_ROOT; spin_lock_init(&buf->lock); array_allocator_init(&buf->freelist); } void bch_btree_exit(void) { if (btree_io_wq) destroy_workqueue(btree_io_wq); } int __init bch_btree_init(void) { btree_io_wq = create_singlethread_workqueue("bch_btree_io"); if (!btree_io_wq) return -ENOMEM; return 0; }