/* * AMD CPU Microcode Update Driver for Linux * * This driver allows to upgrade microcode on F10h AMD * CPUs and later. * * Copyright (C) 2008-2011 Advanced Micro Devices Inc. * 2013-2016 Borislav Petkov * * Author: Peter Oruba * * Based on work by: * Tigran Aivazian * * early loader: * Copyright (C) 2013 Advanced Micro Devices, Inc. * * Author: Jacob Shin * Fixes: Borislav Petkov * * Licensed under the terms of the GNU General Public * License version 2. See file COPYING for details. */ #define pr_fmt(fmt) "microcode: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include static struct equiv_cpu_entry *equiv_cpu_table; /* * This points to the current valid container of microcode patches which we will * save from the initrd/builtin before jettisoning its contents. */ struct container { u8 *data; size_t size; } cont; static u32 ucode_new_rev; static u8 amd_ucode_patch[PATCH_MAX_SIZE]; static u16 this_equiv_id; /* * Microcode patch container file is prepended to the initrd in cpio * format. See Documentation/x86/early-microcode.txt */ static const char ucode_path[] __maybe_unused = "kernel/x86/microcode/AuthenticAMD.bin"; static size_t compute_container_size(u8 *data, u32 total_size) { size_t size = 0; u32 *header = (u32 *)data; if (header[0] != UCODE_MAGIC || header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */ header[2] == 0) /* size */ return size; size = header[2] + CONTAINER_HDR_SZ; total_size -= size; data += size; while (total_size) { u16 patch_size; header = (u32 *)data; if (header[0] != UCODE_UCODE_TYPE) break; /* * Sanity-check patch size. */ patch_size = header[1]; if (patch_size > PATCH_MAX_SIZE) break; size += patch_size + SECTION_HDR_SIZE; data += patch_size + SECTION_HDR_SIZE; total_size -= patch_size + SECTION_HDR_SIZE; } return size; } static inline u16 find_equiv_id(struct equiv_cpu_entry *equiv_cpu_table, unsigned int sig) { int i = 0; if (!equiv_cpu_table) return 0; while (equiv_cpu_table[i].installed_cpu != 0) { if (sig == equiv_cpu_table[i].installed_cpu) return equiv_cpu_table[i].equiv_cpu; i++; } return 0; } /* * This scans the ucode blob for the proper container as we can have multiple * containers glued together. Returns the equivalence ID from the equivalence * table or 0 if none found. */ static u16 find_proper_container(u8 *ucode, size_t size, struct container *ret_cont) { struct container ret = { NULL, 0 }; u32 eax, ebx, ecx, edx; struct equiv_cpu_entry *eq; int offset, left; u16 eq_id = 0; u32 *header; u8 *data; data = ucode; left = size; header = (u32 *)data; /* find equiv cpu table */ if (header[0] != UCODE_MAGIC || header[1] != UCODE_EQUIV_CPU_TABLE_TYPE || /* type */ header[2] == 0) /* size */ return eq_id; eax = 0x00000001; ecx = 0; native_cpuid(&eax, &ebx, &ecx, &edx); while (left > 0) { eq = (struct equiv_cpu_entry *)(data + CONTAINER_HDR_SZ); ret.data = data; /* Advance past the container header */ offset = header[2] + CONTAINER_HDR_SZ; data += offset; left -= offset; eq_id = find_equiv_id(eq, eax); if (eq_id) { ret.size = compute_container_size(ret.data, left + offset); /* * truncate how much we need to iterate over in the * ucode update loop below */ left = ret.size - offset; *ret_cont = ret; return eq_id; } /* * support multiple container files appended together. if this * one does not have a matching equivalent cpu entry, we fast * forward to the next container file. */ while (left > 0) { header = (u32 *)data; if (header[0] == UCODE_MAGIC && header[1] == UCODE_EQUIV_CPU_TABLE_TYPE) break; offset = header[1] + SECTION_HDR_SIZE; data += offset; left -= offset; } /* mark where the next microcode container file starts */ offset = data - (u8 *)ucode; ucode = data; } return eq_id; } static int __apply_microcode_amd(struct microcode_amd *mc_amd) { u32 rev, dummy; native_wrmsrl(MSR_AMD64_PATCH_LOADER, (u64)(long)&mc_amd->hdr.data_code); /* verify patch application was successful */ native_rdmsr(MSR_AMD64_PATCH_LEVEL, rev, dummy); if (rev != mc_amd->hdr.patch_id) return -1; return 0; } /* * Early load occurs before we can vmalloc(). So we look for the microcode * patch container file in initrd, traverse equivalent cpu table, look for a * matching microcode patch, and update, all in initrd memory in place. * When vmalloc() is available for use later -- on 64-bit during first AP load, * and on 32-bit during save_microcode_in_initrd_amd() -- we can call * load_microcode_amd() to save equivalent cpu table and microcode patches in * kernel heap memory. * * Returns true if container found (sets @ret_cont), false otherwise. */ static bool apply_microcode_early_amd(void *ucode, size_t size, bool save_patch, struct container *ret_cont) { u8 (*patch)[PATCH_MAX_SIZE]; u32 rev, *header, *new_rev; struct container ret; int offset, left; u16 eq_id = 0; u8 *data; #ifdef CONFIG_X86_32 new_rev = (u32 *)__pa_nodebug(&ucode_new_rev); patch = (u8 (*)[PATCH_MAX_SIZE])__pa_nodebug(&amd_ucode_patch); #else new_rev = &ucode_new_rev; patch = &amd_ucode_patch; #endif if (check_current_patch_level(&rev, true)) return false; eq_id = find_proper_container(ucode, size, &ret); if (!eq_id) return false; this_equiv_id = eq_id; header = (u32 *)ret.data; /* We're pointing to an equiv table, skip over it. */ data = ret.data + header[2] + CONTAINER_HDR_SZ; left = ret.size - (header[2] + CONTAINER_HDR_SZ); while (left > 0) { struct microcode_amd *mc; header = (u32 *)data; if (header[0] != UCODE_UCODE_TYPE || /* type */ header[1] == 0) /* size */ break; mc = (struct microcode_amd *)(data + SECTION_HDR_SIZE); if (eq_id == mc->hdr.processor_rev_id && rev < mc->hdr.patch_id) { if (!__apply_microcode_amd(mc)) { rev = mc->hdr.patch_id; *new_rev = rev; if (save_patch) memcpy(patch, mc, min_t(u32, header[1], PATCH_MAX_SIZE)); } } offset = header[1] + SECTION_HDR_SIZE; data += offset; left -= offset; } if (ret_cont) *ret_cont = ret; return true; } static bool get_builtin_microcode(struct cpio_data *cp, unsigned int family) { #ifdef CONFIG_X86_64 char fw_name[36] = "amd-ucode/microcode_amd.bin"; if (family >= 0x15) snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", family); return get_builtin_firmware(cp, fw_name); #else return false; #endif } void __init load_ucode_amd_bsp(unsigned int family) { struct ucode_cpu_info *uci; struct cpio_data cp; const char *path; bool use_pa; if (IS_ENABLED(CONFIG_X86_32)) { uci = (struct ucode_cpu_info *)__pa_nodebug(ucode_cpu_info); path = (const char *)__pa_nodebug(ucode_path); use_pa = true; } else { uci = ucode_cpu_info; path = ucode_path; use_pa = false; } if (!get_builtin_microcode(&cp, family)) cp = find_microcode_in_initrd(path, use_pa); if (!