/* * omap_udc.c -- for OMAP full speed udc; most chips support OTG. * * Copyright (C) 2004 Texas Instruments, Inc. * Copyright (C) 2004-2005 David Brownell * * OMAP2 & DMA support by Kyungmin Park * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. */ #undef DEBUG #undef VERBOSE #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "omap_udc.h" #undef USB_TRACE /* bulk DMA seems to be behaving for both IN and OUT */ #define USE_DMA /* ISO too */ #define USE_ISO #define DRIVER_DESC "OMAP UDC driver" #define DRIVER_VERSION "4 October 2004" #define OMAP_DMA_USB_W2FC_TX0 29 /* * The OMAP UDC needs _very_ early endpoint setup: before enabling the * D+ pullup to allow enumeration. That's too early for the gadget * framework to use from usb_endpoint_enable(), which happens after * enumeration as part of activating an interface. (But if we add an * optional new "UDC not yet running" state to the gadget driver model, * even just during driver binding, the endpoint autoconfig logic is the * natural spot to manufacture new endpoints.) * * So instead of using endpoint enable calls to control the hardware setup, * this driver defines a "fifo mode" parameter. It's used during driver * initialization to choose among a set of pre-defined endpoint configs. * See omap_udc_setup() for available modes, or to add others. That code * lives in an init section, so use this driver as a module if you need * to change the fifo mode after the kernel boots. * * Gadget drivers normally ignore endpoints they don't care about, and * won't include them in configuration descriptors. That means only * misbehaving hosts would even notice they exist. */ #ifdef USE_ISO static unsigned fifo_mode = 3; #else static unsigned fifo_mode; #endif /* "modprobe omap_udc fifo_mode=42", or else as a kernel * boot parameter "omap_udc:fifo_mode=42" */ module_param(fifo_mode, uint, 0); MODULE_PARM_DESC(fifo_mode, "endpoint configuration"); #ifdef USE_DMA static bool use_dma = 1; /* "modprobe omap_udc use_dma=y", or else as a kernel * boot parameter "omap_udc:use_dma=y" */ module_param(use_dma, bool, 0); MODULE_PARM_DESC(use_dma, "enable/disable DMA"); #else /* !USE_DMA */ /* save a bit of code */ #define use_dma 0 #endif /* !USE_DMA */ static const char driver_name[] = "omap_udc"; static const char driver_desc[] = DRIVER_DESC; /*-------------------------------------------------------------------------*/ /* there's a notion of "current endpoint" for modifying endpoint * state, and PIO access to its FIFO. */ static void use_ep(struct omap_ep *ep, u16 select) { u16 num = ep->bEndpointAddress & 0x0f; if (ep->bEndpointAddress & USB_DIR_IN) num |= UDC_EP_DIR; omap_writew(num | select, UDC_EP_NUM); /* when select, MUST deselect later !! */ } static inline void deselect_ep(void) { u16 w; w = omap_readw(UDC_EP_NUM); w &= ~UDC_EP_SEL; omap_writew(w, UDC_EP_NUM); /* 6 wait states before TX will happen */ } static void dma_channel_claim(struct omap_ep *ep, unsigned preferred); /*-------------------------------------------------------------------------*/ static int omap_ep_enable(struct usb_ep *_ep, const struct usb_endpoint_descriptor *desc) { struct omap_ep *ep = container_of(_ep, struct omap_ep, ep); struct omap_udc *udc; unsigned long flags; u16 maxp; /* catch various bogus parameters */ if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT || ep->bEndpointAddress != desc->bEndpointAddress || ep->maxpacket < usb_endpoint_maxp(desc)) { DBG("%s, bad ep or descriptor\n", __func__); return -EINVAL; } maxp = usb_endpoint_maxp(desc); if ((desc->bmAttributes == USB_ENDPOINT_XFER_BULK && maxp != ep->maxpacket) || usb_endpoint_maxp(desc) > ep->maxpacket || !desc->wMaxPacketSize) { DBG("%s, bad %s maxpacket\n", __func__, _ep->name); return -ERANGE; } #ifdef USE_ISO if ((desc->bmAttributes == USB_ENDPOINT_XFER_ISOC && desc->bInterval != 1)) { /* hardware wants period = 1; USB allows 2^(Interval-1) */ DBG("%s, unsupported ISO period %dms\n", _ep->name, 1 << (desc->bInterval - 1)); return -EDOM; } #else if (desc->bmAttributes == USB_ENDPOINT_XFER_ISOC) { DBG("%s, ISO nyet\n", _ep->name); return -EDOM; } #endif /* xfer types must match, except that interrupt ~= bulk */ if (ep->bmAttributes != desc->bmAttributes && ep->bmAttributes != USB_ENDPOINT_XFER_BULK && desc->bmAttributes != USB_ENDPOINT_XFER_INT) { DBG("%s, %s type mismatch\n", __func__, _ep->name); return -EINVAL; } udc = ep->udc; if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) { DBG("%s, bogus device state\n", __func__); return -ESHUTDOWN; } spin_lock_irqsave(&udc->lock, flags); ep->ep.desc = desc; ep->irqs = 0; ep->stopped = 0; ep->ep.maxpacket = maxp; /* set endpoint to initial state */ ep->dma_channel = 0; ep->has_dma = 0; ep->lch = -1; use_ep(ep, UDC_EP_SEL); omap_writew(udc->clr_halt, UDC_CTRL); ep->ackwait = 0; deselect_ep(); if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) list_add(&ep->iso, &udc->iso); /* maybe assign a DMA channel to this endpoint */ if (use_dma && desc->bmAttributes == USB_ENDPOINT_XFER_BULK) /* FIXME ISO can dma, but prefers first channel */ dma_channel_claim(ep, 0); /* PIO OUT may RX packets */ if (desc->bmAttributes != USB_ENDPOINT_XFER_ISOC && !ep->has_dma && !(ep->bEndpointAddress & USB_DIR_IN)) { omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); ep->ackwait = 1 + ep->double_buf; } spin_unlock_irqrestore(&udc->lock, flags); VDBG("%s enabled\n", _ep->name); return 0; } static void nuke(struct omap_ep *, int status); static int omap_ep_disable(struct usb_ep *_ep) { struct omap_ep *ep = container_of(_ep, struct omap_ep, ep); unsigned long flags; if (!_ep || !ep->ep.desc) { DBG("%s, %s not enabled\n", __func__, _ep ? ep->ep.name : NULL); return -EINVAL; } spin_lock_irqsave(&ep->udc->lock, flags); ep->ep.desc = NULL; nuke(ep, -ESHUTDOWN); ep->ep.maxpacket = ep->maxpacket; ep->has_dma = 0; omap_writew(UDC_SET_HALT, UDC_CTRL); list_del_init(&ep->iso); del_timer(&ep->timer); spin_unlock_irqrestore(&ep->udc->lock, flags); VDBG("%s disabled\n", _ep->name); return 0; } /*-------------------------------------------------------------------------*/ static struct usb_request * omap_alloc_request(struct usb_ep *ep, gfp_t gfp_flags) { struct omap_req *req; req = kzalloc(sizeof(*req), gfp_flags); if (!req) return NULL; INIT_LIST_HEAD(&req->queue); return &req->req; } static void omap_free_request(struct usb_ep *ep, struct usb_request *_req) { struct omap_req *req = container_of(_req, struct omap_req, req); kfree(req); } /*-------------------------------------------------------------------------*/ static void done(struct omap_ep *ep, struct omap_req *req, int status) { struct omap_udc *udc = ep->udc; unsigned stopped = ep->stopped; list_del_init(&req->queue); if (req->req.status == -EINPROGRESS) req->req.status = status; else status = req->req.status; if (use_dma && ep->has_dma) usb_gadget_unmap_request(&udc->gadget, &req->req, (ep->bEndpointAddress & USB_DIR_IN)); #ifndef USB_TRACE if (status && status != -ESHUTDOWN) #endif VDBG("complete %s req %p stat %d len %u/%u\n", ep->ep.name, &req->req, status, req->req.actual, req->req.length); /* don't modify queue heads during completion callback */ ep->stopped = 1; spin_unlock(&ep->udc->lock); req->req.complete(&ep->ep, &req->req); spin_lock(&ep->udc->lock); ep->stopped = stopped; } /*-------------------------------------------------------------------------*/ #define UDC_FIFO_FULL (UDC_NON_ISO_FIFO_FULL | UDC_ISO_FIFO_FULL) #define UDC_FIFO_UNWRITABLE (UDC_EP_HALTED | UDC_FIFO_FULL) #define FIFO_EMPTY (UDC_NON_ISO_FIFO_EMPTY | UDC_ISO_FIFO_EMPTY) #define FIFO_UNREADABLE (UDC_EP_HALTED | FIFO_EMPTY) static inline int write_packet(u8 *buf, struct omap_req *req, unsigned max) { unsigned len; u16 *wp; len = min(req->req.length - req->req.actual, max); req->req.actual += len; max = len; if (likely((((int)buf) & 1) == 0)) { wp = (u16 *)buf; while (max >= 2) { omap_writew(*wp++, UDC_DATA); max -= 2; } buf = (u8 *)wp; } while (max--) omap_writeb(*buf++, UDC_DATA); return len; } /* FIXME change r/w fifo calling convention */ /* return: 0 = still running, 1 = completed, negative = errno */ static int write_fifo(struct omap_ep *ep, struct omap_req *req) { u8 *buf; unsigned count; int is_last; u16 ep_stat; buf = req->req.buf + req->req.actual; prefetch(buf); /* PIO-IN isn't double buffered except for iso */ ep_stat = omap_readw(UDC_STAT_FLG); if (ep_stat & UDC_FIFO_UNWRITABLE) return 0; count = ep->ep.maxpacket; count = write_packet(buf, req, count); omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); ep->ackwait = 1; /* last packet is often short (sometimes a zlp) */ if (count != ep->ep.maxpacket) is_last = 1; else if (req->req.length == req->req.actual && !req->req.zero) is_last = 1; else is_last = 0; /* NOTE: requests complete when all IN data is in a * FIFO (or sometimes later, if a zlp was needed). * Use usb_ep_fifo_status() where needed. */ if (is_last) done(ep, req, 0); return is_last; } static inline int read_packet(u8 *buf, struct omap_req *req, unsigned avail) { unsigned len; u16 *wp; len = min(req->req.length - req->req.actual, avail); req->req.actual += len; avail = len; if (likely((((int)buf) & 1) == 0)) { wp = (u16 *)buf; while (avail >= 2) { *wp++ = omap_readw(UDC_DATA); avail -= 2; } buf = (u8 *)wp; } while (avail--) *buf++ = omap_readb(UDC_DATA); return len; } /* return: 0 = still running, 1 = queue empty, negative = errno */ static int read_fifo(struct omap_ep *ep, struct omap_req *req) { u8 *buf; unsigned count, avail; int is_last; buf = req->req.buf + req->req.actual; prefetchw(buf); for (;;) { u16 ep_stat = omap_readw(UDC_STAT_FLG); is_last = 0; if (ep_stat & FIFO_EMPTY) { if (!ep->double_buf) break; ep->fnf = 1; } if (ep_stat & UDC_EP_HALTED) break; if (ep_stat & UDC_FIFO_FULL) avail = ep->ep.maxpacket; else { avail = omap_readw(UDC_RXFSTAT); ep->fnf = ep->double_buf; } count = read_packet(buf, req, avail); /* partial packet reads may not be errors */ if (count < ep->ep.maxpacket) { is_last = 1; /* overflowed this request? flush extra data */ if (count != avail) { req->req.status = -EOVERFLOW; avail -= count; while (avail--) omap_readw(UDC_DATA); } } else if (req->req.length == req->req.actual) is_last = 1; else is_last = 0; if (!ep->bEndpointAddress) break; if (is_last) done(ep, req, 0); break; } return is_last; } /*-------------------------------------------------------------------------*/ static u16 dma_src_len(struct omap_ep *ep, dma_addr_t start) { dma_addr_t end; /* IN-DMA needs this on fault/cancel paths, so 15xx misreports * the last transfer's bytecount by more than a FIFO's worth. */ if (cpu_is_omap15xx()) return 0; end = omap_get_dma_src_pos(ep->lch); if (end == ep->dma_counter) return 0; end |= start & (0xffff << 16); if (end < start) end += 0x10000; return end - start; } static u16 dma_dest_len(struct omap_ep *ep, dma_addr_t start) { dma_addr_t end; end = omap_get_dma_dst_pos(ep->lch); if (end == ep->dma_counter) return 0; end |= start & (0xffff << 16); if (cpu_is_omap15xx()) end++; if (end < start) end += 0x10000; return end - start; } /* Each USB transfer request using DMA maps to one or more DMA transfers. * When DMA completion isn't request completion, the UDC continues with * the next DMA transfer for that USB transfer. */ static void next_in_dma(struct omap_ep *ep, struct omap_req *req) { u16 txdma_ctrl, w; unsigned length = req->req.length - req->req.actual; const int sync_mode = cpu_is_omap15xx() ? OMAP_DMA_SYNC_FRAME : OMAP_DMA_SYNC_ELEMENT; int dma_trigger = 0; /* measure length in either bytes or packets */ if ((cpu_is_omap16xx() && length <= UDC_TXN_TSC) || (cpu_is_omap15xx() && length < ep->maxpacket)) { txdma_ctrl = UDC_TXN_EOT | length; omap_set_dma_transfer_params(ep->lch, OMAP_DMA_DATA_TYPE_S8, length, 1, sync_mode, dma_trigger, 0); } else { length = min(length / ep->maxpacket, (unsigned) UDC_TXN_TSC + 1); txdma_ctrl = length; omap_set_dma_transfer_params(ep->lch, OMAP_DMA_DATA_TYPE_S16, ep->ep.maxpacket >> 1, length, sync_mode, dma_trigger, 0); length *= ep->maxpacket; } omap_set_dma_src_params(ep->lch, OMAP_DMA_PORT_EMIFF, OMAP_DMA_AMODE_POST_INC, req->req.dma + req->req.actual, 0, 0); omap_start_dma(ep->lch); ep->dma_counter = omap_get_dma_src_pos(ep->lch); w = omap_readw(UDC_DMA_IRQ_EN); w |= UDC_TX_DONE_IE(ep->dma_channel); omap_writew(w, UDC_DMA_IRQ_EN); omap_writew(UDC_TXN_START | txdma_ctrl, UDC_TXDMA(ep->dma_channel)); req->dma_bytes = length; } static void finish_in_dma(struct omap_ep *ep, struct omap_req *req, int status) { u16 w; if (status == 0) { req->req.actual += req->dma_bytes; /* return if this request needs to send data or zlp */ if (req->req.actual < req->req.length) return; if (req->req.zero && req->dma_bytes != 0 && (req->req.actual % ep->maxpacket) == 0) return; } else req->req.actual += dma_src_len(ep, req->req.dma + req->req.actual); /* tx completion */ omap_stop_dma(ep->lch); w = omap_readw(UDC_DMA_IRQ_EN); w &= ~UDC_TX_DONE_IE(ep->dma_channel); omap_writew(w, UDC_DMA_IRQ_EN); done(ep, req, status); } static void next_out_dma(struct omap_ep *ep, struct omap_req *req) { unsigned packets = req->req.length - req->req.actual; int dma_trigger = 0; u16 w; /* set up this DMA transfer, enable the fifo, start */ packets /= ep->ep.maxpacket; packets = min(packets, (unsigned)UDC_RXN_TC + 1); req->dma_bytes = packets * ep->ep.maxpacket; omap_set_dma_transfer_params(ep->lch, OMAP_DMA_DATA_TYPE_S16, ep->ep.maxpacket >> 1, packets, OMAP_DMA_SYNC_ELEMENT, dma_trigger, 0); omap_set_dma_dest_params(ep->lch, OMAP_DMA_PORT_EMIFF, OMAP_DMA_AMODE_POST_INC, req->req.dma + req->req.actual, 0, 0); ep->dma_counter = omap_get_dma_dst_pos(ep->lch); omap_writew(UDC_RXN_STOP | (packets - 1), UDC_RXDMA(ep->dma_channel)); w = omap_readw(UDC_DMA_IRQ_EN); w |= UDC_RX_EOT_IE(ep->dma_channel); omap_writew(w, UDC_DMA_IRQ_EN); omap_writew(ep->bEndpointAddress & 0xf, UDC_EP_NUM); omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); omap_start_dma(ep->lch); } static void finish_out_dma(struct omap_ep *ep, struct omap_req *req, int status, int one) { u16 count, w; if (status == 0) ep->dma_counter = (u16) (req->req.dma + req->req.actual); count = dma_dest_len(ep, req->req.dma + req->req.actual); count += req->req.actual; if (one) count--; if (count <= req->req.length) req->req.actual = count; if (count != req->dma_bytes || status) omap_stop_dma(ep->lch); /* if this wasn't short, request may need another transfer */ else if (req->req.actual < req->req.length) return; /* rx completion */ w = omap_readw(UDC_DMA_IRQ_EN); w &= ~UDC_RX_EOT_IE(ep->dma_channel); omap_writew(w, UDC_DMA_IRQ_EN); done(ep, req, status); } static void dma_irq(struct omap_udc *udc, u16 irq_src) { u16 dman_stat = omap_readw(UDC_DMAN_STAT); struct omap_ep *ep; struct omap_req *req; /* IN dma: tx to host */ if (irq_src & UDC_TXN_DONE) { ep = &udc->ep[16 + UDC_DMA_TX_SRC(dman_stat)]; ep->irqs++; /* can see TXN_DONE after dma abort */ if (!list_empty(&ep->queue)) { req = container_of(ep->queue.next, struct omap_req, queue); finish_in_dma(ep, req, 0); } omap_writew(UDC_TXN_DONE, UDC_IRQ_SRC); if (!list_empty(&ep->queue)) { req = container_of(ep->queue.next, struct omap_req, queue); next_in_dma(ep, req); } } /* OUT dma: rx from host */ if (irq_src & UDC_RXN_EOT) { ep = &udc->ep[UDC_DMA_RX_SRC(dman_stat)]; ep->irqs++; /* can see RXN_EOT after dma abort */ if (!list_empty(&ep->queue)) { req = container_of(ep->queue.next, struct omap_req, queue); finish_out_dma(ep, req, 0, dman_stat & UDC_DMA_RX_SB); } omap_writew(UDC_RXN_EOT, UDC_IRQ_SRC); if (!list_empty(&ep->queue)) { req = container_of(ep->queue.next, struct omap_req, queue); next_out_dma(ep, req); } } if (irq_src & UDC_RXN_CNT) { ep = &udc->ep[UDC_DMA_RX_SRC(dman_stat)]; ep->irqs++; /* omap15xx does this unasked... */ VDBG("%s, RX_CNT irq?\n", ep->ep.name); omap_writew(UDC_RXN_CNT, UDC_IRQ_SRC); } } static void dma_error(int lch, u16 ch_status, void *data) { struct omap_ep *ep = data; /* if ch_status & OMAP_DMA_DROP_IRQ ... */ /* if ch_status & OMAP1_DMA_TOUT_IRQ ... */ ERR("%s dma error, lch %d status %02x\n", ep->ep.name, lch, ch_status); /* complete current transfer ... */ } static void dma_channel_claim(struct omap_ep *ep, unsigned channel) { u16 reg; int status, restart, is_in; int dma_channel; is_in = ep->bEndpointAddress & USB_DIR_IN; if (is_in) reg = omap_readw(UDC_TXDMA_CFG); else reg = omap_readw(UDC_RXDMA_CFG); reg |= UDC_DMA_REQ; /* "pulse" activated */ ep->dma_channel = 0; ep->lch = -1; if (channel == 0 || channel > 3) { if ((reg & 0x0f00) == 0) channel = 3; else if ((reg & 0x00f0) == 0) channel = 2; else if ((reg & 0x000f) == 0) /* preferred for ISO */ channel = 1; else { status = -EMLINK; goto just_restart; } } reg |= (0x0f & ep->bEndpointAddress) << (4 * (channel - 1)); ep->dma_channel = channel; if (is_in) { dma_channel = OMAP_DMA_USB_W2FC_TX0 - 1 + channel; status = omap_request_dma(dma_channel, ep->ep.name, dma_error, ep, &ep->lch); if (status == 0) { omap_writew(reg, UDC_TXDMA_CFG); /* EMIFF or SDRC */ omap_set_dma_src_burst_mode(ep->lch, OMAP_DMA_DATA_BURST_4); omap_set_dma_src_data_pack(ep->lch, 1); /* TIPB */ omap_set_dma_dest_params(ep->lch, OMAP_DMA_PORT_TIPB, OMAP_DMA_AMODE_CONSTANT, UDC_DATA_DMA, 0, 0); } } else { dma_channel = OMAP_DMA_USB_W2FC_RX0 - 1 + channel; status = omap_request_dma(dma_channel, ep->ep.name, dma_error, ep, &ep->lch); if (status == 0) { omap_writew(reg, UDC_RXDMA_CFG); /* TIPB */ omap_set_dma_src_params(ep->lch, OMAP_DMA_PORT_TIPB, OMAP_DMA_AMODE_CONSTANT, UDC_DATA_DMA, 0, 0); /* EMIFF or SDRC */ omap_set_dma_dest_burst_mode(ep->lch, OMAP_DMA_DATA_BURST_4); omap_set_dma_dest_data_pack(ep->lch, 1); } } if (status) ep->dma_channel = 0; else { ep->has_dma = 1; omap_disable_dma_irq(ep->lch, OMAP_DMA_BLOCK_IRQ); /* channel type P: hw synch (fifo) */ if (!cpu_is_omap15xx()) omap_set_dma_channel_mode(ep->lch, OMAP_DMA_LCH_P); } just_restart: /* restart any queue, even if the claim failed */ restart = !ep->stopped && !list_empty(&ep->queue); if (status) DBG("%s no dma channel: %d%s\n", ep->ep.name, status, restart ? " (restart)" : ""); else DBG("%s claimed %cxdma%d lch %d%s\n", ep->ep.name, is_in ? 