/* * QLogic Fibre Channel HBA Driver * Copyright (c) 2003-2008 QLogic Corporation * * See LICENSE.qla2xxx for copyright and licensing details. */ #include "qla_def.h" #include "qla_gbl.h" #include #include #include "qla_devtbl.h" #ifdef CONFIG_SPARC #include #endif /* * QLogic ISP2x00 Hardware Support Function Prototypes. */ static int qla2x00_isp_firmware(scsi_qla_host_t *); static void qla2x00_resize_request_q(scsi_qla_host_t *); static int qla2x00_setup_chip(scsi_qla_host_t *); static int qla2x00_init_rings(scsi_qla_host_t *); static int qla2x00_fw_ready(scsi_qla_host_t *); static int qla2x00_configure_hba(scsi_qla_host_t *); static int qla2x00_configure_loop(scsi_qla_host_t *); static int qla2x00_configure_local_loop(scsi_qla_host_t *); static int qla2x00_configure_fabric(scsi_qla_host_t *); static int qla2x00_find_all_fabric_devs(scsi_qla_host_t *, struct list_head *); static int qla2x00_device_resync(scsi_qla_host_t *); static int qla2x00_fabric_dev_login(scsi_qla_host_t *, fc_port_t *, uint16_t *); static int qla2x00_restart_isp(scsi_qla_host_t *); static int qla2x00_find_new_loop_id(scsi_qla_host_t *, fc_port_t *); static struct qla_chip_state_84xx *qla84xx_get_chip(struct scsi_qla_host *); static int qla84xx_init_chip(scsi_qla_host_t *); static int qla25xx_init_queues(struct qla_hw_data *); /****************************************************************************/ /* QLogic ISP2x00 Hardware Support Functions. */ /****************************************************************************/ /* * qla2x00_initialize_adapter * Initialize board. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success */ int qla2x00_initialize_adapter(scsi_qla_host_t *vha) { int rval; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; /* Clear adapter flags. */ vha->flags.online = 0; vha->flags.reset_active = 0; atomic_set(&vha->loop_down_timer, LOOP_DOWN_TIME); atomic_set(&vha->loop_state, LOOP_DOWN); vha->device_flags = DFLG_NO_CABLE; vha->dpc_flags = 0; vha->flags.management_server_logged_in = 0; vha->marker_needed = 0; ha->mbx_flags = 0; ha->isp_abort_cnt = 0; ha->beacon_blink_led = 0; set_bit(REGISTER_FDMI_NEEDED, &vha->dpc_flags); set_bit(0, ha->req_qid_map); set_bit(0, ha->rsp_qid_map); qla_printk(KERN_INFO, ha, "Configuring PCI space...\n"); rval = ha->isp_ops->pci_config(vha); if (rval) { DEBUG2(printk("scsi(%ld): Unable to configure PCI space.\n", vha->host_no)); return (rval); } ha->isp_ops->reset_chip(vha); rval = qla2xxx_get_flash_info(vha); if (rval) { DEBUG2(printk("scsi(%ld): Unable to validate FLASH data.\n", vha->host_no)); return (rval); } ha->isp_ops->get_flash_version(vha, req->ring); qla_printk(KERN_INFO, ha, "Configure NVRAM parameters...\n"); ha->isp_ops->nvram_config(vha); if (ha->flags.disable_serdes) { /* Mask HBA via NVRAM settings? */ qla_printk(KERN_INFO, ha, "Masking HBA WWPN " "%02x%02x%02x%02x%02x%02x%02x%02x (via NVRAM).\n", vha->port_name[0], vha->port_name[1], vha->port_name[2], vha->port_name[3], vha->port_name[4], vha->port_name[5], vha->port_name[6], vha->port_name[7]); return QLA_FUNCTION_FAILED; } qla_printk(KERN_INFO, ha, "Verifying loaded RISC code...\n"); if (qla2x00_isp_firmware(vha) != QLA_SUCCESS) { rval = ha->isp_ops->chip_diag(vha); if (rval) return (rval); rval = qla2x00_setup_chip(vha); if (rval) return (rval); } if (IS_QLA84XX(ha)) { ha->cs84xx = qla84xx_get_chip(vha); if (!ha->cs84xx) { qla_printk(KERN_ERR, ha, "Unable to configure ISP84XX.\n"); return QLA_FUNCTION_FAILED; } } rval = qla2x00_init_rings(vha); return (rval); } /** * qla2100_pci_config() - Setup ISP21xx PCI configuration registers. * @ha: HA context * * Returns 0 on success. */ int qla2100_pci_config(scsi_qla_host_t *vha) { uint16_t w; unsigned long flags; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; pci_set_master(ha->pdev); pci_try_set_mwi(ha->pdev); pci_read_config_word(ha->pdev, PCI_COMMAND, &w); w |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); pci_write_config_word(ha->pdev, PCI_COMMAND, w); pci_disable_rom(ha->pdev); /* Get PCI bus information. */ spin_lock_irqsave(&ha->hardware_lock, flags); ha->pci_attr = RD_REG_WORD(®->ctrl_status); spin_unlock_irqrestore(&ha->hardware_lock, flags); return QLA_SUCCESS; } /** * qla2300_pci_config() - Setup ISP23xx PCI configuration registers. * @ha: HA context * * Returns 0 on success. */ int qla2300_pci_config(scsi_qla_host_t *vha) { uint16_t w; unsigned long flags = 0; uint32_t cnt; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; pci_set_master(ha->pdev); pci_try_set_mwi(ha->pdev); pci_read_config_word(ha->pdev, PCI_COMMAND, &w); w |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); if (IS_QLA2322(ha) || IS_QLA6322(ha)) w &= ~PCI_COMMAND_INTX_DISABLE; pci_write_config_word(ha->pdev, PCI_COMMAND, w); /* * If this is a 2300 card and not 2312, reset the * COMMAND_INVALIDATE due to a bug in the 2300. Unfortunately, * the 2310 also reports itself as a 2300 so we need to get the * fb revision level -- a 6 indicates it really is a 2300 and * not a 2310. */ if (IS_QLA2300(ha)) { spin_lock_irqsave(&ha->hardware_lock, flags); /* Pause RISC. */ WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0) break; udelay(10); } /* Select FPM registers. */ WRT_REG_WORD(®->ctrl_status, 0x20); RD_REG_WORD(®->ctrl_status); /* Get the fb rev level */ ha->fb_rev = RD_FB_CMD_REG(ha, reg); if (ha->fb_rev == FPM_2300) pci_clear_mwi(ha->pdev); /* Deselect FPM registers. */ WRT_REG_WORD(®->ctrl_status, 0x0); RD_REG_WORD(®->ctrl_status); /* Release RISC module. */ WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) == 0) break; udelay(10); } spin_unlock_irqrestore(&ha->hardware_lock, flags); } pci_write_config_byte(ha->pdev, PCI_LATENCY_TIMER, 0x80); pci_disable_rom(ha->pdev); /* Get PCI bus information. */ spin_lock_irqsave(&ha->hardware_lock, flags); ha->pci_attr = RD_REG_WORD(®->ctrl_status); spin_unlock_irqrestore(&ha->hardware_lock, flags); return QLA_SUCCESS; } /** * qla24xx_pci_config() - Setup ISP24xx PCI configuration registers. * @ha: HA context * * Returns 0 on success. */ int qla24xx_pci_config(scsi_qla_host_t *vha) { uint16_t w; unsigned long flags = 0; struct qla_hw_data *ha = vha->hw; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; pci_set_master(ha->pdev); pci_try_set_mwi(ha->pdev); pci_read_config_word(ha->pdev, PCI_COMMAND, &w); w |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); w &= ~PCI_COMMAND_INTX_DISABLE; pci_write_config_word(ha->pdev, PCI_COMMAND, w); pci_write_config_byte(ha->pdev, PCI_LATENCY_TIMER, 0x80); /* PCI-X -- adjust Maximum Memory Read Byte Count (2048). */ if (pci_find_capability(ha->pdev, PCI_CAP_ID_PCIX)) pcix_set_mmrbc(ha->pdev, 2048); /* PCIe -- adjust Maximum Read Request Size (2048). */ if (pci_find_capability(ha->pdev, PCI_CAP_ID_EXP)) pcie_set_readrq(ha->pdev, 2048); pci_disable_rom(ha->pdev); ha->chip_revision = ha->pdev->revision; /* Get PCI bus information. */ spin_lock_irqsave(&ha->hardware_lock, flags); ha->pci_attr = RD_REG_DWORD(®->ctrl_status); spin_unlock_irqrestore(&ha->hardware_lock, flags); return QLA_SUCCESS; } /** * qla25xx_pci_config() - Setup ISP25xx PCI configuration registers. * @ha: HA context * * Returns 0 on success. */ int qla25xx_pci_config(scsi_qla_host_t *vha) { uint16_t w; struct qla_hw_data *ha = vha->hw; pci_set_master(ha->pdev); pci_try_set_mwi(ha->pdev); pci_read_config_word(ha->pdev, PCI_COMMAND, &w); w |= (PCI_COMMAND_PARITY | PCI_COMMAND_SERR); w &= ~PCI_COMMAND_INTX_DISABLE; pci_write_config_word(ha->pdev, PCI_COMMAND, w); /* PCIe -- adjust Maximum Read Request Size (2048). */ if (pci_find_capability(ha->pdev, PCI_CAP_ID_EXP)) pcie_set_readrq(ha->pdev, 2048); pci_disable_rom(ha->pdev); ha->chip_revision = ha->pdev->revision; return QLA_SUCCESS; } /** * qla2x00_isp_firmware() - Choose firmware image. * @ha: HA context * * Returns 0 on success. */ static int qla2x00_isp_firmware(scsi_qla_host_t *vha) { int rval; uint16_t loop_id, topo, sw_cap; uint8_t domain, area, al_pa; struct qla_hw_data *ha = vha->hw; /* Assume loading risc code */ rval = QLA_FUNCTION_FAILED; if (ha->flags.disable_risc_code_load) { DEBUG2(printk("scsi(%ld): RISC CODE NOT loaded\n", vha->host_no)); qla_printk(KERN_INFO, ha, "RISC CODE NOT loaded\n"); /* Verify checksum of loaded RISC code. */ rval = qla2x00_verify_checksum(vha, ha->fw_srisc_address); if (rval == QLA_SUCCESS) { /* And, verify we are not in ROM code. */ rval = qla2x00_get_adapter_id(vha, &loop_id, &al_pa, &area, &domain, &topo, &sw_cap); } } if (rval) { DEBUG2_3(printk("scsi(%ld): **** Load RISC code ****\n", vha->host_no)); } return (rval); } /** * qla2x00_reset_chip() - Reset ISP chip. * @ha: HA context * * Returns 0 on success. */ void qla2x00_reset_chip(scsi_qla_host_t *vha) { unsigned long flags = 0; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; uint32_t cnt; uint16_t cmd; ha->isp_ops->disable_intrs(ha); spin_lock_irqsave(&ha->hardware_lock, flags); /* Turn off master enable */ cmd = 0; pci_read_config_word(ha->pdev, PCI_COMMAND, &cmd); cmd &= ~PCI_COMMAND_MASTER; pci_write_config_word(ha->pdev, PCI_COMMAND, cmd); if (!IS_QLA2100(ha)) { /* Pause RISC. */ WRT_REG_WORD(®->hccr, HCCR_PAUSE_RISC); if (IS_QLA2200(ha) || IS_QLA2300(ha)) { for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_WORD(®->hccr) & HCCR_RISC_PAUSE) != 0) break; udelay(100); } } else { RD_REG_WORD(®->hccr); /* PCI Posting. */ udelay(10); } /* Select FPM registers. */ WRT_REG_WORD(®->ctrl_status, 0x20); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ /* FPM Soft Reset. */ WRT_REG_WORD(®->fpm_diag_config, 0x100); RD_REG_WORD(®->fpm_diag_config); /* PCI Posting. */ /* Toggle Fpm Reset. */ if (!IS_QLA2200(ha)) { WRT_REG_WORD(®->fpm_diag_config, 0x0); RD_REG_WORD(®->fpm_diag_config); /* PCI Posting. */ } /* Select frame buffer registers. */ WRT_REG_WORD(®->ctrl_status, 0x10); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ /* Reset frame buffer FIFOs. */ if (IS_QLA2200(ha)) { WRT_FB_CMD_REG(ha, reg, 0xa000); RD_FB_CMD_REG(ha, reg); /* PCI Posting. */ } else { WRT_FB_CMD_REG(ha, reg, 0x00fc); /* Read back fb_cmd until zero or 3 seconds max */ for (cnt = 0; cnt < 3000; cnt++) { if ((RD_FB_CMD_REG(ha, reg) & 0xff) == 0) break; udelay(100); } } /* Select RISC module registers. */ WRT_REG_WORD(®->ctrl_status, 0); RD_REG_WORD(®->ctrl_status); /* PCI Posting. */ /* Reset RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RESET_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ /* Release RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ } WRT_REG_WORD(®->hccr, HCCR_CLR_RISC_INT); WRT_REG_WORD(®->hccr, HCCR_CLR_HOST_INT); /* Reset ISP chip. */ WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); /* Wait for RISC to recover from reset. */ if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { /* * It is necessary to for a delay here since the card doesn't * respond to PCI reads during a reset. On some architectures * this will result in an MCA. */ udelay(20); for (cnt = 30000; cnt; cnt--) { if ((RD_REG_WORD(®->ctrl_status) & CSR_ISP_SOFT_RESET) == 0) break; udelay(100); } } else udelay(10); /* Reset RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RESET_RISC); WRT_REG_WORD(®->semaphore, 0); /* Release RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { for (cnt = 0; cnt < 30000; cnt++) { if (RD_MAILBOX_REG(ha, reg, 0) != MBS_BUSY) break; udelay(100); } } else udelay(100); /* Turn on master enable */ cmd |= PCI_COMMAND_MASTER; pci_write_config_word(ha->pdev, PCI_COMMAND, cmd); /* Disable RISC pause on FPM parity error. */ if (!IS_QLA2100(ha)) { WRT_REG_WORD(®->hccr, HCCR_DISABLE_PARITY_PAUSE); RD_REG_WORD(®->hccr); /* PCI Posting. */ } spin_unlock_irqrestore(&ha->hardware_lock, flags); } /** * qla24xx_reset_risc() - Perform full reset of ISP24xx RISC. * @ha: HA context * * Returns 0 on success. */ static inline void qla24xx_reset_risc(scsi_qla_host_t *vha) { int hw_evt = 0; unsigned long flags = 0; struct qla_hw_data *ha = vha->hw; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; uint32_t cnt, d2; uint16_t wd; spin_lock_irqsave(&ha->hardware_lock, flags); /* Reset RISC. */ WRT_REG_DWORD(®->ctrl_status, CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); for (cnt = 0; cnt < 30000; cnt++) { if ((RD_REG_DWORD(®->ctrl_status) & CSRX_DMA_ACTIVE) == 0) break; udelay(10); } WRT_REG_DWORD(®->ctrl_status, CSRX_ISP_SOFT_RESET|CSRX_DMA_SHUTDOWN|MWB_4096_BYTES); pci_read_config_word(ha->pdev, PCI_COMMAND, &wd); udelay(100); /* Wait for firmware to complete NVRAM accesses. */ d2 = (uint32_t) RD_REG_WORD(®->mailbox0); for (cnt = 10000 ; cnt && d2; cnt--) { udelay(5); d2 = (uint32_t) RD_REG_WORD(®->mailbox0); barrier(); } if (cnt == 0) hw_evt = 1; /* Wait for soft-reset to complete. */ d2 = RD_REG_DWORD(®->ctrl_status); for (cnt = 6000000 ; cnt && (d2 & CSRX_ISP_SOFT_RESET); cnt--) { udelay(5); d2 = RD_REG_DWORD(®->ctrl_status); barrier(); } WRT_REG_DWORD(®->hccr, HCCRX_SET_RISC_RESET); RD_REG_DWORD(®->hccr); WRT_REG_DWORD(®->hccr, HCCRX_REL_RISC_PAUSE); RD_REG_DWORD(®->hccr); WRT_REG_DWORD(®->hccr, HCCRX_CLR_RISC_RESET); RD_REG_DWORD(®->hccr); d2 = (uint32_t) RD_REG_WORD(®->mailbox0); for (cnt = 6000000 ; cnt && d2; cnt--) { udelay(5); d2 = (uint32_t) RD_REG_WORD(®->mailbox0); barrier(); } spin_unlock_irqrestore(&ha->hardware_lock, flags); } /** * qla24xx_reset_chip() - Reset ISP24xx chip. * @ha: HA context * * Returns 0 on success. */ void qla24xx_reset_chip(scsi_qla_host_t *vha) { struct qla_hw_data *ha = vha->hw; ha->isp_ops->disable_intrs(ha); /* Perform RISC reset. */ qla24xx_reset_risc(vha); } /** * qla2x00_chip_diag() - Test chip for proper operation. * @ha: HA context * * Returns 0 on success. */ int qla2x00_chip_diag(scsi_qla_host_t *vha) { int rval; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; unsigned long flags = 0; uint16_t data; uint32_t cnt; uint16_t mb[5]; struct req_que *req = ha->req_q_map[0]; /* Assume a failed state */ rval = QLA_FUNCTION_FAILED; DEBUG3(printk("scsi(%ld): Testing device at %lx.