(cp.data && cp.size)) return; /* Get BSP's CPUID.EAX(1), needed in load_microcode_amd() */ uci->cpu_sig.sig = cpuid_eax(1); apply_microcode_early_amd(cp.data, cp.size, true, NULL); } #ifdef CONFIG_X86_32 /* * On 32-bit, since AP's early load occurs before paging is turned on, we * cannot traverse cpu_equiv_table and microcode_cache in kernel heap memory. * So during cold boot, AP will apply_ucode_in_initrd() just like the BSP. * In save_microcode_in_initrd_amd() BSP's patch is copied to amd_ucode_patch, * which is used upon resume from suspend. */ void load_ucode_amd_ap(unsigned int family) { struct microcode_amd *mc; struct cpio_data cp; mc = (struct microcode_amd *)__pa_nodebug(amd_ucode_patch); if (mc->hdr.patch_id && mc->hdr.processor_rev_id) { __apply_microcode_amd(mc); return; } if (!get_builtin_microcode(&cp, family)) cp = find_microcode_in_initrd((const char *)__pa_nodebug(ucode_path), true); if (!(cp.data && cp.size)) return; /* * This would set amd_ucode_patch above so that the following APs can * use it directly instead of going down this path again. */ apply_microcode_early_amd(cp.data, cp.size, true, NULL); } #else void load_ucode_amd_ap(unsigned int family) { struct equiv_cpu_entry *eq; struct microcode_amd *mc; u32 rev, eax; u16 eq_id; /* 64-bit runs with paging enabled, thus early==false. */ if (check_current_patch_level(&rev, false)) return; /* First AP hasn't cached it yet, go through the blob. */ if (!cont.data) { struct cpio_data cp = { NULL, 0, "" }; if (cont.size == -1) return; reget: if (!get_builtin_microcode(&cp, family)) { #ifdef CONFIG_BLK_DEV_INITRD cp = find_cpio_data(ucode_path, (void *)initrd_start, initrd_end - initrd_start, NULL); #endif if (!(cp.data && cp.size)) { /* * Mark it so that other APs do not scan again * for no real reason and slow down boot * needlessly. */ cont.size = -1; return; } } if (!apply_microcode_early_amd(cp.data, cp.size, false, &cont)) { cont.size = -1; return; } } eax = cpuid_eax(0x00000001); eq = (struct equiv_cpu_entry *)(cont.data + CONTAINER_HDR_SZ); eq_id = find_equiv_id(eq, eax); if (!eq_id) return; if (eq_id == this_equiv_id) { mc = (struct microcode_amd *)amd_ucode_patch; if (mc && rev < mc->hdr.patch_id) { if (!__apply_microcode_amd(mc)) ucode_new_rev = mc->hdr.patch_id; } } else { /* * AP has a different equivalence ID than BSP, looks like * mixed-steppings silicon so go through the ucode blob anew. */ goto reget; } } #endif /* CONFIG_X86_32 */ static enum ucode_state load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size); int __init save_microcode_in_initrd_amd(unsigned int fam) { enum ucode_state ret; int retval = 0; u16 eq_id; if (!cont.data) { if (IS_ENABLED(CONFIG_X86_32) && (cont.size != -1)) { struct cpio_data cp = { NULL, 0, "" }; #ifdef CONFIG_BLK_DEV_INITRD cp = find_cpio_data(ucode_path, (void *)initrd_start, initrd_end - initrd_start, NULL); #endif if (!(cp.data && cp.size)) { cont.size = -1; return -EINVAL; } eq_id = find_proper_container(cp.data, cp.size, &cont); if (!eq_id) { cont.size = -1; return -EINVAL; } } else return -EINVAL; } ret = load_microcode_amd(smp_processor_id(), fam, cont.data, cont.size); if (ret != UCODE_OK) retval = -EINVAL; /* * This will be freed any msec now, stash patches for the current * family and switch to patch cache for cpu hotplug, etc later. */ cont.data = NULL; cont.size = 0; return retval; } void reload_ucode_amd(void) { struct microcode_amd *mc; u32 rev; /* * early==false because this is a syscore ->resume path and by * that time paging is long enabled. */ if (check_current_patch_level(&rev, false)) return; mc = (struct microcode_amd *)amd_ucode_patch; if (!mc) return; if (rev < mc->hdr.patch_id) { if (!