/* * Copyright (C) Ericsson AB 2007-2008 * Copyright (C) ST-Ericsson SA 2008-2010 * Author: Per Forlin for ST-Ericsson * Author: Jonas Aaberg for ST-Ericsson * License terms: GNU General Public License (GPL) version 2 */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dmaengine.h" #include "ste_dma40_ll.h" #define D40_NAME "dma40" #define D40_PHY_CHAN -1 /* For masking out/in 2 bit channel positions */ #define D40_CHAN_POS(chan) (2 * (chan / 2)) #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan)) /* Maximum iterations taken before giving up suspending a channel */ #define D40_SUSPEND_MAX_IT 500 /* Milliseconds */ #define DMA40_AUTOSUSPEND_DELAY 100 /* Hardware requirement on LCLA alignment */ #define LCLA_ALIGNMENT 0x40000 /* Max number of links per event group */ #define D40_LCLA_LINK_PER_EVENT_GRP 128 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP /* Attempts before giving up to trying to get pages that are aligned */ #define MAX_LCLA_ALLOC_ATTEMPTS 256 /* Bit markings for allocation map */ #define D40_ALLOC_FREE (1 << 31) #define D40_ALLOC_PHY (1 << 30) #define D40_ALLOC_LOG_FREE 0 #define MAX(a, b) (((a) < (b)) ? (b) : (a)) /* Reserved event lines for memcpy only. */ #define DB8500_DMA_MEMCPY_EV_0 51 #define DB8500_DMA_MEMCPY_EV_1 56 #define DB8500_DMA_MEMCPY_EV_2 57 #define DB8500_DMA_MEMCPY_EV_3 58 #define DB8500_DMA_MEMCPY_EV_4 59 #define DB8500_DMA_MEMCPY_EV_5 60 static int dma40_memcpy_channels[] = { DB8500_DMA_MEMCPY_EV_0, DB8500_DMA_MEMCPY_EV_1, DB8500_DMA_MEMCPY_EV_2, DB8500_DMA_MEMCPY_EV_3, DB8500_DMA_MEMCPY_EV_4, DB8500_DMA_MEMCPY_EV_5, }; /* Default configuration for physcial memcpy */ struct stedma40_chan_cfg dma40_memcpy_conf_phy = { .mode = STEDMA40_MODE_PHYSICAL, .dir = STEDMA40_MEM_TO_MEM, .src_info.data_width = STEDMA40_BYTE_WIDTH, .src_info.psize = STEDMA40_PSIZE_PHY_1, .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, .dst_info.data_width = STEDMA40_BYTE_WIDTH, .dst_info.psize = STEDMA40_PSIZE_PHY_1, .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, }; /* Default configuration for logical memcpy */ struct stedma40_chan_cfg dma40_memcpy_conf_log = { .mode = STEDMA40_MODE_LOGICAL, .dir = STEDMA40_MEM_TO_MEM, .src_info.data_width = STEDMA40_BYTE_WIDTH, .src_info.psize = STEDMA40_PSIZE_LOG_1, .src_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, .dst_info.data_width = STEDMA40_BYTE_WIDTH, .dst_info.psize = STEDMA40_PSIZE_LOG_1, .dst_info.flow_ctrl = STEDMA40_NO_FLOW_CTRL, }; /** * enum 40_command - The different commands and/or statuses. * * @D40_DMA_STOP: DMA channel command STOP or status STOPPED, * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN. * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible. * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED. */ enum d40_command { D40_DMA_STOP = 0, D40_DMA_RUN = 1, D40_DMA_SUSPEND_REQ = 2, D40_DMA_SUSPENDED = 3 }; /* * enum d40_events - The different Event Enables for the event lines. * * @D40_DEACTIVATE_EVENTLINE: De-activate Event line, stopping the logical chan. * @D40_ACTIVATE_EVENTLINE: Activate the Event line, to start a logical chan. * @D40_SUSPEND_REQ_EVENTLINE: Requesting for suspending a event line. * @D40_ROUND_EVENTLINE: Status check for event line. */ enum d40_events { D40_DEACTIVATE_EVENTLINE = 0, D40_ACTIVATE_EVENTLINE = 1, D40_SUSPEND_REQ_EVENTLINE = 2, D40_ROUND_EVENTLINE = 3 }; /* * These are the registers that has to be saved and later restored * when the DMA hw is powered off. * TODO: Add save/restore of D40_DREG_GCC on dma40 v3 or later, if that works. */ static u32 d40_backup_regs[] = { D40_DREG_LCPA, D40_DREG_LCLA, D40_DREG_PRMSE, D40_DREG_PRMSO, D40_DREG_PRMOE, D40_DREG_PRMOO, }; #define BACKUP_REGS_SZ ARRAY_SIZE(d40_backup_regs) /* * since 9540 and 8540 has the same HW revision * use v4a for 9540 or ealier * use v4b for 8540 or later * HW revision: * DB8500ed has revision 0 * DB8500v1 has revision 2 * DB8500v2 has revision 3 * AP9540v1 has revision 4 * DB8540v1 has revision 4 * TODO: Check if all these registers have to be saved/restored on dma40 v4a */ static u32 d40_backup_regs_v4a[] = { D40_DREG_PSEG1, D40_DREG_PSEG2, D40_DREG_PSEG3, D40_DREG_PSEG4, D40_DREG_PCEG1, D40_DREG_PCEG2, D40_DREG_PCEG3, D40_DREG_PCEG4, D40_DREG_RSEG1, D40_DREG_RSEG2, D40_DREG_RSEG3, D40_DREG_RSEG4, D40_DREG_RCEG1, D40_DREG_RCEG2, D40_DREG_RCEG3, D40_DREG_RCEG4, }; #define BACKUP_REGS_SZ_V4A ARRAY_SIZE(d40_backup_regs_v4a) static u32 d40_backup_regs_v4b[] = { D40_DREG_CPSEG1, D40_DREG_CPSEG2, D40_DREG_CPSEG3, D40_DREG_CPSEG4, D40_DREG_CPSEG5, D40_DREG_CPCEG1, D40_DREG_CPCEG2, D40_DREG_CPCEG3, D40_DREG_CPCEG4, D40_DREG_CPCEG5, D40_DREG_CRSEG1, D40_DREG_CRSEG2, D40_DREG_CRSEG3, D40_DREG_CRSEG4, D40_DREG_CRSEG5, D40_DREG_CRCEG1, D40_DREG_CRCEG2, D40_DREG_CRCEG3, D40_DREG_CRCEG4, D40_DREG_CRCEG5, }; #define BACKUP_REGS_SZ_V4B ARRAY_SIZE(d40_backup_regs_v4b) static u32 d40_backup_regs_chan[] = { D40_CHAN_REG_SSCFG, D40_CHAN_REG_SSELT, D40_CHAN_REG_SSPTR, D40_CHAN_REG_SSLNK, D40_CHAN_REG_SDCFG, D40_CHAN_REG_SDELT, D40_CHAN_REG_SDPTR, D40_CHAN_REG_SDLNK, }; /** * struct d40_interrupt_lookup - lookup table for interrupt handler * * @src: Interrupt mask register. * @clr: Interrupt clear register. * @is_error: true if this is an error interrupt. * @offset: start delta in the lookup_log_chans in d40_base. If equals to * D40_PHY_CHAN, the lookup_phy_chans shall be used instead. */ struct d40_interrupt_lookup { u32 src; u32 clr; bool is_error; int offset; }; static struct d40_interrupt_lookup il_v4a[] = { {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0}, {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32}, {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64}, {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96}, {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0}, {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32}, {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64}, {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96}, {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN}, {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN}, }; static struct d40_interrupt_lookup il_v4b[] = { {D40_DREG_CLCTIS1, D40_DREG_CLCICR1, false, 0}, {D40_DREG_CLCTIS2, D40_DREG_CLCICR2, false, 32}, {D40_DREG_CLCTIS3, D40_DREG_CLCICR3, false, 64}, {D40_DREG_CLCTIS4, D40_DREG_CLCICR4, false, 96}, {D40_DREG_CLCTIS5, D40_DREG_CLCICR5, false, 128}, {D40_DREG_CLCEIS1, D40_DREG_CLCICR1, true, 0}, {D40_DREG_CLCEIS2, D40_DREG_CLCICR2, true, 32}, {D40_DREG_CLCEIS3, D40_DREG_CLCICR3, true, 64}, {D40_DREG_CLCEIS4, D40_DREG_CLCICR4, true, 96}, {D40_DREG_CLCEIS5, D40_DREG_CLCICR5, true, 128}, {D40_DREG_CPCTIS, D40_DREG_CPCICR, false, D40_PHY_CHAN}, {D40_DREG_CPCEIS, D40_DREG_CPCICR, true, D40_PHY_CHAN}, }; /** * struct d40_reg_val - simple lookup struct * * @reg: The register. * @val: The value that belongs to the register in reg. */ struct d40_reg_val { unsigned int reg; unsigned int val; }; static __initdata struct d40_reg_val dma_init_reg_v4a[] = { /* Clock every part of the DMA block from start */ { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, /* Interrupts on all logical channels */ { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF}, { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF} }; static __initdata struct d40_reg_val dma_init_reg_v4b[] = { /* Clock every part of the DMA block from start */ { .reg = D40_DREG_GCC, .val = D40_DREG_GCC_ENABLE_ALL}, /* Interrupts on all logical channels */ { .reg = D40_DREG_CLCMIS1, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCMIS2, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCMIS3, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCMIS4, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCMIS5, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCICR1, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCICR2, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCICR3, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCICR4, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCICR5, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCTIS1, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCTIS2, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCTIS3, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCTIS4, .val = 0xFFFFFFFF}, { .reg = D40_DREG_CLCTIS5, .val = 0xFFFFFFFF} }; /** * struct d40_lli_pool - Structure for keeping LLIs in memory * * @base: Pointer to memory area when the pre_alloc_lli's are not large * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if * pre_alloc_lli is used. * @dma_addr: DMA address, if mapped * @size: The size in bytes of the memory at base or the size of pre_alloc_lli. * @pre_alloc_lli: Pre allocated area for the most common case of transfers, * one buffer to one buffer. */ struct d40_lli_pool { void *base; int size; dma_addr_t dma_addr; /* Space for dst and src, plus an extra for padding */ u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)]; }; /** * struct d40_desc - A descriptor is one DMA job. * * @lli_phy: LLI settings for physical channel. Both src and dst= * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if * lli_len equals one. * @lli_log: Same as above but for logical channels. * @lli_pool: The pool with two entries pre-allocated. * @lli_len: Number of llis of current descriptor. * @lli_current: Number of transferred llis. * @lcla_alloc: Number of LCLA entries allocated. * @txd: DMA engine struct. Used for among other things for communication * during a transfer. * @node: List entry. * @is_in_client_list: true if the client owns this descriptor. * @cyclic: true if this is a cyclic job * * This descriptor is used for both logical and physical transfers. */ struct d40_desc { /* LLI physical */ struct d40_phy_lli_bidir lli_phy; /* LLI logical */ struct d40_log_lli_bidir lli_log; struct d40_lli_pool lli_pool; int lli_len; int lli_current; int lcla_alloc; struct dma_async_tx_descriptor txd; struct list_head node; bool is_in_client_list; bool cyclic; }; /** * struct d40_lcla_pool - LCLA pool settings and data. * * @base: The virtual address of LCLA. 18 bit aligned. * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used. * This pointer is only there for clean-up on error. * @pages: The number of pages needed for all physical channels. * Only used later for clean-up on error * @lock: Lock to protect the content in this struct. * @alloc_map: big map over which LCLA entry is own by which job. */ struct d40_lcla_pool { void *base; dma_addr_t dma_addr; void *base_unaligned; int pages; spinlock_t lock; struct d40_desc **alloc_map; }; /** * struct d40_phy_res - struct for handling eventlines mapped to physical * channels. * * @lock: A lock protection this entity. * @reserved: True if used by secure world or otherwise. * @num: The physical channel number of this entity. * @allocated_src: Bit mapped to show which src event line's are mapped to * this physical channel. Can also be free or physically allocated. * @allocated_dst: Same as for src but is dst. * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as * event line number. * @use_soft_lli: To mark if