\n", vha->host_no, (u_long)®->flash_address)); spin_lock_irqsave(&ha->hardware_lock, flags); /* Reset ISP chip. */ WRT_REG_WORD(®->ctrl_status, CSR_ISP_SOFT_RESET); /* * We need to have a delay here since the card will not respond while * in reset causing an MCA on some architectures. */ udelay(20); data = qla2x00_debounce_register(®->ctrl_status); for (cnt = 6000000 ; cnt && (data & CSR_ISP_SOFT_RESET); cnt--) { udelay(5); data = RD_REG_WORD(®->ctrl_status); barrier(); } if (!cnt) goto chip_diag_failed; DEBUG3(printk("scsi(%ld): Reset register cleared by chip reset\n", ha->host_no)); /* Reset RISC processor. */ WRT_REG_WORD(®->hccr, HCCR_RESET_RISC); WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); /* Workaround for QLA2312 PCI parity error */ if (IS_QLA2100(ha) || IS_QLA2200(ha) || IS_QLA2300(ha)) { data = qla2x00_debounce_register(MAILBOX_REG(ha, reg, 0)); for (cnt = 6000000; cnt && (data == MBS_BUSY); cnt--) { udelay(5); data = RD_MAILBOX_REG(ha, reg, 0); barrier(); } } else udelay(10); if (!cnt) goto chip_diag_failed; /* Check product ID of chip */ DEBUG3(printk("scsi(%ld): Checking product ID of chip\n", ha->host_no)); mb[1] = RD_MAILBOX_REG(ha, reg, 1); mb[2] = RD_MAILBOX_REG(ha, reg, 2); mb[3] = RD_MAILBOX_REG(ha, reg, 3); mb[4] = qla2x00_debounce_register(MAILBOX_REG(ha, reg, 4)); if (mb[1] != PROD_ID_1 || (mb[2] != PROD_ID_2 && mb[2] != PROD_ID_2a) || mb[3] != PROD_ID_3) { qla_printk(KERN_WARNING, ha, "Wrong product ID = 0x%x,0x%x,0x%x\n", mb[1], mb[2], mb[3]); goto chip_diag_failed; } ha->product_id[0] = mb[1]; ha->product_id[1] = mb[2]; ha->product_id[2] = mb[3]; ha->product_id[3] = mb[4]; /* Adjust fw RISC transfer size */ if (req->length > 1024) ha->fw_transfer_size = REQUEST_ENTRY_SIZE * 1024; else ha->fw_transfer_size = REQUEST_ENTRY_SIZE * req->length; if (IS_QLA2200(ha) && RD_MAILBOX_REG(ha, reg, 7) == QLA2200A_RISC_ROM_VER) { /* Limit firmware transfer size with a 2200A */ DEBUG3(printk("scsi(%ld): Found QLA2200A chip.\n", vha->host_no)); ha->device_type |= DT_ISP2200A; ha->fw_transfer_size = 128; } /* Wrap Incoming Mailboxes Test. */ spin_unlock_irqrestore(&ha->hardware_lock, flags); DEBUG3(printk("scsi(%ld): Checking mailboxes.\n", vha->host_no)); rval = qla2x00_mbx_reg_test(vha); if (rval) { DEBUG(printk("scsi(%ld): Failed mailbox send register test\n", vha->host_no)); qla_printk(KERN_WARNING, ha, "Failed mailbox send register test\n"); } else { /* Flag a successful rval */ rval = QLA_SUCCESS; } spin_lock_irqsave(&ha->hardware_lock, flags); chip_diag_failed: if (rval) DEBUG2_3(printk("scsi(%ld): Chip diagnostics **** FAILED " "****\n", vha->host_no)); spin_unlock_irqrestore(&ha->hardware_lock, flags); return (rval); } /** * qla24xx_chip_diag() - Test ISP24xx for proper operation. * @ha: HA context * * Returns 0 on success. */ int qla24xx_chip_diag(scsi_qla_host_t *vha) { int rval; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; /* Perform RISC reset. */ qla24xx_reset_risc(vha); ha->fw_transfer_size = REQUEST_ENTRY_SIZE * req->length; rval = qla2x00_mbx_reg_test(vha); if (rval) { DEBUG(printk("scsi(%ld): Failed mailbox send register test\n", vha->host_no)); qla_printk(KERN_WARNING, ha, "Failed mailbox send register test\n"); } else { /* Flag a successful rval */ rval = QLA_SUCCESS; } return rval; } void qla2x00_alloc_fw_dump(scsi_qla_host_t *vha) { int rval; uint32_t dump_size, fixed_size, mem_size, req_q_size, rsp_q_size, eft_size, fce_size, mq_size; dma_addr_t tc_dma; void *tc; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; struct rsp_que *rsp = ha->rsp_q_map[0]; if (ha->fw_dump) { qla_printk(KERN_WARNING, ha, "Firmware dump previously allocated.\n"); return; } ha->fw_dumped = 0; fixed_size = mem_size = eft_size = fce_size = mq_size = 0; if (IS_QLA2100(ha) || IS_QLA2200(ha)) { fixed_size = sizeof(struct qla2100_fw_dump); } else if (IS_QLA23XX(ha)) { fixed_size = offsetof(struct qla2300_fw_dump, data_ram); mem_size = (ha->fw_memory_size - 0x11000 + 1) * sizeof(uint16_t); } else if (IS_FWI2_CAPABLE(ha)) { fixed_size = IS_QLA25XX(ha) ? offsetof(struct qla25xx_fw_dump, ext_mem) : offsetof(struct qla24xx_fw_dump, ext_mem); mem_size = (ha->fw_memory_size - 0x100000 + 1) * sizeof(uint32_t); if (ha->mqenable) mq_size = sizeof(struct qla2xxx_mq_chain); /* Allocate memory for Fibre Channel Event Buffer. */ if (!IS_QLA25XX(ha)) goto try_eft; tc = dma_alloc_coherent(&ha->pdev->dev, FCE_SIZE, &tc_dma, GFP_KERNEL); if (!tc) { qla_printk(KERN_WARNING, ha, "Unable to allocate " "(%d KB) for FCE.\n", FCE_SIZE / 1024); goto try_eft; } memset(tc, 0, FCE_SIZE); rval = qla2x00_enable_fce_trace(vha, tc_dma, FCE_NUM_BUFFERS, ha->fce_mb, &ha->fce_bufs); if (rval) { qla_printk(KERN_WARNING, ha, "Unable to initialize " "FCE (%d).\n", rval); dma_free_coherent(&ha->pdev->dev, FCE_SIZE, tc, tc_dma); ha->flags.fce_enabled = 0; goto try_eft; } qla_printk(KERN_INFO, ha, "Allocated (%d KB) for FCE...\n", FCE_SIZE / 1024); fce_size = sizeof(struct qla2xxx_fce_chain) + EFT_SIZE; ha->flags.fce_enabled = 1; ha->fce_dma = tc_dma; ha->fce = tc; try_eft: /* Allocate memory for Extended Trace Buffer. */ tc = dma_alloc_coherent(&ha->pdev->dev, EFT_SIZE, &tc_dma, GFP_KERNEL); if (!tc) { qla_printk(KERN_WARNING, ha, "Unable to allocate " "(%d KB) for EFT.\n", EFT_SIZE / 1024); goto cont_alloc; } memset(tc, 0, EFT_SIZE); rval = qla2x00_enable_eft_trace(vha, tc_dma, EFT_NUM_BUFFERS); if (rval) { qla_printk(KERN_WARNING, ha, "Unable to initialize " "EFT (%d).\n", rval); dma_free_coherent(&ha->pdev->dev, EFT_SIZE, tc, tc_dma); goto cont_alloc; } qla_printk(KERN_INFO, ha, "Allocated (%d KB) for EFT...\n", EFT_SIZE / 1024); eft_size = EFT_SIZE; ha->eft_dma = tc_dma; ha->eft = tc; } cont_alloc: req_q_size = req->length * sizeof(request_t); rsp_q_size = rsp->length * sizeof(response_t); dump_size = offsetof(struct qla2xxx_fw_dump, isp); dump_size += fixed_size + mem_size + req_q_size + rsp_q_size + mq_size + eft_size + fce_size; ha->fw_dump = vmalloc(dump_size); if (!ha->fw_dump) { qla_printk(KERN_WARNING, ha, "Unable to allocate (%d KB) for " "firmware dump!!!\n", dump_size / 1024); if (ha->eft) { dma_free_coherent(&ha->pdev->dev, eft_size, ha->eft, ha->eft_dma); ha->eft = NULL; ha->eft_dma = 0; } return; } qla_printk(KERN_INFO, ha, "Allocated (%d KB) for firmware dump...\n", dump_size / 1024); ha->fw_dump_len = dump_size; ha->fw_dump->signature[0] = 'Q'; ha->fw_dump->signature[1] = 'L'; ha->fw_dump->signature[2] = 'G'; ha->fw_dump->signature[3] = 'C'; ha->fw_dump->version = __constant_htonl(1); ha->fw_dump->fixed_size = htonl(fixed_size); ha->fw_dump->mem_size = htonl(mem_size); ha->fw_dump->req_q_size = htonl(req_q_size); ha->fw_dump->rsp_q_size = htonl(rsp_q_size); ha->fw_dump->eft_size = htonl(eft_size); ha->fw_dump->eft_addr_l = htonl(LSD(ha->eft_dma)); ha->fw_dump->eft_addr_h = htonl(MSD(ha->eft_dma)); ha->fw_dump->header_size = htonl(offsetof(struct qla2xxx_fw_dump, isp)); } /** * qla2x00_resize_request_q() - Resize request queue given available ISP memory. * @ha: HA context * * Returns 0 on success. */ static void qla2x00_resize_request_q(scsi_qla_host_t *vha) { int rval; uint16_t fw_iocb_cnt = 0; uint16_t request_q_length = REQUEST_ENTRY_CNT_2XXX_EXT_MEM; dma_addr_t request_dma; request_t *request_ring; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; /* Valid only on recent ISPs. */ if (IS_QLA2100(ha) || IS_QLA2200(ha)) return; /* Retrieve IOCB counts available to the firmware. */ rval = qla2x00_get_resource_cnts(vha, NULL, NULL, NULL, &fw_iocb_cnt, &ha->max_npiv_vports); if (rval) return; /* No point in continuing if current settings are sufficient. */ if (fw_iocb_cnt < 1024) return; if (req->length >= request_q_length) return; /* Attempt to claim larger area for request queue. */ request_ring = dma_alloc_coherent(&ha->pdev->dev, (request_q_length + 1) * sizeof(request_t), &request_dma, GFP_KERNEL); if (request_ring == NULL) return; /* Resize successful, report extensions. */ qla_printk(KERN_INFO, ha, "Extended memory detected (%d KB)...\n", (ha->fw_memory_size + 1) / 1024); qla_printk(KERN_INFO, ha, "Resizing request queue depth " "(%d -> %d)...\n", req->length, request_q_length); /* Clear old allocations. */ dma_free_coherent(&ha->pdev->dev, (req->length + 1) * sizeof(request_t), req->ring, req->dma); /* Begin using larger queue. */ req->length = request_q_length; req->ring = request_ring; req->dma = request_dma; } /** * qla2x00_setup_chip() - Load and start RISC firmware. * @ha: HA context * * Returns 0 on success. */ static int qla2x00_setup_chip(scsi_qla_host_t *vha) { int rval; uint32_t srisc_address = 0; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; unsigned long flags; if (!IS_FWI2_CAPABLE(ha) && !IS_QLA2100(ha) && !IS_QLA2200(ha)) { /* Disable SRAM, Instruction RAM and GP RAM parity. */ spin_lock_irqsave(&ha->hardware_lock, flags); WRT_REG_WORD(®->hccr, (HCCR_ENABLE_PARITY + 0x0)); RD_REG_WORD(®->hccr); spin_unlock_irqrestore(&ha->hardware_lock, flags); } /* Load firmware sequences */ rval = ha->isp_ops->load_risc(vha, &srisc_address); if (rval == QLA_SUCCESS) { DEBUG(printk("scsi(%ld): Verifying Checksum of loaded RISC " "code.\n", vha->host_no)); rval = qla2x00_verify_checksum(vha, srisc_address); if (rval == QLA_SUCCESS) { /* Start firmware execution. */ DEBUG(printk("scsi(%ld): Checksum OK, start " "firmware.\n", vha->host_no)); rval = qla2x00_execute_fw(vha, srisc_address); /* Retrieve firmware information. */ if (rval == QLA_SUCCESS && ha->fw_major_version == 0) { qla2x00_get_fw_version(vha, &ha->fw_major_version, &ha->fw_minor_version, &ha->fw_subminor_version, &ha->fw_attributes, &ha->fw_memory_size); ha->flags.npiv_supported = 0; if (IS_QLA2XXX_MIDTYPE(ha) && (ha->fw_attributes & BIT_2)) { ha->flags.npiv_supported = 1; if ((!ha->max_npiv_vports) || ((ha->max_npiv_vports + 1) % MIN_MULTI_ID_FABRIC)) ha->max_npiv_vports = MIN_MULTI_ID_FABRIC - 1; } qla2x00_resize_request_q(vha); if (ql2xallocfwdump) qla2x00_alloc_fw_dump(vha); } } else { DEBUG2(printk(KERN_INFO "scsi(%ld): ISP Firmware failed checksum.\n", vha->host_no)); } } if (!IS_FWI2_CAPABLE(ha) && !IS_QLA2100(ha) && !IS_QLA2200(ha)) { /* Enable proper parity. */ spin_lock_irqsave(&ha->hardware_lock, flags); if (IS_QLA2300(ha)) /* SRAM parity */ WRT_REG_WORD(®->hccr, HCCR_ENABLE_PARITY + 0x1); else /* SRAM, Instruction RAM and GP RAM parity */ WRT_REG_WORD(®->hccr, HCCR_ENABLE_PARITY + 0x7); RD_REG_WORD(®->hccr); spin_unlock_irqrestore(&ha->hardware_lock, flags); } if (rval) { DEBUG2_3(printk("scsi(%ld): Setup chip **** FAILED ****.