't' : 'r', ep->dma_channel - 1, ep->lch, restart ? " (restart)" : ""); if (restart) { struct omap_req *req; req = container_of(ep->queue.next, struct omap_req, queue); if (ep->has_dma) (is_in ? next_in_dma : next_out_dma)(ep, req); else { use_ep(ep, UDC_EP_SEL); (is_in ? write_fifo : read_fifo)(ep, req); deselect_ep(); if (!is_in) { omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); ep->ackwait = 1 + ep->double_buf; } /* IN: 6 wait states before it'll tx */ } } } static void dma_channel_release(struct omap_ep *ep) { int shift = 4 * (ep->dma_channel - 1); u16 mask = 0x0f << shift; struct omap_req *req; int active; /* abort any active usb transfer request */ if (!list_empty(&ep->queue)) req = container_of(ep->queue.next, struct omap_req, queue); else req = NULL; active = omap_get_dma_active_status(ep->lch); DBG("%s release %s %cxdma%d %p\n", ep->ep.name, active ? "active" : "idle", (ep->bEndpointAddress & USB_DIR_IN) ? 't' : 'r', ep->dma_channel - 1, req); /* NOTE: re-setting RX_REQ/TX_REQ because of a chip bug (before * OMAP 1710 ES2.0) where reading the DMA_CFG can clear them. */ /* wait till current packet DMA finishes, and fifo empties */ if (ep->bEndpointAddress & USB_DIR_IN) { omap_writew((omap_readw(UDC_TXDMA_CFG) & ~mask) | UDC_DMA_REQ, UDC_TXDMA_CFG); if (req) { finish_in_dma(ep, req, -ECONNRESET); /* clear FIFO; hosts probably won't empty it */ use_ep(ep, UDC_EP_SEL); omap_writew(UDC_CLR_EP, UDC_CTRL); deselect_ep(); } while (omap_readw(UDC_TXDMA_CFG) & mask) udelay(10); } else { omap_writew((omap_readw(UDC_RXDMA_CFG) & ~mask) | UDC_DMA_REQ, UDC_RXDMA_CFG); /* dma empties the fifo */ while (omap_readw(UDC_RXDMA_CFG) & mask) udelay(10); if (req) finish_out_dma(ep, req, -ECONNRESET, 0); } omap_free_dma(ep->lch); ep->dma_channel = 0; ep->lch = -1; /* has_dma still set, till endpoint is fully quiesced */ } /*-------------------------------------------------------------------------*/ static int omap_ep_queue(struct usb_ep *_ep, struct usb_request *_req, gfp_t gfp_flags) { struct omap_ep *ep = container_of(_ep, struct omap_ep, ep); struct omap_req *req = container_of(_req, struct omap_req, req); struct omap_udc *udc; unsigned long flags; int is_iso = 0; /* catch various bogus parameters */ if (!_req || !req->req.complete || !req->req.buf || !list_empty(&req->queue)) { DBG("%s, bad params\n", __func__); return -EINVAL; } if (!_ep || (!ep->ep.desc && ep->bEndpointAddress)) { DBG("%s, bad ep\n", __func__); return -EINVAL; } if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) { if (req->req.length > ep->ep.maxpacket) return -EMSGSIZE; is_iso = 1; } /* this isn't bogus, but OMAP DMA isn't the only hardware to * have a hard time with partial packet reads... reject it. */ if (use_dma && ep->has_dma && ep->bEndpointAddress != 0 && (ep->bEndpointAddress & USB_DIR_IN) == 0 && (req->req.length % ep->ep.maxpacket) != 0) { DBG("%s, no partial packet OUT reads\n", __func__); return -EMSGSIZE; } udc = ep->udc; if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) return -ESHUTDOWN; if (use_dma && ep->has_dma) usb_gadget_map_request(&udc->gadget, &req->req, (ep->bEndpointAddress & USB_DIR_IN)); VDBG("%s queue req %p, len %d buf %p\n", ep->ep.name, _req, _req->length, _req->buf); spin_lock_irqsave(&udc->lock, flags); req->req.status = -EINPROGRESS; req->req.actual = 0; /* maybe kickstart non-iso i/o queues */ if (is_iso) { u16 w; w = omap_readw(UDC_IRQ_EN); w |= UDC_SOF_IE; omap_writew(w, UDC_IRQ_EN); } else if (list_empty(&ep->queue) && !ep->stopped && !ep->ackwait) { int is_in; if (ep->bEndpointAddress == 0) { if (!udc->ep0_pending || !list_empty(&ep->queue)) { spin_unlock_irqrestore(&udc->lock, flags); return -EL2HLT; } /* empty DATA stage? */ is_in = udc->ep0_in; if (!req->req.length) { /* chip became CONFIGURED or ADDRESSED * earlier; drivers may already have queued * requests to non-control endpoints */ if (udc->ep0_set_config) { u16 irq_en = omap_readw(UDC_IRQ_EN); irq_en |= UDC_DS_CHG_IE | UDC_EP0_IE; if (!udc->ep0_reset_config) irq_en |= UDC_EPN_RX_IE | UDC_EPN_TX_IE; omap_writew(irq_en, UDC_IRQ_EN); } /* STATUS for zero length DATA stages is * always an IN ... even for IN transfers, * a weird case which seem to stall OMAP. */ omap_writew(UDC_EP_SEL | UDC_EP_DIR, UDC_EP_NUM); omap_writew(UDC_CLR_EP, UDC_CTRL); omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); omap_writew(UDC_EP_DIR, UDC_EP_NUM); /* cleanup */ udc->ep0_pending = 0; done(ep, req, 0); req = NULL; /* non-empty DATA stage */ } else if (is_in) { omap_writew(UDC_EP_SEL | UDC_EP_DIR, UDC_EP_NUM); } else { if (udc->ep0_setup) goto irq_wait; omap_writew(UDC_EP_SEL, UDC_EP_NUM); } } else { is_in = ep->bEndpointAddress & USB_DIR_IN; if (!ep->has_dma) use_ep(ep, UDC_EP_SEL); /* if ISO: SOF IRQs must be enabled/disabled! */ } if (ep->has_dma) (is_in ? next_in_dma : next_out_dma)(ep, req); else if (req) { if ((is_in ? write_fifo : read_fifo)(ep, req) == 1) req = NULL; deselect_ep(); if (!is_in) { omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); ep->ackwait = 1 + ep->double_buf; } /* IN: 6 wait states before it'll tx */ } } irq_wait: /* irq handler advances the queue */ if (req != NULL) list_add_tail(&req->queue, &ep->queue); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int omap_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req) { struct omap_ep *ep = container_of(_ep, struct omap_ep, ep); struct omap_req *req; unsigned long flags; if (!_ep || !_req) return -EINVAL; spin_lock_irqsave(&ep->udc->lock, flags); /* make sure it's actually queued on this endpoint */ list_for_each_entry(req, &ep->queue, queue) { if (&req->req == _req) break; } if (&req->req != _req) { spin_unlock_irqrestore(&ep->udc->lock, flags); return -EINVAL; } if (use_dma && ep->dma_channel && ep->queue.next == &req->queue) { int channel = ep->dma_channel; /* releasing the channel cancels the request, * reclaiming the channel restarts the queue */ dma_channel_release(ep); dma_channel_claim(ep, channel); } else done(ep, req, -ECONNRESET); spin_unlock_irqrestore(&ep->udc->lock, flags); return 0; } /*-------------------------------------------------------------------------*/ static int omap_ep_set_halt(struct usb_ep *_ep, int value) { struct omap_ep *ep = container_of(_ep, struct omap_ep, ep); unsigned long flags; int status = -EOPNOTSUPP; spin_lock_irqsave(&ep->udc->lock, flags); /* just use protocol stalls for ep0; real halts are annoying */ if (ep->bEndpointAddress == 0) { if (!ep->udc->ep0_pending) status = -EINVAL; else if (value) { if (ep->udc->ep0_set_config) { WARNING("error changing config?\n"); omap_writew(UDC_CLR_CFG, UDC_SYSCON2); } omap_writew(UDC_STALL_CMD, UDC_SYSCON2); ep->udc->ep0_pending = 0; status = 0; } else /* NOP */ status = 0; /* otherwise, all active non-ISO endpoints can halt */ } else if (ep->bmAttributes != USB_ENDPOINT_XFER_ISOC && ep->ep.desc) { /* IN endpoints must already be idle */ if ((ep->bEndpointAddress & USB_DIR_IN) && !list_empty(&ep->queue)) { status = -EAGAIN; goto done; } if (value) { int channel; if (use_dma && ep->dma_channel && !list_empty(&ep->queue)) { channel = ep->dma_channel; dma_channel_release(ep); } else channel = 0; use_ep(ep, UDC_EP_SEL); if (omap_readw(UDC_STAT_FLG) & UDC_NON_ISO_FIFO_EMPTY) { omap_writew(UDC_SET_HALT, UDC_CTRL); status = 0; } else status = -EAGAIN; deselect_ep(); if (channel) dma_channel_claim(ep, channel); } else { use_ep(ep, 0); omap_writew(ep->udc->clr_halt, UDC_CTRL); ep->ackwait = 0; if (!(ep->bEndpointAddress & USB_DIR_IN)) { omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); ep->ackwait = 1 + ep->double_buf; } } } done: VDBG("%s %s halt stat %d\n", ep->ep.name, value ? "set" : "clear", status); spin_unlock_irqrestore(&ep->udc->lock, flags); return status; } static struct usb_ep_ops omap_ep_ops = { .enable = omap_ep_enable, .disable = omap_ep_disable, .alloc_request = omap_alloc_request, .free_request = omap_free_request, .queue = omap_ep_queue, .dequeue = omap_ep_dequeue, .set_halt = omap_ep_set_halt, /* fifo_status ... report bytes in fifo */ /* fifo_flush ... flush fifo */ }; /*-------------------------------------------------------------------------*/ static int omap_get_frame(struct usb_gadget *gadget) { u16 sof = omap_readw(UDC_SOF); return (sof & UDC_TS_OK) ? (sof & UDC_TS) : -EL2NSYNC; } static int omap_wakeup(struct usb_gadget *gadget) { struct omap_udc *udc; unsigned long flags; int retval = -EHOSTUNREACH; udc = container_of(gadget, struct omap_udc, gadget); spin_lock_irqsave(&udc->lock, flags); if (udc->devstat & UDC_SUS) { /* NOTE: OTG spec erratum says that OTG devices may * issue wakeups without host enable. */ if (udc->devstat & (UDC_B_HNP_ENABLE|UDC_R_WK_OK)) { DBG("remote wakeup...\n"); omap_writew(UDC_RMT_WKP, UDC_SYSCON2); retval = 0; } /* NOTE: non-OTG systems may use SRP TOO... */ } else if (!