the linked lists of channel are managed by SW. */ struct d40_phy_res { spinlock_t lock; bool reserved; int num; u32 allocated_src; u32 allocated_dst; bool use_soft_lli; }; struct d40_base; /** * struct d40_chan - Struct that describes a channel. * * @lock: A spinlock to protect this struct. * @log_num: The logical number, if any of this channel. * @pending_tx: The number of pending transfers. Used between interrupt handler * and tasklet. * @busy: Set to true when transfer is ongoing on this channel. * @phy_chan: Pointer to physical channel which this instance runs on. If this * point is NULL, then the channel is not allocated. * @chan: DMA engine handle. * @tasklet: Tasklet that gets scheduled from interrupt context to complete a * transfer and call client callback. * @client: Cliented owned descriptor list. * @pending_queue: Submitted jobs, to be issued by issue_pending() * @active: Active descriptor. * @done: Completed jobs * @queue: Queued jobs. * @prepare_queue: Prepared jobs. * @dma_cfg: The client configuration of this dma channel. * @configured: whether the dma_cfg configuration is valid * @base: Pointer to the device instance struct. * @src_def_cfg: Default cfg register setting for src. * @dst_def_cfg: Default cfg register setting for dst. * @log_def: Default logical channel settings. * @lcpa: Pointer to dst and src lcpa settings. * @runtime_addr: runtime configured address. * @runtime_direction: runtime configured direction. * * This struct can either "be" a logical or a physical channel. */ struct d40_chan { spinlock_t lock; int log_num; int pending_tx; bool busy; struct d40_phy_res *phy_chan; struct dma_chan chan; struct tasklet_struct tasklet; struct list_head client; struct list_head pending_queue; struct list_head active; struct list_head done; struct list_head queue; struct list_head prepare_queue; struct stedma40_chan_cfg dma_cfg; bool configured; struct d40_base *base; /* Default register configurations */ u32 src_def_cfg; u32 dst_def_cfg; struct d40_def_lcsp log_def; struct d40_log_lli_full *lcpa; /* Runtime reconfiguration */ dma_addr_t runtime_addr; enum dma_transfer_direction runtime_direction; }; /** * struct d40_gen_dmac - generic values to represent u8500/u8540 DMA * controller * * @backup: the pointer to the registers address array for backup * @backup_size: the size of the registers address array for backup * @realtime_en: the realtime enable register * @realtime_clear: the realtime clear register * @high_prio_en: the high priority enable register * @high_prio_clear: the high priority clear register * @interrupt_en: the interrupt enable register * @interrupt_clear: the interrupt clear register * @il: the pointer to struct d40_interrupt_lookup * @il_size: the size of d40_interrupt_lookup array * @init_reg: the pointer to the struct d40_reg_val * @init_reg_size: the size of d40_reg_val array */ struct d40_gen_dmac { u32 *backup; u32 backup_size; u32 realtime_en; u32 realtime_clear; u32 high_prio_en; u32 high_prio_clear; u32 interrupt_en; u32 interrupt_clear; struct d40_interrupt_lookup *il; u32 il_size; struct d40_reg_val *init_reg; u32 init_reg_size; }; /** * struct d40_base - The big global struct, one for each probe'd instance. * * @interrupt_lock: Lock used to make sure one interrupt is handle a time. * @execmd_lock: Lock for execute command usage since several channels share * the same physical register. * @dev: The device structure. * @virtbase: The virtual base address of the DMA's register. * @rev: silicon revision detected. * @clk: Pointer to the DMA clock structure. * @phy_start: Physical memory start of the DMA registers. * @phy_size: Size of the DMA register map. * @irq: The IRQ number. * @num_phy_chans: The number of physical channels. Read from HW. This * is the number of available channels for this driver, not counting "Secure * mode" allocated physical channels. * @num_log_chans: The number of logical channels. Calculated from * num_phy_chans. * @dma_both: dma_device channels that can do both memcpy and slave transfers. * @dma_slave: dma_device channels that can do only do slave transfers. * @dma_memcpy: dma_device channels that can do only do memcpy transfers. * @phy_chans: Room for all possible physical channels in system. * @log_chans: Room for all possible logical channels in system. * @lookup_log_chans: Used to map interrupt number to logical channel. Points * to log_chans entries. * @lookup_phy_chans: Used to map interrupt number to physical channel. Points * to phy_chans entries. * @plat_data: Pointer to provided platform_data which is the driver * configuration. * @lcpa_regulator: Pointer to hold the regulator for the esram bank for lcla. * @phy_res: Vector containing all physical channels. * @lcla_pool: lcla pool settings and data. * @lcpa_base: The virtual mapped address of LCPA. * @phy_lcpa: The physical address of the LCPA. * @lcpa_size: The size of the LCPA area. * @desc_slab: cache for descriptors. * @reg_val_backup: Here the values of some hardware registers are stored * before the DMA is powered off. They are restored when the power is back on. * @reg_val_backup_v4: Backup of registers that only exits on dma40 v3 and * later * @reg_val_backup_chan: Backup data for standard channel parameter registers. * @gcc_pwr_off_mask: Mask to maintain the channels that can be turned off. * @initialized: true if the dma has been initialized * @gen_dmac: the struct for generic registers values to represent u8500/8540 * DMA controller */ struct d40_base { spinlock_t interrupt_lock; spinlock_t execmd_lock; struct device *dev; void __iomem *virtbase; u8 rev:4; struct clk *clk; phys_addr_t phy_start; resource_size_t phy_size; int irq; int num_phy_chans; int num_log_chans; struct device_dma_parameters dma_parms; struct dma_device dma_both; struct dma_device dma_slave; struct dma_device dma_memcpy; struct d40_chan *phy_chans; struct d40_chan *log_chans; struct d40_chan **lookup_log_chans; struct d40_chan **lookup_phy_chans; struct stedma40_platform_data *plat_data; struct regulator *lcpa_regulator; /* Physical half channels */ struct d40_phy_res *phy_res; struct d40_lcla_pool lcla_pool; void *lcpa_base; dma_addr_t phy_lcpa; resource_size_t lcpa_size; struct kmem_cache *desc_slab; u32 reg_val_backup[BACKUP_REGS_SZ]; u32 reg_val_backup_v4[MAX(BACKUP_REGS_SZ_V4A, BACKUP_REGS_SZ_V4B)]; u32 *reg_val_backup_chan; u16 gcc_pwr_off_mask; bool initialized; struct d40_gen_dmac gen_dmac; }; static struct device *chan2dev(struct d40_chan *d40c) { return &d40c->chan.dev->device; } static bool chan_is_physical(struct d40_chan *chan) { return chan->log_num == D40_PHY_CHAN; } static bool chan_is_logical(struct d40_chan *chan) { return !chan_is_physical(chan); } static void __iomem *chan_base(struct d40_chan *chan) { return chan->base->virtbase + D40_DREG_PCBASE + chan->phy_chan->num * D40_DREG_PCDELTA; } #define d40_err(dev, format, arg...) \ dev_err(dev, "[%s] " format, __func__, ## arg) #define chan_err(d40c, format, arg...) \ d40_err(chan2dev(d40c), format, ## arg) static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d, int lli_len) { bool is_log = chan_is_logical(d40c); u32 align; void *base; if (is_log) align = sizeof(struct d40_log_lli); else align = sizeof(struct d40_phy_lli); if (lli_len == 1) { base = d40d->lli_pool.pre_alloc_lli; d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli); d40d->lli_pool.base = NULL; } else { d40d->lli_pool.size = lli_len * 2 * align; base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT); d40d->lli_pool.base = base; if (d40d->lli_pool.base == NULL) return -ENOMEM; } if (is_log) { d40d->lli_log.src = PTR_ALIGN(base, align); d40d->lli_log.dst = d40d->lli_log.src + lli_len; d40d->lli_pool.dma_addr = 0; } else { d40d->lli_phy.src = PTR_ALIGN(base, align); d40d->lli_phy.dst = d40d->lli_phy.src + lli_len; d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev, d40d->lli_phy.src, d40d->lli_pool.size, DMA_TO_DEVICE); if (dma_mapping_error(d40c->base->dev, d40d->lli_pool.dma_addr)) { kfree(d40d->lli_pool.base); d40d->lli_pool.base = NULL; d40d->lli_pool.dma_addr = 0; return -ENOMEM; } } return 0; } static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d) { if (d40d->lli_pool.dma_addr) dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr, d40d->lli_pool.size, DMA_TO_DEVICE); kfree(d40d->lli_pool.base); d40d->lli_pool.base = NULL; d40d->lli_pool.size = 0; d40d->lli_log.src = NULL; d40d->lli_log.dst = NULL; d40d->lli_phy.src = NULL; d40d->lli_phy.dst = NULL; } static int d40_lcla_alloc_one(struct d40_chan *d40c, struct d40_desc *d40d) { unsigned long flags; int i; int ret = -EINVAL; spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); /* * Allocate both src and dst at the same time, therefore the half * start on 1 since 0 can't be used since zero is used as end marker. */ for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; if (!d40c->base->lcla_pool.alloc_map[idx]) { d40c->base->lcla_pool.alloc_map[idx] = d40d; d40d->lcla_alloc++; ret = i; break; } } spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); return ret; } static int d40_lcla_free_all(struct d40_chan *d40c, struct d40_desc *d40d) { unsigned long flags; int i; int ret = -EINVAL; if (chan_is_physical(d40c)) return 0; spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags); for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) { int idx = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP + i; if (d40c->base->lcla_pool.alloc_map[idx] == d40d) { d40c->base->lcla_pool.alloc_map[idx] = NULL; d40d->lcla_alloc--; if (d40d->lcla_alloc == 0) { ret = 0; break; } } } spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags); return ret; } static void d40_desc_remove(struct d40_desc *d40d) { list_del(&d40d->node); } static struct d40_desc *d40_desc_get(struct d40_chan *d40c) { struct d40_desc *desc = NULL; if (!list_empty(&d40c->client)) { struct d40_desc *d; struct d40_desc *_d; list_for_each_entry_safe(d, _d, &d40c->client, node) { if (async_tx_test_ack(&d->txd)) { d40_desc_remove(d); desc = d; memset(desc, 0, sizeof(*desc)); break; } } } if (!desc) desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT); if (desc) INIT_LIST_HEAD(&desc->node); return desc; } static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d) { d40_pool_lli_free(d40c, d40d); d40_lcla_free_all(d40c, d40d); kmem_cache_free(d40c->base->desc_slab, d40d); } static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc) { list_add_tail(&desc->node, &d40c->active); } static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc) { struct d40_phy_lli *lli_dst = desc->lli_phy.dst; struct d40_phy_lli *lli_src = desc->lli_phy.src; void __iomem *base = chan_base(chan); writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG); writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT); writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR); writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK); writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG); writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT); writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR); writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK); } static void d40_desc_done(struct d40_chan *d40c, struct d40_desc *desc) { list_add_tail(&desc->node, &d40c->done); } static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc) { struct d40_lcla_pool *pool = &chan->base->lcla_pool; struct d40_log_lli_bidir *lli = &desc->lli_log; int lli_current = desc->lli_current; int lli_len = desc->lli_len; bool cyclic = desc->cyclic; int curr_lcla = -EINVAL; int first_lcla = 0; bool use_esram_lcla = chan->base->plat_data->use_esram_lcla; bool linkback; /* * We may have partially running cyclic transfers, in case we did't get * enough LCLA entries. */ linkback = cyclic && lli_current == 0; /* * For linkback, we need one LCLA even with only one link, because we * can't link back to the one in LCPA space */ if (linkback || (lli_len - lli_current > 1)) { /* * If the channel is expected to use only soft_lli don't * allocate a lcla. This is to avoid a HW issue that exists * in some controller during a peripheral to memory transfer * that uses linked lists. */ if (!