\n", vha->host_no)); } return (rval); } /** * qla2x00_init_response_q_entries() - Initializes response queue entries. * @ha: HA context * * Beginning of request ring has initialization control block already built * by nvram config routine. * * Returns 0 on success. */ void qla2x00_init_response_q_entries(struct rsp_que *rsp) { uint16_t cnt; response_t *pkt; pkt = rsp->ring_ptr; for (cnt = 0; cnt < rsp->length; cnt++) { pkt->signature = RESPONSE_PROCESSED; pkt++; } } /** * qla2x00_update_fw_options() - Read and process firmware options. * @ha: HA context * * Returns 0 on success. */ void qla2x00_update_fw_options(scsi_qla_host_t *vha) { uint16_t swing, emphasis, tx_sens, rx_sens; struct qla_hw_data *ha = vha->hw; memset(ha->fw_options, 0, sizeof(ha->fw_options)); qla2x00_get_fw_options(vha, ha->fw_options); if (IS_QLA2100(ha) || IS_QLA2200(ha)) return; /* Serial Link options. */ DEBUG3(printk("scsi(%ld): Serial link options:\n", vha->host_no)); DEBUG3(qla2x00_dump_buffer((uint8_t *)&ha->fw_seriallink_options, sizeof(ha->fw_seriallink_options))); ha->fw_options[1] &= ~FO1_SET_EMPHASIS_SWING; if (ha->fw_seriallink_options[3] & BIT_2) { ha->fw_options[1] |= FO1_SET_EMPHASIS_SWING; /* 1G settings */ swing = ha->fw_seriallink_options[2] & (BIT_2 | BIT_1 | BIT_0); emphasis = (ha->fw_seriallink_options[2] & (BIT_4 | BIT_3)) >> 3; tx_sens = ha->fw_seriallink_options[0] & (BIT_3 | BIT_2 | BIT_1 | BIT_0); rx_sens = (ha->fw_seriallink_options[0] & (BIT_7 | BIT_6 | BIT_5 | BIT_4)) >> 4; ha->fw_options[10] = (emphasis << 14) | (swing << 8); if (IS_QLA2300(ha) || IS_QLA2312(ha) || IS_QLA6312(ha)) { if (rx_sens == 0x0) rx_sens = 0x3; ha->fw_options[10] |= (tx_sens << 4) | rx_sens; } else if (IS_QLA2322(ha) || IS_QLA6322(ha)) ha->fw_options[10] |= BIT_5 | ((rx_sens & (BIT_1 | BIT_0)) << 2) | (tx_sens & (BIT_1 | BIT_0)); /* 2G settings */ swing = (ha->fw_seriallink_options[2] & (BIT_7 | BIT_6 | BIT_5)) >> 5; emphasis = ha->fw_seriallink_options[3] & (BIT_1 | BIT_0); tx_sens = ha->fw_seriallink_options[1] & (BIT_3 | BIT_2 | BIT_1 | BIT_0); rx_sens = (ha->fw_seriallink_options[1] & (BIT_7 | BIT_6 | BIT_5 | BIT_4)) >> 4; ha->fw_options[11] = (emphasis << 14) | (swing << 8); if (IS_QLA2300(ha) || IS_QLA2312(ha) || IS_QLA6312(ha)) { if (rx_sens == 0x0) rx_sens = 0x3; ha->fw_options[11] |= (tx_sens << 4) | rx_sens; } else if (IS_QLA2322(ha) || IS_QLA6322(ha)) ha->fw_options[11] |= BIT_5 | ((rx_sens & (BIT_1 | BIT_0)) << 2) | (tx_sens & (BIT_1 | BIT_0)); } /* FCP2 options. */ /* Return command IOCBs without waiting for an ABTS to complete. */ ha->fw_options[3] |= BIT_13; /* LED scheme. */ if (ha->flags.enable_led_scheme) ha->fw_options[2] |= BIT_12; /* Detect ISP6312. */ if (IS_QLA6312(ha)) ha->fw_options[2] |= BIT_13; /* Update firmware options. */ qla2x00_set_fw_options(vha, ha->fw_options); } void qla24xx_update_fw_options(scsi_qla_host_t *vha) { int rval; struct qla_hw_data *ha = vha->hw; /* Update Serial Link options. */ if ((le16_to_cpu(ha->fw_seriallink_options24[0]) & BIT_0) == 0) return; rval = qla2x00_set_serdes_params(vha, le16_to_cpu(ha->fw_seriallink_options24[1]), le16_to_cpu(ha->fw_seriallink_options24[2]), le16_to_cpu(ha->fw_seriallink_options24[3])); if (rval != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "Unable to update Serial Link options (%x).\n", rval); } } void qla2x00_config_rings(struct scsi_qla_host *vha) { struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; struct req_que *req = ha->req_q_map[0]; struct rsp_que *rsp = ha->rsp_q_map[0]; /* Setup ring parameters in initialization control block. */ ha->init_cb->request_q_outpointer = __constant_cpu_to_le16(0); ha->init_cb->response_q_inpointer = __constant_cpu_to_le16(0); ha->init_cb->request_q_length = cpu_to_le16(req->length); ha->init_cb->response_q_length = cpu_to_le16(rsp->length); ha->init_cb->request_q_address[0] = cpu_to_le32(LSD(req->dma)); ha->init_cb->request_q_address[1] = cpu_to_le32(MSD(req->dma)); ha->init_cb->response_q_address[0] = cpu_to_le32(LSD(rsp->dma)); ha->init_cb->response_q_address[1] = cpu_to_le32(MSD(rsp->dma)); WRT_REG_WORD(ISP_REQ_Q_IN(ha, reg), 0); WRT_REG_WORD(ISP_REQ_Q_OUT(ha, reg), 0); WRT_REG_WORD(ISP_RSP_Q_IN(ha, reg), 0); WRT_REG_WORD(ISP_RSP_Q_OUT(ha, reg), 0); RD_REG_WORD(ISP_RSP_Q_OUT(ha, reg)); /* PCI Posting. */ } void qla24xx_config_rings(struct scsi_qla_host *vha) { struct qla_hw_data *ha = vha->hw; device_reg_t __iomem *reg = ISP_QUE_REG(ha, 0); struct device_reg_2xxx __iomem *ioreg = &ha->iobase->isp; struct qla_msix_entry *msix; struct init_cb_24xx *icb; uint16_t rid = 0; struct req_que *req = ha->req_q_map[0]; struct rsp_que *rsp = ha->rsp_q_map[0]; /* Setup ring parameters in initialization control block. */ icb = (struct init_cb_24xx *)ha->init_cb; icb->request_q_outpointer = __constant_cpu_to_le16(0); icb->response_q_inpointer = __constant_cpu_to_le16(0); icb->request_q_length = cpu_to_le16(req->length); icb->response_q_length = cpu_to_le16(rsp->length); icb->request_q_address[0] = cpu_to_le32(LSD(req->dma)); icb->request_q_address[1] = cpu_to_le32(MSD(req->dma)); icb->response_q_address[0] = cpu_to_le32(LSD(rsp->dma)); icb->response_q_address[1] = cpu_to_le32(MSD(rsp->dma)); if (ha->mqenable) { icb->qos = __constant_cpu_to_le16(QLA_DEFAULT_QUE_QOS); icb->rid = __constant_cpu_to_le16(rid); if (ha->flags.msix_enabled) { msix = &ha->msix_entries[1]; DEBUG2_17(printk(KERN_INFO "Reistering vector 0x%x for base que\n", msix->entry)); icb->msix = cpu_to_le16(msix->entry); } /* Use alternate PCI bus number */ if (MSB(rid)) icb->firmware_options_2 |= __constant_cpu_to_le32(BIT_19); /* Use alternate PCI devfn */ if (LSB(rid)) icb->firmware_options_2 |= __constant_cpu_to_le32(BIT_18); icb->firmware_options_2 |= __constant_cpu_to_le32(BIT_22); icb->firmware_options_2 |= __constant_cpu_to_le32(BIT_23); ha->rsp_q_map[0]->options = icb->firmware_options_2; WRT_REG_DWORD(®->isp25mq.req_q_in, 0); WRT_REG_DWORD(®->isp25mq.req_q_out, 0); WRT_REG_DWORD(®->isp25mq.rsp_q_in, 0); WRT_REG_DWORD(®->isp25mq.rsp_q_out, 0); } else { WRT_REG_DWORD(®->isp24.req_q_in, 0); WRT_REG_DWORD(®->isp24.req_q_out, 0); WRT_REG_DWORD(®->isp24.rsp_q_in, 0); WRT_REG_DWORD(®->isp24.rsp_q_out, 0); } /* PCI posting */ RD_REG_DWORD(&ioreg->hccr); } /** * qla2x00_init_rings() - Initializes firmware. * @ha: HA context * * Beginning of request ring has initialization control block already built * by nvram config routine. * * Returns 0 on success. */ static int qla2x00_init_rings(scsi_qla_host_t *vha) { int rval; unsigned long flags = 0; int cnt; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; struct rsp_que *rsp = ha->rsp_q_map[0]; struct mid_init_cb_24xx *mid_init_cb = (struct mid_init_cb_24xx *) ha->init_cb; spin_lock_irqsave(&ha->hardware_lock, flags); /* Clear outstanding commands array. */ for (cnt = 0; cnt < MAX_OUTSTANDING_COMMANDS; cnt++) req->outstanding_cmds[cnt] = NULL; req->current_outstanding_cmd = 0; /* Clear RSCN queue. */ vha->rscn_in_ptr = 0; vha->rscn_out_ptr = 0; /* Initialize firmware. */ req->ring_ptr = req->ring; req->ring_index = 0; req->cnt = req->length; rsp->ring_ptr = rsp->ring; rsp->ring_index = 0; /* Initialize response queue entries */ qla2x00_init_response_q_entries(rsp); ha->isp_ops->config_rings(vha); spin_unlock_irqrestore(&ha->hardware_lock, flags); /* Update any ISP specific firmware options before initialization. */ ha->isp_ops->update_fw_options(vha); DEBUG(printk("scsi(%ld): Issue init firmware.\n", vha->host_no)); if (ha->flags.npiv_supported) mid_init_cb->count = cpu_to_le16(ha->max_npiv_vports); mid_init_cb->options = __constant_cpu_to_le16(BIT_1); rval = qla2x00_init_firmware(vha, ha->init_cb_size); if (rval) { DEBUG2_3(printk("scsi(%ld): Init firmware **** FAILED ****.\n", vha->host_no)); } else { DEBUG3(printk("scsi(%ld): Init firmware -- success.\n", vha->host_no)); } return (rval); } /** * qla2x00_fw_ready() - Waits for firmware ready. * @ha: HA context * * Returns 0 on success. */ static int qla2x00_fw_ready(scsi_qla_host_t *vha) { int rval; unsigned long wtime, mtime, cs84xx_time; uint16_t min_wait; /* Minimum wait time if loop is down */ uint16_t wait_time; /* Wait time if loop is coming ready */ uint16_t state[3]; struct qla_hw_data *ha = vha->hw; rval = QLA_SUCCESS; /* 20 seconds for loop down. */ min_wait = 20; /* * Firmware should take at most one RATOV to login, plus 5 seconds for * our own processing. */ if ((wait_time = (ha->retry_count*ha->login_timeout) + 5) < min_wait) { wait_time = min_wait; } /* Min wait time if loop down */ mtime = jiffies + (min_wait * HZ); /* wait time before firmware ready */ wtime = jiffies + (wait_time * HZ); /* Wait for ISP to finish LIP */ if (!vha->flags.init_done) qla_printk(KERN_INFO, ha, "Waiting for LIP to complete...\n"); DEBUG3(printk("scsi(%ld): Waiting for LIP to complete...\n", vha->host_no)); do { rval = qla2x00_get_firmware_state(vha, state); if (rval == QLA_SUCCESS) { if (state[0] < FSTATE_LOSS_OF_SYNC) { vha->device_flags &= ~DFLG_NO_CABLE; } if (IS_QLA84XX(ha) && state[0] != FSTATE_READY) { DEBUG16(printk("scsi(%ld): fw_state=%x " "84xx=%x.\n", vha->host_no, state[0], state[2])); if ((state[2] & FSTATE_LOGGED_IN) && (state[2] & FSTATE_WAITING_FOR_VERIFY)) { DEBUG16(printk("scsi(%ld): Sending " "verify iocb.\n", vha->host_no)); cs84xx_time = jiffies; rval = qla84xx_init_chip(vha); if (rval != QLA_SUCCESS) break; /* Add time taken to initialize. */ cs84xx_time = jiffies - cs84xx_time; wtime += cs84xx_time; mtime += cs84xx_time; DEBUG16(printk("scsi(%ld): Increasing " "wait time by %ld. New time %ld\n", vha->host_no, cs84xx_time, wtime)); } } else if (state[0] == FSTATE_READY) { DEBUG(printk("scsi(%ld): F/W Ready - OK \n", vha->host_no)); qla2x00_get_retry_cnt(vha, &ha->retry_count, &ha->login_timeout, &ha->r_a_tov); rval = QLA_SUCCESS; break; } rval = QLA_FUNCTION_FAILED; if (atomic_read(&vha->loop_down_timer) && state[0] != FSTATE_READY) { /* Loop down. Timeout on min_wait for states * other than Wait for Login. */ if (time_after_eq(jiffies, mtime)) { qla_printk(KERN_INFO, ha, "Cable is unplugged...\n"); vha->device_flags |= DFLG_NO_CABLE; break; } } } else { /* Mailbox cmd failed. Timeout on min_wait. */ if (time_after_eq(jiffies, mtime)) break; } if (time_after_eq(jiffies, wtime)) break; /* Delay for a while */ msleep(500); DEBUG3(printk("scsi(%ld): fw_state=%x curr time=%lx.\n", vha->host_no, state[0], jiffies)); } while (1); DEBUG(printk("scsi(%ld): fw_state=%x curr time=%lx.\n", vha->host_no, state[0], jiffies)); if (rval) { DEBUG2_3(printk("scsi(%ld): Firmware ready **** FAILED ****.\n", vha->host_no)); } return (rval); } /* * qla2x00_configure_hba * Setup adapter context. * * Input: * ha = adapter state pointer. * * Returns: * 0 = success * * Context: * Kernel context. */ static int qla2x00_configure_hba(scsi_qla_host_t *vha) { int rval; uint16_t loop_id; uint16_t topo; uint16_t sw_cap; uint8_t al_pa; uint8_t area; uint8_t domain; char connect_type[22]; struct qla_hw_data *ha = vha->hw; /* Get host addresses. */ rval = qla2x00_get_adapter_id(vha, &loop_id, &al_pa, &area, &domain, &topo, &sw_cap); if (rval != QLA_SUCCESS) { if (LOOP_TRANSITION(vha) || atomic_read(&ha->loop_down_timer) || (rval == QLA_COMMAND_ERROR && loop_id == 0x7)) { DEBUG2(printk("%s(%ld) Loop is in a transition state\n", __func__, vha->host_no)); } else { qla_printk(KERN_WARNING, ha, "ERROR -- Unable to get host loop ID.\n"); set_bit(ISP_ABORT_NEEDED, &vha->dpc_flags); } return (rval); } if (topo == 4) { qla_printk(KERN_INFO, ha, "Cannot get topology - retrying.\n"); return (QLA_FUNCTION_FAILED); } vha->loop_id = loop_id; /* initialize */ ha->min_external_loopid = SNS_FIRST_LOOP_ID; ha->operating_mode = LOOP; ha->switch_cap = 0; switch (topo) { case 0: DEBUG3(printk("scsi(%ld): HBA in NL topology.\n", vha->host_no)); ha->current_topology = ISP_CFG_NL; strcpy(connect_type, "(Loop)"); break; case 1: DEBUG3(printk("scsi(%ld): HBA in FL topology.\n", vha->host_no)); ha->switch_cap = sw_cap; ha->current_topology = ISP_CFG_FL; strcpy(connect_type, "(FL_Port)"); break; case 2: DEBUG3(printk("scsi(%ld): HBA in N P2P topology.\n", vha->host_no)); ha->operating_mode = P2P; ha->current_topology = ISP_CFG_N; strcpy(connect_type, "(N_Port-to-N_Port)"); break; case 3: DEBUG3(printk("scsi(%ld): HBA in F P2P topology.\n", vha->host_no)); ha->switch_cap = sw_cap; ha->operating_mode = P2P; ha->current_topology = ISP_CFG_F; strcpy(connect_type, "(F_Port)"); break; default: DEBUG3(printk("scsi(%ld): HBA in unknown topology %x. " "Using NL.\n", vha->host_no, topo)); ha->current_topology = ISP_CFG_NL; strcpy(connect_type, "(Loop)"); break; } /* Save Host port and loop ID. */ /* byte order - Big Endian */ vha->d_id.b.domain = domain; vha->d_id.b.area = area; vha->d_id.b.al_pa = al_pa; if (!vha->flags.init_done) qla_printk(KERN_INFO, ha, "Topology - %s, Host Loop address 0x%x\n", connect_type, vha->loop_id); if (rval) { DEBUG2_3(printk("scsi(%ld): FAILED.\n", vha->host_no)); } else { DEBUG3(printk("scsi(%ld): exiting normally.