/* * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) * Licensed under the GPL * Derived (i.e. mostly copied) from arch/i386/kernel/irq.c: * Copyright (C) 1992, 1998 Linus Torvalds, Ingo Molnar */ #include "linux/cpumask.h" #include "linux/hardirq.h" #include "linux/interrupt.h" #include "linux/kernel_stat.h" #include "linux/module.h" #include "linux/sched.h" #include "linux/seq_file.h" #include "linux/slab.h" #include "as-layout.h" #include "kern_util.h" #include "os.h" /* * Generic, controller-independent functions: */ int show_interrupts(struct seq_file *p, void *v) { int i = *(loff_t *) v, j; struct irqaction * action; unsigned long flags; if (i == 0) { seq_printf(p, " "); for_each_online_cpu(j) seq_printf(p, "CPU%d ",j); seq_putc(p, '\n'); } if (i < NR_IRQS) { raw_spin_lock_irqsave(&irq_desc[i].lock, flags); action = irq_desc[i].action; if (!action) goto skip; seq_printf(p, "%3d: ",i); #ifndef CONFIG_SMP seq_printf(p, "%10u ", kstat_irqs(i)); #else for_each_online_cpu(j) seq_printf(p, "%10u ", kstat_irqs_cpu(i, j)); #endif seq_printf(p, " %14s", irq_desc[i].chip->name); seq_printf(p, " %s", action->name); for (action=action->next; action; action = action->next) seq_printf(p, ", %s", action->name); seq_putc(p, '\n'); skip: raw_spin_unlock_irqrestore(&irq_desc[i].lock, flags); } else if (i == NR_IRQS) seq_putc(p, '\n'); return 0; } /* * This list is accessed under irq_lock, except in sigio_handler, * where it is safe from being modified. IRQ handlers won't change it - * if an IRQ source has vanished, it will be freed by free_irqs just * before returning from sigio_handler. That will process a separate * list of irqs to free, with its own locking, coming back here to * remove list elements, taking the irq_lock to do so. */ static struct irq_fd *active_fds = NULL; static struct irq_fd **last_irq_ptr = &active_fds; extern void free_irqs(void); void sigio_handler(int sig, struct uml_pt_regs *regs) { struct irq_fd *irq_fd; int n; if (smp_sigio_handler()) return; while (1) { n = os_waiting_for_events(active_fds); if (n <= 0) { if (n == -EINTR) continue; else break; } for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { if (irq_fd->current_events != 0) { irq_fd->current_events = 0; do_IRQ(irq_fd->irq, regs); } } } free_irqs(); } static DEFINE_SPINLOCK(irq_lock); static int activate_fd(int irq, int fd, int type, void *dev_id) { struct pollfd *tmp_pfd; struct irq_fd *new_fd, *irq_fd; unsigned long flags; int events, err, n; err = os_set_fd_async(fd); if (err < 0) goto out; err = -ENOMEM; new_fd = kmalloc(sizeof(struct irq_fd), GFP_KERNEL); if (new_fd == NULL) goto out; if (type == IRQ_READ) events = UM_POLLIN | UM_POLLPRI; else events = UM_POLLOUT; *new_fd = ((struct irq_fd) { .next = NULL, .id = dev_id, .fd = fd, .type = type, .irq = irq, .events = events, .current_events = 0 } ); err = -EBUSY; spin_lock_irqsave(&irq_lock, flags); for (irq_fd = active_fds; irq_fd != NULL; irq_fd = irq_fd->next) { if ((irq_fd->fd == fd) && (irq_fd->type == type)) { printk(KERN_ERR "Registering fd %d twice\n", fd); printk(KERN_ERR "Irqs : %d, %d\n", irq_fd->irq, irq); printk(KERN_ERR "Ids : 0x%p, 0x%p\n", irq_fd->id, dev_id); goto out_unlock; } } if (type == IRQ_WRITE) fd = -1; tmp_pfd = NULL; n = 0; while (1) { n = os_create_pollfd(fd, events, tmp_pfd, n); if (n == 0) break; /* * n > 0 * It means we couldn't put new pollfd to current pollfds * and tmp_fds is NULL or too small for new pollfds array. * Needed size is equal to n as minimum. * * Here we have to drop the lock in order to call * kmalloc, which might sleep. * If something else came in and changed the pollfds array * so we will not be able to put new pollfd struct to pollfds * then we free the buffer tmp_fds and try again. */ spin_unlock_irqrestore(&irq_lock, flags); kfree(tmp_pfd); tmp_pfd = kmalloc(n, GFP_KERNEL); if (tmp_pfd == NULL) goto out_kfree; spin_lock_irqsave(&irq_lock, flags); } *last_irq_ptr = new_fd; last_irq_ptr = &new_fd->next; spin_unlock_irqrestore(&irq_lock, flags); /* * This calls activate_fd, so it has to be outside the critical * section. */ maybe_sigio_broken(fd, (type == IRQ_READ)); return 0; out_unlock: spin_unlock_irqrestore(&irq_lock, flags); out_kfree: kfree(new_fd); out: return err; } static void free_irq_by_cb(int (*test)(struct irq_fd *, void *), void *arg) { unsigned long flags; spin_lock_irqsave(&irq_lock, flags); os_free_irq_by_cb(test, arg, active_fds, &last_irq_ptr); spin_unlock_irqrestore(&irq_lock, flags); } struct irq_and_dev { int irq; void *dev; }; static int same_irq_and_dev(struct irq_fd *irq, void *d) { struct irq_and_dev *data = d; return ((irq->irq == data->irq) && (irq->id == data->dev)); } static void free_irq_by_irq_and_dev(unsigned int irq, void *dev) { struct irq_and_dev data = ((struct irq_and_dev) { .irq = irq, .dev = dev }); free_irq_by_cb(same_irq_and_dev, &data); } static int same_fd(struct irq_fd *irq, void *fd) { return (irq->fd == *((int *)fd)); } void free_irq_by_fd(int fd) { free_irq_by_cb(same_fd, &fd); } /* Must be called with irq_lock held */ static struct irq_fd *find_irq_by_fd(int fd, int irqnum, int *index_out) { struct irq_fd *irq; int i = 0; int fdi; for (irq = active_fds; irq != NULL; irq = irq->next) { if ((irq->fd == fd) && (irq->irq == irqnum)) break; i++; } if (irq == NULL) { printk(KERN_ERR "find_irq_by_fd doesn't have descriptor %d\n", fd); goto out; } fdi = os_get_pollfd(i); if ((fdi != -1) && (fdi != fd)) { printk(KERN_ERR "find_irq_by_fd - mismatch between active_fds " "and pollfds, fd %d vs %d, need %d\n", irq->fd, fdi, fd); irq = NULL; goto out; } *index_out = i; out: return irq; } void reactivate_fd(int fd, int irqnum) { struct irq_fd *irq; unsigned long flags; int i; spin_lock_irqsave(&irq_lock, flags); irq = find_irq_by_fd(fd, irqnum, &i); if (irq == NULL) { spin_unlock_irqrestore(&irq_lock, flags); return; } os_set_pollfd(i, irq->fd); spin_unlock_irqrestore(&irq_lock, flags); add_sigio_fd(fd); } void deactivate_fd(int fd, int irqnum) { struct irq_fd *irq; unsigned long flags; int i; spin_lock_irqsave(&irq_lock, flags); irq = find_irq_by_fd(fd, irqnum, &i); if (irq == NULL) { spin_unlock_irqrestore(&irq_lock, flags); return; } os_set_pollfd(i, -1); spin_unlock_irqrestore(&irq_lock, flags); ignore_sigio_fd(fd); } /* * Called just before shutdown in order to provide a clean exec * environment in case the system is rebooting. No locking because * that would cause a pointless shutdown hang if something hadn't * released the lock. */ int deactivate_all_fds(void) { struct irq_fd *irq; int err; for (irq = active_fds; irq != NULL; irq = irq->next) { err = os_clear_fd_async(irq->fd); if (err) return err; } /* If there is a signal already queued, after unblocking ignore it */ os_set_ioignore(); return 0; } /* * do_IRQ handles all normal device IRQs (the special * SMP cross-CPU interrupts have their own specific * handlers). */ unsigned int do_IRQ(int irq, struct uml_pt_regs *regs) { struct pt_regs *old_regs = set_irq_regs((struct pt_regs *)regs); irq_enter(); generic_handle_irq(irq); irq_exit(); set_irq_regs(old_regs); return 1; } int um_request_irq(unsigned int irq, int fd, int type, irq_handler_t handler, unsigned long irqflags, const char * devname, void *dev_id) { int err; if (fd != -1) { err = activate_fd(irq, fd, type, dev_id); if (err) return err; } return request_irq(irq, handler, irqflags, devname, dev_id); } EXPORT_SYMBOL(um_request_irq); EXPORT_SYMBOL(reactivate_fd); /* * irq_chip must define at least enable/disable and ack when * the edge handler is used. */ static void dummy(struct irq_data *d) { } /* This is used for everything else than the timer. */ static struct irq_chip