(chan->phy_chan->use_soft_lli && chan->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)) curr_lcla = d40_lcla_alloc_one(chan, desc); first_lcla = curr_lcla; } /* * For linkback, we normally load the LCPA in the loop since we need to * link it to the second LCLA and not the first. However, if we * couldn't even get a first LCLA, then we have to run in LCPA and * reload manually. */ if (!linkback || curr_lcla == -EINVAL) { unsigned int flags = 0; if (curr_lcla == -EINVAL) flags |= LLI_TERM_INT; d40_log_lli_lcpa_write(chan->lcpa, &lli->dst[lli_current], &lli->src[lli_current], curr_lcla, flags); lli_current++; } if (curr_lcla < 0) goto out; for (; lli_current < lli_len; lli_current++) { unsigned int lcla_offset = chan->phy_chan->num * 1024 + 8 * curr_lcla * 2; struct d40_log_lli *lcla = pool->base + lcla_offset; unsigned int flags = 0; int next_lcla; if (lli_current + 1 < lli_len) next_lcla = d40_lcla_alloc_one(chan, desc); else next_lcla = linkback ? first_lcla : -EINVAL; if (cyclic || next_lcla == -EINVAL) flags |= LLI_TERM_INT; if (linkback && curr_lcla == first_lcla) { /* First link goes in both LCPA and LCLA */ d40_log_lli_lcpa_write(chan->lcpa, &lli->dst[lli_current], &lli->src[lli_current], next_lcla, flags); } /* * One unused LCLA in the cyclic case if the very first * next_lcla fails... */ d40_log_lli_lcla_write(lcla, &lli->dst[lli_current], &lli->src[lli_current], next_lcla, flags); /* * Cache maintenance is not needed if lcla is * mapped in esram */ if (!use_esram_lcla) { dma_sync_single_range_for_device(chan->base->dev, pool->dma_addr, lcla_offset, 2 * sizeof(struct d40_log_lli), DMA_TO_DEVICE); } curr_lcla = next_lcla; if (curr_lcla == -EINVAL || curr_lcla == first_lcla) { lli_current++; break; } } out: desc->lli_current = lli_current; } static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d) { if (chan_is_physical(d40c)) { d40_phy_lli_load(d40c, d40d); d40d->lli_current = d40d->lli_len; } else d40_log_lli_to_lcxa(d40c, d40d); } static struct d40_desc *d40_first_active_get(struct d40_chan *d40c) { struct d40_desc *d; if (list_empty(&d40c->active)) return NULL; d = list_first_entry(&d40c->active, struct d40_desc, node); return d; } /* remove desc from current queue and add it to the pending_queue */ static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc) { d40_desc_remove(desc); desc->is_in_client_list = false; list_add_tail(&desc->node, &d40c->pending_queue); } static struct d40_desc *d40_first_pending(struct d40_chan *d40c) { struct d40_desc *d; if (list_empty(&d40c->pending_queue)) return NULL; d = list_first_entry(&d40c->pending_queue, struct d40_desc, node); return d; } static struct d40_desc *d40_first_queued(struct d40_chan *d40c) { struct d40_desc *d; if (list_empty(&d40c->queue)) return NULL; d = list_first_entry(&d40c->queue, struct d40_desc, node); return d; } static struct d40_desc *d40_first_done(struct d40_chan *d40c) { if (list_empty(&d40c->done)) return NULL; return list_first_entry(&d40c->done, struct d40_desc, node); } static int d40_psize_2_burst_size(bool is_log, int psize) { if (is_log) { if (psize == STEDMA40_PSIZE_LOG_1) return 1; } else { if (psize == STEDMA40_PSIZE_PHY_1) return 1; } return 2 << psize; } /* * The dma only supports transmitting packages up to * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of * dma elements required to send the entire sg list */ static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2) { int dmalen; u32 max_w = max(data_width1, data_width2); u32 min_w = min(data_width1, data_width2); u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w); if (seg_max > STEDMA40_MAX_SEG_SIZE) seg_max -= (1 << max_w); if (!IS_ALIGNED(size, 1 << max_w)) return -EINVAL; if (size <= seg_max) dmalen = 1; else { dmalen = size / seg_max; if (dmalen * seg_max < size) dmalen++; } return dmalen; } static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len, u32 data_width1, u32 data_width2) { struct scatterlist *sg; int i; int len = 0; int ret; for_each_sg(sgl, sg, sg_len, i) { ret = d40_size_2_dmalen(sg_dma_len(sg), data_width1, data_width2); if (ret < 0) return ret; len += ret; } return len; } #ifdef CONFIG_PM static void dma40_backup(void __iomem *baseaddr, u32 *backup, u32 *regaddr, int num, bool save) { int i; for (i = 0; i < num; i++) { void __iomem *addr = baseaddr + regaddr[i]; if (save) backup[i] = readl_relaxed(addr); else writel_relaxed(backup[i], addr); } } static void d40_save_restore_registers(struct d40_base *base, bool save) { int i; /* Save/Restore channel specific registers */ for (i = 0; i < base->num_phy_chans; i++) { void __iomem *addr; int idx; if (base->phy_res[i].reserved) continue; addr = base->virtbase + D40_DREG_PCBASE + i * D40_DREG_PCDELTA; idx = i * ARRAY_SIZE(d40_backup_regs_chan); dma40_backup(addr, &base->reg_val_backup_chan[idx], d40_backup_regs_chan, ARRAY_SIZE(d40_backup_regs_chan), save); } /* Save/Restore global registers */ dma40_backup(base->virtbase, base->reg_val_backup, d40_backup_regs, ARRAY_SIZE(d40_backup_regs), save); /* Save/Restore registers only existing on dma40 v3 and later */ if (base->gen_dmac.backup) dma40_backup(base->virtbase, base->reg_val_backup_v4, base->gen_dmac.backup, base->gen_dmac.backup_size, save); } #else static void d40_save_restore_registers(struct d40_base *base, bool save) { } #endif static int __d40_execute_command_phy(struct d40_chan *d40c, enum d40_command command) { u32 status; int i; void __iomem *active_reg; int ret = 0; unsigned long flags; u32 wmask; if (command == D40_DMA_STOP) { ret = __d40_execute_command_phy(d40c, D40_DMA_SUSPEND_REQ); if (ret) return ret; } spin_lock_irqsave(&d40c->base->execmd_lock, flags); if (d40c->phy_chan->num % 2 == 0) active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; else active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; if (command == D40_DMA_SUSPEND_REQ) { status = (readl(active_reg) & D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> D40_CHAN_POS(d40c->phy_chan->num); if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) goto done; } wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num)); writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)), active_reg); if (command == D40_DMA_SUSPEND_REQ) { for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) { status = (readl(active_reg) & D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> D40_CHAN_POS(d40c->phy_chan->num); cpu_relax(); /* * Reduce the number of bus accesses while * waiting for the DMA to suspend. */ udelay(3); if (status == D40_DMA_STOP || status == D40_DMA_SUSPENDED) break; } if (i == D40_SUSPEND_MAX_IT) { chan_err(d40c, "unable to suspend the chl %d (log: %d) status %x\n", d40c->phy_chan->num, d40c->log_num, status); dump_stack(); ret = -EBUSY; } } done: spin_unlock_irqrestore(&d40c->base->execmd_lock, flags); return ret; } static void d40_term_all(struct d40_chan *d40c) { struct d40_desc *d40d; struct d40_desc *_d; /* Release completed descriptors */ while ((d40d = d40_first_done(d40c))) { d40_desc_remove(d40d); d40_desc_free(d40c, d40d); } /* Release active descriptors */ while ((d40d = d40_first_active_get(d40c))) { d40_desc_remove(d40d); d40_desc_free(d40c, d40d); } /* Release queued descriptors waiting for transfer */ while ((d40d = d40_first_queued(d40c))) { d40_desc_remove(d40d); d40_desc_free(d40c, d40d); } /* Release pending descriptors */ while ((d40d = d40_first_pending(d40c))) { d40_desc_remove(d40d); d40_desc_free(d40c, d40d); } /* Release client owned descriptors */ if (!list_empty(&d40c->client)) list_for_each_entry_safe(d40d, _d, &d40c->client, node) { d40_desc_remove(d40d); d40_desc_free(d40c, d40d); } /* Release descriptors in prepare queue */ if (!list_empty(&d40c->prepare_queue)) list_for_each_entry_safe(d40d, _d, &d40c->prepare_queue, node) { d40_desc_remove(d40d); d40_desc_free(d40c, d40d); } d40c->pending_tx = 0; } static void __d40_config_set_event(struct d40_chan *d40c, enum d40_events event_type, u32 event, int reg) { void __iomem *addr = chan_base(d40c) + reg; int tries; u32 status; switch (event_type) { case D40_DEACTIVATE_EVENTLINE: writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) | ~D40_EVENTLINE_MASK(event), addr); break; case D40_SUSPEND_REQ_EVENTLINE: status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> D40_EVENTLINE_POS(event); if (status == D40_DEACTIVATE_EVENTLINE || status == D40_SUSPEND_REQ_EVENTLINE) break; writel((D40_SUSPEND_REQ_EVENTLINE << D40_EVENTLINE_POS(event)) | ~D40_EVENTLINE_MASK(event), addr); for (tries = 0 ; tries < D40_SUSPEND_MAX_IT; tries++) { status = (readl(addr) & D40_EVENTLINE_MASK(event)) >> D40_EVENTLINE_POS(event); cpu_relax(); /* * Reduce the number of bus accesses while * waiting for the DMA to suspend. */ udelay(3); if (status == D40_DEACTIVATE_EVENTLINE) break; } if (tries == D40_SUSPEND_MAX_IT) { chan_err(d40c, "unable to stop the event_line chl %d (log: %d)" "status %x\n", d40c->phy_chan->num, d40c->log_num, status); } break; case D40_ACTIVATE_EVENTLINE: /* * The hardware sometimes doesn't register the enable when src and dst * event lines are active on the same logical channel. Retry to ensure * it does. Usually only one retry is sufficient. */ tries = 100; while (--tries) { writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event)) | ~D40_EVENTLINE_MASK(event), addr); if (readl(addr) & D40_EVENTLINE_MASK(event)) break; } if (tries != 99) dev_dbg(chan2dev(d40c), "[%s] workaround enable S%cLNK (%d tries)\n", __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D', 100 - tries); WARN_ON(!tries); break; case D40_ROUND_EVENTLINE: BUG(); break; } } static void d40_config_set_event(struct d40_chan *d40c, enum d40_events event_type) { u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); /* Enable event line connected to device (or memcpy) */ if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) __d40_config_set_event(d40c, event_type, event, D40_CHAN_REG_SSLNK); if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) __d40_config_set_event(d40c, event_type, event, D40_CHAN_REG_SDLNK); } static