\n", vha->host_no)); } return(rval); } static inline void qla2x00_set_model_info(scsi_qla_host_t *vha, uint8_t *model, size_t len, char *def) { char *st, *en; uint16_t index; struct qla_hw_data *ha = vha->hw; if (memcmp(model, BINZERO, len) != 0) { strncpy(ha->model_number, model, len); st = en = ha->model_number; en += len - 1; while (en > st) { if (*en != 0x20 && *en != 0x00) break; *en-- = '\0'; } index = (ha->pdev->subsystem_device & 0xff); if (ha->pdev->subsystem_vendor == PCI_VENDOR_ID_QLOGIC && index < QLA_MODEL_NAMES) strncpy(ha->model_desc, qla2x00_model_name[index * 2 + 1], sizeof(ha->model_desc) - 1); } else { index = (ha->pdev->subsystem_device & 0xff); if (ha->pdev->subsystem_vendor == PCI_VENDOR_ID_QLOGIC && index < QLA_MODEL_NAMES) { strcpy(ha->model_number, qla2x00_model_name[index * 2]); strncpy(ha->model_desc, qla2x00_model_name[index * 2 + 1], sizeof(ha->model_desc) - 1); } else { strcpy(ha->model_number, def); } } if (IS_FWI2_CAPABLE(ha)) qla2xxx_get_vpd_field(vha, "\x82", ha->model_desc, sizeof(ha->model_desc)); } /* On sparc systems, obtain port and node WWN from firmware * properties. */ static void qla2xxx_nvram_wwn_from_ofw(scsi_qla_host_t *vha, nvram_t *nv) { #ifdef CONFIG_SPARC struct qla_hw_data *ha = vha->hw; struct pci_dev *pdev = ha->pdev; struct device_node *dp = pci_device_to_OF_node(pdev); const u8 *val; int len; val = of_get_property(dp, "port-wwn", &len); if (val && len >= WWN_SIZE) memcpy(nv->port_name, val, WWN_SIZE); val = of_get_property(dp, "node-wwn", &len); if (val && len >= WWN_SIZE) memcpy(nv->node_name, val, WWN_SIZE); #endif } /* * NVRAM configuration for ISP 2xxx * * Input: * ha = adapter block pointer. * * Output: * initialization control block in response_ring * host adapters parameters in host adapter block * * Returns: * 0 = success. */ int qla2x00_nvram_config(scsi_qla_host_t *vha) { int rval; uint8_t chksum = 0; uint16_t cnt; uint8_t *dptr1, *dptr2; struct qla_hw_data *ha = vha->hw; init_cb_t *icb = ha->init_cb; nvram_t *nv = ha->nvram; uint8_t *ptr = ha->nvram; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; rval = QLA_SUCCESS; /* Determine NVRAM starting address. */ ha->nvram_size = sizeof(nvram_t); ha->nvram_base = 0; if (!IS_QLA2100(ha) && !IS_QLA2200(ha) && !IS_QLA2300(ha)) if ((RD_REG_WORD(®->ctrl_status) >> 14) == 1) ha->nvram_base = 0x80; /* Get NVRAM data and calculate checksum. */ ha->isp_ops->read_nvram(vha, ptr, ha->nvram_base, ha->nvram_size); for (cnt = 0, chksum = 0; cnt < ha->nvram_size; cnt++) chksum += *ptr++; DEBUG5(printk("scsi(%ld): Contents of NVRAM\n", vha->host_no)); DEBUG5(qla2x00_dump_buffer((uint8_t *)nv, ha->nvram_size)); /* Bad NVRAM data, set defaults parameters. */ if (chksum || nv->id[0] != 'I' || nv->id[1] != 'S' || nv->id[2] != 'P' || nv->id[3] != ' ' || nv->nvram_version < 1) { /* Reset NVRAM data. */ qla_printk(KERN_WARNING, ha, "Inconsistent NVRAM detected: " "checksum=0x%x id=%c version=0x%x.\n", chksum, nv->id[0], nv->nvram_version); qla_printk(KERN_WARNING, ha, "Falling back to functioning (yet " "invalid -- WWPN) defaults.\n"); /* * Set default initialization control block. */ memset(nv, 0, ha->nvram_size); nv->parameter_block_version = ICB_VERSION; if (IS_QLA23XX(ha)) { nv->firmware_options[0] = BIT_2 | BIT_1; nv->firmware_options[1] = BIT_7 | BIT_5; nv->add_firmware_options[0] = BIT_5; nv->add_firmware_options[1] = BIT_5 | BIT_4; nv->frame_payload_size = __constant_cpu_to_le16(2048); nv->special_options[1] = BIT_7; } else if (IS_QLA2200(ha)) { nv->firmware_options[0] = BIT_2 | BIT_1; nv->firmware_options[1] = BIT_7 | BIT_5; nv->add_firmware_options[0] = BIT_5; nv->add_firmware_options[1] = BIT_5 | BIT_4; nv->frame_payload_size = __constant_cpu_to_le16(1024); } else if (IS_QLA2100(ha)) { nv->firmware_options[0] = BIT_3 | BIT_1; nv->firmware_options[1] = BIT_5; nv->frame_payload_size = __constant_cpu_to_le16(1024); } nv->max_iocb_allocation = __constant_cpu_to_le16(256); nv->execution_throttle = __constant_cpu_to_le16(16); nv->retry_count = 8; nv->retry_delay = 1; nv->port_name[0] = 33; nv->port_name[3] = 224; nv->port_name[4] = 139; qla2xxx_nvram_wwn_from_ofw(vha, nv); nv->login_timeout = 4; /* * Set default host adapter parameters */ nv->host_p[1] = BIT_2; nv->reset_delay = 5; nv->port_down_retry_count = 8; nv->max_luns_per_target = __constant_cpu_to_le16(8); nv->link_down_timeout = 60; rval = 1; } #if defined(CONFIG_IA64_GENERIC) || defined(CONFIG_IA64_SGI_SN2) /* * The SN2 does not provide BIOS emulation which means you can't change * potentially bogus BIOS settings. Force the use of default settings * for link rate and frame size. Hope that the rest of the settings * are valid. */ if (ia64_platform_is("sn2")) { nv->frame_payload_size = __constant_cpu_to_le16(2048); if (IS_QLA23XX(ha)) nv->special_options[1] = BIT_7; } #endif /* Reset Initialization control block */ memset(icb, 0, ha->init_cb_size); /* * Setup driver NVRAM options. */ nv->firmware_options[0] |= (BIT_6 | BIT_1); nv->firmware_options[0] &= ~(BIT_5 | BIT_4); nv->firmware_options[1] |= (BIT_5 | BIT_0); nv->firmware_options[1] &= ~BIT_4; if (IS_QLA23XX(ha)) { nv->firmware_options[0] |= BIT_2; nv->firmware_options[0] &= ~BIT_3; nv->add_firmware_options[1] |= BIT_5 | BIT_4; if (IS_QLA2300(ha)) { if (ha->fb_rev == FPM_2310) { strcpy(ha->model_number, "QLA2310"); } else { strcpy(ha->model_number, "QLA2300"); } } else { qla2x00_set_model_info(vha, nv->model_number, sizeof(nv->model_number), "QLA23xx"); } } else if (IS_QLA2200(ha)) { nv->firmware_options[0] |= BIT_2; /* * 'Point-to-point preferred, else loop' is not a safe * connection mode setting. */ if ((nv->add_firmware_options[0] & (BIT_6 | BIT_5 | BIT_4)) == (BIT_5 | BIT_4)) { /* Force 'loop preferred, else point-to-point'. */ nv->add_firmware_options[0] &= ~(BIT_6 | BIT_5 | BIT_4); nv->add_firmware_options[0] |= BIT_5; } strcpy(ha->model_number, "QLA22xx"); } else /*if (IS_QLA2100(ha))*/ { strcpy(ha->model_number, "QLA2100"); } /* * Copy over NVRAM RISC parameter block to initialization control block. */ dptr1 = (uint8_t *)icb; dptr2 = (uint8_t *)&nv->parameter_block_version; cnt = (uint8_t *)&icb->request_q_outpointer - (uint8_t *)&icb->version; while (cnt--) *dptr1++ = *dptr2++; /* Copy 2nd half. */ dptr1 = (uint8_t *)icb->add_firmware_options; cnt = (uint8_t *)icb->reserved_3 - (uint8_t *)icb->add_firmware_options; while (cnt--) *dptr1++ = *dptr2++; /* Use alternate WWN? */ if (nv->host_p[1] & BIT_7) { memcpy(icb->node_name, nv->alternate_node_name, WWN_SIZE); memcpy(icb->port_name, nv->alternate_port_name, WWN_SIZE); } /* Prepare nodename */ if ((icb->firmware_options[1] & BIT_6) == 0) { /* * Firmware will apply the following mask if the nodename was * not provided. */ memcpy(icb->node_name, icb->port_name, WWN_SIZE); icb->node_name[0] &= 0xF0; } /* * Set host adapter parameters. */ if (nv->host_p[0] & BIT_7) ql2xextended_error_logging = 1; ha->flags.disable_risc_code_load = ((nv->host_p[0] & BIT_4) ? 1 : 0); /* Always load RISC code on non ISP2[12]00 chips. */ if (!IS_QLA2100(ha) && !IS_QLA2200(ha)) ha->flags.disable_risc_code_load = 0; ha->flags.enable_lip_reset = ((nv->host_p[1] & BIT_1) ? 1 : 0); ha->flags.enable_lip_full_login = ((nv->host_p[1] & BIT_2) ? 1 : 0); ha->flags.enable_target_reset = ((nv->host_p[1] & BIT_3) ? 1 : 0); ha->flags.enable_led_scheme = (nv->special_options[1] & BIT_4) ? 1 : 0; ha->flags.disable_serdes = 0; ha->operating_mode = (icb->add_firmware_options[0] & (BIT_6 | BIT_5 | BIT_4)) >> 4; memcpy(ha->fw_seriallink_options, nv->seriallink_options, sizeof(ha->fw_seriallink_options)); /* save HBA serial number */ ha->serial0 = icb->port_name[5]; ha->serial1 = icb->port_name[6]; ha->serial2 = icb->port_name[7]; memcpy(vha->node_name, icb->node_name, WWN_SIZE); memcpy(vha->port_name, icb->port_name, WWN_SIZE); icb->execution_throttle = __constant_cpu_to_le16(0xFFFF); ha->retry_count = nv->retry_count; /* Set minimum login_timeout to 4 seconds. */ if (nv->login_timeout < ql2xlogintimeout) nv->login_timeout = ql2xlogintimeout; if (nv->login_timeout < 4) nv->login_timeout = 4; ha->login_timeout = nv->login_timeout; icb->login_timeout = nv->login_timeout; /* Set minimum RATOV to 100 tenths of a second. */ ha->r_a_tov = 100; ha->loop_reset_delay = nv->reset_delay; /* Link Down Timeout = 0: * * When Port Down timer expires we will start returning * I/O's to OS with "DID_NO_CONNECT". * * Link Down Timeout != 0: * * The driver waits for the link to come up after link down * before returning I/Os to OS with "DID_NO_CONNECT". */ if (nv->link_down_timeout == 0) { ha->loop_down_abort_time = (LOOP_DOWN_TIME - LOOP_DOWN_TIMEOUT); } else { ha->link_down_timeout = nv->link_down_timeout; ha->loop_down_abort_time = (LOOP_DOWN_TIME - ha->link_down_timeout); } /* * Need enough time to try and get the port back. */ ha->port_down_retry_count = nv->port_down_retry_count; if (qlport_down_retry) ha->port_down_retry_count = qlport_down_retry; /* Set login_retry_count */ ha->login_retry_count = nv->retry_count; if (ha->port_down_retry_count == nv->port_down_retry_count && ha->port_down_retry_count > 3) ha->login_retry_count = ha->port_down_retry_count; else if (ha->port_down_retry_count > (int)ha->login_retry_count) ha->login_retry_count = ha->port_down_retry_count; if (ql2xloginretrycount) ha->login_retry_count = ql2xloginretrycount; icb->lun_enables = __constant_cpu_to_le16(0); icb->command_resource_count = 0; icb->immediate_notify_resource_count = 0; icb->timeout = __constant_cpu_to_le16(0); if (IS_QLA2100(ha) || IS_QLA2200(ha)) { /* Enable RIO */ icb->firmware_options[0] &= ~BIT_3; icb->add_firmware_options[0] &= ~(BIT_3 | BIT_2 | BIT_1 | BIT_0); icb->add_firmware_options[0] |= BIT_2; icb->response_accumulation_timer = 3; icb->interrupt_delay_timer = 5; vha->flags.process_response_queue = 1; } else { /* Enable ZIO. */ if (!vha->flags.init_done) { ha->zio_mode = icb->add_firmware_options[0] & (BIT_3 | BIT_2 | BIT_1 | BIT_0); ha->zio_timer = icb->interrupt_delay_timer ? icb->interrupt_delay_timer: 2; } icb->add_firmware_options[0] &= ~(BIT_3 | BIT_2 | BIT_1 | BIT_0); vha->flags.process_response_queue = 0; if (ha->zio_mode != QLA_ZIO_DISABLED) { ha->zio_mode = QLA_ZIO_MODE_6; DEBUG2(printk("scsi(%ld): ZIO mode %d enabled; timer " "delay (%d us).\n", vha->host_no, ha->zio_mode, ha->zio_timer * 100)); qla_printk(KERN_INFO, ha, "ZIO mode %d enabled; timer delay (%d us).\n", ha->zio_mode, ha->zio_timer * 100); icb->add_firmware_options[0] |= (uint8_t)ha->zio_mode; icb->interrupt_delay_timer = (uint8_t)ha->zio_timer; vha->flags.process_response_queue = 1; } } if (rval) { DEBUG2_3(printk(KERN_WARNING "scsi(%ld): NVRAM configuration failed!\n", vha->host_no)); } return (rval); } static void qla2x00_rport_del(void *data) { fc_port_t *fcport = data; struct fc_rport *rport; spin_lock_irq(fcport->vha->host->host_lock); rport = fcport->drport; fcport->drport = NULL; spin_unlock_irq(fcport->vha->host->host_lock); if (rport) fc_remote_port_delete(rport); } /** * qla2x00_alloc_fcport() - Allocate a generic fcport. * @ha: HA context * @flags: allocation flags * * Returns a pointer to the allocated fcport, or NULL, if none available. */ static fc_port_t * qla2x00_alloc_fcport(scsi_qla_host_t *vha, gfp_t flags) { fc_port_t *fcport; fcport = kzalloc(sizeof(fc_port_t), flags); if (!fcport) return NULL; /* Setup fcport template structure. */ fcport->vha = vha; fcport->vp_idx = vha->vp_idx; fcport->port_type = FCT_UNKNOWN; fcport->loop_id = FC_NO_LOOP_ID; atomic_set(&fcport->state, FCS_UNCONFIGURED); fcport->flags = FCF_RLC_SUPPORT; fcport->supported_classes = FC_COS_UNSPECIFIED; return fcport; } /* * qla2x00_configure_loop * Updates Fibre Channel Device Database with what is actually on loop. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success. * 1 = error. * 2 = database was full and device was not configured. */ static int qla2x00_configure_loop(scsi_qla_host_t *vha) { int rval; unsigned long flags, save_flags; struct qla_hw_data *ha = vha->hw; rval = QLA_SUCCESS; /* Get Initiator ID */ if (test_bit(LOCAL_LOOP_UPDATE, &vha->dpc_flags)) { rval = qla2x00_configure_hba(vha); if (rval != QLA_SUCCESS) { DEBUG(printk("scsi(%ld): Unable to configure HBA.\n", vha->host_no)); return (rval); } } save_flags = flags = vha->dpc_flags; DEBUG(printk("scsi(%ld): Configure loop -- dpc flags =0x%lx\n", vha->host_no, flags)); /* * If we have both an RSCN and PORT UPDATE pending then handle them * both at the same time. */ clear_bit(LOCAL_LOOP_UPDATE, &vha->dpc_flags); clear_bit(RSCN_UPDATE, &vha->dpc_flags); /* Determine what we need to do */ if (ha->current_topology == ISP_CFG_FL && (test_bit(LOCAL_LOOP_UPDATE, &flags))) { vha->flags.rscn_queue_overflow = 1; set_bit(RSCN_UPDATE, &flags); } else if (ha->current_topology == ISP_CFG_F && (test_bit(LOCAL_LOOP_UPDATE, &flags))) { vha->flags.rscn_queue_overflow = 1; set_bit(RSCN_UPDATE, &flags); clear_bit(LOCAL_LOOP_UPDATE, &flags); } else if (ha->current_topology == ISP_CFG_N) { clear_bit(RSCN_UPDATE, &flags); } else if (!vha->flags.online || (test_bit(ABORT_ISP_ACTIVE, &flags))) { vha->flags.rscn_queue_overflow = 1; set_bit(RSCN_UPDATE, &flags); set_bit(LOCAL_LOOP_UPDATE, &flags); } if (test_bit(LOCAL_LOOP_UPDATE, &flags)) { if (test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags)) rval = QLA_FUNCTION_FAILED; else rval = qla2x00_configure_local_loop(vha); } if (rval == QLA_SUCCESS && test_bit(RSCN_UPDATE, &flags)) { if (LOOP_TRANSITION(vha)) rval = QLA_FUNCTION_FAILED; else rval = qla2x00_configure_fabric(vha); } if (rval == QLA_SUCCESS) { if (atomic_read(&vha->loop_down_timer) || test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags)) { rval = QLA_FUNCTION_FAILED; } else { atomic_set(&vha->loop_state, LOOP_READY); DEBUG(printk("scsi(%ld): LOOP READY\n", vha->host_no)); } } if (rval) { DEBUG2_3(printk("%s(%ld): *** FAILED ***\n", __func__, vha->host_no)); } else { DEBUG3(printk("%s: exiting normally\n", __func__)); } /* Restore state if a resync event occurred during processing */ if (test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags)) { if (test_bit(LOCAL_LOOP_UPDATE, &save_flags)) set_bit(LOCAL_LOOP_UPDATE, &vha->dpc_flags); if (test_bit(RSCN_UPDATE, &save_flags)) set_bit(RSCN_UPDATE, &vha->dpc_flags); } return (rval); } /* * qla2x00_configure_local_loop * Updates Fibre Channel Device Database with local loop devices. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success. */ static int qla2x00_configure_local_loop(scsi_qla_host_t *vha) { int rval, rval2; int found_devs; int found; fc_port_t *fcport, *new_fcport; uint16_t index; uint16_t entries; char *id_iter; uint16_t loop_id; uint8_t domain, area, al_pa; struct qla_hw_data *ha = vha->hw; found_devs = 0; new_fcport = NULL; entries = MAX_FIBRE_DEVICES; DEBUG3(printk("scsi(%ld): Getting FCAL position map\n", vha->host_no)); DEBUG3(qla2x00_get_fcal_position_map(vha, NULL)); /* Get list of logged in devices. */ memset(ha->gid_list, 0, GID_LIST_SIZE); rval = qla2x00_get_id_list(vha, ha->gid_list, ha->gid_list_dma, &entries); if (rval != QLA_SUCCESS) goto cleanup_allocation; DEBUG3(printk("scsi(%ld): Entries in ID list (%d)\n", ha->host_no, entries)); DEBUG3(qla2x00_dump_buffer((uint8_t *)ha->gid_list, entries * sizeof(struct gid_list_info))); /* Allocate temporary fcport for any new fcports discovered. */ new_fcport = qla2x00_alloc_fcport(vha, GFP_KERNEL); if (new_fcport == NULL) { rval = QLA_MEMORY_ALLOC_FAILED; goto cleanup_allocation; } new_fcport->flags &= ~FCF_FABRIC_DEVICE; /* * Mark local devices that were present with FCF_DEVICE_LOST for now. */ list_for_each_entry(fcport, &vha->vp_fcports, list) { if (atomic_read(&fcport->state) == FCS_ONLINE && fcport->port_type != FCT_BROADCAST && (fcport->flags & FCF_FABRIC_DEVICE) == 0) { DEBUG(printk("scsi(%ld): Marking port lost, " "loop_id=0x%04x\n", vha->host_no, fcport->loop_id)); atomic_set(&fcport->state, FCS_DEVICE_LOST); fcport->flags &= ~FCF_FARP_DONE; } } /* Add devices to port list. */ id_iter = (char *)ha->gid_list; for (index = 0; index < entries; index++) { domain = ((struct gid_list_info *)id_iter)->domain; area = ((struct gid_list_info *)id_iter)->area; al_pa = ((struct gid_list_info *)id_iter)->al_pa; if (IS_QLA2100(ha) || IS_QLA2200(ha)) loop_id = (uint16_t) ((struct gid_list_info *)id_iter)->loop_id_2100; else loop_id = le16_to_cpu( ((struct gid_list_info *)id_iter)->loop_id); id_iter += ha->gid_list_info_size; /* Bypass reserved domain fields. */ if ((domain & 0xf0) == 0xf0) continue; /* Bypass if not same domain and area of adapter. */ if (area && domain && (area != vha->d_id.b.area || domain != vha->d_id.b.domain)) continue; /* Bypass invalid local loop ID. */ if (loop_id > LAST_LOCAL_LOOP_ID) continue; /* Fill in member data. */ new_fcport->d_id.b.domain = domain; new_fcport->d_id.b.area = area; new_fcport->d_id.b.al_pa = al_pa; new_fcport->loop_id = loop_id; new_fcport->vp_idx = vha->vp_idx; rval2 = qla2x00_get_port_database(vha, new_fcport, 0); if (rval2 != QLA_SUCCESS) { DEBUG2(printk("scsi(%ld): Failed to retrieve fcport " "information -- get_port_database=%x, " "loop_id=0x%04x\n", vha->host_no, rval2, new_fcport->loop_id)); DEBUG2(printk("scsi(%ld): Scheduling resync...\n", vha->host_no)); set_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags); continue; } /* Check for matching device in port list. */ found = 0; fcport = NULL; list_for_each_entry(fcport, &vha->vp_fcports, list) { if (memcmp(new_fcport->port_name, fcport->port_name, WWN_SIZE)) continue; fcport->flags &= ~(FCF_FABRIC_DEVICE | FCF_PERSISTENT_BOUND); fcport->loop_id = new_fcport->loop_id; fcport->port_type = new_fcport->port_type; fcport->d_id.b24 = new_fcport->d_id.b24; memcpy(fcport->node_name, new_fcport->node_name, WWN_SIZE); found++; break; } if (!found) { /* New device, add to fcports list. */ new_fcport->flags &= ~FCF_PERSISTENT_BOUND; if (vha->vp_idx) { new_fcport->vha = vha; new_fcport->vp_idx = vha->vp_idx; } list_add_tail(&new_fcport->list, &vha->vp_fcports); /* Allocate a new replacement fcport. */ fcport = new_fcport; new_fcport = qla2x00_alloc_fcport(vha, GFP_KERNEL); if (new_fcport == NULL) { rval = QLA_MEMORY_ALLOC_FAILED; goto cleanup_allocation; } new_fcport->flags &= ~FCF_FABRIC_DEVICE; } /* Base iIDMA settings on HBA port speed. */ fcport->fp_speed = ha->link_data_rate; qla2x00_update_fcport(vha, fcport); found_devs++; } cleanup_allocation: kfree(new_fcport); if (rval != QLA_SUCCESS) { DEBUG2(printk("scsi(%ld): Configure local loop error exit: " "rval=%x\n", vha->host_no, rval)); } if (found_devs) { vha->device_flags |= DFLG_LOCAL_DEVICES; vha->device_flags &= ~DFLG_RETRY_LOCAL_DEVICES; } return (rval); } static void qla2x00_iidma_fcport(scsi_qla_host_t *vha, fc_port_t *fcport) { #define LS_UNKNOWN 2 static char *link_speeds[5] = { "1", "2", "?", "4", "8" }; int rval; uint16_t mb[6]; struct qla_hw_data *ha = vha->hw; if (!IS_IIDMA_CAPABLE(ha)) return; if (fcport->fp_speed == PORT_SPEED_UNKNOWN || fcport->fp_speed > ha->link_data_rate) return; rval = qla2x00_set_idma_speed(vha, fcport->loop_id, fcport->fp_speed, mb); if (rval != QLA_SUCCESS) { DEBUG2(printk("scsi(%ld): Unable to adjust iIDMA " "%02x%02x%02x%02x%02x%02x%02x%02x -- %04x %x %04x %04x.\n", vha->host_no, fcport->port_name[0], fcport->port_name[1], fcport->port_name[2], fcport->port_name[3], fcport->port_name[4], fcport->port_name[5], fcport->port_name[6], fcport->port_name[7], rval, fcport->fp_speed, mb[0], mb[1])); } else { DEBUG2(qla_printk(KERN_INFO, ha, "iIDMA adjusted to %s GB/s on " "%02x%02x%02x%02x%02x%02x%02x%02x.\n", link_speeds[fcport->fp_speed], fcport->port_name[0], fcport->port_name[1], fcport->port_name[2], fcport->port_name[3], fcport->port_name[4], fcport->port_name[5], fcport->port_name[6], fcport->port_name[7])); } } static void qla2x00_reg_remote_port(scsi_qla_host_t *vha, fc_port_t *fcport) { struct fc_rport_identifiers rport_ids; struct fc_rport *rport; struct qla_hw_data *ha = vha->hw; if (fcport->drport) qla2x00_rport_del(fcport); rport_ids.node_name = wwn_to_u64(fcport->node_name); rport_ids.port_name = wwn_to_u64(fcport->port_name); rport_ids.port_id = fcport->d_id.b.domain << 16 | fcport->d_id.b.area << 8 | fcport->d_id.b.al_pa; rport_ids.roles = FC_RPORT_ROLE_UNKNOWN; fcport->rport = rport = fc_remote_port_add(vha->host, 0, &rport_ids); if (!rport) { qla_printk(KERN_WARNING, ha, "Unable to allocate fc remote port!\n"); return; } spin_lock_irq(fcport->vha->host->host_lock); *((fc_port_t **)rport->dd_data) = fcport; spin_unlock_irq(fcport->vha->host->host_lock); rport->supported_classes = fcport->supported_classes; rport_ids.roles = FC_RPORT_ROLE_UNKNOWN; if (fcport->port_type == FCT_INITIATOR) rport_ids.roles |= FC_RPORT_ROLE_FCP_INITIATOR; if (fcport->port_type == FCT_TARGET) rport_ids.roles |= FC_RPORT_ROLE_FCP_TARGET; fc_remote_port_rolechg(rport, rport_ids.roles); } /* * qla2x00_update_fcport * Updates device on list. * * Input: * ha = adapter block pointer. * fcport = port structure pointer. * * Return: * 0 - Success * BIT_0 - error * * Context: * Kernel context. */ void qla2x00_update_fcport(scsi_qla_host_t *vha, fc_port_t *fcport) { struct qla_hw_data *ha = vha->hw; fcport->vha = vha; fcport->login_retry = 0; fcport->port_login_retry_count = ha->port_down_retry_count * PORT_RETRY_TIME; atomic_set(&fcport->port_down_timer, ha->port_down_retry_count * PORT_RETRY_TIME); fcport->flags &= ~FCF_LOGIN_NEEDED; qla2x00_iidma_fcport(vha, fcport); atomic_set(&fcport->state, FCS_ONLINE); qla2x00_reg_remote_port(vha, fcport); } /* * qla2x00_configure_fabric * Setup SNS devices with loop ID's. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success. * BIT_0 = error */ static int qla2x00_configure_fabric(scsi_qla_host_t *vha) { int rval, rval2; fc_port_t *fcport, *fcptemp; uint16_t next_loopid; uint16_t mb[MAILBOX_REGISTER_COUNT]; uint16_t loop_id; LIST_HEAD(new_fcports); struct qla_hw_data *ha = vha->hw; struct scsi_qla_host *base_vha = pci_get_drvdata(ha->pdev); /* If FL port exists, then SNS is present */ if (IS_FWI2_CAPABLE(ha)) loop_id = NPH_F_PORT; else loop_id = SNS_FL_PORT; rval = qla2x00_get_port_name(vha, loop_id, vha->fabric_node_name, 1); if (rval != QLA_SUCCESS) { DEBUG2(printk("scsi(%ld): MBC_GET_PORT_NAME Failed, No FL " "Port\n", vha->host_no)); vha->device_flags &= ~SWITCH_FOUND; return (QLA_SUCCESS); } vha->device_flags |= SWITCH_FOUND; /* Mark devices that need re-synchronization. */ rval2 = qla2x00_device_resync(vha); if (rval2 == QLA_RSCNS_HANDLED) { /* No point doing the scan, just continue. */ return (QLA_SUCCESS); } do { /* FDMI support. */ if (ql2xfdmienable && test_and_clear_bit(REGISTER_FDMI_NEEDED, &vha->dpc_flags)) qla2x00_fdmi_register(vha); /* Ensure we are logged into the SNS. */ if (IS_FWI2_CAPABLE(ha)) loop_id = NPH_SNS; else loop_id = SIMPLE_NAME_SERVER; ha->isp_ops->fabric_login(vha, loop_id, 0xff, 0xff, 0xfc, mb, BIT_1 | BIT_0); if (mb[0] != MBS_COMMAND_COMPLETE) { DEBUG2(qla_printk(KERN_INFO, ha, "Failed SNS login: loop_id=%x mb[0]=%x mb[1]=%x " "mb[2]=%x mb[6]=%x mb[7]=%x\n", loop_id, mb[0], mb[1], mb[2], mb[6], mb[7])); return (QLA_SUCCESS); } if (test_and_clear_bit(REGISTER_FC4_NEEDED, &vha->dpc_flags)) { if (qla2x00_rft_id(vha)) { /* EMPTY */ DEBUG2(printk("scsi(%ld): Register FC-4 " "TYPE failed.\n", vha->host_no)); } if (qla2x00_rff_id(vha)) { /* EMPTY */ DEBUG2(printk("scsi(%ld): Register FC-4 " "Features failed.\n", vha->host_no)); } if (qla2x00_rnn_id(vha)) { /* EMPTY */ DEBUG2(printk("scsi(%ld): Register Node Name " "failed.\n", vha->host_no)); } else if (qla2x00_rsnn_nn(vha)) { /* EMPTY */ DEBUG2(printk("scsi(%ld): Register Symbolic " "Node Name failed.\n", vha->host_no)); } } rval = qla2x00_find_all_fabric_devs(vha, &new_fcports); if (rval != QLA_SUCCESS) break; /* * Logout all previous fabric devices marked lost, except * tape devices. */ list_for_each_entry(fcport, &vha->vp_fcports, list) { if (test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags)) break; if ((fcport->flags & FCF_FABRIC_DEVICE) == 0) continue; if (atomic_read(&fcport->state) == FCS_DEVICE_LOST) { qla2x00_mark_device_lost(vha, fcport, ql2xplogiabsentdevice, 0); if (fcport->loop_id != FC_NO_LOOP_ID && (fcport->flags & FCF_TAPE_PRESENT) == 0 && fcport->port_type != FCT_INITIATOR && fcport->port_type != FCT_BROADCAST) { ha->isp_ops->fabric_logout(vha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); fcport->loop_id = FC_NO_LOOP_ID; } } } /* Starting free loop ID. */ next_loopid = ha->min_external_loopid; /* * Scan through our port list and login entries that need to be * logged in. */ list_for_each_entry(fcport, &vha->vp_fcports, list) { if (atomic_read(&vha->loop_down_timer) || test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags)) break; if ((fcport->flags & FCF_FABRIC_DEVICE) == 0 || (fcport->flags & FCF_LOGIN_NEEDED) == 0) continue; if (fcport->loop_id == FC_NO_LOOP_ID) { fcport->loop_id = next_loopid; rval = qla2x00_find_new_loop_id( base_vha, fcport); if (rval != QLA_SUCCESS) { /* Ran out of IDs to use */ break; } } /* Login and update database */ qla2x00_fabric_dev_login(vha, fcport, &next_loopid); } /* Exit if out of loop IDs. */ if (rval != QLA_SUCCESS) { break; } /* * Login and add the new devices to our port list. */ list_for_each_entry_safe(fcport, fcptemp, &new_fcports, list) { if (atomic_read(&vha->loop_down_timer) || test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags)) break; /* Find a new loop ID to use. */ fcport->loop_id = next_loopid; rval = qla2x00_find_new_loop_id(base_vha, fcport); if (rval != QLA_SUCCESS) { /* Ran out of IDs to use */ break; } /* Login and update database */ qla2x00_fabric_dev_login(vha, fcport, &next_loopid); if (vha->vp_idx) { fcport->vha = vha; fcport->vp_idx = vha->vp_idx; } list_move_tail(&fcport->list, &vha->vp_fcports); } } while (0); /* Free all new device structures not processed. */ list_for_each_entry_safe(fcport, fcptemp, &new_fcports, list) { list_del(&fcport->list); kfree(fcport); } if (rval) { DEBUG2(printk("scsi(%ld): Configure fabric error exit: " "rval=%d\n", vha->host_no, rval)); } return (rval); } /* * qla2x00_find_all_fabric_devs * * Input: * ha = adapter block pointer. * dev = database device entry pointer. * * Returns: * 0 = success. * * Context: * Kernel context. */ static int qla2x00_find_all_fabric_devs(scsi_qla_host_t *vha, struct list_head *new_fcports) { int rval; uint16_t loop_id; fc_port_t *fcport, *new_fcport, *fcptemp; int found; sw_info_t *swl; int swl_idx; int first_dev, last_dev; port_id_t wrap, nxt_d_id; struct qla_hw_data *ha = vha->hw; struct scsi_qla_host *vp, *base_vha = pci_get_drvdata(ha->pdev); rval = QLA_SUCCESS; /* Try GID_PT to get device list, else GAN. */ swl = kcalloc(MAX_FIBRE_DEVICES, sizeof(sw_info_t), GFP_KERNEL); if (!swl) { /*EMPTY*/ DEBUG2(printk("scsi(%ld): GID_PT allocations failed, fallback " "on GA_NXT\n", vha->host_no)); } else { if (qla2x00_gid_pt(vha, swl) != QLA_SUCCESS) { kfree(swl); swl = NULL; } else if (qla2x00_gpn_id(vha, swl) != QLA_SUCCESS) { kfree(swl); swl = NULL; } else if (qla2x00_gnn_id(vha, swl) != QLA_SUCCESS) { kfree(swl); swl = NULL; } else if (ql2xiidmaenable && qla2x00_gfpn_id(vha, swl) == QLA_SUCCESS) { qla2x00_gpsc(vha, swl); } } swl_idx = 0; /* Allocate temporary fcport for any new fcports discovered. */ new_fcport = qla2x00_alloc_fcport(vha, GFP_KERNEL); if (new_fcport == NULL) { kfree(swl); return (QLA_MEMORY_ALLOC_FAILED); } new_fcport->flags |= (FCF_FABRIC_DEVICE | FCF_LOGIN_NEEDED); /* Set start port ID scan at adapter ID. */ first_dev = 1; last_dev = 0; /* Starting free loop ID. */ loop_id = ha->min_external_loopid; for (; loop_id <= ha->max_loop_id; loop_id++) { if (qla2x00_is_reserved_id(vha, loop_id)) continue; if (atomic_read(&vha->loop_down_timer) || LOOP_TRANSITION(vha)) break; if (swl != NULL) { if (last_dev) { wrap.b24 = new_fcport->d_id.b24; } else { new_fcport->d_id.b24 = swl[swl_idx].d_id.b24; memcpy(new_fcport->node_name, swl[swl_idx].node_name, WWN_SIZE); memcpy(new_fcport->port_name, swl[swl_idx].port_name, WWN_SIZE); memcpy(new_fcport->fabric_port_name, swl[swl_idx].fabric_port_name, WWN_SIZE); new_fcport->fp_speed = swl[swl_idx].fp_speed; if (swl[swl_idx].d_id.b.rsvd_1 != 0) { last_dev = 1; } swl_idx++; } } else { /* Send GA_NXT to the switch */ rval = qla2x00_ga_nxt(vha, new_fcport); if (rval != QLA_SUCCESS) { qla_printk(KERN_WARNING, ha, "SNS scan failed -- assuming zero-entry " "result...