normal_irq_type = { .name = "SIGIO", .release = free_irq_by_irq_and_dev, .irq_disable = dummy, .irq_enable = dummy, .irq_ack = dummy, }; static struct irq_chip SIGVTALRM_irq_type = { .name = "SIGVTALRM", .release = free_irq_by_irq_and_dev, .irq_disable = dummy, .irq_enable = dummy, .irq_ack = dummy, }; void __init init_IRQ(void) { int i; set_irq_chip_and_handler(TIMER_IRQ, &SIGVTALRM_irq_type, handle_edge_irq); for (i = 1; i < NR_IRQS; i++) { set_irq_chip_and_handler(i, &normal_irq_type, handle_edge_irq); } } /* * IRQ stack entry and exit: * * Unlike i386, UML doesn't receive IRQs on the normal kernel stack * and switch over to the IRQ stack after some preparation. We use * sigaltstack to receive signals on a separate stack from the start. * These two functions make sure the rest of the kernel won't be too * upset by being on a different stack. The IRQ stack has a * thread_info structure at the bottom so that current et al continue * to work. * * to_irq_stack copies the current task's thread_info to the IRQ stack * thread_info and sets the tasks's stack to point to the IRQ stack. * * from_irq_stack copies the thread_info struct back (flags may have * been modified) and resets the task's stack pointer. * * Tricky bits - * * What happens when two signals race each other? UML doesn't block * signals with sigprocmask, SA_DEFER, or sa_mask, so a second signal * could arrive while a previous one is still setting up the * thread_info. * * There are three cases - * The first interrupt on the stack - sets up the thread_info and * handles the interrupt * A nested interrupt interrupting the copying of the thread_info - * can't handle the interrupt, as the stack is in an unknown state * A nested interrupt not interrupting the copying of the * thread_info - doesn't do any setup, just handles the interrupt * * The first job is to figure out whether we interrupted stack setup. * This is done by xchging the signal mask with thread_info->pending. * If the value that comes back is zero, then there is no setup in * progress, and the interrupt can be handled. If the value is * non-zero, then there is stack setup in progress. In order to have * the interrupt handled, we leave our signal in the mask, and it will * be handled by the upper handler after it has set up the stack. * * Next is to figure out whether we are the outer handler or a nested * one. As part of setting up the stack, thread_info->real_thread is * set to non-NULL (and is reset to NULL on exit). This is the * nesting indicator. If it is non-NULL, then the stack is already * set up and the handler can run. */ static unsigned long pending_mask; unsigned long to_irq_stack(unsigned long *mask_out) { struct thread_info *ti; unsigned long mask, old; int nested; mask = xchg(&pending_mask, *mask_out); if (mask != 0) { /* * If any interrupts come in at this point, we want to * make sure that their bits aren't lost by our * putting our bit in. So, this loop accumulates bits * until xchg returns the same value that we put in. * When that happens, there were no new interrupts, * and pending_mask contains a bit for each interrupt * that came in. */ old = *mask_out; do { old |= mask; mask = xchg(&pending_mask, old); } while (mask != old); return 1; } ti = current_thread_info(); nested = (ti->real_thread != NULL); if (!nested) { struct task_struct *task; struct thread_info *tti; task = cpu_tasks[ti->cpu].task; tti = task_thread_info(task); *ti = *tti; ti->real_thread = tti; task->stack = ti; } mask = xchg(&pending_mask, 0); *mask_out |= mask | nested; return 0; } unsigned long from_irq_stack(int nested) { struct thread_info *ti, *to; unsigned long mask; ti = current_thread_info(); pending_mask = 1; to = ti->real_thread; current->stack = to; ti->real_thread = NULL; *to = *ti; mask = xchg(&pending_mask, 0); return mask & ~1; }