(udc->devstat & UDC_ATT)) { if (!IS_ERR_OR_NULL(udc->transceiver)) retval = otg_start_srp(udc->transceiver->otg); } spin_unlock_irqrestore(&udc->lock, flags); return retval; } static int omap_set_selfpowered(struct usb_gadget *gadget, int is_selfpowered) { struct omap_udc *udc; unsigned long flags; u16 syscon1; udc = container_of(gadget, struct omap_udc, gadget); spin_lock_irqsave(&udc->lock, flags); syscon1 = omap_readw(UDC_SYSCON1); if (is_selfpowered) syscon1 |= UDC_SELF_PWR; else syscon1 &= ~UDC_SELF_PWR; omap_writew(syscon1, UDC_SYSCON1); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int can_pullup(struct omap_udc *udc) { return udc->driver && udc->softconnect && udc->vbus_active; } static void pullup_enable(struct omap_udc *udc) { u16 w; w = omap_readw(UDC_SYSCON1); w |= UDC_PULLUP_EN; omap_writew(w, UDC_SYSCON1); if (!gadget_is_otg(&udc->gadget) && !cpu_is_omap15xx()) { u32 l; l = omap_readl(OTG_CTRL); l |= OTG_BSESSVLD; omap_writel(l, OTG_CTRL); } omap_writew(UDC_DS_CHG_IE, UDC_IRQ_EN); } static void pullup_disable(struct omap_udc *udc) { u16 w; if (!gadget_is_otg(&udc->gadget) && !cpu_is_omap15xx()) { u32 l; l = omap_readl(OTG_CTRL); l &= ~OTG_BSESSVLD; omap_writel(l, OTG_CTRL); } omap_writew(UDC_DS_CHG_IE, UDC_IRQ_EN); w = omap_readw(UDC_SYSCON1); w &= ~UDC_PULLUP_EN; omap_writew(w, UDC_SYSCON1); } static struct omap_udc *udc; static void omap_udc_enable_clock(int enable) { if (udc == NULL || udc->dc_clk == NULL || udc->hhc_clk == NULL) return; if (enable) { clk_enable(udc->dc_clk); clk_enable(udc->hhc_clk); udelay(100); } else { clk_disable(udc->hhc_clk); clk_disable(udc->dc_clk); } } /* * Called by whatever detects VBUS sessions: external transceiver * driver, or maybe GPIO0 VBUS IRQ. May request 48 MHz clock. */ static int omap_vbus_session(struct usb_gadget *gadget, int is_active) { struct omap_udc *udc; unsigned long flags; u32 l; udc = container_of(gadget, struct omap_udc, gadget); spin_lock_irqsave(&udc->lock, flags); VDBG("VBUS %s\n", is_active ? "on" : "off"); udc->vbus_active = (is_active != 0); if (cpu_is_omap15xx()) { /* "software" detect, ignored if !VBUS_MODE_1510 */ l = omap_readl(FUNC_MUX_CTRL_0); if (is_active) l |= VBUS_CTRL_1510; else l &= ~VBUS_CTRL_1510; omap_writel(l, FUNC_MUX_CTRL_0); } if (udc->dc_clk != NULL && is_active) { if (!udc->clk_requested) { omap_udc_enable_clock(1); udc->clk_requested = 1; } } if (can_pullup(udc)) pullup_enable(udc); else pullup_disable(udc); if (udc->dc_clk != NULL && !is_active) { if (udc->clk_requested) { omap_udc_enable_clock(0); udc->clk_requested = 0; } } spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int omap_vbus_draw(struct usb_gadget *gadget, unsigned mA) { struct omap_udc *udc; udc = container_of(gadget, struct omap_udc, gadget); if (!IS_ERR_OR_NULL(udc->transceiver)) return usb_phy_set_power(udc->transceiver, mA); return -EOPNOTSUPP; } static int omap_pullup(struct usb_gadget *gadget, int is_on) { struct omap_udc *udc; unsigned long flags; udc = container_of(gadget, struct omap_udc, gadget); spin_lock_irqsave(&udc->lock, flags); udc->softconnect = (is_on != 0); if (can_pullup(udc)) pullup_enable(udc); else pullup_disable(udc); spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int omap_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver) static int omap_udc_stop(struct usb_gadget *g, struct usb_gadget_driver *driver); static struct usb_gadget_ops omap_gadget_ops = { .get_frame = omap_get_frame, .wakeup = omap_wakeup, .set_selfpowered = omap_set_selfpowered, .vbus_session = omap_vbus_session, .vbus_draw = omap_vbus_draw, .pullup = omap_pullup, .udc_start = omap_udc_start, .udc_stop = omap_udc_stop, }; /*-------------------------------------------------------------------------*/ /* dequeue ALL requests; caller holds udc->lock */ static void nuke(struct omap_ep *ep, int status) { struct omap_req *req; ep->stopped = 1; if (use_dma && ep->dma_channel) dma_channel_release(ep); use_ep(ep, 0); omap_writew(UDC_CLR_EP, UDC_CTRL); if (ep->bEndpointAddress && ep->bmAttributes != USB_ENDPOINT_XFER_ISOC) omap_writew(UDC_SET_HALT, UDC_CTRL); while (!list_empty(&ep->queue)) { req = list_entry(ep->queue.next, struct omap_req, queue); done(ep, req, status); } } /* caller holds udc->lock */ static void udc_quiesce(struct omap_udc *udc) { struct omap_ep *ep; udc->gadget.speed = USB_SPEED_UNKNOWN; nuke(&udc->ep[0], -ESHUTDOWN); list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) nuke(ep, -ESHUTDOWN); } /*-------------------------------------------------------------------------*/ static void update_otg(struct omap_udc *udc) { u16 devstat; if (!gadget_is_otg(&udc->gadget)) return; if (omap_readl(OTG_CTRL) & OTG_ID) devstat = omap_readw(UDC_DEVSTAT); else devstat = 0; udc->gadget.b_hnp_enable = !!(devstat & UDC_B_HNP_ENABLE); udc->gadget.a_hnp_support = !!(devstat & UDC_A_HNP_SUPPORT); udc->gadget.a_alt_hnp_support = !!(devstat & UDC_A_ALT_HNP_SUPPORT); /* Enable HNP early, avoiding races on suspend irq path. * ASSUMES OTG state machine B_BUS_REQ input is true. */ if (udc->gadget.b_hnp_enable) { u32 l; l = omap_readl(OTG_CTRL); l |= OTG_B_HNPEN | OTG_B_BUSREQ; l &= ~OTG_PULLUP; omap_writel(l, OTG_CTRL); } } static void ep0_irq(struct omap_udc *udc, u16 irq_src) { struct omap_ep *ep0 = &udc->ep[0]; struct omap_req *req = NULL; ep0->irqs++; /* Clear any pending requests and then scrub any rx/tx state * before starting to handle the SETUP request. */ if (irq_src & UDC_SETUP) { u16 ack = irq_src & (UDC_EP0_TX|UDC_EP0_RX); nuke(ep0, 0); if (ack) { omap_writew(ack, UDC_IRQ_SRC); irq_src = UDC_SETUP; } } /* IN/OUT packets mean we're in the DATA or STATUS stage. * This driver uses only uses protocol stalls (ep0 never halts), * and if we got this far the gadget driver already had a * chance to stall. Tries to be forgiving of host oddities. * * NOTE: the last chance gadget drivers have to stall control * requests is during their request completion callback. */ if (!list_empty(&ep0->queue)) req = container_of(ep0->queue.next, struct omap_req, queue); /* IN == TX to host */ if (irq_src & UDC_EP0_TX) { int stat; omap_writew(UDC_EP0_TX, UDC_IRQ_SRC); omap_writew(UDC_EP_SEL|UDC_EP_DIR, UDC_EP_NUM); stat = omap_readw(UDC_STAT_FLG); if (stat & UDC_ACK) { if (udc->ep0_in) { /* write next IN packet from response, * or set up the status stage. */ if (req) stat = write_fifo(ep0, req); omap_writew(UDC_EP_DIR, UDC_EP_NUM); if (!req && udc->ep0_pending) { omap_writew(UDC_EP_SEL, UDC_EP_NUM); omap_writew(UDC_CLR_EP, UDC_CTRL); omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); omap_writew(0, UDC_EP_NUM); udc->ep0_pending = 0; } /* else: 6 wait states before it'll tx */ } else { /* ack status stage of OUT transfer */ omap_writew(UDC_EP_DIR, UDC_EP_NUM); if (req) done(ep0, req, 0); } req = NULL; } else if (stat & UDC_STALL) { omap_writew(UDC_CLR_HALT, UDC_CTRL); omap_writew(UDC_EP_DIR, UDC_EP_NUM); } else { omap_writew(UDC_EP_DIR, UDC_EP_NUM); } } /* OUT == RX from host */ if (irq_src & UDC_EP0_RX) { int stat; omap_writew(UDC_EP0_RX, UDC_IRQ_SRC); omap_writew(UDC_EP_SEL, UDC_EP_NUM); stat = omap_readw(UDC_STAT_FLG); if (stat & UDC_ACK) { if (!udc->ep0_in) { stat = 0; /* read next OUT packet of request, maybe * reactiviting the fifo; stall on errors. */ stat = read_fifo(ep0, req); if (!req || stat < 0) { omap_writew(UDC_STALL_CMD, UDC_SYSCON2); udc->ep0_pending = 0; stat = 0; } else if (stat == 0) omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); omap_writew(0, UDC_EP_NUM); /* activate status stage */ if (stat == 1) { done(ep0, req, 0); /* that may have STALLed ep0... */ omap_writew(UDC_EP_SEL | UDC_EP_DIR, UDC_EP_NUM); omap_writew(UDC_CLR_EP, UDC_CTRL); omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); omap_writew(UDC_EP_DIR, UDC_EP_NUM); udc->ep0_pending = 0; } } else { /* ack status stage of IN transfer */ omap_writew(0, UDC_EP_NUM); if (req) done(ep0, req, 0); } } else if (stat & UDC_STALL) { omap_writew(UDC_CLR_HALT, UDC_CTRL); omap_writew(0, UDC_EP_NUM); } else { omap_writew(0, UDC_EP_NUM); } } /* SETUP starts all control transfers */ if (irq_src & UDC_SETUP) { union u { u16 word[4]; struct usb_ctrlrequest r; } u; int status = -EINVAL; struct omap_ep *ep; /* read the (latest) SETUP message */ do { omap_writew(UDC_SETUP_SEL, UDC_EP_NUM); /* two bytes at a time */ u.word[0] = omap_readw(UDC_DATA); u.word[1] = omap_readw(UDC_DATA); u.word[2] = omap_readw(UDC_DATA); u.word[3] = omap_readw(UDC_DATA); omap_writew(0, UDC_EP_NUM); } while (omap_readw(UDC_IRQ_SRC) & UDC_SETUP); #define w_value le16_to_cpu(u.r.wValue) #define w_index le16_to_cpu(u.r.wIndex) #define w_length le16_to_cpu(u.r.wLength) /* Delegate almost all control requests to the gadget driver, * except for a handful of ch9 status/feature requests that * hardware doesn't autodecode _and_ the gadget API hides. */ udc->ep0_in = (u.r.bRequestType & USB_DIR_IN) != 0; udc->ep0_set_config = 0; udc->ep0_pending = 1; ep0->stopped = 0; ep0->ackwait = 0; switch (u.r.bRequest) { case USB_REQ_SET_CONFIGURATION: /* udc needs to know when ep != 0 is valid */ if (u.r.bRequestType != USB_RECIP_DEVICE) goto delegate; if (w_length != 0) goto do_stall; udc->ep0_set_config = 1; udc->ep0_reset_config = (w_value == 0); VDBG("set config %d\n", w_value); /* update udc NOW since gadget driver may start * queueing requests immediately; clear config * later if it fails the request. */ if (udc->ep0_reset_config) omap_writew(UDC_CLR_CFG, UDC_SYSCON2); else omap_writew(UDC_DEV_CFG, UDC_SYSCON2); update_otg(udc); goto delegate; case USB_REQ_CLEAR_FEATURE: /* clear endpoint halt */ if (u.r.bRequestType != USB_RECIP_ENDPOINT) goto delegate; if (w_value != USB_ENDPOINT_HALT || w_length != 0) goto do_stall; ep = &udc->ep[w_index & 0xf]; if (ep != ep0) { if (w_index & USB_DIR_IN) ep += 16; if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC || !ep->ep.desc) goto do_stall; use_ep(ep, 0); omap_writew(udc->clr_halt, UDC_CTRL); ep->ackwait = 0; if (!