u32 d40_chan_has_events(struct d40_chan *d40c) { void __iomem *chanbase = chan_base(d40c); u32 val; val = readl(chanbase + D40_CHAN_REG_SSLNK); val |= readl(chanbase + D40_CHAN_REG_SDLNK); return val; } static int __d40_execute_command_log(struct d40_chan *d40c, enum d40_command command) { unsigned long flags; int ret = 0; u32 active_status; void __iomem *active_reg; if (d40c->phy_chan->num % 2 == 0) active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; else active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; spin_lock_irqsave(&d40c->phy_chan->lock, flags); switch (command) { case D40_DMA_STOP: case D40_DMA_SUSPEND_REQ: active_status = (readl(active_reg) & D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> D40_CHAN_POS(d40c->phy_chan->num); if (active_status == D40_DMA_RUN) d40_config_set_event(d40c, D40_SUSPEND_REQ_EVENTLINE); else d40_config_set_event(d40c, D40_DEACTIVATE_EVENTLINE); if (!d40_chan_has_events(d40c) && (command == D40_DMA_STOP)) ret = __d40_execute_command_phy(d40c, command); break; case D40_DMA_RUN: d40_config_set_event(d40c, D40_ACTIVATE_EVENTLINE); ret = __d40_execute_command_phy(d40c, command); break; case D40_DMA_SUSPENDED: BUG(); break; } spin_unlock_irqrestore(&d40c->phy_chan->lock, flags); return ret; } static int d40_channel_execute_command(struct d40_chan *d40c, enum d40_command command) { if (chan_is_logical(d40c)) return __d40_execute_command_log(d40c, command); else return __d40_execute_command_phy(d40c, command); } static u32 d40_get_prmo(struct d40_chan *d40c) { static const unsigned int phy_map[] = { [STEDMA40_PCHAN_BASIC_MODE] = D40_DREG_PRMO_PCHAN_BASIC, [STEDMA40_PCHAN_MODULO_MODE] = D40_DREG_PRMO_PCHAN_MODULO, [STEDMA40_PCHAN_DOUBLE_DST_MODE] = D40_DREG_PRMO_PCHAN_DOUBLE_DST, }; static const unsigned int log_map[] = { [STEDMA40_LCHAN_SRC_PHY_DST_LOG] = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG, [STEDMA40_LCHAN_SRC_LOG_DST_PHY] = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY, [STEDMA40_LCHAN_SRC_LOG_DST_LOG] = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG, }; if (chan_is_physical(d40c)) return phy_map[d40c->dma_cfg.mode_opt]; else return log_map[d40c->dma_cfg.mode_opt]; } static void d40_config_write(struct d40_chan *d40c) { u32 addr_base; u32 var; /* Odd addresses are even addresses + 4 */ addr_base = (d40c->phy_chan->num % 2) * 4; /* Setup channel mode to logical or physical */ var = ((u32)(chan_is_logical(d40c)) + 1) << D40_CHAN_POS(d40c->phy_chan->num); writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base); /* Setup operational mode option register */ var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num); writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base); if (chan_is_logical(d40c)) { int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS) & D40_SREG_ELEM_LOG_LIDX_MASK; void __iomem *chanbase = chan_base(d40c); /* Set default config for CFG reg */ writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG); writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG); /* Set LIDX for lcla */ writel(lidx, chanbase + D40_CHAN_REG_SSELT); writel(lidx, chanbase + D40_CHAN_REG_SDELT); /* Clear LNK which will be used by d40_chan_has_events() */ writel(0, chanbase + D40_CHAN_REG_SSLNK); writel(0, chanbase + D40_CHAN_REG_SDLNK); } } static u32 d40_residue(struct d40_chan *d40c) { u32 num_elt; if (chan_is_logical(d40c)) num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK) >> D40_MEM_LCSP2_ECNT_POS; else { u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT); num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK) >> D40_SREG_ELEM_PHY_ECNT_POS; } return num_elt * (1 << d40c->dma_cfg.dst_info.data_width); } static bool d40_tx_is_linked(struct d40_chan *d40c) { bool is_link; if (chan_is_logical(d40c)) is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK; else is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK) & D40_SREG_LNK_PHYS_LNK_MASK; return is_link; } static int d40_pause(struct d40_chan *d40c) { int res = 0; unsigned long flags; if (!d40c->busy) return 0; pm_runtime_get_sync(d40c->base->dev); spin_lock_irqsave(&d40c->lock, flags); res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ); pm_runtime_mark_last_busy(d40c->base->dev); pm_runtime_put_autosuspend(d40c->base->dev); spin_unlock_irqrestore(&d40c->lock, flags); return res; } static int d40_resume(struct d40_chan *d40c) { int res = 0; unsigned long flags; if (!d40c->busy) return 0; spin_lock_irqsave(&d40c->lock, flags); pm_runtime_get_sync(d40c->base->dev); /* If bytes left to transfer or linked tx resume job */ if (d40_residue(d40c) || d40_tx_is_linked(d40c)) res = d40_channel_execute_command(d40c, D40_DMA_RUN); pm_runtime_mark_last_busy(d40c->base->dev); pm_runtime_put_autosuspend(d40c->base->dev); spin_unlock_irqrestore(&d40c->lock, flags); return res; } static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx) { struct d40_chan *d40c = container_of(tx->chan, struct d40_chan, chan); struct d40_desc *d40d = container_of(tx, struct d40_desc, txd); unsigned long flags; dma_cookie_t cookie; spin_lock_irqsave(&d40c->lock, flags); cookie = dma_cookie_assign(tx); d40_desc_queue(d40c, d40d); spin_unlock_irqrestore(&d40c->lock, flags); return cookie; } static int d40_start(struct d40_chan *d40c) { return d40_channel_execute_command(d40c, D40_DMA_RUN); } static struct d40_desc *d40_queue_start(struct d40_chan *d40c) { struct d40_desc *d40d; int err; /* Start queued jobs, if any */ d40d = d40_first_queued(d40c); if (d40d != NULL) { if (!d40c->busy) { d40c->busy = true; pm_runtime_get_sync(d40c->base->dev); } /* Remove from queue */ d40_desc_remove(d40d); /* Add to active queue */ d40_desc_submit(d40c, d40d); /* Initiate DMA job */ d40_desc_load(d40c, d40d); /* Start dma job */ err = d40_start(d40c); if (err) return NULL; } return d40d; } /* called from interrupt context */ static void dma_tc_handle(struct d40_chan *d40c) { struct d40_desc *d40d; /* Get first active entry from list */ d40d = d40_first_active_get(d40c); if (d40d == NULL) return; if (d40d->cyclic) { /* * If this was a paritially loaded list, we need to reloaded * it, and only when the list is completed. We need to check * for done because the interrupt will hit for every link, and * not just the last one. */ if (d40d->lli_current < d40d->lli_len && !d40_tx_is_linked(d40c) && !d40_residue(d40c)) { d40_lcla_free_all(d40c, d40d); d40_desc_load(d40c, d40d); (void) d40_start(d40c); if (d40d->lli_current == d40d->lli_len) d40d->lli_current = 0; } } else { d40_lcla_free_all(d40c, d40d); if (d40d->lli_current < d40d->lli_len) { d40_desc_load(d40c, d40d); /* Start dma job */ (void) d40_start(d40c); return; } if (d40_queue_start(d40c) == NULL) d40c->busy = false; pm_runtime_mark_last_busy(d40c->base->dev); pm_runtime_put_autosuspend(d40c->base->dev); d40_desc_remove(d40d); d40_desc_done(d40c, d40d); } d40c->pending_tx++; tasklet_schedule(&d40c->tasklet); } static void dma_tasklet(unsigned long data) { struct d40_chan *d40c = (struct d40_chan *) data; struct d40_desc *d40d; unsigned long flags; dma_async_tx_callback callback; void *callback_param; spin_lock_irqsave(&d40c->lock, flags); /* Get first entry from the done list */ d40d = d40_first_done(d40c); if (d40d == NULL) { /* Check if we have reached here for cyclic job */ d40d = d40_first_active_get(d40c); if (d40d == NULL || !d40d->cyclic) goto err; } if (!d40d->cyclic) dma_cookie_complete(&d40d->txd); /* * If terminating a channel pending_tx is set to zero. * This prevents any finished active jobs to return to the client. */ if (d40c->pending_tx == 0) { spin_unlock_irqrestore(&d40c->lock, flags); return; } /* Callback to client */ callback = d40d->txd.callback; callback_param = d40d->txd.callback_param; if (!d40d->cyclic) { if (async_tx_test_ack(&d40d->txd)) { d40_desc_remove(d40d); d40_desc_free(d40c, d40d); } else if (!d40d->is_in_client_list) { d40_desc_remove(d40d); d40_lcla_free_all(d40c, d40d); list_add_tail(&d40d->node, &d40c->client); d40d->is_in_client_list = true; } } d40c->pending_tx--; if (d40c->pending_tx) tasklet_schedule(&d40c->tasklet); spin_unlock_irqrestore(&d40c->lock, flags); if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT)) callback(callback_param); return; err: /* Rescue manouver if receiving double interrupts */ if (d40c->pending_tx > 0) d40c->pending_tx--; spin_unlock_irqrestore(&d40c->lock, flags); } static irqreturn_t d40_handle_interrupt(int irq, void *data) { int i; u32 idx; u32 row; long chan = -1; struct d40_chan *d40c; unsigned long flags; struct d40_base *base = data; u32 regs[base->gen_dmac.il_size]; struct d40_interrupt_lookup *il = base->gen_dmac.il; u32 il_size = base->gen_dmac.il_size; spin_lock_irqsave(&base->interrupt_lock, flags); /* Read interrupt status of both logical and physical channels */ for (i = 0; i < il_size; i++) regs[i] = readl(base->virtbase + il[i].src); for (;;) { chan = find_next_bit((unsigned long *)regs, BITS_PER_LONG * il_size, chan + 1); /* No more set bits found? */ if (chan == BITS_PER_LONG * il_size) break; row = chan / BITS_PER_LONG; idx = chan & (BITS_PER_LONG - 1); if (il[row].offset == D40_PHY_CHAN) d40c = base->lookup_phy_chans[idx]; else d40c = base->lookup_log_chans[il[row].offset + idx]; if (!d40c) { /* * No error because this can happen if something else * in the system is using the channel. */ continue; } /* ACK interrupt */ writel(1 << idx, base->virtbase + il[row].clr); spin_lock(&d40c->lock); if (!il[row].is_error) dma_tc_handle(d40c); else d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n", chan, il[row].offset, idx); spin_unlock(&d40c->lock); } spin_unlock_irqrestore(&base->interrupt_lock, flags); return IRQ_HANDLED; } static int d40_validate_conf(struct d40_chan *d40c, struct stedma40_chan_cfg *conf) { int res = 0; bool is_log = conf->mode == STEDMA40_MODE_LOGICAL; if (!conf->dir) { chan_err(d40c, "Invalid direction.\n"); res = -EINVAL; } if ((is_log && conf->dev_type > d40c->base->num_log_chans) || (!is_log && conf->dev_type > d40c->base->num_phy_chans) || (conf->dev_type < 0)) { chan_err(d40c, "Invalid device type (%d)\n", conf->dev_type); res = -EINVAL; } if (conf->dir == STEDMA40_MEM_TO_PERIPH && d40c->base->plat_data->dev_tx[conf->dev_type] == 0 && d40c->runtime_addr == 0) { chan_err(d40c, "Invalid TX channel address (%d)\n", conf->dev_type); res = -EINVAL; } if (conf->dir == STEDMA40_PERIPH_TO_MEM && d40c->base->plat_data->dev_rx[conf->dev_type] == 0 && d40c->runtime_addr == 0) { chan_err(d40c, "Invalid RX channel address (%d)\n", conf->dev_type); res = -EINVAL; } if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) { /* * DMAC HW supports it. Will be added to this driver, * in case any dma client requires it. */ chan_err(d40c, "periph to periph not supported\n"); res = -EINVAL; } if (d40_psize_2_burst_size(is_log, conf->src_info.psize) * (1 << conf->src_info.data_width) != d40_psize_2_burst_size(is_log, conf->dst_info.psize) * (1 << conf->dst_info.data_width)) { /* * The DMAC hardware only supports * src (burst x width) == dst (burst x width) */ chan_err(d40c, "src (burst x width) != dst (burst x width)\n"); res = -EINVAL; } return res; } static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src, int log_event_line, bool is_log, bool *first_user) { unsigned long flags; spin_lock_irqsave(&phy->lock, flags); *first_user = ((phy->allocated_src | phy->allocated_dst) == D40_ALLOC_FREE); if (!is_log) { /* Physical interrupts are masked per physical full channel */ if (phy->allocated_src == D40_ALLOC_FREE && phy->allocated_dst == D40_ALLOC_FREE) { phy->allocated_dst = D40_ALLOC_PHY; phy->allocated_src = D40_ALLOC_PHY; goto found; } else goto not_found; } /* Logical channel */ if (is_src) { if (phy->allocated_src == D40_ALLOC_PHY) goto not_found; if (phy->allocated_src == D40_ALLOC_FREE) phy->allocated_src = D40_ALLOC_LOG_FREE; if (!