\n"); list_for_each_entry_safe(fcport, fcptemp, new_fcports, list) { list_del(&fcport->list); kfree(fcport); } rval = QLA_SUCCESS; break; } } /* If wrap on switch device list, exit. */ if (first_dev) { wrap.b24 = new_fcport->d_id.b24; first_dev = 0; } else if (new_fcport->d_id.b24 == wrap.b24) { DEBUG2(printk("scsi(%ld): device wrap (%02x%02x%02x)\n", vha->host_no, new_fcport->d_id.b.domain, new_fcport->d_id.b.area, new_fcport->d_id.b.al_pa)); break; } /* Bypass if same physical adapter. */ if (new_fcport->d_id.b24 == base_vha->d_id.b24) continue; /* Bypass virtual ports of the same host. */ found = 0; if (ha->num_vhosts) { list_for_each_entry(vp, &ha->vp_list, list) { if (new_fcport->d_id.b24 == vp->d_id.b24) { found = 1; break; } } if (found) continue; } /* Bypass if same domain and area of adapter. */ if (((new_fcport->d_id.b24 & 0xffff00) == (vha->d_id.b24 & 0xffff00)) && ha->current_topology == ISP_CFG_FL) continue; /* Bypass reserved domain fields. */ if ((new_fcport->d_id.b.domain & 0xf0) == 0xf0) continue; /* Locate matching device in database. */ found = 0; list_for_each_entry(fcport, &vha->vp_fcports, list) { if (memcmp(new_fcport->port_name, fcport->port_name, WWN_SIZE)) continue; found++; /* Update port state. */ memcpy(fcport->fabric_port_name, new_fcport->fabric_port_name, WWN_SIZE); fcport->fp_speed = new_fcport->fp_speed; /* * If address the same and state FCS_ONLINE, nothing * changed. */ if (fcport->d_id.b24 == new_fcport->d_id.b24 && atomic_read(&fcport->state) == FCS_ONLINE) { break; } /* * If device was not a fabric device before. */ if ((fcport->flags & FCF_FABRIC_DEVICE) == 0) { fcport->d_id.b24 = new_fcport->d_id.b24; fcport->loop_id = FC_NO_LOOP_ID; fcport->flags |= (FCF_FABRIC_DEVICE | FCF_LOGIN_NEEDED); fcport->flags &= ~FCF_PERSISTENT_BOUND; break; } /* * Port ID changed or device was marked to be updated; * Log it out if still logged in and mark it for * relogin later. */ fcport->d_id.b24 = new_fcport->d_id.b24; fcport->flags |= FCF_LOGIN_NEEDED; if (fcport->loop_id != FC_NO_LOOP_ID && (fcport->flags & FCF_TAPE_PRESENT) == 0 && fcport->port_type != FCT_INITIATOR && fcport->port_type != FCT_BROADCAST) { ha->isp_ops->fabric_logout(vha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); fcport->loop_id = FC_NO_LOOP_ID; } break; } if (found) continue; /* If device was not in our fcports list, then add it. */ list_add_tail(&new_fcport->list, new_fcports); /* Allocate a new replacement fcport. */ nxt_d_id.b24 = new_fcport->d_id.b24; new_fcport = qla2x00_alloc_fcport(vha, GFP_KERNEL); if (new_fcport == NULL) { kfree(swl); return (QLA_MEMORY_ALLOC_FAILED); } new_fcport->flags |= (FCF_FABRIC_DEVICE | FCF_LOGIN_NEEDED); new_fcport->d_id.b24 = nxt_d_id.b24; } kfree(swl); kfree(new_fcport); if (!list_empty(new_fcports)) vha->device_flags |= DFLG_FABRIC_DEVICES; return (rval); } /* * qla2x00_find_new_loop_id * Scan through our port list and find a new usable loop ID. * * Input: * ha: adapter state pointer. * dev: port structure pointer. * * Returns: * qla2x00 local function return status code. * * Context: * Kernel context. */ static int qla2x00_find_new_loop_id(scsi_qla_host_t *vha, fc_port_t *dev) { int rval; int found; fc_port_t *fcport; uint16_t first_loop_id; struct qla_hw_data *ha = vha->hw; struct scsi_qla_host *vp; rval = QLA_SUCCESS; /* Save starting loop ID. */ first_loop_id = dev->loop_id; for (;;) { /* Skip loop ID if already used by adapter. */ if (dev->loop_id == vha->loop_id) dev->loop_id++; /* Skip reserved loop IDs. */ while (qla2x00_is_reserved_id(vha, dev->loop_id)) dev->loop_id++; /* Reset loop ID if passed the end. */ if (dev->loop_id > ha->max_loop_id) { /* first loop ID. */ dev->loop_id = ha->min_external_loopid; } /* Check for loop ID being already in use. */ found = 0; fcport = NULL; list_for_each_entry(vp, &ha->vp_list, list) { list_for_each_entry(fcport, &vp->vp_fcports, list) { if (fcport->loop_id == dev->loop_id && fcport != dev) { /* ID possibly in use */ found++; break; } } if (found) break; } /* If not in use then it is free to use. */ if (!found) { break; } /* ID in use. Try next value. */ dev->loop_id++; /* If wrap around. No free ID to use. */ if (dev->loop_id == first_loop_id) { dev->loop_id = FC_NO_LOOP_ID; rval = QLA_FUNCTION_FAILED; break; } } return (rval); } /* * qla2x00_device_resync * Marks devices in the database that needs resynchronization. * * Input: * ha = adapter block pointer. * * Context: * Kernel context. */ static int qla2x00_device_resync(scsi_qla_host_t *vha) { int rval; uint32_t mask; fc_port_t *fcport; uint32_t rscn_entry; uint8_t rscn_out_iter; uint8_t format; port_id_t d_id; rval = QLA_RSCNS_HANDLED; while (vha->rscn_out_ptr != vha->rscn_in_ptr || vha->flags.rscn_queue_overflow) { rscn_entry = vha->rscn_queue[vha->rscn_out_ptr]; format = MSB(MSW(rscn_entry)); d_id.b.domain = LSB(MSW(rscn_entry)); d_id.b.area = MSB(LSW(rscn_entry)); d_id.b.al_pa = LSB(LSW(rscn_entry)); DEBUG(printk("scsi(%ld): RSCN queue entry[%d] = " "[%02x/%02x%02x%02x].\n", vha->host_no, vha->rscn_out_ptr, format, d_id.b.domain, d_id.b.area, d_id.b.al_pa)); vha->rscn_out_ptr++; if (vha->rscn_out_ptr == MAX_RSCN_COUNT) vha->rscn_out_ptr = 0; /* Skip duplicate entries. */ for (rscn_out_iter = vha->rscn_out_ptr; !vha->flags.rscn_queue_overflow && rscn_out_iter != vha->rscn_in_ptr; rscn_out_iter = (rscn_out_iter == (MAX_RSCN_COUNT - 1)) ? 0: rscn_out_iter + 1) { if (rscn_entry != vha->rscn_queue[rscn_out_iter]) break; DEBUG(printk("scsi(%ld): Skipping duplicate RSCN queue " "entry found at [%d].\n", vha->host_no, rscn_out_iter)); vha->rscn_out_ptr = rscn_out_iter; } /* Queue overflow, set switch default case. */ if (vha->flags.rscn_queue_overflow) { DEBUG(printk("scsi(%ld): device_resync: rscn " "overflow.\n", vha->host_no)); format = 3; vha->flags.rscn_queue_overflow = 0; } switch (format) { case 0: mask = 0xffffff; break; case 1: mask = 0xffff00; break; case 2: mask = 0xff0000; break; default: mask = 0x0; d_id.b24 = 0; vha->rscn_out_ptr = vha->rscn_in_ptr; break; } rval = QLA_SUCCESS; list_for_each_entry(fcport, &vha->vp_fcports, list) { if ((fcport->flags & FCF_FABRIC_DEVICE) == 0 || (fcport->d_id.b24 & mask) != d_id.b24 || fcport->port_type == FCT_BROADCAST) continue; if (atomic_read(&fcport->state) == FCS_ONLINE) { if (format != 3 || fcport->port_type != FCT_INITIATOR) { qla2x00_mark_device_lost(vha, fcport, 0, 0); } } fcport->flags &= ~FCF_FARP_DONE; } } return (rval); } /* * qla2x00_fabric_dev_login * Login fabric target device and update FC port database. * * Input: * ha: adapter state pointer. * fcport: port structure list pointer. * next_loopid: contains value of a new loop ID that can be used * by the next login attempt. * * Returns: * qla2x00 local function return status code. * * Context: * Kernel context. */ static int qla2x00_fabric_dev_login(scsi_qla_host_t *vha, fc_port_t *fcport, uint16_t *next_loopid) { int rval; int retry; uint8_t opts; struct qla_hw_data *ha = vha->hw; rval = QLA_SUCCESS; retry = 0; rval = qla2x00_fabric_login(vha, fcport, next_loopid); if (rval == QLA_SUCCESS) { /* Send an ADISC to tape devices.*/ opts = 0; if (fcport->flags & FCF_TAPE_PRESENT) opts |= BIT_1; rval = qla2x00_get_port_database(vha, fcport, opts); if (rval != QLA_SUCCESS) { ha->isp_ops->fabric_logout(vha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); qla2x00_mark_device_lost(vha, fcport, 1, 0); } else { qla2x00_update_fcport(vha, fcport); } } return (rval); } /* * qla2x00_fabric_login * Issue fabric login command. * * Input: * ha = adapter block pointer. * device = pointer to FC device type structure. * * Returns: * 0 - Login successfully * 1 - Login failed * 2 - Initiator device * 3 - Fatal error */ int qla2x00_fabric_login(scsi_qla_host_t *vha, fc_port_t *fcport, uint16_t *next_loopid) { int rval; int retry; uint16_t tmp_loopid; uint16_t mb[MAILBOX_REGISTER_COUNT]; struct qla_hw_data *ha = vha->hw; retry = 0; tmp_loopid = 0; for (;;) { DEBUG(printk("scsi(%ld): Trying Fabric Login w/loop id 0x%04x " "for port %02x%02x%02x.\n", vha->host_no, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa)); /* Login fcport on switch. */ ha->isp_ops->fabric_login(vha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa, mb, BIT_0); if (mb[0] == MBS_PORT_ID_USED) { /* * Device has another loop ID. The firmware team * recommends the driver perform an implicit login with * the specified ID again. The ID we just used is save * here so we return with an ID that can be tried by * the next login. */ retry++; tmp_loopid = fcport->loop_id; fcport->loop_id = mb[1]; DEBUG(printk("Fabric Login: port in use - next " "loop id=0x%04x, port Id=%02x%02x%02x.\n", fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa)); } else if (mb[0] == MBS_COMMAND_COMPLETE) { /* * Login succeeded. */ if (retry) { /* A retry occurred before. */ *next_loopid = tmp_loopid; } else { /* * No retry occurred before. Just increment the * ID value for next login. */ *next_loopid = (fcport->loop_id + 1); } if (mb[1] & BIT_0) { fcport->port_type = FCT_INITIATOR; } else { fcport->port_type = FCT_TARGET; if (mb[1] & BIT_1) { fcport->flags |= FCF_TAPE_PRESENT; } } if (mb[10] & BIT_0) fcport->supported_classes |= FC_COS_CLASS2; if (mb[10] & BIT_1) fcport->supported_classes |= FC_COS_CLASS3; rval = QLA_SUCCESS; break; } else if (mb[0] == MBS_LOOP_ID_USED) { /* * Loop ID already used, try next loop ID. */ fcport->loop_id++; rval = qla2x00_find_new_loop_id(vha, fcport); if (rval != QLA_SUCCESS) { /* Ran out of loop IDs to use */ break; } } else if (mb[0] == MBS_COMMAND_ERROR) { /* * Firmware possibly timed out during login. If NO * retries are left to do then the device is declared * dead. */ *next_loopid = fcport->loop_id; ha->isp_ops->fabric_logout(vha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); qla2x00_mark_device_lost(vha, fcport, 1, 0); rval = 1; break; } else { /* * unrecoverable / not handled error */ DEBUG2(printk("%s(%ld): failed=%x port_id=%02x%02x%02x " "loop_id=%x jiffies=%lx.\n", __func__, vha->host_no, mb[0], fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa, fcport->loop_id, jiffies)); *next_loopid = fcport->loop_id; ha->isp_ops->fabric_logout(vha, fcport->loop_id, fcport->d_id.b.domain, fcport->d_id.b.area, fcport->d_id.b.al_pa); fcport->loop_id = FC_NO_LOOP_ID; fcport->login_retry = 0; rval = 3; break; } } return (rval); } /* * qla2x00_local_device_login * Issue local device login command. * * Input: * ha = adapter block pointer. * loop_id = loop id of device to login to. * * Returns (Where's the #define!!!!): * 0 - Login successfully * 1 - Login failed * 3 - Fatal error */ int qla2x00_local_device_login(scsi_qla_host_t *vha, fc_port_t *fcport) { int rval; uint16_t mb[MAILBOX_REGISTER_COUNT]; memset(mb, 0, sizeof(mb)); rval = qla2x00_login_local_device(vha, fcport, mb, BIT_0); if (rval == QLA_SUCCESS) { /* Interrogate mailbox registers for any errors */ if (mb[0] == MBS_COMMAND_ERROR) rval = 1; else if (mb[0] == MBS_COMMAND_PARAMETER_ERROR) /* device not in PCB table */ rval = 3; } return (rval); } /* * qla2x00_loop_resync * Resync with fibre channel devices. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success */ int qla2x00_loop_resync(scsi_qla_host_t *vha) { int rval = QLA_SUCCESS; uint32_t wait_time; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; struct rsp_que *rsp = ha->rsp_q_map[0]; atomic_set(&vha->loop_state, LOOP_UPDATE); clear_bit(ISP_ABORT_RETRY, &vha->dpc_flags); if (vha->flags.online) { if (!(rval = qla2x00_fw_ready(vha))) { /* Wait at most MAX_TARGET RSCNs for a stable link. */ wait_time = 256; do { atomic_set(&vha->loop_state, LOOP_UPDATE); /* Issue a marker after FW becomes ready. */ qla2x00_marker(vha, req, rsp, 0, 0, MK_SYNC_ALL); vha->marker_needed = 0; /* Remap devices on Loop. */ clear_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags); qla2x00_configure_loop(vha); wait_time--; } while (!atomic_read(&vha->loop_down_timer) && !