(ep->bEndpointAddress & USB_DIR_IN)) { omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); ep->ackwait = 1 + ep->double_buf; } /* NOTE: assumes the host behaves sanely, * only clearing real halts. Else we may * need to kill pending transfers and then * restart the queue... very messy for DMA! */ } VDBG("%s halt cleared by host\n", ep->name); goto ep0out_status_stage; case USB_REQ_SET_FEATURE: /* set endpoint halt */ if (u.r.bRequestType != USB_RECIP_ENDPOINT) goto delegate; if (w_value != USB_ENDPOINT_HALT || w_length != 0) goto do_stall; ep = &udc->ep[w_index & 0xf]; if (w_index & USB_DIR_IN) ep += 16; if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC || ep == ep0 || !ep->ep.desc) goto do_stall; if (use_dma && ep->has_dma) { /* this has rude side-effects (aborts) and * can't really work if DMA-IN is active */ DBG("%s host set_halt, NYET\n", ep->name); goto do_stall; } use_ep(ep, 0); /* can't halt if fifo isn't empty... */ omap_writew(UDC_CLR_EP, UDC_CTRL); omap_writew(UDC_SET_HALT, UDC_CTRL); VDBG("%s halted by host\n", ep->name); ep0out_status_stage: status = 0; omap_writew(UDC_EP_SEL|UDC_EP_DIR, UDC_EP_NUM); omap_writew(UDC_CLR_EP, UDC_CTRL); omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); omap_writew(UDC_EP_DIR, UDC_EP_NUM); udc->ep0_pending = 0; break; case USB_REQ_GET_STATUS: /* USB_ENDPOINT_HALT status? */ if (u.r.bRequestType != (USB_DIR_IN|USB_RECIP_ENDPOINT)) goto intf_status; /* ep0 never stalls */ if (!(w_index & 0xf)) goto zero_status; /* only active endpoints count */ ep = &udc->ep[w_index & 0xf]; if (w_index & USB_DIR_IN) ep += 16; if (!ep->ep.desc) goto do_stall; /* iso never stalls */ if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) goto zero_status; /* FIXME don't assume non-halted endpoints!! */ ERR("%s status, can't report\n", ep->ep.name); goto do_stall; intf_status: /* return interface status. if we were pedantic, * we'd detect non-existent interfaces, and stall. */ if (u.r.bRequestType != (USB_DIR_IN|USB_RECIP_INTERFACE)) goto delegate; zero_status: /* return two zero bytes */ omap_writew(UDC_EP_SEL|UDC_EP_DIR, UDC_EP_NUM); omap_writew(0, UDC_DATA); omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); omap_writew(UDC_EP_DIR, UDC_EP_NUM); status = 0; VDBG("GET_STATUS, interface %d\n", w_index); /* next, status stage */ break; default: delegate: /* activate the ep0out fifo right away */ if (!udc->ep0_in && w_length) { omap_writew(0, UDC_EP_NUM); omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); } /* gadget drivers see class/vendor specific requests, * {SET,GET}_{INTERFACE,DESCRIPTOR,CONFIGURATION}, * and more */ VDBG("SETUP %02x.%02x v%04x i%04x l%04x\n", u.r.bRequestType, u.r.bRequest, w_value, w_index, w_length); #undef w_value #undef w_index #undef w_length /* The gadget driver may return an error here, * causing an immediate protocol stall. * * Else it must issue a response, either queueing a * response buffer for the DATA stage, or halting ep0 * (causing a protocol stall, not a real halt). A * zero length buffer means no DATA stage. * * It's fine to issue that response after the setup() * call returns, and this IRQ was handled. */ udc->ep0_setup = 1; spin_unlock(&udc->lock); status = udc->driver->setup(&udc->gadget, &u.r); spin_lock(&udc->lock); udc->ep0_setup = 0; } if (status < 0) { do_stall: VDBG("req %02x.%02x protocol STALL; stat %d\n", u.r.bRequestType, u.r.bRequest, status); if (udc->ep0_set_config) { if (udc->ep0_reset_config) WARNING("error resetting config?\n"); else omap_writew(UDC_CLR_CFG, UDC_SYSCON2); } omap_writew(UDC_STALL_CMD, UDC_SYSCON2); udc->ep0_pending = 0; } } } /*-------------------------------------------------------------------------*/ #define OTG_FLAGS (UDC_B_HNP_ENABLE|UDC_A_HNP_SUPPORT|UDC_A_ALT_HNP_SUPPORT) static void devstate_irq(struct omap_udc *udc, u16 irq_src) { u16 devstat, change; devstat = omap_readw(UDC_DEVSTAT); change = devstat ^ udc->devstat; udc->devstat = devstat; if (change & (UDC_USB_RESET|UDC_ATT)) { udc_quiesce(udc); if (change & UDC_ATT) { /* driver for any external transceiver will * have called omap_vbus_session() already */ if (devstat & UDC_ATT) { udc->gadget.speed = USB_SPEED_FULL; VDBG("connect\n"); if (IS_ERR_OR_NULL(udc->transceiver)) pullup_enable(udc); /* if (driver->connect) call it */ } else if (udc->gadget.speed != USB_SPEED_UNKNOWN) { udc->gadget.speed = USB_SPEED_UNKNOWN; if (IS_ERR_OR_NULL(udc->transceiver)) pullup_disable(udc); DBG("disconnect, gadget %s\n", udc->driver->driver.name); if (udc->driver->disconnect) { spin_unlock(&udc->lock); udc->driver->disconnect(&udc->gadget); spin_lock(&udc->lock); } } change &= ~UDC_ATT; } if (change & UDC_USB_RESET) { if (devstat & UDC_USB_RESET) { VDBG("RESET=1\n"); } else { udc->gadget.speed = USB_SPEED_FULL; INFO("USB reset done, gadget %s\n", udc->driver->driver.name); /* ep0 traffic is legal from now on */ omap_writew(UDC_DS_CHG_IE | UDC_EP0_IE, UDC_IRQ_EN); } change &= ~UDC_USB_RESET; } } if (change & UDC_SUS) { if (udc->gadget.speed != USB_SPEED_UNKNOWN) { /* FIXME tell isp1301 to suspend/resume (?) */ if (devstat & UDC_SUS) { VDBG("suspend\n"); update_otg(udc); /* HNP could be under way already */ if (udc->gadget.speed == USB_SPEED_FULL && udc->driver->suspend) { spin_unlock(&udc->lock); udc->driver->suspend(&udc->gadget); spin_lock(&udc->lock); } if (!IS_ERR_OR_NULL(udc->transceiver)) usb_phy_set_suspend( udc->transceiver, 1); } else { VDBG("resume\n"); if (!IS_ERR_OR_NULL(udc->transceiver)) usb_phy_set_suspend( udc->transceiver, 0); if (udc->gadget.speed == USB_SPEED_FULL && udc->driver->resume) { spin_unlock(&udc->lock); udc->driver->resume(&udc->gadget); spin_lock(&udc->lock); } } } change &= ~UDC_SUS; } if (!cpu_is_omap15xx() && (change & OTG_FLAGS)) { update_otg(udc); change &= ~OTG_FLAGS; } change &= ~(UDC_CFG|UDC_DEF|UDC_ADD); if (change) VDBG("devstat %03x, ignore change %03x\n", devstat, change); omap_writew(UDC_DS_CHG, UDC_IRQ_SRC); } static irqreturn_t omap_udc_irq(int irq, void *_udc) { struct omap_udc *udc = _udc; u16 irq_src; irqreturn_t status = IRQ_NONE; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); irq_src = omap_readw(UDC_IRQ_SRC); /* Device state change (usb ch9 stuff) */ if (irq_src & UDC_DS_CHG) { devstate_irq(_udc, irq_src); status = IRQ_HANDLED; irq_src &= ~UDC_DS_CHG; } /* EP0 control transfers */ if (irq_src & (UDC_EP0_RX|UDC_SETUP|UDC_EP0_TX)) { ep0_irq(_udc, irq_src); status = IRQ_HANDLED; irq_src &= ~(UDC_EP0_RX|UDC_SETUP|UDC_EP0_TX); } /* DMA transfer completion */ if (use_dma && (irq_src & (UDC_TXN_DONE|UDC_RXN_CNT|UDC_RXN_EOT))) { dma_irq(_udc, irq_src); status = IRQ_HANDLED; irq_src &= ~(UDC_TXN_DONE|UDC_RXN_CNT|UDC_RXN_EOT); } irq_src &= ~(UDC_IRQ_SOF | UDC_EPN_TX|UDC_EPN_RX); if (irq_src) DBG("udc_irq, unhandled %03x\n", irq_src); spin_unlock_irqrestore(&udc->lock, flags); return status; } /* workaround for seemingly-lost IRQs for RX ACKs... */ #define PIO_OUT_TIMEOUT (jiffies + HZ/3) #define HALF_FULL(f) (!((f)&(UDC_NON_ISO_FIFO_FULL|UDC_NON_ISO_FIFO_EMPTY))) static void pio_out_timer(unsigned long _ep) { struct omap_ep *ep = (void *) _ep; unsigned long flags; u16 stat_flg; spin_lock_irqsave(&ep->udc->lock, flags); if (!list_empty(&ep->queue) && ep->ackwait) { use_ep(ep, UDC_EP_SEL); stat_flg = omap_readw(UDC_STAT_FLG); if ((stat_flg & UDC_ACK) && (!