(phy->allocated_src & (1 << log_event_line))) { phy->allocated_src |= 1 << log_event_line; goto found; } else goto not_found; } else { if (phy->allocated_dst == D40_ALLOC_PHY) goto not_found; if (phy->allocated_dst == D40_ALLOC_FREE) phy->allocated_dst = D40_ALLOC_LOG_FREE; if (!(phy->allocated_dst & (1 << log_event_line))) { phy->allocated_dst |= 1 << log_event_line; goto found; } else goto not_found; } not_found: spin_unlock_irqrestore(&phy->lock, flags); return false; found: spin_unlock_irqrestore(&phy->lock, flags); return true; } static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src, int log_event_line) { unsigned long flags; bool is_free = false; spin_lock_irqsave(&phy->lock, flags); if (!log_event_line) { phy->allocated_dst = D40_ALLOC_FREE; phy->allocated_src = D40_ALLOC_FREE; is_free = true; goto out; } /* Logical channel */ if (is_src) { phy->allocated_src &= ~(1 << log_event_line); if (phy->allocated_src == D40_ALLOC_LOG_FREE) phy->allocated_src = D40_ALLOC_FREE; } else { phy->allocated_dst &= ~(1 << log_event_line); if (phy->allocated_dst == D40_ALLOC_LOG_FREE) phy->allocated_dst = D40_ALLOC_FREE; } is_free = ((phy->allocated_src | phy->allocated_dst) == D40_ALLOC_FREE); out: spin_unlock_irqrestore(&phy->lock, flags); return is_free; } static int d40_allocate_channel(struct d40_chan *d40c, bool *first_phy_user) { int dev_type = d40c->dma_cfg.dev_type; int event_group; int event_line; struct d40_phy_res *phys; int i; int j; int log_num; int num_phy_chans; bool is_src; bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL; phys = d40c->base->phy_res; num_phy_chans = d40c->base->num_phy_chans; if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { log_num = 2 * dev_type; is_src = true; } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { /* dst event lines are used for logical memcpy */ log_num = 2 * dev_type + 1; is_src = false; } else return -EINVAL; event_group = D40_TYPE_TO_GROUP(dev_type); event_line = D40_TYPE_TO_EVENT(dev_type); if (!is_log) { if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { /* Find physical half channel */ if (d40c->dma_cfg.use_fixed_channel) { i = d40c->dma_cfg.phy_channel; if (d40_alloc_mask_set(&phys[i], is_src, 0, is_log, first_phy_user)) goto found_phy; } else { for (i = 0; i < num_phy_chans; i++) { if (d40_alloc_mask_set(&phys[i], is_src, 0, is_log, first_phy_user)) goto found_phy; } } } else for (j = 0; j < d40c->base->num_phy_chans; j += 8) { int phy_num = j + event_group * 2; for (i = phy_num; i < phy_num + 2; i++) { if (d40_alloc_mask_set(&phys[i], is_src, 0, is_log, first_phy_user)) goto found_phy; } } return -EINVAL; found_phy: d40c->phy_chan = &phys[i]; d40c->log_num = D40_PHY_CHAN; goto out; } if (dev_type == -1) return -EINVAL; /* Find logical channel */ for (j = 0; j < d40c->base->num_phy_chans; j += 8) { int phy_num = j + event_group * 2; if (d40c->dma_cfg.use_fixed_channel) { i = d40c->dma_cfg.phy_channel; if ((i != phy_num) && (i != phy_num + 1)) { dev_err(chan2dev(d40c), "invalid fixed phy channel %d\n", i); return -EINVAL; } if (d40_alloc_mask_set(&phys[i], is_src, event_line, is_log, first_phy_user)) goto found_log; dev_err(chan2dev(d40c), "could not allocate fixed phy channel %d\n", i); return -EINVAL; } /* * Spread logical channels across all available physical rather * than pack every logical channel at the first available phy * channels. */ if (is_src) { for (i = phy_num; i < phy_num + 2; i++) { if (d40_alloc_mask_set(&phys[i], is_src, event_line, is_log, first_phy_user)) goto found_log; } } else { for (i = phy_num + 1; i >= phy_num; i--) { if (d40_alloc_mask_set(&phys[i], is_src, event_line, is_log, first_phy_user)) goto found_log; } } } return -EINVAL; found_log: d40c->phy_chan = &phys[i]; d40c->log_num = log_num; out: if (is_log) d40c->base->lookup_log_chans[d40c->log_num] = d40c; else d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c; return 0; } static int d40_config_memcpy(struct d40_chan *d40c) { dma_cap_mask_t cap = d40c->chan.device->cap_mask; if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) { d40c->dma_cfg = dma40_memcpy_conf_log; d40c->dma_cfg.dev_type = dma40_memcpy_channels[d40c->chan.chan_id]; } else if (dma_has_cap(DMA_MEMCPY, cap) && dma_has_cap(DMA_SLAVE, cap)) { d40c->dma_cfg = dma40_memcpy_conf_phy; } else { chan_err(d40c, "No memcpy\n"); return -EINVAL; } return 0; } static int d40_free_dma(struct d40_chan *d40c) { int res = 0; u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); struct d40_phy_res *phy = d40c->phy_chan; bool is_src; /* Terminate all queued and active transfers */ d40_term_all(d40c); if (phy == NULL) { chan_err(d40c, "phy == null\n"); return -EINVAL; } if (phy->allocated_src == D40_ALLOC_FREE && phy->allocated_dst == D40_ALLOC_FREE) { chan_err(d40c, "channel already free\n"); return -EINVAL; } if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) is_src = false; else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) is_src = true; else { chan_err(d40c, "Unknown direction\n"); return -EINVAL; } pm_runtime_get_sync(d40c->base->dev); res = d40_channel_execute_command(d40c, D40_DMA_STOP); if (res) { chan_err(d40c, "stop failed\n"); goto out; } d40_alloc_mask_free(phy, is_src, chan_is_logical(d40c) ? event : 0); if (chan_is_logical(d40c)) d40c->base->lookup_log_chans[d40c->log_num] = NULL; else d40c->base->lookup_phy_chans[phy->num] = NULL; if (d40c->busy) { pm_runtime_mark_last_busy(d40c->base->dev); pm_runtime_put_autosuspend(d40c->base->dev); } d40c->busy = false; d40c->phy_chan = NULL; d40c->configured = false; out: pm_runtime_mark_last_busy(d40c->base->dev); pm_runtime_put_autosuspend(d40c->base->dev); return res; } static bool d40_is_paused(struct d40_chan *d40c) { void __iomem *chanbase = chan_base(d40c); bool is_paused = false; unsigned long flags; void __iomem *active_reg; u32 status; u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dev_type); spin_lock_irqsave(&d40c->lock, flags); if (chan_is_physical(d40c)) { if (d40c->phy_chan->num % 2 == 0) active_reg = d40c->base->virtbase + D40_DREG_ACTIVE; else active_reg = d40c->base->virtbase + D40_DREG_ACTIVO; status = (readl(active_reg) & D40_CHAN_POS_MASK(d40c->phy_chan->num)) >> D40_CHAN_POS(d40c->phy_chan->num); if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP) is_paused = true; goto _exit; } if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH || d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) { status = readl(chanbase + D40_CHAN_REG_SDLNK); } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) { status = readl(chanbase + D40_CHAN_REG_SSLNK); } else { chan_err(d40c, "Unknown direction\n"); goto _exit; } status = (status & D40_EVENTLINE_MASK(event)) >> D40_EVENTLINE_POS(event); if (status != D40_DMA_RUN) is_paused = true; _exit: spin_unlock_irqrestore(&d40c->lock, flags); return is_paused; } static u32 stedma40_residue(struct dma_chan *chan) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); u32 bytes_left; unsigned long flags; spin_lock_irqsave(&d40c->lock, flags); bytes_left = d40_residue(d40c); spin_unlock_irqrestore(&d40c->lock, flags); return bytes_left; } static int d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc, struct scatterlist *sg_src, struct scatterlist *sg_dst, unsigned int sg_len, dma_addr_t src_dev_addr, dma_addr_t dst_dev_addr) { struct stedma40_chan_cfg *cfg = &chan->dma_cfg; struct stedma40_half_channel_info *src_info = &cfg->src_info; struct stedma40_half_channel_info *dst_info = &cfg->dst_info; int ret; ret = d40_log_sg_to_lli(sg_src, sg_len, src_dev_addr, desc->lli_log.src, chan->log_def.lcsp1, src_info->data_width, dst_info->data_width); ret = d40_log_sg_to_lli(sg_dst, sg_len, dst_dev_addr, desc->lli_log.dst, chan->log_def.lcsp3, dst_info->data_width, src_info->data_width); return ret < 0 ? ret : 0; } static int d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc, struct scatterlist *sg_src, struct scatterlist *sg_dst, unsigned int sg_len, dma_addr_t src_dev_addr, dma_addr_t dst_dev_addr) { struct stedma40_chan_cfg *cfg = &chan->dma_cfg; struct stedma40_half_channel_info *src_info = &cfg->src_info; struct stedma40_half_channel_info *dst_info = &cfg->dst_info; unsigned long flags = 0; int ret; if (desc->cyclic) flags |= LLI_CYCLIC | LLI_TERM_INT; ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr, desc->lli_phy.src, virt_to_phys(desc->lli_phy.src), chan->src_def_cfg, src_info, dst_info, flags); ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr, desc->lli_phy.dst, virt_to_phys(desc->lli_phy.dst), chan->dst_def_cfg, dst_info, src_info, flags); dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr, desc->lli_pool.size, DMA_TO_DEVICE); return ret < 0 ? ret : 0; } static struct d40_desc * d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg, unsigned int sg_len, unsigned long dma_flags) { struct stedma40_chan_cfg *cfg = &chan->dma_cfg; struct d40_desc *desc; int ret; desc = d40_desc_get(chan); if (!desc) return NULL; desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width, cfg->dst_info.data_width); if (desc->lli_len < 0) { chan_err(chan, "Unaligned size\n"); goto err; } ret = d40_pool_lli_alloc(chan, desc, desc->lli_len); if (ret < 0) { chan_err(chan, "Could not allocate lli\n"); goto err; } desc->lli_current = 0; desc->txd.flags = dma_flags; desc->txd.tx_submit = d40_tx_submit; dma_async_tx_descriptor_init(&desc->txd, &chan->chan); return desc; err: d40_desc_free(chan, desc); return NULL; } static dma_addr_t d40_get_dev_addr(struct d40_chan *chan, enum dma_transfer_direction direction) { struct stedma40_platform_data *plat = chan->base->plat_data; struct stedma40_chan_cfg *cfg = &chan->dma_cfg; dma_addr_t addr = 0; if (chan->runtime_addr) return chan->runtime_addr; if (direction == DMA_DEV_TO_MEM) addr = plat->dev_rx[cfg->dev_type]; else if (direction == DMA_MEM_TO_DEV) addr = plat->dev_tx[cfg->dev_type]; return addr; } static struct dma_async_tx_descriptor * d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src, struct scatterlist *sg_dst, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long dma_flags) { struct d40_chan *chan = container_of(dchan, struct d40_chan, chan); dma_addr_t src_dev_addr = 0; dma_addr_t dst_dev_addr = 0; struct d40_desc *desc; unsigned long flags; int ret; if (!chan->phy_chan) { chan_err(chan, "Cannot prepare unallocated channel\n"); return