(test_bit(ISP_ABORT_NEEDED, &vha->dpc_flags)) && wait_time && (test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags))); } } if (test_bit(ISP_ABORT_NEEDED, &vha->dpc_flags)) return (QLA_FUNCTION_FAILED); if (rval) DEBUG2_3(printk("%s(): **** FAILED ****\n", __func__)); return (rval); } void qla2x00_update_fcports(scsi_qla_host_t *vha) { fc_port_t *fcport; /* Go with deferred removal of rport references. */ list_for_each_entry(fcport, &vha->vp_fcports, list) if (fcport && fcport->drport && atomic_read(&fcport->state) != FCS_UNCONFIGURED) qla2x00_rport_del(fcport); } /* * qla2x00_abort_isp * Resets ISP and aborts all outstanding commands. * * Input: * ha = adapter block pointer. * * Returns: * 0 = success */ int qla2x00_abort_isp(scsi_qla_host_t *vha) { int rval; uint8_t status = 0; struct qla_hw_data *ha = vha->hw; struct scsi_qla_host *vp; struct req_que *req = ha->req_q_map[0]; if (vha->flags.online) { vha->flags.online = 0; clear_bit(ISP_ABORT_NEEDED, &vha->dpc_flags); ha->qla_stats.total_isp_aborts++; qla_printk(KERN_INFO, ha, "Performing ISP error recovery - ha= %p.\n", ha); ha->isp_ops->reset_chip(vha); atomic_set(&vha->loop_down_timer, LOOP_DOWN_TIME); if (atomic_read(&vha->loop_state) != LOOP_DOWN) { atomic_set(&vha->loop_state, LOOP_DOWN); qla2x00_mark_all_devices_lost(vha, 0); list_for_each_entry(vp, &ha->vp_list, list) qla2x00_mark_all_devices_lost(vp, 0); } else { if (!atomic_read(&vha->loop_down_timer)) atomic_set(&vha->loop_down_timer, LOOP_DOWN_TIME); } /* Requeue all commands in outstanding command list. */ qla2x00_abort_all_cmds(vha, DID_RESET << 16); ha->isp_ops->get_flash_version(vha, req->ring); ha->isp_ops->nvram_config(vha); if (!qla2x00_restart_isp(vha)) { clear_bit(RESET_MARKER_NEEDED, &vha->dpc_flags); if (!atomic_read(&vha->loop_down_timer)) { /* * Issue marker command only when we are going * to start the I/O . */ vha->marker_needed = 1; } vha->flags.online = 1; ha->isp_ops->enable_intrs(ha); ha->isp_abort_cnt = 0; clear_bit(ISP_ABORT_RETRY, &vha->dpc_flags); if (ha->fce) { ha->flags.fce_enabled = 1; memset(ha->fce, 0, fce_calc_size(ha->fce_bufs)); rval = qla2x00_enable_fce_trace(vha, ha->fce_dma, ha->fce_bufs, ha->fce_mb, &ha->fce_bufs); if (rval) { qla_printk(KERN_WARNING, ha, "Unable to reinitialize FCE " "(%d).\n", rval); ha->flags.fce_enabled = 0; } } if (ha->eft) { memset(ha->eft, 0, EFT_SIZE); rval = qla2x00_enable_eft_trace(vha, ha->eft_dma, EFT_NUM_BUFFERS); if (rval) { qla_printk(KERN_WARNING, ha, "Unable to reinitialize EFT " "(%d).\n", rval); } } } else { /* failed the ISP abort */ vha->flags.online = 1; if (test_bit(ISP_ABORT_RETRY, &vha->dpc_flags)) { if (ha->isp_abort_cnt == 0) { qla_printk(KERN_WARNING, ha, "ISP error recovery failed - " "board disabled\n"); /* * The next call disables the board * completely. */ ha->isp_ops->reset_adapter(vha); vha->flags.online = 0; clear_bit(ISP_ABORT_RETRY, &vha->dpc_flags); status = 0; } else { /* schedule another ISP abort */ ha->isp_abort_cnt--; DEBUG(printk("qla%ld: ISP abort - " "retry remaining %d\n", vha->host_no, ha->isp_abort_cnt)); status = 1; } } else { ha->isp_abort_cnt = MAX_RETRIES_OF_ISP_ABORT; DEBUG(printk("qla2x00(%ld): ISP error recovery " "- retrying (%d) more times\n", vha->host_no, ha->isp_abort_cnt)); set_bit(ISP_ABORT_RETRY, &vha->dpc_flags); status = 1; } } } if (!status) { DEBUG(printk(KERN_INFO "qla2x00_abort_isp(%ld): succeeded.\n", vha->host_no)); list_for_each_entry(vp, &ha->vp_list, list) { if (vp->vp_idx) qla2x00_vp_abort_isp(vp); } } else { qla_printk(KERN_INFO, ha, "qla2x00_abort_isp: **** FAILED ****\n"); } return(status); } /* * qla2x00_restart_isp * restarts the ISP after a reset * * Input: * ha = adapter block pointer. * * Returns: * 0 = success */ static int qla2x00_restart_isp(scsi_qla_host_t *vha) { uint8_t status = 0; uint32_t wait_time; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; struct rsp_que *rsp = ha->rsp_q_map[0]; /* If firmware needs to be loaded */ if (qla2x00_isp_firmware(vha)) { vha->flags.online = 0; status = ha->isp_ops->chip_diag(vha); if (!status) status = qla2x00_setup_chip(vha); } if (!status && !(status = qla2x00_init_rings(vha))) { clear_bit(RESET_MARKER_NEEDED, &vha->dpc_flags); /* Initialize the queues in use */ qla25xx_init_queues(ha); status = qla2x00_fw_ready(vha); if (!status) { DEBUG(printk("%s(): Start configure loop, " "status = %d\n", __func__, status)); /* Issue a marker after FW becomes ready. */ qla2x00_marker(vha, req, rsp, 0, 0, MK_SYNC_ALL); vha->flags.online = 1; /* Wait at most MAX_TARGET RSCNs for a stable link. */ wait_time = 256; do { clear_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags); qla2x00_configure_loop(vha); wait_time--; } while (!atomic_read(&vha->loop_down_timer) && !(test_bit(ISP_ABORT_NEEDED, &vha->dpc_flags)) && wait_time && (test_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags))); } /* if no cable then assume it's good */ if ((vha->device_flags & DFLG_NO_CABLE)) status = 0; DEBUG(printk("%s(): Configure loop done, status = 0x%x\n", __func__, status)); } return (status); } static int qla25xx_init_queues(struct qla_hw_data *ha) { struct rsp_que *rsp = NULL; struct req_que *req = NULL; struct scsi_qla_host *base_vha = pci_get_drvdata(ha->pdev); int ret = -1; int i; for (i = 1; i < ha->max_queues; i++) { rsp = ha->rsp_q_map[i]; if (rsp) { rsp->options &= ~BIT_0; ret = qla25xx_init_rsp_que(base_vha, rsp, rsp->options); if (ret != QLA_SUCCESS) DEBUG2_17(printk(KERN_WARNING "%s Rsp que:%d init failed\n", __func__, rsp->id)); else DEBUG2_17(printk(KERN_INFO "%s Rsp que:%d inited\n", __func__, rsp->id)); } req = ha->req_q_map[i]; if (req) { req->options &= ~BIT_0; ret = qla25xx_init_req_que(base_vha, req, req->options); if (ret != QLA_SUCCESS) DEBUG2_17(printk(KERN_WARNING "%s Req que:%d init failed\n", __func__, req->id)); else DEBUG2_17(printk(KERN_WARNING "%s Rsp que:%d inited\n", __func__, req->id)); } } return ret; } /* * qla2x00_reset_adapter * Reset adapter. * * Input: * ha = adapter block pointer. */ void qla2x00_reset_adapter(scsi_qla_host_t *vha) { unsigned long flags = 0; struct qla_hw_data *ha = vha->hw; struct device_reg_2xxx __iomem *reg = &ha->iobase->isp; vha->flags.online = 0; ha->isp_ops->disable_intrs(ha); spin_lock_irqsave(&ha->hardware_lock, flags); WRT_REG_WORD(®->hccr, HCCR_RESET_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ WRT_REG_WORD(®->hccr, HCCR_RELEASE_RISC); RD_REG_WORD(®->hccr); /* PCI Posting. */ spin_unlock_irqrestore(&ha->hardware_lock, flags); } void qla24xx_reset_adapter(scsi_qla_host_t *vha) { unsigned long flags = 0; struct qla_hw_data *ha = vha->hw; struct device_reg_24xx __iomem *reg = &ha->iobase->isp24; vha->flags.online = 0; ha->isp_ops->disable_intrs(ha); spin_lock_irqsave(&ha->hardware_lock, flags); WRT_REG_DWORD(®->hccr, HCCRX_SET_RISC_RESET); RD_REG_DWORD(®->hccr); WRT_REG_DWORD(®->hccr, HCCRX_REL_RISC_PAUSE); RD_REG_DWORD(®->hccr); spin_unlock_irqrestore(&ha->hardware_lock, flags); } /* On sparc systems, obtain port and node WWN from firmware * properties. */ static void qla24xx_nvram_wwn_from_ofw(scsi_qla_host_t *vha, struct nvram_24xx *nv) { #ifdef CONFIG_SPARC struct qla_hw_data *ha = vha->hw; struct pci_dev *pdev = ha->pdev; struct device_node *dp = pci_device_to_OF_node(pdev); const u8 *val; int len; val = of_get_property(dp, "port-wwn", &len); if (val && len >= WWN_SIZE) memcpy(nv->port_name, val, WWN_SIZE); val = of_get_property(dp, "node-wwn", &len); if (val && len >= WWN_SIZE) memcpy(nv->node_name, val, WWN_SIZE); #endif } int qla24xx_nvram_config(scsi_qla_host_t *vha) { int rval; struct init_cb_24xx *icb; struct nvram_24xx *nv; uint32_t *dptr; uint8_t *dptr1, *dptr2; uint32_t chksum; uint16_t cnt; struct qla_hw_data *ha = vha->hw; rval = QLA_SUCCESS; icb = (struct init_cb_24xx *)ha->init_cb; nv = ha->nvram; /* Determine NVRAM starting address. */ ha->nvram_size = sizeof(struct nvram_24xx); ha->nvram_base = FA_NVRAM_FUNC0_ADDR; ha->vpd_size = FA_NVRAM_VPD_SIZE; ha->vpd_base = FA_NVRAM_VPD0_ADDR; if (PCI_FUNC(ha->pdev->devfn)) { ha->nvram_base = FA_NVRAM_FUNC1_ADDR; ha->vpd_base = FA_NVRAM_VPD1_ADDR; } /* Get VPD data into cache */ ha->vpd = ha->nvram + VPD_OFFSET; ha->isp_ops->read_nvram(vha, (uint8_t *)ha->vpd, ha->nvram_base - FA_NVRAM_FUNC0_ADDR, FA_NVRAM_VPD_SIZE * 4); /* Get NVRAM data into cache and calculate checksum. */ dptr = (uint32_t *)nv; ha->isp_ops->read_nvram(vha, (uint8_t *)dptr, ha->nvram_base, ha->nvram_size); for (cnt = 0, chksum = 0; cnt < ha->nvram_size >> 2; cnt++) chksum += le32_to_cpu(*dptr++); DEBUG5(printk("scsi(%ld): Contents of NVRAM\n", ha->host_no)); DEBUG5(qla2x00_dump_buffer((uint8_t *)nv, ha->nvram_size)); /* Bad NVRAM data, set defaults parameters. */ if (chksum || nv->id[0] != 'I' || nv->id[1] != 'S' || nv->id[2] != 'P' || nv->id[3] != ' ' || nv->nvram_version < __constant_cpu_to_le16(ICB_VERSION)) { /* Reset NVRAM data. */ qla_printk(KERN_WARNING, ha, "Inconsistent NVRAM detected: " "checksum=0x%x id=%c version=0x%x.\n", chksum, nv->id[0], le16_to_cpu(nv->nvram_version)); qla_printk(KERN_WARNING, ha, "Falling back to functioning (yet " "invalid -- WWPN) defaults.\n"); /* * Set default initialization control block. */ memset(nv, 0, ha->nvram_size); nv->nvram_version = __constant_cpu_to_le16(ICB_VERSION); nv->version = __constant_cpu_to_le16(ICB_VERSION); nv->frame_payload_size = __constant_cpu_to_le16(2048); nv->execution_throttle = __constant_cpu_to_le16(0xFFFF); nv->exchange_count = __constant_cpu_to_le16(0); nv->hard_address = __constant_cpu_to_le16(124); nv->port_name[0] = 0x21; nv->port_name[1] = 0x00 + PCI_FUNC(ha->pdev->devfn); nv->port_name[2] = 0x00; nv->port_name[3] = 0xe0; nv->port_name[4] = 0x8b; nv->port_name[5] = 0x1c; nv->port_name[6] = 0x55; nv->port_name[7] = 0x86; nv->node_name[0] = 0x20; nv->node_name[1] = 0x00; nv->node_name[2] = 0x00; nv->node_name[3] = 0xe0; nv->node_name[4] = 0x8b; nv->node_name[5] = 0x1c; nv->node_name[6] = 0x55; nv->node_name[7] = 0x86; qla24xx_nvram_wwn_from_ofw(vha, nv); nv->login_retry_count = __constant_cpu_to_le16(8); nv->interrupt_delay_timer = __constant_cpu_to_le16(0); nv->login_timeout = __constant_cpu_to_le16(0); nv->firmware_options_1 = __constant_cpu_to_le32(BIT_14|BIT_13|BIT_2|BIT_1); nv->firmware_options_2 = __constant_cpu_to_le32(2 << 4); nv->firmware_options_2 |= __constant_cpu_to_le32(BIT_12); nv->firmware_options_3 = __constant_cpu_to_le32(2 << 13); nv->host_p = __constant_cpu_to_le32(BIT_11|BIT_10); nv->efi_parameters = __constant_cpu_to_le32(0); nv->reset_delay = 5; nv->max_luns_per_target = __constant_cpu_to_le16(128); nv->port_down_retry_count = __constant_cpu_to_le16(30); nv->link_down_timeout = __constant_cpu_to_le16(30); rval = 1; } /* Reset Initialization control block */ memset(icb, 0, ha->init_cb_size); /* Copy 1st segment. */ dptr1 = (uint8_t *)icb; dptr2 = (uint8_t *)&nv->version; cnt = (uint8_t *)&icb->response_q_inpointer - (uint8_t *)&icb->version; while (cnt--) *dptr1++ = *dptr2++; icb->login_retry_count = nv->login_retry_count; icb->link_down_on_nos = nv->link_down_on_nos; /* Copy 2nd segment. */ dptr1 = (uint8_t *)&icb->interrupt_delay_timer; dptr2 = (uint8_t *)&nv->interrupt_delay_timer; cnt = (uint8_t *)&icb->reserved_3 - (uint8_t *)&icb->interrupt_delay_timer; while (cnt--) *dptr1++ = *dptr2++; /* * Setup driver NVRAM options. */ qla2x00_set_model_info(vha, nv->model_name, sizeof(nv->model_name), "QLA2462"); /* Use alternate WWN? */ if (nv->host_p & __constant_cpu_to_le32(BIT_15)) { memcpy(icb->node_name, nv->alternate_node_name, WWN_SIZE); memcpy(icb->port_name, nv->alternate_port_name, WWN_SIZE); } /* Prepare nodename */ if ((icb->firmware_options_1 & __constant_cpu_to_le32(BIT_14)) == 0) { /* * Firmware will apply the following mask if the nodename was * not provided. */ memcpy(icb->node_name, icb->port_name, WWN_SIZE); icb->node_name[0] &= 0xF0; } /* Set host adapter parameters. */ ha->flags.disable_risc_code_load = 0; ha->flags.enable_lip_reset = 0; ha->flags.enable_lip_full_login = le32_to_cpu(nv->host_p) & BIT_10 ? 1: 0; ha->flags.enable_target_reset = le32_to_cpu(nv->host_p) & BIT_11 ? 1: 0; ha->flags.enable_led_scheme = 0; ha->flags.disable_serdes = le32_to_cpu(nv->host_p) & BIT_5 ? 