(stat_flg & UDC_FIFO_EN) || (ep->double_buf && HALF_FULL(stat_flg)))) { struct omap_req *req; VDBG("%s: lose, %04x\n", ep->ep.name, stat_flg); req = container_of(ep->queue.next, struct omap_req, queue); (void) read_fifo(ep, req); omap_writew(ep->bEndpointAddress, UDC_EP_NUM); omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); ep->ackwait = 1 + ep->double_buf; } else deselect_ep(); } mod_timer(&ep->timer, PIO_OUT_TIMEOUT); spin_unlock_irqrestore(&ep->udc->lock, flags); } static irqreturn_t omap_udc_pio_irq(int irq, void *_dev) { u16 epn_stat, irq_src; irqreturn_t status = IRQ_NONE; struct omap_ep *ep; int epnum; struct omap_udc *udc = _dev; struct omap_req *req; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); epn_stat = omap_readw(UDC_EPN_STAT); irq_src = omap_readw(UDC_IRQ_SRC); /* handle OUT first, to avoid some wasteful NAKs */ if (irq_src & UDC_EPN_RX) { epnum = (epn_stat >> 8) & 0x0f; omap_writew(UDC_EPN_RX, UDC_IRQ_SRC); status = IRQ_HANDLED; ep = &udc->ep[epnum]; ep->irqs++; omap_writew(epnum | UDC_EP_SEL, UDC_EP_NUM); ep->fnf = 0; if (omap_readw(UDC_STAT_FLG) & UDC_ACK) { ep->ackwait--; if (!list_empty(&ep->queue)) { int stat; req = container_of(ep->queue.next, struct omap_req, queue); stat = read_fifo(ep, req); if (!ep->double_buf) ep->fnf = 1; } } /* min 6 clock delay before clearing EP_SEL ... */ epn_stat = omap_readw(UDC_EPN_STAT); epn_stat = omap_readw(UDC_EPN_STAT); omap_writew(epnum, UDC_EP_NUM); /* enabling fifo _after_ clearing ACK, contrary to docs, * reduces lossage; timer still needed though (sigh). */ if (ep->fnf) { omap_writew(UDC_SET_FIFO_EN, UDC_CTRL); ep->ackwait = 1 + ep->double_buf; } mod_timer(&ep->timer, PIO_OUT_TIMEOUT); } /* then IN transfers */ else if (irq_src & UDC_EPN_TX) { epnum = epn_stat & 0x0f; omap_writew(UDC_EPN_TX, UDC_IRQ_SRC); status = IRQ_HANDLED; ep = &udc->ep[16 + epnum]; ep->irqs++; omap_writew(epnum | UDC_EP_DIR | UDC_EP_SEL, UDC_EP_NUM); if (omap_readw(UDC_STAT_FLG) & UDC_ACK) { ep->ackwait = 0; if (!list_empty(&ep->queue)) { req = container_of(ep->queue.next, struct omap_req, queue); (void) write_fifo(ep, req); } } /* min 6 clock delay before clearing EP_SEL ... */ epn_stat = omap_readw(UDC_EPN_STAT); epn_stat = omap_readw(UDC_EPN_STAT); omap_writew(epnum | UDC_EP_DIR, UDC_EP_NUM); /* then 6 clocks before it'd tx */ } spin_unlock_irqrestore(&udc->lock, flags); return status; } #ifdef USE_ISO static irqreturn_t omap_udc_iso_irq(int irq, void *_dev) { struct omap_udc *udc = _dev; struct omap_ep *ep; int pending = 0; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); /* handle all non-DMA ISO transfers */ list_for_each_entry(ep, &udc->iso, iso) { u16 stat; struct omap_req *req; if (ep->has_dma || list_empty(&ep->queue)) continue; req = list_entry(ep->queue.next, struct omap_req, queue); use_ep(ep, UDC_EP_SEL); stat = omap_readw(UDC_STAT_FLG); /* NOTE: like the other controller drivers, this isn't * currently reporting lost or damaged frames. */ if (ep->bEndpointAddress & USB_DIR_IN) { if (stat & UDC_MISS_IN) /* done(ep, req, -EPROTO) */; else write_fifo(ep, req); } else { int status = 0; if (stat & UDC_NO_RXPACKET) status = -EREMOTEIO; else if (stat & UDC_ISO_ERR) status = -EILSEQ; else if (stat & UDC_DATA_FLUSH) status = -ENOSR; if (status) /* done(ep, req, status) */; else read_fifo(ep, req); } deselect_ep(); /* 6 wait states before next EP */ ep->irqs++; if (!list_empty(&ep->queue)) pending = 1; } if (!pending) { u16 w; w = omap_readw(UDC_IRQ_EN); w &= ~UDC_SOF_IE; omap_writew(w, UDC_IRQ_EN); } omap_writew(UDC_IRQ_SOF, UDC_IRQ_SRC); spin_unlock_irqrestore(&udc->lock, flags); return IRQ_HANDLED; } #endif /*-------------------------------------------------------------------------*/ static inline int machine_without_vbus_sense(void) { return machine_is_omap_innovator() || machine_is_omap_osk() || machine_is_sx1() /* No known omap7xx boards with vbus sense */ || cpu_is_omap7xx(); } static int omap_udc_start(struct usb_gadget *g, struct usb_gadget_driver *driver) { int status = -ENODEV; struct omap_ep *ep; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); /* reset state */ list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) { ep->irqs = 0; if (ep->bmAttributes == USB_ENDPOINT_XFER_ISOC) continue; use_ep(ep, 0); omap_writew(UDC_SET_HALT, UDC_CTRL); } udc->ep0_pending = 0; udc->ep[0].irqs = 0; udc->softconnect = 1; /* hook up the driver */ driver->driver.bus = NULL; udc->driver = driver; udc->gadget.dev.driver = &driver->driver; spin_unlock_irqrestore(&udc->lock, flags); if (udc->dc_clk != NULL) omap_udc_enable_clock(1); omap_writew(UDC_IRQ_SRC_MASK, UDC_IRQ_SRC); /* connect to bus through transceiver */ if (!IS_ERR_OR_NULL(udc->transceiver)) { status = otg_set_peripheral(udc->transceiver->otg, &udc->gadget); if (status < 0) { ERR("can't bind to transceiver\n"); if (driver->unbind) { driver->unbind(&udc->gadget); udc->gadget.dev.driver = NULL; udc->driver = NULL; } goto done; } } else { if (can_pullup(udc)) pullup_enable(udc); else pullup_disable(udc); } /* boards that don't have VBUS sensing can't autogate 48MHz; * can't enter deep sleep while a gadget driver is active. */ if (machine_without_vbus_sense()) omap_vbus_session(&udc->gadget, 1); done: if (udc->dc_clk != NULL) omap_udc_enable_clock(0); return status; } static int omap_udc_stop(struct usb_gadget *g, struct usb_gadget_driver *driver) { unsigned long flags; int status = -ENODEV; if (udc->dc_clk != NULL) omap_udc_enable_clock(1); if (machine_without_vbus_sense()) omap_vbus_session(&udc->gadget, 0); if (!IS_ERR_OR_NULL(udc->transceiver)) (void) otg_set_peripheral(udc->transceiver->otg, NULL); else pullup_disable(udc); spin_lock_irqsave(&udc->lock, flags); udc_quiesce(udc); spin_unlock_irqrestore(&udc->lock, flags); udc->gadget.dev.driver = NULL; udc->driver = NULL; if (udc->dc_clk != NULL) omap_udc_enable_clock(0); return status; } /*-------------------------------------------------------------------------*/ #ifdef CONFIG_USB_GADGET_DEBUG_FILES #include static const char proc_filename[] = "driver/udc"; #define FOURBITS "%s%s%s%s" #define EIGHTBITS "%s%s%s%s%s%s%s%s" static void proc_ep_show(struct seq_file *s, struct omap_ep *ep) { u16 stat_flg; struct omap_req *req; char buf[20]; use_ep(ep, 0); if (use_dma && ep->has_dma) snprintf(buf, sizeof buf, "(%cxdma%d lch%d) ", (ep->bEndpointAddress & USB_DIR_IN) ? 't' : 'r', ep->dma_channel - 1, ep->lch); else buf[0] = 0; stat_flg = omap_readw(UDC_STAT_FLG); seq_printf(s, "\n%s %s%s%sirqs %ld stat %04x " EIGHTBITS FOURBITS "%s\n", ep->name, buf, ep->double_buf ? "dbuf " : "", ({ char *s; switch (ep->ackwait) { case 0: s = ""; break; case 1: s = "(ackw) "; break; case 2: s = "(ackw2) "; break; default: s = "(?) "; break; } s; }), ep->irqs, stat_flg, (stat_flg & UDC_NO_RXPACKET) ? "no_rxpacket " : "", (stat_flg & UDC_MISS_IN) ? "miss_in " : "", (stat_flg & UDC_DATA_FLUSH) ? "data_flush " : "", (stat_flg & UDC_ISO_ERR) ? "iso_err " : "", (stat_flg & UDC_ISO_FIFO_EMPTY) ? "iso_fifo_empty " : "", (stat_flg & UDC_ISO_FIFO_FULL) ? "iso_fifo_full " : "", (stat_flg & UDC_EP_HALTED) ? "HALT " : "", (stat_flg & UDC_STALL) ? "STALL " : "", (stat_flg & UDC_NAK) ? "NAK " : "", (stat_flg & UDC_ACK) ? "ACK " : "", (stat_flg & UDC_FIFO_EN) ? "fifo_en " : "", (stat_flg & UDC_NON_ISO_FIFO_EMPTY) ? "fifo_empty " : "", (stat_flg & UDC_NON_ISO_FIFO_FULL) ? "fifo_full " : ""); if (list_empty(&ep->queue)) seq_printf(s, "\t(queue empty)\n"); else list_for_each_entry(req, &ep->queue, queue) { unsigned length = req->req.actual; if (use_dma && buf[0]) { length += ((ep->bEndpointAddress & USB_DIR_IN) ? dma_src_len : dma_dest_len) (ep, req->req.dma + length); buf[0] = 0; } seq_printf(s, "\treq %p len %d/%d buf %p\n", &req->req, length, req->req.length, req->req.buf); } } static char *trx_mode(unsigned m, int enabled) { switch (m) { case 0: return enabled ? "*6wire" : "unused"; case 1: return "4wire"; case 2: return "3wire"; case 3: return "6wire"; default: return "unknown"; } } static int proc_otg_show(struct seq_file *s) { u32 tmp; u32 trans = 0; char *ctrl_name = "(UNKNOWN)"; tmp = omap_readl(OTG_REV); ctrl_name = "tranceiver_ctrl"; trans = omap_readw(USB_TRANSCEIVER_CTRL); seq_printf(s, "\nOTG rev %d.%d, %s %05x\n", tmp >> 4, tmp & 0xf, ctrl_name, trans); tmp = omap_readw(OTG_SYSCON_1); seq_printf(s, "otg_syscon1 %08x usb2 %s, usb1 %s, usb0 %s," FOURBITS "\n", tmp, trx_mode(USB2_TRX_MODE(tmp), trans & CONF_USB2_UNI_R), trx_mode(USB1_TRX_MODE(tmp), trans & CONF_USB1_UNI_R), (USB0_TRX_MODE(tmp) == 0 && !cpu_is_omap1710()) ? "internal" : trx_mode(USB0_TRX_MODE(tmp), 1), (tmp & OTG_IDLE_EN) ? " !otg" : "", (tmp & HST_IDLE_EN) ? " !host" : "", (tmp & DEV_IDLE_EN) ? " !dev" : "", (tmp & OTG_RESET_DONE) ? " reset_done" : " reset_active"); tmp = omap_readl(OTG_SYSCON_2); seq_printf(s, "otg_syscon2 %08x%s" EIGHTBITS " b_ase_brst=%d hmc=%d\n", tmp, (tmp & OTG_EN) ? " otg_en" : "", (tmp & USBX_SYNCHRO) ? " synchro" : "", /* much more SRP stuff */ (tmp & SRP_DATA) ? " srp_data" : "", (tmp & SRP_VBUS) ? " srp_vbus" : "", (tmp & OTG_PADEN) ? " otg_paden" : "", (tmp & HMC_PADEN) ? " hmc_paden" : "", (tmp & UHOST_EN) ? " uhost_en" : "", (tmp & HMC_TLLSPEED) ? " tllspeed" : "", (tmp & HMC_TLLATTACH) ? " tllattach" : "", B_ASE_BRST(tmp), OTG_HMC(tmp)); tmp = omap_readl(OTG_CTRL); seq_printf(s, "otg_ctrl %06x" EIGHTBITS EIGHTBITS "%s\n", tmp, (tmp & OTG_ASESSVLD) ? " asess" : "", (tmp & OTG_BSESSEND) ? " bsess_end" : "", (tmp & OTG_BSESSVLD) ? " bsess" : "", (tmp & OTG_VBUSVLD) ? " vbus" : "", (tmp & OTG_ID) ? " id" : "", (tmp & OTG_DRIVER_SEL) ? " DEVICE" : " HOST", (tmp & OTG_A_SETB_HNPEN) ? " a_setb_hnpen" : "", (tmp & OTG_A_BUSREQ) ? " a_bus" : "", (tmp & OTG_B_HNPEN) ? " b_hnpen" : "", (tmp & OTG_B_BUSREQ) ? " b_bus" : "", (tmp & OTG_BUSDROP) ? " busdrop" : "", (tmp & OTG_PULLDOWN) ? " down" : "", (tmp & OTG_PULLUP) ? " up" : "", (tmp & OTG_DRV_VBUS) ? " drv" : "", (tmp & OTG_PD_VBUS) ? " pd_vb" : "", (tmp & OTG_PU_VBUS) ? " pu_vb" : "", (tmp & OTG_PU_ID) ? " pu_id" : "" ); tmp = omap_readw(OTG_IRQ_EN); seq_printf(s, "otg_irq_en %04x" "\n", tmp); tmp = omap_readw(OTG_IRQ_SRC); seq_printf(s, "otg_irq_src %04x" "\n", tmp); tmp = omap_readw(OTG_OUTCTRL); seq_printf(s, "otg_outctrl %04x" "\n", tmp); tmp = omap_readw(OTG_TEST); seq_printf(s, "otg_test %04x" "\n", tmp); return 0; } static int proc_udc_show(struct seq_file *s, void *_) { u32 tmp; struct omap_ep *ep; unsigned long flags; spin_lock_irqsave(&udc->lock, flags); seq_printf(s, "%s, version: " DRIVER_VERSION #ifdef USE_ISO " (iso)" #endif "%s\n", driver_desc, use_dma ? " (dma)" : ""); tmp = omap_readw(UDC_REV) & 0xff; seq_printf(s, "UDC rev %d.