NULL; } spin_lock_irqsave(&chan->lock, flags); desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags); if (desc == NULL) goto err; if (sg_next(&sg_src[sg_len - 1]) == sg_src) desc->cyclic = true; if (direction != DMA_TRANS_NONE) { dma_addr_t dev_addr = d40_get_dev_addr(chan, direction); if (direction == DMA_DEV_TO_MEM) src_dev_addr = dev_addr; else if (direction == DMA_MEM_TO_DEV) dst_dev_addr = dev_addr; } if (chan_is_logical(chan)) ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst, sg_len, src_dev_addr, dst_dev_addr); else ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst, sg_len, src_dev_addr, dst_dev_addr); if (ret) { chan_err(chan, "Failed to prepare %s sg job: %d\n", chan_is_logical(chan) ? "log" : "phy", ret); goto err; } /* * add descriptor to the prepare queue in order to be able * to free them later in terminate_all */ list_add_tail(&desc->node, &chan->prepare_queue); spin_unlock_irqrestore(&chan->lock, flags); return &desc->txd; err: if (desc) d40_desc_free(chan, desc); spin_unlock_irqrestore(&chan->lock, flags); return NULL; } bool stedma40_filter(struct dma_chan *chan, void *data) { struct stedma40_chan_cfg *info = data; struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); int err; if (data) { err = d40_validate_conf(d40c, info); if (!err) d40c->dma_cfg = *info; } else err = d40_config_memcpy(d40c); if (!err) d40c->configured = true; return err == 0; } EXPORT_SYMBOL(stedma40_filter); static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src) { bool realtime = d40c->dma_cfg.realtime; bool highprio = d40c->dma_cfg.high_priority; u32 rtreg; u32 event = D40_TYPE_TO_EVENT(dev_type); u32 group = D40_TYPE_TO_GROUP(dev_type); u32 bit = 1 << event; u32 prioreg; struct d40_gen_dmac *dmac = &d40c->base->gen_dmac; rtreg = realtime ? dmac->realtime_en : dmac->realtime_clear; /* * Due to a hardware bug, in some cases a logical channel triggered by * a high priority destination event line can generate extra packet * transactions. * * The workaround is to not set the high priority level for the * destination event lines that trigger logical channels. */ if (!src && chan_is_logical(d40c)) highprio = false; prioreg = highprio ? dmac->high_prio_en : dmac->high_prio_clear; /* Destination event lines are stored in the upper halfword */ if (!src) bit <<= 16; writel(bit, d40c->base->virtbase + prioreg + group * 4); writel(bit, d40c->base->virtbase + rtreg + group * 4); } static void d40_set_prio_realtime(struct d40_chan *d40c) { if (d40c->base->rev < 3) return; if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) || (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, true); if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) || (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) __d40_set_prio_rt(d40c, d40c->dma_cfg.dev_type, false); } /* DMA ENGINE functions */ static int d40_alloc_chan_resources(struct dma_chan *chan) { int err; unsigned long flags; struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); bool is_free_phy; spin_lock_irqsave(&d40c->lock, flags); dma_cookie_init(chan); /* If no dma configuration is set use default configuration (memcpy) */ if (!d40c->configured) { err = d40_config_memcpy(d40c); if (err) { chan_err(d40c, "Failed to configure memcpy channel\n"); goto fail; } } err = d40_allocate_channel(d40c, &is_free_phy); if (err) { chan_err(d40c, "Failed to allocate channel\n"); d40c->configured = false; goto fail; } pm_runtime_get_sync(d40c->base->dev); /* Fill in basic CFG register values */ d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg, chan_is_logical(d40c)); d40_set_prio_realtime(d40c); if (chan_is_logical(d40c)) { d40_log_cfg(&d40c->dma_cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) d40c->lcpa = d40c->base->lcpa_base + d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE; else d40c->lcpa = d40c->base->lcpa_base + d40c->dma_cfg.dev_type * D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA; } dev_dbg(chan2dev(d40c), "allocated %s channel (phy %d%s)\n", chan_is_logical(d40c) ? "logical" : "physical", d40c->phy_chan->num, d40c->dma_cfg.use_fixed_channel ? ", fixed" : ""); /* * Only write channel configuration to the DMA if the physical * resource is free. In case of multiple logical channels * on the same physical resource, only the first write is necessary. */ if (is_free_phy) d40_config_write(d40c); fail: pm_runtime_mark_last_busy(d40c->base->dev); pm_runtime_put_autosuspend(d40c->base->dev); spin_unlock_irqrestore(&d40c->lock, flags); return err; } static void d40_free_chan_resources(struct dma_chan *chan) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); int err; unsigned long flags; if (d40c->phy_chan == NULL) { chan_err(d40c, "Cannot free unallocated channel\n"); return; } spin_lock_irqsave(&d40c->lock, flags); err = d40_free_dma(d40c); if (err) chan_err(d40c, "Failed to free channel\n"); spin_unlock_irqrestore(&d40c->lock, flags); } static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan, dma_addr_t dst, dma_addr_t src, size_t size, unsigned long dma_flags) { struct scatterlist dst_sg; struct scatterlist src_sg; sg_init_table(&dst_sg, 1); sg_init_table(&src_sg, 1); sg_dma_address(&dst_sg) = dst; sg_dma_address(&src_sg) = src; sg_dma_len(&dst_sg) = size; sg_dma_len(&src_sg) = size; return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags); } static struct dma_async_tx_descriptor * d40_prep_memcpy_sg(struct dma_chan *chan, struct scatterlist *dst_sg, unsigned int dst_nents, struct scatterlist *src_sg, unsigned int src_nents, unsigned long dma_flags) { if (dst_nents != src_nents) return NULL; return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags); } static struct dma_async_tx_descriptor * d40_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len, enum dma_transfer_direction direction, unsigned long dma_flags, void *context) { if (!is_slave_direction(direction)) return NULL; return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags); } static struct dma_async_tx_descriptor * dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr, size_t buf_len, size_t period_len, enum dma_transfer_direction direction, unsigned long flags, void *context) { unsigned int periods = buf_len / period_len; struct dma_async_tx_descriptor *txd; struct scatterlist *sg; int i; sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT); for (i = 0; i < periods; i++) { sg_dma_address(&sg[i]) = dma_addr; sg_dma_len(&sg[i]) = period_len; dma_addr += period_len; } sg[periods].offset = 0; sg_dma_len(&sg[periods]) = 0; sg[periods].page_link = ((unsigned long)sg | 0x01) & ~0x02; txd = d40_prep_sg(chan, sg, sg, periods, direction, DMA_PREP_INTERRUPT); kfree(sg); return txd; } static enum dma_status d40_tx_status(struct dma_chan *chan, dma_cookie_t cookie, struct dma_tx_state *txstate) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); enum dma_status ret; if (d40c->phy_chan == NULL) { chan_err(d40c, "Cannot read status of unallocated channel\n"); return -EINVAL; } ret = dma_cookie_status(chan, cookie, txstate); if (ret != DMA_SUCCESS) dma_set_residue(txstate, stedma40_residue(chan)); if (d40_is_paused(d40c)) ret = DMA_PAUSED; return ret; } static void d40_issue_pending(struct dma_chan *chan) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); unsigned long flags; if (d40c->phy_chan == NULL) { chan_err(d40c, "Channel is not allocated!\n"); return; } spin_lock_irqsave(&d40c->lock, flags); list_splice_tail_init(&d40c->pending_queue, &d40c->queue); /* Busy means that queued jobs are already being processed */ if (!d40c->busy) (void) d40_queue_start(d40c); spin_unlock_irqrestore(&d40c->lock, flags); } static void d40_terminate_all(struct dma_chan *chan) { unsigned long flags; struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); int ret; spin_lock_irqsave(&d40c->lock, flags); pm_runtime_get_sync(d40c->base->dev); ret = d40_channel_execute_command(d40c, D40_DMA_STOP); if (ret) chan_err(d40c, "Failed to stop channel\n"); d40_term_all(d40c); pm_runtime_mark_last_busy(d40c->base->dev); pm_runtime_put_autosuspend(d40c->base->dev); if (d40c->busy) { pm_runtime_mark_last_busy(d40c->base->dev); pm_runtime_put_autosuspend(d40c->base->dev); } d40c->busy = false; spin_unlock_irqrestore(&d40c->lock, flags); } static int dma40_config_to_halfchannel(struct d40_chan *d40c, struct stedma40_half_channel_info *info, enum dma_slave_buswidth width, u32 maxburst) { enum stedma40_periph_data_width addr_width; int psize; switch (width) { case DMA_SLAVE_BUSWIDTH_1_BYTE: addr_width = STEDMA40_BYTE_WIDTH; break; case DMA_SLAVE_BUSWIDTH_2_BYTES: addr_width = STEDMA40_HALFWORD_WIDTH; break; case DMA_SLAVE_BUSWIDTH_4_BYTES: addr_width = STEDMA40_WORD_WIDTH; break; case DMA_SLAVE_BUSWIDTH_8_BYTES: addr_width = STEDMA40_DOUBLEWORD_WIDTH; break; default: dev_err(d40c->base->dev, "illegal peripheral address width " "requested (%d)\n", width); return -EINVAL; } if (chan_is_logical(d40c)) { if (maxburst >= 16) psize = STEDMA40_PSIZE_LOG_16; else if (maxburst >= 8) psize = STEDMA40_PSIZE_LOG_8; else if (maxburst >= 4) psize = STEDMA40_PSIZE_LOG_4; else psize = STEDMA40_PSIZE_LOG_1; } else { if (maxburst >= 16) psize = STEDMA40_PSIZE_PHY_16; else if (maxburst >= 8) psize = STEDMA40_PSIZE_PHY_8; else if (maxburst >= 4) psize = STEDMA40_PSIZE_PHY_4; else psize = STEDMA40_PSIZE_PHY_1; } info->data_width = addr_width; info->psize = psize; info->flow_ctrl = STEDMA40_NO_FLOW_CTRL; return 0; } /* Runtime reconfiguration extension */ static int d40_set_runtime_config(struct dma_chan *chan, struct dma_slave_config *config) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); struct stedma40_chan_cfg *cfg = &d40c->dma_cfg; enum dma_slave_buswidth src_addr_width, dst_addr_width; dma_addr_t config_addr; u32 src_maxburst, dst_maxburst; int ret; src_addr_width = config->src_addr_width; src_maxburst = config->src_maxburst; dst_addr_width = config->dst_addr_width; dst_maxburst = config->dst_maxburst; if (config->direction == DMA_DEV_TO_MEM) { dma_addr_t dev_addr_rx = d40c->base->plat_data->dev_rx[cfg->dev_type]; config_addr = config->src_addr; if (dev_addr_rx) dev_dbg(d40c->base->dev, "channel has a pre-wired RX address %08x " "overriding with %08x\n", dev_addr_rx, config_addr); if (cfg->dir != STEDMA40_PERIPH_TO_MEM) dev_dbg(d40c->base->dev, "channel was not configured for peripheral " "to memory transfer (%d) overriding\n", cfg->dir); cfg->dir = STEDMA40_PERIPH_TO_MEM; /* Configure the memory side */ if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) dst_addr_width = src_addr_width; if (dst_maxburst == 0) dst_maxburst = src_maxburst; } else if (config->direction == DMA_MEM_TO_DEV) { dma_addr_t dev_addr_tx = d40c->base->plat_data->dev_tx[cfg->dev_type]; config_addr = config->dst_addr; if (dev_addr_tx) dev_dbg(d40c->base->dev, "channel has a pre-wired TX address %08x " "overriding with %08x\n", dev_addr_tx, config_addr); if (cfg->dir != STEDMA40_MEM_TO_PERIPH) dev_dbg(d40c->base->dev, "channel was not configured for memory " "to peripheral transfer (%d) overriding\n", cfg->dir); cfg->dir = STEDMA40_MEM_TO_PERIPH; /* Configure the memory side */ if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) src_addr_width = dst_addr_width; if (src_maxburst == 0) src_maxburst = dst_maxburst; } else { dev_err(d40c->base->dev, "unrecognized channel direction %d\n", config->direction); return -EINVAL; } if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) { dev_err(d40c->base->dev, "src/dst width/maxburst mismatch: %d*%d != %d*%d\n", src_maxburst, src_addr_width, dst_maxburst, dst_addr_width); return -EINVAL; } if (src_maxburst > 16) { src_maxburst = 16; dst_maxburst = src_maxburst * src_addr_width / dst_addr_width; } else if (dst_maxburst > 16) { dst_maxburst = 16; src_maxburst = dst_maxburst * dst_addr_width / src_addr_width; } ret = dma40_config_to_halfchannel(d40c, &cfg->src_info, src_addr_width, src_maxburst); if (ret) return ret; ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info, dst_addr_width, dst_maxburst); if (ret) return ret; /* Fill in register values */ if (chan_is_logical(d40c)) d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3); else d40_phy_cfg(cfg, &d40c->src_def_cfg, &d40c->dst_def_cfg, false); /* These settings will take precedence later */ d40c->runtime_addr = config_addr; d40c->runtime_direction = config->direction; dev_dbg(d40c->base->dev, "configured channel %s for %s, data width %d/%d, " "maxburst %d/%d elements, LE, no flow control\n", dma_chan_name(chan), (config->direction == DMA_DEV_TO_MEM) ? "RX" : "TX", src_addr_width, dst_addr_width, src_maxburst, dst_maxburst); return 0; } static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg) { struct d40_chan *d40c = container_of(chan, struct d40_chan, chan); if (d40c->phy_chan == NULL) { chan_err(d40c, "Channel is not allocated!