__apply_microcode_amd(mc)) { ucode_new_rev = mc->hdr.patch_id; pr_info("reload patch_level=0x%08x\n", ucode_new_rev); } } } static u16 __find_equiv_id(unsigned int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; return find_equiv_id(equiv_cpu_table, uci->cpu_sig.sig); } static u32 find_cpu_family_by_equiv_cpu(u16 equiv_cpu) { int i = 0; BUG_ON(!equiv_cpu_table); while (equiv_cpu_table[i].equiv_cpu != 0) { if (equiv_cpu == equiv_cpu_table[i].equiv_cpu) return equiv_cpu_table[i].installed_cpu; i++; } return 0; } /* * a small, trivial cache of per-family ucode patches */ static struct ucode_patch *cache_find_patch(u16 equiv_cpu) { struct ucode_patch *p; list_for_each_entry(p, µcode_cache, plist) if (p->equiv_cpu == equiv_cpu) return p; return NULL; } static void update_cache(struct ucode_patch *new_patch) { struct ucode_patch *p; list_for_each_entry(p, µcode_cache, plist) { if (p->equiv_cpu == new_patch->equiv_cpu) { if (p->patch_id >= new_patch->patch_id) /* we already have the latest patch */ return; list_replace(&p->plist, &new_patch->plist); kfree(p->data); kfree(p); return; } } /* no patch found, add it */ list_add_tail(&new_patch->plist, µcode_cache); } static void free_cache(void) { struct ucode_patch *p, *tmp; list_for_each_entry_safe(p, tmp, µcode_cache, plist) { __list_del(p->plist.prev, p->plist.next); kfree(p->data); kfree(p); } } static struct ucode_patch *find_patch(unsigned int cpu) { u16 equiv_id; equiv_id = __find_equiv_id(cpu); if (!equiv_id) return NULL; return cache_find_patch(equiv_id); } static int collect_cpu_info_amd(int cpu, struct cpu_signature *csig) { struct cpuinfo_x86 *c = &cpu_data(cpu); struct ucode_cpu_info *uci = ucode_cpu_info + cpu; struct ucode_patch *p; csig->sig = cpuid_eax(0x00000001); csig->rev = c->microcode; /* * a patch could have been loaded early, set uci->mc so that * mc_bp_resume() can call apply_microcode() */ p = find_patch(cpu); if (p && (p->patch_id == csig->rev)) uci->mc = p->data; pr_info("CPU%d: patch_level=0x%08x\n", cpu, csig->rev); return 0; } static unsigned int verify_patch_size(u8 family, u32 patch_size, unsigned int size) { u32 max_size; #define F1XH_MPB_MAX_SIZE 2048 #define F14H_MPB_MAX_SIZE 1824 #define F15H_MPB_MAX_SIZE 4096 #define F16H_MPB_MAX_SIZE 3458 switch (family) { case 0x14: max_size = F14H_MPB_MAX_SIZE; break; case 0x15: max_size = F15H_MPB_MAX_SIZE; break; case 0x16: max_size = F16H_MPB_MAX_SIZE; break; default: max_size = F1XH_MPB_MAX_SIZE; break; } if (patch_size > min_t(u32, size, max_size)) { pr_err("patch size mismatch\n"); return 0; } return patch_size; } /* * Those patch levels cannot be updated to newer ones and thus should be final. */ static u32 final_levels[] = { 0x01000098, 0x0100009f, 0x010000af, 0, /* T-101 terminator */ }; /* * Check the current patch level on this CPU. * * @rev: Use it to return the patch level. It is set to 0 in the case of * error. * * Returns: * - true: if update should stop * - false: otherwise */ bool check_current_patch_level(u32 *rev, bool early) { u32 lvl, dummy, i; bool ret = false; u32 *levels; native_rdmsr(MSR_AMD64_PATCH_LEVEL, lvl, dummy); if (IS_ENABLED(CONFIG_X86_32) && early) levels = (u32 *)__pa_nodebug(&final_levels); else levels = final_levels; for (i = 0; levels[i]; i++) { if (lvl == levels[i]) { lvl = 0; ret = true; break; } } if (rev) *rev = lvl; return ret; } static int apply_microcode_amd(int cpu) { struct cpuinfo_x86 *c = &cpu_data(cpu); struct microcode_amd *mc_amd; struct ucode_cpu_info *uci; struct ucode_patch *p; u32 rev; BUG_ON(raw_smp_processor_id() != cpu); uci = ucode_cpu_info + cpu; p = find_patch(cpu); if (!p) return 0; mc_amd = p->data; uci->mc = p->data; if (check_current_patch_level(&rev, false)) return -1; /* need to apply patch? */ if (rev >= mc_amd->hdr.patch_id) { c->microcode = rev; uci->cpu_sig.rev = rev; return 0; } if (__apply_microcode_amd(mc_amd)) { pr_err("CPU%d: update failed for patch_level=0x%08x\n", cpu, mc_amd->hdr.patch_id); return -1; } pr_info("CPU%d: new patch_level=0x%08x\n", cpu, mc_amd->hdr.patch_id); uci->cpu_sig.rev = mc_amd->hdr.patch_id; c->microcode = mc_amd->hdr.patch_id; return 0; } static int install_equiv_cpu_table(const u8 *buf) { unsigned int *ibuf = (unsigned int *)buf; unsigned int type = ibuf[1]; unsigned int size = ibuf[2]; if (type != UCODE_EQUIV_CPU_TABLE_TYPE || !size) { pr_err("empty section/" "invalid type field in container file section header\n"); return -EINVAL; } equiv_cpu_table = vmalloc(size); if (!equiv_cpu_table) { pr_err("failed to allocate equivalent CPU table\n"); return -ENOMEM; } memcpy(equiv_cpu_table, buf + CONTAINER_HDR_SZ, size); /* add header length */ return size + CONTAINER_HDR_SZ; } static void free_equiv_cpu_table(void) { vfree(equiv_cpu_table); equiv_cpu_table = NULL; } static void cleanup(void) { free_equiv_cpu_table(); free_cache(); } /* * We return the current size even if some of the checks failed so that * we can skip over the next patch. If we return a negative value, we * signal a grave error like a memory allocation has failed and the * driver cannot continue functioning normally. In such cases, we tear * down everything we've used up so far and exit. */ static int verify_and_add_patch(u8 family, u8 *fw, unsigned int leftover) { struct microcode_header_amd *mc_hdr; struct ucode_patch *patch; unsigned int patch_size, crnt_size, ret; u32 proc_fam; u16 proc_id; patch_size = *(u32 *)(fw + 4); crnt_size = patch_size + SECTION_HDR_SIZE; mc_hdr = (struct microcode_header_amd *)(fw + SECTION_HDR_SIZE); proc_id = mc_hdr->processor_rev_id; proc_fam = find_cpu_family_by_equiv_cpu(proc_id); if (!proc_fam) { pr_err("No patch family for equiv ID: 0x%04x\n", proc_id); return crnt_size; } /* check if patch is for the current family */ proc_fam = ((proc_fam >> 8) & 0xf) + ((proc_fam >> 20) & 0xff); if (proc_fam != family) return crnt_size; if (mc_hdr->nb_dev_id || mc_hdr->sb_dev_id) { pr_err("Patch-ID 0x%08x: chipset-specific code unsupported.\n", mc_hdr->patch_id); return crnt_size; } ret = verify_patch_size(family, patch_size, leftover); if (!ret) { pr_err("Patch-ID 0x%08x: size mismatch.\n", mc_hdr->patch_id); return crnt_size; } patch = kzalloc(sizeof(*patch), GFP_KERNEL); if (!patch) { pr_err("Patch allocation failure.\n"); return -EINVAL; } patch->data = kmemdup(fw + SECTION_HDR_SIZE, patch_size, GFP_KERNEL); if (!patch->data) { pr_err("Patch data allocation failure.