%d, fifo mode %d, gadget %s\n" "hmc %d, transceiver %s\n", tmp >> 4, tmp & 0xf, fifo_mode, udc->driver ? udc->driver->driver.name : "(none)", HMC, udc->transceiver ? udc->transceiver->label : (cpu_is_omap1710() ? "external" : "(none)")); seq_printf(s, "ULPD control %04x req %04x status %04x\n", omap_readw(ULPD_CLOCK_CTRL), omap_readw(ULPD_SOFT_REQ), omap_readw(ULPD_STATUS_REQ)); /* OTG controller registers */ if (!cpu_is_omap15xx()) proc_otg_show(s); tmp = omap_readw(UDC_SYSCON1); seq_printf(s, "\nsyscon1 %04x" EIGHTBITS "\n", tmp, (tmp & UDC_CFG_LOCK) ? " cfg_lock" : "", (tmp & UDC_DATA_ENDIAN) ? " data_endian" : "", (tmp & UDC_DMA_ENDIAN) ? " dma_endian" : "", (tmp & UDC_NAK_EN) ? " nak" : "", (tmp & UDC_AUTODECODE_DIS) ? " autodecode_dis" : "", (tmp & UDC_SELF_PWR) ? " self_pwr" : "", (tmp & UDC_SOFF_DIS) ? " soff_dis" : "", (tmp & UDC_PULLUP_EN) ? " PULLUP" : ""); /* syscon2 is write-only */ /* UDC controller registers */ if (!(tmp & UDC_PULLUP_EN)) { seq_printf(s, "(suspended)\n"); spin_unlock_irqrestore(&udc->lock, flags); return 0; } tmp = omap_readw(UDC_DEVSTAT); seq_printf(s, "devstat %04x" EIGHTBITS "%s%s\n", tmp, (tmp & UDC_B_HNP_ENABLE) ? " b_hnp" : "", (tmp & UDC_A_HNP_SUPPORT) ? " a_hnp" : "", (tmp & UDC_A_ALT_HNP_SUPPORT) ? " a_alt_hnp" : "", (tmp & UDC_R_WK_OK) ? " r_wk_ok" : "", (tmp & UDC_USB_RESET) ? " usb_reset" : "", (tmp & UDC_SUS) ? " SUS" : "", (tmp & UDC_CFG) ? " CFG" : "", (tmp & UDC_ADD) ? " ADD" : "", (tmp & UDC_DEF) ? " DEF" : "", (tmp & UDC_ATT) ? " ATT" : ""); seq_printf(s, "sof %04x\n", omap_readw(UDC_SOF)); tmp = omap_readw(UDC_IRQ_EN); seq_printf(s, "irq_en %04x" FOURBITS "%s\n", tmp, (tmp & UDC_SOF_IE) ? " sof" : "", (tmp & UDC_EPN_RX_IE) ? " epn_rx" : "", (tmp & UDC_EPN_TX_IE) ? " epn_tx" : "", (tmp & UDC_DS_CHG_IE) ? " ds_chg" : "", (tmp & UDC_EP0_IE) ? " ep0" : ""); tmp = omap_readw(UDC_IRQ_SRC); seq_printf(s, "irq_src %04x" EIGHTBITS "%s%s\n", tmp, (tmp & UDC_TXN_DONE) ? " txn_done" : "", (tmp & UDC_RXN_CNT) ? " rxn_cnt" : "", (tmp & UDC_RXN_EOT) ? " rxn_eot" : "", (tmp & UDC_IRQ_SOF) ? " sof" : "", (tmp & UDC_EPN_RX) ? " epn_rx" : "", (tmp & UDC_EPN_TX) ? " epn_tx" : "", (tmp & UDC_DS_CHG) ? " ds_chg" : "", (tmp & UDC_SETUP) ? " setup" : "", (tmp & UDC_EP0_RX) ? " ep0out" : "", (tmp & UDC_EP0_TX) ? " ep0in" : ""); if (use_dma) { unsigned i; tmp = omap_readw(UDC_DMA_IRQ_EN); seq_printf(s, "dma_irq_en %04x%s" EIGHTBITS "\n", tmp, (tmp & UDC_TX_DONE_IE(3)) ? " tx2_done" : "", (tmp & UDC_RX_CNT_IE(3)) ? " rx2_cnt" : "", (tmp & UDC_RX_EOT_IE(3)) ? " rx2_eot" : "", (tmp & UDC_TX_DONE_IE(2)) ? " tx1_done" : "", (tmp & UDC_RX_CNT_IE(2)) ? " rx1_cnt" : "", (tmp & UDC_RX_EOT_IE(2)) ? " rx1_eot" : "", (tmp & UDC_TX_DONE_IE(1)) ? " tx0_done" : "", (tmp & UDC_RX_CNT_IE(1)) ? " rx0_cnt" : "", (tmp & UDC_RX_EOT_IE(1)) ? " rx0_eot" : ""); tmp = omap_readw(UDC_RXDMA_CFG); seq_printf(s, "rxdma_cfg %04x\n", tmp); if (tmp) { for (i = 0; i < 3; i++) { if ((tmp & (0x0f << (i * 4))) == 0) continue; seq_printf(s, "rxdma[%d] %04x\n", i, omap_readw(UDC_RXDMA(i + 1))); } } tmp = omap_readw(UDC_TXDMA_CFG); seq_printf(s, "txdma_cfg %04x\n", tmp); if (tmp) { for (i = 0; i < 3; i++) { if (!(tmp & (0x0f << (i * 4)))) continue; seq_printf(s, "txdma[%d] %04x\n", i, omap_readw(UDC_TXDMA(i + 1))); } } } tmp = omap_readw(UDC_DEVSTAT); if (tmp & UDC_ATT) { proc_ep_show(s, &udc->ep[0]); if (tmp & UDC_ADD) { list_for_each_entry(ep, &udc->gadget.ep_list, ep.ep_list) { if (ep->ep.desc) proc_ep_show(s, ep); } } } spin_unlock_irqrestore(&udc->lock, flags); return 0; } static int proc_udc_open(struct inode *inode, struct file *file) { return single_open(file, proc_udc_show, NULL); } static const struct file_operations proc_ops = { .owner = THIS_MODULE, .open = proc_udc_open, .read = seq_read, .llseek = seq_lseek, .release = single_release, }; static void create_proc_file(void) { proc_create(proc_filename, 0, NULL, &proc_ops); } static void remove_proc_file(void) { remove_proc_entry(proc_filename, NULL); } #else static inline void create_proc_file(void) {} static inline void remove_proc_file(void) {} #endif /*-------------------------------------------------------------------------*/ /* Before this controller can enumerate, we need to pick an endpoint * configuration, or "fifo_mode" That involves allocating 2KB of packet * buffer space among the endpoints we'll be operating. * * NOTE: as of OMAP 1710 ES2.0, writing a new endpoint config when * UDC_SYSCON_1.CFG_LOCK is set can now work. We won't use that * capability yet though. */ static unsigned omap_ep_setup(char *name, u8 addr, u8 type, unsigned buf, unsigned maxp, int dbuf) { struct omap_ep *ep; u16 epn_rxtx = 0; /* OUT endpoints first, then IN */ ep = &udc->ep[addr & 0xf]; if (addr & USB_DIR_IN) ep += 16; /* in case of ep init table bugs */ BUG_ON(ep->name[0]); /* chip setup ... bit values are same for IN, OUT */ if (type == USB_ENDPOINT_XFER_ISOC) { switch (maxp) { case 8: epn_rxtx = 0 << 12; break; case 16: epn_rxtx = 1 << 12; break; case 32: epn_rxtx = 2 << 12; break; case 64: epn_rxtx = 3 << 12; break; case 128: epn_rxtx = 4 << 12; break; case 256: epn_rxtx = 5 << 12; break; case 512: epn_rxtx = 6 << 12; break; default: BUG(); } epn_rxtx |= UDC_EPN_RX_ISO; dbuf = 1; } else { /* double-buffering "not supported" on 15xx, * and ignored for PIO-IN on newer chips * (for more reliable behavior) */ if (!use_dma || cpu_is_omap15xx()) dbuf = 0; switch (maxp) { case 8: epn_rxtx = 0 << 12; break; case 16: epn_rxtx = 1 << 12; break; case 32: epn_rxtx = 2 << 12; break; case 64: epn_rxtx = 3 << 12; break; default: BUG(); } if (dbuf && addr) epn_rxtx |= UDC_EPN_RX_DB; init_timer(&ep->timer); ep->timer.function = pio_out_timer; ep->timer.data = (unsigned long) ep; } if (addr) epn_rxtx |= UDC_EPN_RX_VALID; BUG_ON(buf & 0x07); epn_rxtx |= buf >> 3; DBG("%s addr %02x rxtx %04x maxp %d%s buf %d\n", name, addr, epn_rxtx, maxp, dbuf ? "x2" : "", buf); if (addr & USB_DIR_IN) omap_writew(epn_rxtx, UDC_EP_TX(addr & 0xf)); else omap_writew(epn_rxtx, UDC_EP_RX(addr)); /* next endpoint's buffer starts after this one's */ buf += maxp; if (dbuf) buf += maxp; BUG_ON(buf > 2048); /* set up driver data structures */ BUG_ON(strlen(name) >= sizeof ep->name); strlcpy(ep->name, name, sizeof ep->name); INIT_LIST_HEAD(&ep->queue); INIT_LIST_HEAD(&ep->iso); ep->bEndpointAddress = addr; ep->bmAttributes = type; ep->double_buf = dbuf; ep->udc = udc; ep->ep.name = ep->name; ep->ep.ops = &omap_ep_ops; ep->ep.maxpacket = ep->maxpacket = maxp; list_add_tail(&ep->ep.ep_list, &udc->gadget.ep_list); return buf; } static void omap_udc_release(struct device *dev) { complete(udc->done); kfree(udc); udc = NULL; } static int omap_udc_setup(struct platform_device *odev, struct usb_phy *xceiv) { unsigned tmp, buf; /* abolish any previous hardware state */ omap_writew(0, UDC_SYSCON1); omap_writew(0, UDC_IRQ_EN); omap_writew(UDC_IRQ_SRC_MASK, UDC_IRQ_SRC); omap_writew(0, UDC_DMA_IRQ_EN); omap_writew(0, UDC_RXDMA_CFG); omap_writew(0, UDC_TXDMA_CFG); /* UDC_PULLUP_EN gates the chip clock */ /* OTG_SYSCON_1 |= DEV_IDLE_EN; */ udc = kzalloc(sizeof(*udc), GFP_KERNEL); if (!udc) return -ENOMEM; spin_lock_init(&udc->lock); udc->gadget.ops = &omap_gadget_ops; udc->gadget.ep0 = &udc->ep[0].ep; INIT_LIST_HEAD(&udc->gadget.ep_list); INIT_LIST_HEAD(&udc->iso); udc->gadget.speed = USB_SPEED_UNKNOWN; udc->gadget.max_speed = USB_SPEED_FULL; udc->gadget.name = driver_name; device_initialize(&udc->gadget.dev); dev_set_name(&udc->gadget.dev, "gadget"); udc->gadget.dev.release = omap_udc_release; udc->gadget.dev.parent = &odev->dev; if (use_dma) udc->gadget.dev.dma_mask = odev->dev.dma_mask; udc->transceiver = xceiv; /* ep0 is special; put it right after the SETUP buffer */ buf = omap_ep_setup("ep0", 0, USB_ENDPOINT_XFER_CONTROL, 8 /* after SETUP */, 64 /* maxpacket */, 0); list_del_init(&udc->ep[0].ep.ep_list); /* initially disable all non-ep0 endpoints */ for (tmp = 1; tmp < 15; tmp++) { omap_writew(0, UDC_EP_RX(tmp)); omap_writew(0, UDC_EP_TX(tmp)); } #define OMAP_BULK_EP(name, addr) \ buf = omap_ep_setup(name "-bulk", addr, \ USB_ENDPOINT_XFER_BULK, buf, 64, 1); #define OMAP_INT_EP(name, addr, maxp) \ buf = omap_ep_setup(name "-int", addr, \ USB_ENDPOINT_XFER_INT, buf, maxp, 0); #define OMAP_ISO_EP(name, addr, maxp) \ buf = omap_ep_setup(name "-iso", addr, \ USB_ENDPOINT_XFER_ISOC, buf, maxp, 1); switch (fifo_mode) { case 0: OMAP_BULK_EP("ep1in", USB_DIR_IN | 1); OMAP_BULK_EP("ep2out", USB_DIR_OUT | 2); OMAP_INT_EP("ep3in", USB_DIR_IN | 3, 16); break; case 1: OMAP_BULK_EP("ep1in", USB_DIR_IN | 1); OMAP_BULK_EP("ep2out", USB_DIR_OUT | 2); OMAP_INT_EP("ep9in", USB_DIR_IN | 9, 16); OMAP_BULK_EP("ep3in", USB_DIR_IN | 3); OMAP_BULK_EP("ep4out", USB_DIR_OUT | 4); OMAP_INT_EP("ep10in", USB_DIR_IN | 10, 16); OMAP_BULK_EP("ep5in", USB_DIR_IN | 5); OMAP_BULK_EP("ep5out", USB_DIR_OUT | 5); OMAP_INT_EP("ep11in", USB_DIR_IN | 11, 16); OMAP_BULK_EP("ep6in", USB_DIR_IN | 6); OMAP_BULK_EP("ep6out", USB_DIR_OUT | 6); OMAP_INT_EP("ep12in", USB_DIR_IN | 12, 16); OMAP_BULK_EP("ep7in", USB_DIR_IN | 7); OMAP_BULK_EP("ep7out", USB_DIR_OUT | 7); OMAP_INT_EP("ep13in", USB_DIR_IN | 13, 16); OMAP_INT_EP("ep13out", USB_DIR_OUT | 13, 16); OMAP_BULK_EP("ep8in", USB_DIR_IN | 8); OMAP_BULK_EP("ep8out", USB_DIR_OUT | 8); OMAP_INT_EP("ep14in", USB_DIR_IN | 14, 16); OMAP_INT_EP("ep14out", USB_DIR_OUT | 14, 16); OMAP_BULK_EP("ep15in", USB_DIR_IN | 15); OMAP_BULK_EP("ep15out", USB_DIR_OUT | 15); break; #ifdef USE_ISO case 2: /* mixed iso/bulk */ OMAP_ISO_EP("ep1in", USB_DIR_IN | 1, 256); OMAP_ISO_EP("ep2out", USB_DIR_OUT | 2, 256); OMAP_ISO_EP("ep3in", USB_DIR_IN | 3, 128); OMAP_ISO_EP("ep4out", USB_DIR_OUT | 4, 128); OMAP_INT_EP("ep5in", USB_DIR_IN | 5, 16); OMAP_BULK_EP("ep6in", USB_DIR_IN | 6); OMAP_BULK_EP("ep7out", USB_DIR_OUT | 7); OMAP_INT_EP("ep8in", USB_DIR_IN | 8, 16); break; case 3: /* mixed bulk/iso */ OMAP_BULK_EP("ep1in", USB_DIR_IN | 1); OMAP_BULK_EP("ep2out", USB_DIR_OUT | 2); OMAP_INT_EP("ep3in", USB_DIR_IN | 3, 16); OMAP_BULK_EP("ep4in", USB_DIR_IN | 4); OMAP_BULK_EP("ep5out", USB_DIR_OUT | 5); OMAP_INT_EP("ep6in", USB_DIR_IN | 6, 16); OMAP_ISO_EP("ep7in", USB_DIR_IN | 7, 256); OMAP_ISO_EP("ep8out", USB_DIR_OUT | 8, 256); OMAP_INT_EP("ep9in", USB_DIR_IN | 9, 16); break; #endif /* add more modes as needed */ default: ERR("unsupported fifo_mode #%d\n", fifo_mode); return -ENODEV; } omap_writew(UDC_CFG_LOCK|UDC_SELF_PWR, UDC_SYSCON1); INFO("fifo mode %d, %d bytes not used\n", fifo_mode, 2048 - buf); return 0; } static int omap_udc_probe(struct platform_device *pdev) { int status = -ENODEV; int hmc; struct usb_phy *xceiv = NULL; const char *type = NULL; struct omap_usb_config *config = pdev->dev.platform_data; struct clk *dc_clk = NULL; struct clk *hhc_clk = NULL; if (cpu_is_omap7xx()) use_dma = 0; /* NOTE: "knows" the order of the resources! */ if (!request_mem_region(pdev->resource[0].start, pdev->resource[0].end - pdev->resource[0].start + 1, driver_name)) { DBG("request_mem_region failed\n"); return -EBUSY; } if (cpu_is_omap16xx()) { dc_clk = clk_get(&pdev->dev, "usb_dc_ck"); hhc_clk = clk_get(&pdev->dev, "usb_hhc_ck"); BUG_ON(IS_ERR(dc_clk) || IS_ERR(hhc_clk)); /* can't use omap_udc_enable_clock yet */ clk_enable(dc_clk); clk_enable(hhc_clk); udelay(100); } if (cpu_is_omap7xx()) { dc_clk = clk_get(&pdev->dev, "usb_dc_ck"); hhc_clk = clk_get(&pdev->dev, "l3_ocpi_ck"); BUG_ON(IS_ERR(dc_clk) || IS_ERR(hhc_clk)); /* can't use omap_udc_enable_clock yet */ clk_enable(dc_clk); clk_enable(hhc_clk); udelay(100); } INFO("OMAP UDC rev %d.%d%s\n", omap_readw(UDC_REV) >> 4, omap_readw(UDC_REV) & 0xf, config->otg ? ", Mini-AB" : ""); /* use the mode given to us by board init code */ if (cpu_is_omap15xx()) { hmc = HMC_1510; type = "(unknown)"; if (machine_without_vbus_sense()) { /* just set up software VBUS detect, and then * later rig it so we always report VBUS. * FIXME without really sensing VBUS, we can't * know when to turn PULLUP_EN on/off; and that * means we always "need" the 48MHz clock. */ u32 tmp = omap_readl(FUNC_MUX_CTRL_0); tmp &= ~VBUS_CTRL_1510; omap_writel(tmp, FUNC_MUX_CTRL_0); tmp |= VBUS_MODE_1510; tmp &= ~VBUS_CTRL_1510; omap_writel(tmp, FUNC_MUX_CTRL_0); } } else { /* The transceiver may package some GPIO logic or handle * loopback and/or transceiverless setup; if we find one, * use it. Except for OTG, we don't _need_ to talk to one; * but not having one probably means no VBUS detection. */ xceiv = usb_get_phy(USB_PHY_TYPE_USB2); if (!IS_ERR_OR_NULL(xceiv)) type = xceiv->label; else if (config->otg) { DBG("OTG requires external transceiver!\n"); goto cleanup0; } hmc = HMC_1610; switch (hmc) { case 0: /* POWERUP DEFAULT == 0 */ case 4: case 12: case 20: if (!cpu_is_omap1710()) { type = "integrated"; break; } /* FALL THROUGH */ case 3: case 11: case 16: case 19: case 25: if (IS_ERR_OR_NULL(xceiv)) { DBG("external transceiver not registered!\n"); type = "unknown"; } break; case 21: /* internal loopback */ type = "loopback"; break; case 14: /* transceiverless */ if (cpu_is_omap1710()) goto bad_on_1710; /* FALL THROUGH */ case 13: case 15: type = "no"; break; default: bad_on_1710: ERR("unrecognized UDC HMC mode %d\n", hmc); goto cleanup0; } } INFO("hmc mode %d, %s transceiver\n", hmc, type); /* a "gadget" abstracts/virtualizes the controller */ status = omap_udc_setup(pdev, xceiv); if (status) goto cleanup0; xceiv = NULL; /* "udc" is now valid */ pullup_disable(udc); #if defined(CONFIG_USB_OHCI_HCD) || defined(CONFIG_USB_OHCI_HCD_MODULE) udc->gadget.is_otg = (config->otg != 0); #endif /* starting with omap1710 es2.0, clear toggle is a separate bit */ if (omap_readw(UDC_REV) >= 0x61) udc->clr_halt = UDC_RESET_EP | UDC_CLRDATA_TOGGLE; else udc->clr_halt = UDC_RESET_EP; /* USB general purpose IRQ: ep0, state changes, dma, etc */ status = request_irq(pdev->resource[1].start, omap_udc_irq, 0, driver_name, udc); if (status != 0) { ERR("can't get irq %d, err %d\n", (int) pdev->resource[1].start, status); goto cleanup1; } /* USB "non-iso" IRQ (PIO for all but ep0) */ status = request_irq(pdev->resource[2].start, omap_udc_pio_irq, 0, "omap_udc pio", udc); if (status != 0) { ERR("can't get irq %d, err %d\n", (int) pdev->resource[2].start, status); goto cleanup2; } #ifdef USE_ISO status = request_irq(pdev->resource[3].start, omap_udc_iso_irq, 0, "omap_udc iso", udc); if (status != 0) { ERR("can't get irq %d, err %d\n", (int) pdev->resource[3].start, status); goto cleanup3; } #endif if (cpu_is_omap16xx() || cpu_is_omap7xx()) { udc->dc_clk = dc_clk; udc->hhc_clk = hhc_clk; clk_disable(hhc_clk); clk_disable(dc_clk); } create_proc_file(); status = device_add(&udc->gadget.dev); if (status) goto cleanup4; status = usb_add_gadget_udc(&pdev->dev, &udc->gadget); if (!status) return status; /* If fail, fall through */ cleanup4: remove_proc_file(); #ifdef USE_ISO cleanup3: free_irq(pdev->resource[2].start, udc); #endif cleanup2: free_irq(pdev->resource[1].start, udc); cleanup1: kfree(udc); udc = NULL; cleanup0: if (!IS_ERR_OR_NULL(xceiv)) usb_put_phy(xceiv); if (cpu_is_omap16xx() || cpu_is_omap7xx()) { clk_disable(hhc_clk); clk_disable(dc_clk); clk_put(hhc_clk); clk_put(dc_clk); } release_mem_region(pdev->resource[0].start, pdev->resource[0].end - pdev->resource[0].start + 1); return status; } static int omap_udc_remove(struct platform_device *pdev) { DECLARE_COMPLETION_ONSTACK(done); if (!udc) return -ENODEV; usb_del_gadget_udc(&udc->gadget); if (udc->driver) return -EBUSY; udc->done = &done; pullup_disable(udc); if (!IS_ERR_OR_NULL(udc->transceiver)) { usb_put_phy(udc->transceiver); udc->transceiver = NULL; } omap_writew(0, UDC_SYSCON1); remove_proc_file(); #ifdef USE_ISO free_irq(pdev->resource[3].start, udc); #endif free_irq(pdev->resource[2].start, udc); free_irq(pdev->resource[1].start, udc); if (udc->dc_clk) { if (udc->clk_requested) omap_udc_enable_clock(0); clk_put(udc->hhc_clk); clk_put(udc->dc_clk); } release_mem_region(pdev->resource[0].start, pdev->resource[0].end - pdev->resource[0].start + 1); device_unregister(&udc->gadget.dev); wait_for_completion(&done); return 0; } /* suspend/resume/wakeup from sysfs (echo > power/state) or when the * system is forced into deep sleep * * REVISIT we should probably reject suspend requests when there's a host * session active, rather than disconnecting, at least on boards that can * report VBUS irqs (UDC_DEVSTAT.UDC_ATT). And in any case, we need to * make host resumes and VBUS detection trigger OMAP wakeup events; that * may involve talking to an external transceiver (e.g. isp1301). */ static int omap_udc_suspend(struct platform_device *dev, pm_message_t message) { u32 devstat; devstat = omap_readw(UDC_DEVSTAT); /* we're requesting 48 MHz clock if the pullup is enabled * (== we're attached to the host) and we're not suspended, * which would prevent entry to deep sleep... */ if ((devstat & UDC_ATT) != 0 && (devstat & UDC_SUS) == 0) { WARNING("session active; suspend requires disconnect\n"); omap_pullup(&udc->gadget, 0); } return 0; } static int omap_udc_resume(struct platform_device *dev) { DBG("resume + wakeup/SRP\n"); omap_pullup(&udc->gadget, 1); /* maybe the host would enumerate us if we nudged it */ msleep(100); return omap_wakeup(&udc->gadget); } /*-------------------------------------------------------------------------*/ static struct platform_driver udc_driver = { .probe = omap_udc_probe, .remove = omap_udc_remove, .suspend = omap_udc_suspend, .resume = omap_udc_resume, .driver = { .owner = THIS_MODULE, .name = (char *) driver_name, }, }; module_platform_driver(udc_driver); MODULE_DESCRIPTION(DRIVER_DESC); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:omap_udc");