\n"); return -EINVAL; } switch (cmd) { case DMA_TERMINATE_ALL: d40_terminate_all(chan); return 0; case DMA_PAUSE: return d40_pause(d40c); case DMA_RESUME: return d40_resume(d40c); case DMA_SLAVE_CONFIG: return d40_set_runtime_config(chan, (struct dma_slave_config *) arg); default: break; } /* Other commands are unimplemented */ return -ENXIO; } /* Initialization functions */ static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma, struct d40_chan *chans, int offset, int num_chans) { int i = 0; struct d40_chan *d40c; INIT_LIST_HEAD(&dma->channels); for (i = offset; i < offset + num_chans; i++) { d40c = &chans[i]; d40c->base = base; d40c->chan.device = dma; spin_lock_init(&d40c->lock); d40c->log_num = D40_PHY_CHAN; INIT_LIST_HEAD(&d40c->done); INIT_LIST_HEAD(&d40c->active); INIT_LIST_HEAD(&d40c->queue); INIT_LIST_HEAD(&d40c->pending_queue); INIT_LIST_HEAD(&d40c->client); INIT_LIST_HEAD(&d40c->prepare_queue); tasklet_init(&d40c->tasklet, dma_tasklet, (unsigned long) d40c); list_add_tail(&d40c->chan.device_node, &dma->channels); } } static void d40_ops_init(struct d40_base *base, struct dma_device *dev) { if (dma_has_cap(DMA_SLAVE, dev->cap_mask)) dev->device_prep_slave_sg = d40_prep_slave_sg; if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) { dev->device_prep_dma_memcpy = d40_prep_memcpy; /* * This controller can only access address at even * 32bit boundaries, i.e. 2^2 */ dev->copy_align = 2; } if (dma_has_cap(DMA_SG, dev->cap_mask)) dev->device_prep_dma_sg = d40_prep_memcpy_sg; if (dma_has_cap(DMA_CYCLIC, dev->cap_mask)) dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic; dev->device_alloc_chan_resources = d40_alloc_chan_resources; dev->device_free_chan_resources = d40_free_chan_resources; dev->device_issue_pending = d40_issue_pending; dev->device_tx_status = d40_tx_status; dev->device_control = d40_control; dev->dev = base->dev; } static int __init d40_dmaengine_init(struct d40_base *base, int num_reserved_chans) { int err ; d40_chan_init(base, &base->dma_slave, base->log_chans, 0, base->num_log_chans); dma_cap_zero(base->dma_slave.cap_mask); dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask); dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); d40_ops_init(base, &base->dma_slave); err = dma_async_device_register(&base->dma_slave); if (err) { d40_err(base->dev, "Failed to register slave channels\n"); goto failure1; } d40_chan_init(base, &base->dma_memcpy, base->log_chans, base->num_log_chans, ARRAY_SIZE(dma40_memcpy_channels)); dma_cap_zero(base->dma_memcpy.cap_mask); dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask); dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask); d40_ops_init(base, &base->dma_memcpy); err = dma_async_device_register(&base->dma_memcpy); if (err) { d40_err(base->dev, "Failed to regsiter memcpy only channels\n"); goto failure2; } d40_chan_init(base, &base->dma_both, base->phy_chans, 0, num_reserved_chans); dma_cap_zero(base->dma_both.cap_mask); dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask); dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask); dma_cap_set(DMA_SG, base->dma_both.cap_mask); dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask); d40_ops_init(base, &base->dma_both); err = dma_async_device_register(&base->dma_both); if (err) { d40_err(base->dev, "Failed to register logical and physical capable channels\n"); goto failure3; } return 0; failure3: dma_async_device_unregister(&base->dma_memcpy); failure2: dma_async_device_unregister(&base->dma_slave); failure1: return err; } /* Suspend resume functionality */ #ifdef CONFIG_PM static int dma40_pm_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct d40_base *base = platform_get_drvdata(pdev); int ret = 0; if (base->lcpa_regulator) ret = regulator_disable(base->lcpa_regulator); return ret; } static int dma40_runtime_suspend(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct d40_base *base = platform_get_drvdata(pdev); d40_save_restore_registers(base, true); /* Don't disable/enable clocks for v1 due to HW bugs */ if (base->rev != 1) writel_relaxed(base->gcc_pwr_off_mask, base->virtbase + D40_DREG_GCC); return 0; } static int dma40_runtime_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct d40_base *base = platform_get_drvdata(pdev); if (base->initialized) d40_save_restore_registers(base, false); writel_relaxed(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); return 0; } static int dma40_resume(struct device *dev) { struct platform_device *pdev = to_platform_device(dev); struct d40_base *base = platform_get_drvdata(pdev); int ret = 0; if (base->lcpa_regulator) ret = regulator_enable(base->lcpa_regulator); return ret; } static const struct dev_pm_ops dma40_pm_ops = { .suspend = dma40_pm_suspend, .runtime_suspend = dma40_runtime_suspend, .runtime_resume = dma40_runtime_resume, .resume = dma40_resume, }; #define DMA40_PM_OPS (&dma40_pm_ops) #else #define DMA40_PM_OPS NULL #endif /* Initialization functions. */ static int __init d40_phy_res_init(struct d40_base *base) { int i; int num_phy_chans_avail = 0; u32 val[2]; int odd_even_bit = -2; int gcc = D40_DREG_GCC_ENA; val[0] = readl(base->virtbase + D40_DREG_PRSME); val[1] = readl(base->virtbase + D40_DREG_PRSMO); for (i = 0; i < base->num_phy_chans; i++) { base->phy_res[i].num = i; odd_even_bit += 2 * ((i % 2) == 0); if (((val[i % 2] >> odd_even_bit) & 3) == 1) { /* Mark security only channels as occupied */ base->phy_res[i].allocated_src = D40_ALLOC_PHY; base->phy_res[i].allocated_dst = D40_ALLOC_PHY; base->phy_res[i].reserved = true; gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), D40_DREG_GCC_SRC); gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(i), D40_DREG_GCC_DST); } else { base->phy_res[i].allocated_src = D40_ALLOC_FREE; base->phy_res[i].allocated_dst = D40_ALLOC_FREE; base->phy_res[i].reserved = false; num_phy_chans_avail++; } spin_lock_init(&base->phy_res[i].lock); } /* Mark disabled channels as occupied */ for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) { int chan = base->plat_data->disabled_channels[i]; base->phy_res[chan].allocated_src = D40_ALLOC_PHY; base->phy_res[chan].allocated_dst = D40_ALLOC_PHY; base->phy_res[chan].reserved = true; gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), D40_DREG_GCC_SRC); gcc |= D40_DREG_GCC_EVTGRP_ENA(D40_PHYS_TO_GROUP(chan), D40_DREG_GCC_DST); num_phy_chans_avail--; } /* Mark soft_lli channels */ for (i = 0; i < base->plat_data->num_of_soft_lli_chans; i++) { int chan = base->plat_data->soft_lli_chans[i]; base->phy_res[chan].use_soft_lli = true; } dev_info(base->dev, "%d of %d physical DMA channels available\n", num_phy_chans_avail, base->num_phy_chans); /* Verify settings extended vs standard */ val[0] = readl(base->virtbase + D40_DREG_PRTYP); for (i = 0; i < base->num_phy_chans; i++) { if (base->phy_res[i].allocated_src == D40_ALLOC_FREE && (val[0] & 0x3) != 1) dev_info(base->dev, "[%s] INFO: channel %d is misconfigured (%d)\n", __func__, i, val[0] & 0x3); val[0] = val[0] >> 2; } /* * To keep things simple, Enable all clocks initially. * The clocks will get managed later post channel allocation. * The clocks for the event lines on which reserved channels exists * are not managed here. */ writel(D40_DREG_GCC_ENABLE_ALL, base->virtbase + D40_DREG_GCC); base->gcc_pwr_off_mask = gcc; return num_phy_chans_avail; } static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev) { struct stedma40_platform_data *plat_data; struct clk *clk = NULL; void __iomem *virtbase = NULL; struct resource *res = NULL; struct d40_base *base = NULL; int num_log_chans = 0; int num_phy_chans; int clk_ret = -EINVAL; int i; u32 pid; u32 cid; u8 rev; clk = clk_get(&pdev->dev, NULL); if (IS_ERR(clk)) { d40_err(&pdev->dev, "No matching clock found\n"); goto failure; } clk_ret = clk_prepare_enable(clk); if (clk_ret) { d40_err(&pdev->dev, "Failed to prepare/enable clock\n"); goto failure; } /* Get IO for DMAC base address */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base"); if (!res) goto failure; if (request_mem_region(res->start, resource_size(res), D40_NAME " I/O base") == NULL) goto failure; virtbase = ioremap(res->start, resource_size(res)); if (!virtbase) goto failure; /* This is just a regular AMBA PrimeCell ID actually */ for (pid = 0, i = 0; i < 4; i++) pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); for (cid = 0, i = 0; i < 4; i++) cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i) & 255) << (i * 8); if (cid != AMBA_CID) { d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n"); goto failure; } if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) { d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n", AMBA_MANF_BITS(pid), AMBA_VENDOR_ST); goto failure; } /* * HW revision: * DB8500ed has revision 0 * ? has revision 1 * DB8500v1 has revision 2 * DB8500v2 has revision 3 * AP9540v1 has revision 4 * DB8540v1 has revision 4 */ rev = AMBA_REV_BITS(pid); plat_data = pdev->dev.platform_data; /* The number of physical channels on this HW */ if (plat_data->num_of_phy_chans) num_phy_chans = plat_data->num_of_phy_chans; else num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4; dev_info(&pdev->dev, "hardware revision: %d @ 0x%x with %d physical channels\n", rev, res->start, num_phy_chans); if (rev < 2) { d40_err(&pdev->dev, "hardware revision: %d is not supported", rev); goto failure; } /* Count the number of logical channels in use */ for (i = 0; i < plat_data->dev_len; i++) if (plat_data->dev_rx[i] != 0) num_log_chans++; for (i = 0; i < plat_data->dev_len; i++) if (plat_data->dev_tx[i] != 0) num_log_chans++; base = kzalloc(ALIGN(sizeof(struct d40_base), 4) + (num_phy_chans + num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) * sizeof(struct d40_chan), GFP_KERNEL); if (base == NULL) { d40_err(&pdev->dev, "Out of memory\n"); goto failure; } base->rev = rev; base->clk = clk; base->num_phy_chans = num_phy_chans; base->num_log_chans = num_log_chans; base->phy_start = res->start; base->phy_size = resource_size(res); base->virtbase = virtbase; base->plat_data = plat_data; base->dev = &pdev->dev; base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4); base->log_chans = &base->phy_chans[num_phy_chans]; if (base->plat_data->num_of_phy_chans == 14) { base->gen_dmac.backup = d40_backup_regs_v4b; base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4B; base->gen_dmac.interrupt_en = D40_DREG_CPCMIS; base->gen_dmac.interrupt_clear = D40_DREG_CPCICR; base->gen_dmac.realtime_en = D40_DREG_CRSEG1; base->gen_dmac.realtime_clear = D40_DREG_CRCEG1; base->gen_dmac.high_prio_en = D40_DREG_CPSEG1; base->gen_dmac.high_prio_clear = D40_DREG_CPCEG1; base->gen_dmac.il = il_v4b; base->gen_dmac.il_size = ARRAY_SIZE(il_v4b); base->gen_dmac.init_reg = dma_init_reg_v4b; base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4b); } else { if (base->rev >= 3) { base->gen_dmac.backup = d40_backup_regs_v4a; base->gen_dmac.backup_size = BACKUP_REGS_SZ_V4A; } base->gen_dmac.interrupt_en = D40_DREG_PCMIS; base->gen_dmac.interrupt_clear = D40_DREG_PCICR; base->gen_dmac.realtime_en = D40_DREG_RSEG1; base->gen_dmac.realtime_clear = D40_DREG_RCEG1; base->gen_dmac.high_prio_en = D40_DREG_PSEG1; base->gen_dmac.high_prio_clear = D40_DREG_PCEG1; base->gen_dmac.il = il_v4a; base->gen_dmac.il_size = ARRAY_SIZE(il_v4a); base->gen_dmac.init_reg = dma_init_reg_v4a; base->gen_dmac.init_reg_size = ARRAY_SIZE(dma_init_reg_v4a); } base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res), GFP_KERNEL); if (!base->phy_res) goto failure; base->lookup_phy_chans = kzalloc(num_phy_chans * sizeof(struct d40_chan *), GFP_KERNEL); if (!base->lookup_phy_chans) goto failure; if (num_log_chans + ARRAY_SIZE(dma40_memcpy_channels)) { /* * The max number of logical channels are event lines for all * src devices and dst devices */ base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 * sizeof(struct d40_chan *), GFP_KERNEL); if (!base->lookup_log_chans) goto failure; } base->reg_val_backup_chan = kmalloc(base->num_phy_chans * sizeof(d40_backup_regs_chan), GFP_KERNEL); if (!base->reg_val_backup_chan) goto failure; base->lcla_pool.alloc_map = kzalloc(num_phy_chans * sizeof(struct d40_desc *) * D40_LCLA_LINK_PER_EVENT_GRP, GFP_KERNEL); if (!base->lcla_pool.alloc_map) goto failure; base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc), 0, SLAB_HWCACHE_ALIGN, NULL); if (base->desc_slab == NULL) goto failure; return base; failure: if (!clk_ret) clk_disable_unprepare(clk); if (!IS_ERR(clk)) clk_put(clk); if (virtbase) iounmap(virtbase); if (res) release_mem_region(res->start, resource_size(res)); if (virtbase) iounmap(virtbase); if (base) { kfree(base->lcla_pool.alloc_map); kfree(base->reg_val_backup_chan); kfree(base->lookup_log_chans); kfree(base->lookup_phy_chans); kfree(base->phy_res); kfree(base); } return NULL; } static void __init d40_hw_init(struct d40_base *base) { int i; u32 prmseo[2] = {0, 0}; u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF}; u32 pcmis = 0; u32 pcicr = 0; struct d40_reg_val *dma_init_reg = base->gen_dmac.init_reg; u32 reg_size = base->gen_dmac.init_reg_size; for (i = 0; i < reg_size; i++) writel(dma_init_reg[i].val, base->virtbase + dma_init_reg[i].reg); /* Configure all our dma channels to default settings */ for (i = 0; i < base->num_phy_chans; i++) { activeo[i % 2] = activeo[i % 2] << 2; if (base->phy_res[base->num_phy_chans - i - 1].allocated_src == D40_ALLOC_PHY) { activeo[i % 2] |= 3; continue; } /* Enable interrupt # */ pcmis = (pcmis << 1) | 1; /* Clear interrupt # */ pcicr = (pcicr << 1) | 1; /* Set channel to physical mode */ prmseo[i % 2] = prmseo[i % 2] << 2; prmseo[i % 2] |= 1; } writel(prmseo[1], base->virtbase + D40_DREG_PRMSE); writel(prmseo[0], base->virtbase + D40_DREG_PRMSO); writel(activeo[1], base->virtbase + D40_DREG_ACTIVE); writel(activeo[0], base->virtbase + D40_DREG_ACTIVO); /* Write which interrupt to enable */ writel(pcmis, base->virtbase + base->gen_dmac.interrupt_en); /* Write which interrupt to clear */ writel(pcicr, base->virtbase + base->gen_dmac.interrupt_clear); /* These are __initdata and cannot be accessed after init */ base->gen_dmac.init_reg = NULL; base->gen_dmac.init_reg_size = 0; } static int __init d40_lcla_allocate(struct d40_base *base) { struct d40_lcla_pool *pool = &base->lcla_pool; unsigned long *page_list; int i, j; int ret = 0; /* * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned, * To full fill this hardware requirement without wasting 256 kb * we allocate pages until we get an aligned one. */ page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS, GFP_KERNEL); if (!page_list) { ret = -ENOMEM; goto failure; } /* Calculating how many pages that are required */ base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE; for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) { page_list[i] = __get_free_pages(GFP_KERNEL, base->lcla_pool.pages); if (!page_list[i]) { d40_err(base->dev, "Failed to allocate %d pages.\n", base->lcla_pool.pages); for (j = 0; j < i; j++) free_pages(page_list[j], base->lcla_pool.pages); goto failure; } if ((virt_to_phys((void *)page_list[i]) & (LCLA_ALIGNMENT - 1)) == 0) break; } for (j = 0; j < i; j++) free_pages(page_list[j], base->lcla_pool.pages); if (i < MAX_LCLA_ALLOC_ATTEMPTS) { base->lcla_pool.base = (void *)page_list[i]; } else { /* * After many attempts and no succees with finding the correct * alignment, try with allocating a big buffer. */ dev_warn(base->dev, "[%s] Failed to get %d pages @ 18 bit align.\n", __func__, base->lcla_pool.pages); base->lcla_pool.base_unaligned = kmalloc(SZ_1K * base->num_phy_chans + LCLA_ALIGNMENT, GFP_KERNEL); if (!base->lcla_pool.base_unaligned) { ret = -ENOMEM; goto failure; } base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned, LCLA_ALIGNMENT); } pool->dma_addr = dma_map_single(base->dev, pool->base, SZ_1K * base->num_phy_chans, DMA_TO_DEVICE); if (dma_mapping_error(base->dev, pool->dma_addr)) { pool->dma_addr = 0; ret = -ENOMEM; goto failure; } writel(virt_to_phys(base->lcla_pool.base), base->virtbase + D40_DREG_LCLA); failure: kfree(page_list); return ret; } static int __init d40_probe(struct platform_device *pdev) { int err; int ret = -ENOENT; struct d40_base *base; struct resource *res = NULL; int num_reserved_chans; u32 val; base = d40_hw_detect_init(pdev); if (!base) goto failure; num_reserved_chans = d40_phy_res_init(base); platform_set_drvdata(pdev, base); spin_lock_init(&base->interrupt_lock); spin_lock_init(&base->execmd_lock); /* Get IO for logical channel parameter address */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa"); if (!res) { ret = -ENOENT; d40_err(&pdev->dev, "No \"lcpa\" memory resource\n"); goto failure; } base->lcpa_size = resource_size(res); base->phy_lcpa = res->start; if (request_mem_region(res->start, resource_size(res), D40_NAME " I/O lcpa") == NULL) { ret = -EBUSY; d40_err(&pdev->dev, "Failed to request LCPA region 0x%x-0x%x\n", res->start, res->end); goto failure; } /* We make use of ESRAM memory for this. */ val = readl(base->virtbase + D40_DREG_LCPA); if (res->start != val && val != 0) { dev_warn(&pdev->dev, "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n", __func__, val, res->start); } else writel(res->start, base->virtbase + D40_DREG_LCPA); base->lcpa_base = ioremap(res->start, resource_size(res)); if (!base->lcpa_base) { ret = -ENOMEM; d40_err(&pdev->dev, "Failed to ioremap LCPA region\n"); goto failure; } /* If lcla has to be located in ESRAM we don't need to allocate */ if (base->plat_data->use_esram_lcla) { res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcla_esram"); if (!res) { ret = -ENOENT; d40_err(&pdev->dev, "No \"lcla_esram\" memory resource\n"); goto failure; } base->lcla_pool.base = ioremap(res->start, resource_size(res)); if (!base->lcla_pool.base) { ret = -ENOMEM; d40_err(&pdev->dev, "Failed to ioremap LCLA region\n"); goto failure; } writel(res->start, base->virtbase + D40_DREG_LCLA); } else { ret = d40_lcla_allocate(base); if (ret) { d40_err(&pdev->dev, "Failed to allocate LCLA area\n"); goto failure; } } spin_lock_init(&base->lcla_pool.lock); base->irq = platform_get_irq(pdev, 0); ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base); if (ret) { d40_err(&pdev->dev, "No IRQ defined\n"); goto failure; } pm_runtime_irq_safe(base->dev); pm_runtime_set_autosuspend_delay(base->dev, DMA40_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(base->dev); pm_runtime_enable(base->dev); pm_runtime_resume(base->dev); if (base->plat_data->use_esram_lcla) { base->lcpa_regulator = regulator_get(base->dev, "lcla_esram"); if (IS_ERR(base->lcpa_regulator)) { d40_err(&pdev->dev, "Failed to get lcpa_regulator\n"); base->lcpa_regulator = NULL; goto failure; } ret = regulator_enable(base->lcpa_regulator); if (ret) { d40_err(&pdev->dev, "Failed to enable lcpa_regulator\n"); regulator_put(base->lcpa_regulator); base->lcpa_regulator = NULL; goto failure; } } base->initialized = true; err = d40_dmaengine_init(base, num_reserved_chans); if (err) goto failure; base->dev->dma_parms = &base->dma_parms; err = dma_set_max_seg_size(base->dev, STEDMA40_MAX_SEG_SIZE); if (err) { d40_err(&pdev->dev, "Failed to set dma max seg size\n"); goto failure; } d40_hw_init(base); dev_info(base->dev, "initialized\n"); return 0; failure: if (base) { if (base->desc_slab) kmem_cache_destroy(base->desc_slab); if (base->virtbase) iounmap(base->virtbase); if (base->lcla_pool.base && base->plat_data->use_esram_lcla) { iounmap(base->lcla_pool.base); base->lcla_pool.base = NULL; } if (base->lcla_pool.dma_addr) dma_unmap_single(base->dev, base->lcla_pool.dma_addr, SZ_1K * base->num_phy_chans, DMA_TO_DEVICE); if (!base->lcla_pool.base_unaligned && base->lcla_pool.base) free_pages((unsigned long)base->lcla_pool.base, base->lcla_pool.pages); kfree(base->lcla_pool.base_unaligned); if (base->phy_lcpa) release_mem_region(base->phy_lcpa, base->lcpa_size); if (base->phy_start) release_mem_region(base->phy_start, base->phy_size); if (base->clk) { clk_disable_unprepare(base->clk); clk_put(base->clk); } if (base->lcpa_regulator) { regulator_disable(base->lcpa_regulator); regulator_put(base->lcpa_regulator); } kfree(base->lcla_pool.alloc_map); kfree(base->lookup_log_chans); kfree(base->lookup_phy_chans); kfree(base->phy_res); kfree(base); } d40_err(&pdev->dev, "probe failed\n"); return ret; } static struct platform_driver d40_driver = { .driver = { .owner = THIS_MODULE, .name = D40_NAME, .pm = DMA40_PM_OPS, }, }; static int __init stedma40_init(void) { return platform_driver_probe(&d40_driver, d40_probe); } subsys_initcall(stedma40_init);