1: 0; ha->operating_mode = (le32_to_cpu(icb->firmware_options_2) & (BIT_6 | BIT_5 | BIT_4)) >> 4; memcpy(ha->fw_seriallink_options24, nv->seriallink_options, sizeof(ha->fw_seriallink_options24)); /* save HBA serial number */ ha->serial0 = icb->port_name[5]; ha->serial1 = icb->port_name[6]; ha->serial2 = icb->port_name[7]; memcpy(vha->node_name, icb->node_name, WWN_SIZE); memcpy(vha->port_name, icb->port_name, WWN_SIZE); icb->execution_throttle = __constant_cpu_to_le16(0xFFFF); ha->retry_count = le16_to_cpu(nv->login_retry_count); /* Set minimum login_timeout to 4 seconds. */ if (le16_to_cpu(nv->login_timeout) < ql2xlogintimeout) nv->login_timeout = cpu_to_le16(ql2xlogintimeout); if (le16_to_cpu(nv->login_timeout) < 4) nv->login_timeout = __constant_cpu_to_le16(4); ha->login_timeout = le16_to_cpu(nv->login_timeout); icb->login_timeout = nv->login_timeout; /* Set minimum RATOV to 100 tenths of a second. */ ha->r_a_tov = 100; ha->loop_reset_delay = nv->reset_delay; /* Link Down Timeout = 0: * * When Port Down timer expires we will start returning * I/O's to OS with "DID_NO_CONNECT". * * Link Down Timeout != 0: * * The driver waits for the link to come up after link down * before returning I/Os to OS with "DID_NO_CONNECT". */ if (le16_to_cpu(nv->link_down_timeout) == 0) { ha->loop_down_abort_time = (LOOP_DOWN_TIME - LOOP_DOWN_TIMEOUT); } else { ha->link_down_timeout = le16_to_cpu(nv->link_down_timeout); ha->loop_down_abort_time = (LOOP_DOWN_TIME - ha->link_down_timeout); } /* Need enough time to try and get the port back. */ ha->port_down_retry_count = le16_to_cpu(nv->port_down_retry_count); if (qlport_down_retry) ha->port_down_retry_count = qlport_down_retry; /* Set login_retry_count */ ha->login_retry_count = le16_to_cpu(nv->login_retry_count); if (ha->port_down_retry_count == le16_to_cpu(nv->port_down_retry_count) && ha->port_down_retry_count > 3) ha->login_retry_count = ha->port_down_retry_count; else if (ha->port_down_retry_count > (int)ha->login_retry_count) ha->login_retry_count = ha->port_down_retry_count; if (ql2xloginretrycount) ha->login_retry_count = ql2xloginretrycount; /* Enable ZIO. */ if (!vha->flags.init_done) { ha->zio_mode = le32_to_cpu(icb->firmware_options_2) & (BIT_3 | BIT_2 | BIT_1 | BIT_0); ha->zio_timer = le16_to_cpu(icb->interrupt_delay_timer) ? le16_to_cpu(icb->interrupt_delay_timer): 2; } icb->firmware_options_2 &= __constant_cpu_to_le32( ~(BIT_3 | BIT_2 | BIT_1 | BIT_0)); vha->flags.process_response_queue = 0; if (ha->zio_mode != QLA_ZIO_DISABLED) { ha->zio_mode = QLA_ZIO_MODE_6; DEBUG2(printk("scsi(%ld): ZIO mode %d enabled; timer delay " "(%d us).\n", vha->host_no, ha->zio_mode, ha->zio_timer * 100)); qla_printk(KERN_INFO, ha, "ZIO mode %d enabled; timer delay (%d us).\n", ha->zio_mode, ha->zio_timer * 100); icb->firmware_options_2 |= cpu_to_le32( (uint32_t)ha->zio_mode); icb->interrupt_delay_timer = cpu_to_le16(ha->zio_timer); vha->flags.process_response_queue = 1; } if (rval) { DEBUG2_3(printk(KERN_WARNING "scsi(%ld): NVRAM configuration failed!\n", vha->host_no)); } return (rval); } static int qla24xx_load_risc_flash(scsi_qla_host_t *vha, uint32_t *srisc_addr) { int rval = QLA_SUCCESS; int segments, fragment; uint32_t faddr; uint32_t *dcode, dlen; uint32_t risc_addr; uint32_t risc_size; uint32_t i; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; rval = QLA_SUCCESS; segments = FA_RISC_CODE_SEGMENTS; faddr = ha->flt_region_fw; dcode = (uint32_t *)req->ring; *srisc_addr = 0; /* Validate firmware image by checking version. */ qla24xx_read_flash_data(vha, dcode, faddr + 4, 4); for (i = 0; i < 4; i++) dcode[i] = be32_to_cpu(dcode[i]); if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff && dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) || (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && dcode[3] == 0)) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of flash firmware image!\n"); qla_printk(KERN_WARNING, ha, "Firmware data: %08x %08x %08x %08x!\n", dcode[0], dcode[1], dcode[2], dcode[3]); return QLA_FUNCTION_FAILED; } while (segments && rval == QLA_SUCCESS) { /* Read segment's load information. */ qla24xx_read_flash_data(vha, dcode, faddr, 4); risc_addr = be32_to_cpu(dcode[2]); *srisc_addr = *srisc_addr == 0 ? risc_addr : *srisc_addr; risc_size = be32_to_cpu(dcode[3]); fragment = 0; while (risc_size > 0 && rval == QLA_SUCCESS) { dlen = (uint32_t)(ha->fw_transfer_size >> 2); if (dlen > risc_size) dlen = risc_size; DEBUG7(printk("scsi(%ld): Loading risc segment@ risc " "addr %x, number of dwords 0x%x, offset 0x%x.\n", vha->host_no, risc_addr, dlen, faddr)); qla24xx_read_flash_data(vha, dcode, faddr, dlen); for (i = 0; i < dlen; i++) dcode[i] = swab32(dcode[i]); rval = qla2x00_load_ram(vha, req->dma, risc_addr, dlen); if (rval) { DEBUG(printk("scsi(%ld):[ERROR] Failed to load " "segment %d of firmware\n", vha->host_no, fragment)); qla_printk(KERN_WARNING, ha, "[ERROR] Failed to load segment %d of " "firmware\n", fragment); break; } faddr += dlen; risc_addr += dlen; risc_size -= dlen; fragment++; } /* Next segment. */ segments--; } return rval; } #define QLA_FW_URL "ftp://ftp.qlogic.com/outgoing/linux/firmware/" int qla2x00_load_risc(scsi_qla_host_t *vha, uint32_t *srisc_addr) { int rval; int i, fragment; uint16_t *wcode, *fwcode; uint32_t risc_addr, risc_size, fwclen, wlen, *seg; struct fw_blob *blob; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; /* Load firmware blob. */ blob = qla2x00_request_firmware(vha); if (!blob) { qla_printk(KERN_ERR, ha, "Firmware image unavailable.\n"); qla_printk(KERN_ERR, ha, "Firmware images can be retrieved " "from: " QLA_FW_URL ".\n"); return QLA_FUNCTION_FAILED; } rval = QLA_SUCCESS; wcode = (uint16_t *)req->ring; *srisc_addr = 0; fwcode = (uint16_t *)blob->fw->data; fwclen = 0; /* Validate firmware image by checking version. */ if (blob->fw->size < 8 * sizeof(uint16_t)) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of firmware image (%Zd)!\n", blob->fw->size); goto fail_fw_integrity; } for (i = 0; i < 4; i++) wcode[i] = be16_to_cpu(fwcode[i + 4]); if ((wcode[0] == 0xffff && wcode[1] == 0xffff && wcode[2] == 0xffff && wcode[3] == 0xffff) || (wcode[0] == 0 && wcode[1] == 0 && wcode[2] == 0 && wcode[3] == 0)) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of firmware image!\n"); qla_printk(KERN_WARNING, ha, "Firmware data: %04x %04x %04x %04x!\n", wcode[0], wcode[1], wcode[2], wcode[3]); goto fail_fw_integrity; } seg = blob->segs; while (*seg && rval == QLA_SUCCESS) { risc_addr = *seg; *srisc_addr = *srisc_addr == 0 ? *seg : *srisc_addr; risc_size = be16_to_cpu(fwcode[3]); /* Validate firmware image size. */ fwclen += risc_size * sizeof(uint16_t); if (blob->fw->size < fwclen) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of firmware image " "(%Zd)!\n", blob->fw->size); goto fail_fw_integrity; } fragment = 0; while (risc_size > 0 && rval == QLA_SUCCESS) { wlen = (uint16_t)(ha->fw_transfer_size >> 1); if (wlen > risc_size) wlen = risc_size; DEBUG7(printk("scsi(%ld): Loading risc segment@ risc " "addr %x, number of words 0x%x.\n", vha->host_no, risc_addr, wlen)); for (i = 0; i < wlen; i++) wcode[i] = swab16(fwcode[i]); rval = qla2x00_load_ram(vha, req->dma, risc_addr, wlen); if (rval) { DEBUG(printk("scsi(%ld):[ERROR] Failed to load " "segment %d of firmware\n", vha->host_no, fragment)); qla_printk(KERN_WARNING, ha, "[ERROR] Failed to load segment %d of " "firmware\n", fragment); break; } fwcode += wlen; risc_addr += wlen; risc_size -= wlen; fragment++; } /* Next segment. */ seg++; } return rval; fail_fw_integrity: return QLA_FUNCTION_FAILED; } int qla24xx_load_risc(scsi_qla_host_t *vha, uint32_t *srisc_addr) { int rval; int segments, fragment; uint32_t *dcode, dlen; uint32_t risc_addr; uint32_t risc_size; uint32_t i; struct fw_blob *blob; uint32_t *fwcode, fwclen; struct qla_hw_data *ha = vha->hw; struct req_que *req = ha->req_q_map[0]; /* Load firmware blob. */ blob = qla2x00_request_firmware(vha); if (!blob) { qla_printk(KERN_ERR, ha, "Firmware image unavailable.\n"); qla_printk(KERN_ERR, ha, "Firmware images can be retrieved " "from: " QLA_FW_URL ".\n"); /* Try to load RISC code from flash. */ qla_printk(KERN_ERR, ha, "Attempting to load (potentially " "outdated) firmware from flash.\n"); return qla24xx_load_risc_flash(vha, srisc_addr); } rval = QLA_SUCCESS; segments = FA_RISC_CODE_SEGMENTS; dcode = (uint32_t *)req->ring; *srisc_addr = 0; fwcode = (uint32_t *)blob->fw->data; fwclen = 0; /* Validate firmware image by checking version. */ if (blob->fw->size < 8 * sizeof(uint32_t)) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of firmware image (%Zd)!\n", blob->fw->size); goto fail_fw_integrity; } for (i = 0; i < 4; i++) dcode[i] = be32_to_cpu(fwcode[i + 4]); if ((dcode[0] == 0xffffffff && dcode[1] == 0xffffffff && dcode[2] == 0xffffffff && dcode[3] == 0xffffffff) || (dcode[0] == 0 && dcode[1] == 0 && dcode[2] == 0 && dcode[3] == 0)) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of firmware image!\n"); qla_printk(KERN_WARNING, ha, "Firmware data: %08x %08x %08x %08x!\n", dcode[0], dcode[1], dcode[2], dcode[3]); goto fail_fw_integrity; } while (segments && rval == QLA_SUCCESS) { risc_addr = be32_to_cpu(fwcode[2]); *srisc_addr = *srisc_addr == 0 ? risc_addr : *srisc_addr; risc_size = be32_to_cpu(fwcode[3]); /* Validate firmware image size. */ fwclen += risc_size * sizeof(uint32_t); if (blob->fw->size < fwclen) { qla_printk(KERN_WARNING, ha, "Unable to verify integrity of firmware image " "(%Zd)!\n", blob->fw->size); goto fail_fw_integrity; } fragment = 0; while (risc_size > 0 && rval == QLA_SUCCESS) { dlen = (uint32_t)(ha->fw_transfer_size >> 2); if (dlen > risc_size) dlen = risc_size; DEBUG7(printk("scsi(%ld): Loading risc segment@ risc " "addr %x, number of dwords 0x%x.\n", vha->host_no, risc_addr, dlen)); for (i = 0; i < dlen; i++) dcode[i] = swab32(fwcode[i]); rval = qla2x00_load_ram(vha, req->dma, risc_addr, dlen); if (rval) { DEBUG(printk("scsi(%ld):[ERROR] Failed to load " "segment %d of firmware\n", vha->host_no, fragment)); qla_printk(KERN_WARNING, ha, "[ERROR] Failed to load segment %d of " "firmware\n", fragment); break; } fwcode += dlen; risc_addr += dlen; risc_size -= dlen; fragment++; } /* Next segment. */ segments--; } return rval; fail_fw_integrity: return QLA_FUNCTION_FAILED; } void qla2x00_try_to_stop_firmware(scsi_qla_host_t *vha) { int ret, retries; struct qla_hw_data *ha = vha->hw; if (!IS_FWI2_CAPABLE(ha)) return; if (!ha->fw_major_version) return; ret = qla2x00_stop_firmware(vha); for (retries = 5; ret != QLA_SUCCESS && ret != QLA_FUNCTION_TIMEOUT && retries ; retries--) { ha->isp_ops->reset_chip(vha); if (ha->isp_ops->chip_diag(vha) != QLA_SUCCESS) continue; if (qla2x00_setup_chip(vha) != QLA_SUCCESS) continue; qla_printk(KERN_INFO, ha, "Attempting retry of stop-firmware command...\n"); ret = qla2x00_stop_firmware(vha); } } int qla24xx_configure_vhba(scsi_qla_host_t *vha) { int rval = QLA_SUCCESS; uint16_t mb[MAILBOX_REGISTER_COUNT]; struct qla_hw_data *ha = vha->hw; struct scsi_qla_host *base_vha = pci_get_drvdata(ha->pdev); struct req_que *req = ha->req_q_map[0]; struct rsp_que *rsp = ha->rsp_q_map[0]; if (!vha->vp_idx) return -EINVAL; rval = qla2x00_fw_ready(base_vha); if (rval == QLA_SUCCESS) { clear_bit(RESET_MARKER_NEEDED, &vha->dpc_flags); qla2x00_marker(vha, req, rsp, 0, 0, MK_SYNC_ALL); } vha->flags.management_server_logged_in = 0; /* Login to SNS first */ ha->isp_ops->fabric_login(vha, NPH_SNS, 0xff, 0xff, 0xfc, mb, BIT_1); if (mb[0] != MBS_COMMAND_COMPLETE) { DEBUG15(qla_printk(KERN_INFO, ha, "Failed SNS login: loop_id=%x mb[0]=%x mb[1]=%x " "mb[2]=%x mb[6]=%x mb[7]=%x\n", NPH_SNS, mb[0], mb[1], mb[2], mb[6], mb[7])); return (QLA_FUNCTION_FAILED); } atomic_set(&vha->loop_down_timer, 0); atomic_set(&vha->loop_state, LOOP_UP); set_bit(LOOP_RESYNC_NEEDED, &vha->dpc_flags); set_bit(LOCAL_LOOP_UPDATE, &vha->dpc_flags); rval = qla2x00_loop_resync(base_vha); return rval; } /* 84XX Support **************************************************************/ static LIST_HEAD(qla_cs84xx_list); static DEFINE_MUTEX(qla_cs84xx_mutex); static struct qla_chip_state_84xx * qla84xx_get_chip(struct scsi_qla_host *vha) { struct qla_chip_state_84xx *cs84xx; struct qla_hw_data *ha = vha->hw; mutex_lock(&qla_cs84xx_mutex); /* Find any shared 84xx chip. */ list_for_each_entry(cs84xx, &qla_cs84xx_list, list) { if (cs84xx->bus == ha->pdev->bus) { kref_get(&cs84xx->kref); goto done; } } cs84xx = kzalloc(sizeof(*cs84xx), GFP_KERNEL); if (!cs84xx) goto done; kref_init(&cs84xx->kref); spin_lock_init(&cs84xx->access_lock); mutex_init(&cs84xx->fw_update_mutex); cs84xx->bus = ha->pdev->bus; list_add_tail(&cs84xx->list, &qla_cs84xx_list); done: mutex_unlock(&qla_cs84xx_mutex); return cs84xx; } static void __qla84xx_chip_release(struct kref *kref) { struct qla_chip_state_84xx *cs84xx = container_of(kref, struct qla_chip_state_84xx, kref); mutex_lock(&qla_cs84xx_mutex); list_del(&cs84xx->list); mutex_unlock(&qla_cs84xx_mutex); kfree(cs84xx); } void qla84xx_put_chip(struct scsi_qla_host *vha) { struct qla_hw_data *ha = vha->hw; if (ha->cs84xx) kref_put(&ha->cs84xx->kref, __qla84xx_chip_release); } static int qla84xx_init_chip(scsi_qla_host_t *vha) { int rval; uint16_t status[2]; struct qla_hw_data *ha = vha->hw; mutex_lock(&ha->cs84xx->fw_update_mutex); rval = qla84xx_verify_chip(vha, status); mutex_unlock(&ha->cs84xx->fw_update_mutex); return rval != QLA_SUCCESS || status[0] ? QLA_FUNCTION_FAILED: QLA_SUCCESS; }