\n"); kfree(patch); return -EINVAL; } INIT_LIST_HEAD(&patch->plist); patch->patch_id = mc_hdr->patch_id; patch->equiv_cpu = proc_id; pr_debug("%s: Added patch_id: 0x%08x, proc_id: 0x%04x\n", __func__, patch->patch_id, proc_id); /* ... and add to cache. */ update_cache(patch); return crnt_size; } static enum ucode_state __load_microcode_amd(u8 family, const u8 *data, size_t size) { enum ucode_state ret = UCODE_ERROR; unsigned int leftover; u8 *fw = (u8 *)data; int crnt_size = 0; int offset; offset = install_equiv_cpu_table(data); if (offset < 0) { pr_err("failed to create equivalent cpu table\n"); return ret; } fw += offset; leftover = size - offset; if (*(u32 *)fw != UCODE_UCODE_TYPE) { pr_err("invalid type field in container file section header\n"); free_equiv_cpu_table(); return ret; } while (leftover) { crnt_size = verify_and_add_patch(family, fw, leftover); if (crnt_size < 0) return ret; fw += crnt_size; leftover -= crnt_size; } return UCODE_OK; } static enum ucode_state load_microcode_amd(int cpu, u8 family, const u8 *data, size_t size) { enum ucode_state ret; /* free old equiv table */ free_equiv_cpu_table(); ret = __load_microcode_amd(family, data, size); if (ret != UCODE_OK) cleanup(); #ifdef CONFIG_X86_32 /* save BSP's matching patch for early load */ if (cpu_data(cpu).cpu_index == boot_cpu_data.cpu_index) { struct ucode_patch *p = find_patch(cpu); if (p) { memset(amd_ucode_patch, 0, PATCH_MAX_SIZE); memcpy(amd_ucode_patch, p->data, min_t(u32, ksize(p->data), PATCH_MAX_SIZE)); } } #endif return ret; } /* * AMD microcode firmware naming convention, up to family 15h they are in * the legacy file: * * amd-ucode/microcode_amd.bin * * This legacy file is always smaller than 2K in size. * * Beginning with family 15h, they are in family-specific firmware files: * * amd-ucode/microcode_amd_fam15h.bin * amd-ucode/microcode_amd_fam16h.bin * ... * * These might be larger than 2K. */ static enum ucode_state request_microcode_amd(int cpu, struct device *device, bool refresh_fw) { char fw_name[36] = "amd-ucode/microcode_amd.bin"; struct cpuinfo_x86 *c = &cpu_data(cpu); enum ucode_state ret = UCODE_NFOUND; const struct firmware *fw; /* reload ucode container only on the boot cpu */ if (!refresh_fw || c->cpu_index != boot_cpu_data.cpu_index) return UCODE_OK; if (c->x86 >= 0x15) snprintf(fw_name, sizeof(fw_name), "amd-ucode/microcode_amd_fam%.2xh.bin", c->x86); if (request_firmware_direct(&fw, (const char *)fw_name, device)) { pr_debug("failed to load file %s\n", fw_name); goto out; } ret = UCODE_ERROR; if (*(u32 *)fw->data != UCODE_MAGIC) { pr_err("invalid magic value (0x%08x)\n", *(u32 *)fw->data); goto fw_release; } ret = load_microcode_amd(cpu, c->x86, fw->data, fw->size); fw_release: release_firmware(fw); out: return ret; } static enum ucode_state request_microcode_user(int cpu, const void __user *buf, size_t size) { return UCODE_ERROR; } static void microcode_fini_cpu_amd(int cpu) { struct ucode_cpu_info *uci = ucode_cpu_info + cpu; uci->mc = NULL; } static struct microcode_ops microcode_amd_ops = { .request_microcode_user = request_microcode_user, .request_microcode_fw = request_microcode_amd, .collect_cpu_info = collect_cpu_info_amd, .apply_microcode = apply_microcode_amd, .microcode_fini_cpu = microcode_fini_cpu_amd, }; struct microcode_ops * __init init_amd_microcode(void) { struct cpuinfo_x86 *c = &boot_cpu_data; if (c->x86_vendor != X86_VENDOR_AMD || c->x86 < 0x10) { pr_warn("AMD CPU family 0x%x not supported\n", c->x86); return NULL; } if (ucode_new_rev) pr_info_once("microcode updated early to new patch_level=0x%08x\n", ucode_new_rev); return µcode_amd_ops; } void __exit exit_amd_microcode(void) { cleanup(); }