/* Intel(R) Gigabit Ethernet Linux driver * Copyright(c) 2007-2015 Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, see . * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Contact Information: * e1000-devel Mailing List * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 */ #include #include #include "e1000_mac.h" #include "e1000_phy.h" static s32 igb_phy_setup_autoneg(struct e1000_hw *hw); static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl); static s32 igb_wait_autoneg(struct e1000_hw *hw); static s32 igb_set_master_slave_mode(struct e1000_hw *hw); /* Cable length tables */ static const u16 e1000_m88_cable_length_table[] = { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED }; static const u16 e1000_igp_2_cable_length_table[] = { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, 104, 109, 114, 118, 121, 124}; /** * igb_check_reset_block - Check if PHY reset is blocked * @hw: pointer to the HW structure * * Read the PHY management control register and check whether a PHY reset * is blocked. If a reset is not blocked return 0, otherwise * return E1000_BLK_PHY_RESET (12). **/ s32 igb_check_reset_block(struct e1000_hw *hw) { u32 manc; manc = rd32(E1000_MANC); return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0; } /** * igb_get_phy_id - Retrieve the PHY ID and revision * @hw: pointer to the HW structure * * Reads the PHY registers and stores the PHY ID and possibly the PHY * revision in the hardware structure. **/ s32 igb_get_phy_id(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = 0; u16 phy_id; ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id); if (ret_val) goto out; phy->id = (u32)(phy_id << 16); udelay(20); ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id); if (ret_val) goto out; phy->id |= (u32)(phy_id & PHY_REVISION_MASK); phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK); out: return ret_val; } /** * igb_phy_reset_dsp - Reset PHY DSP * @hw: pointer to the HW structure * * Reset the digital signal processor. **/ static s32 igb_phy_reset_dsp(struct e1000_hw *hw) { s32 ret_val = 0; if (!(hw->phy.ops.write_reg)) goto out; ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1); if (ret_val) goto out; ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0); out: return ret_val; } /** * igb_read_phy_reg_mdic - Read MDI control register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the MDI control regsiter in the PHY at offset and stores the * information read to data. **/ s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data) { struct e1000_phy_info *phy = &hw->phy; u32 i, mdic = 0; s32 ret_val = 0; if (offset > MAX_PHY_REG_ADDRESS) { hw_dbg("PHY Address %d is out of range\n", offset); ret_val = -E1000_ERR_PARAM; goto out; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = ((offset << E1000_MDIC_REG_SHIFT) | (phy->addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_READ)); wr32(E1000_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { udelay(50); mdic = rd32(E1000_MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { hw_dbg("MDI Read did not complete\n"); ret_val = -E1000_ERR_PHY; goto out; } if (mdic & E1000_MDIC_ERROR) { hw_dbg("MDI Error\n"); ret_val = -E1000_ERR_PHY; goto out; } *data = (u16) mdic; out: return ret_val; } /** * igb_write_phy_reg_mdic - Write MDI control register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write to register at offset * * Writes data to MDI control register in the PHY at offset. **/ s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data) { struct e1000_phy_info *phy = &hw->phy; u32 i, mdic = 0; s32 ret_val = 0; if (offset > MAX_PHY_REG_ADDRESS) { hw_dbg("PHY Address %d is out of range\n", offset); ret_val = -E1000_ERR_PARAM; goto out; } /* Set up Op-code, Phy Address, and register offset in the MDI * Control register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ mdic = (((u32)data) | (offset << E1000_MDIC_REG_SHIFT) | (phy->addr << E1000_MDIC_PHY_SHIFT) | (E1000_MDIC_OP_WRITE)); wr32(E1000_MDIC, mdic); /* Poll the ready bit to see if the MDI read completed * Increasing the time out as testing showed failures with * the lower time out */ for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) { udelay(50); mdic = rd32(E1000_MDIC); if (mdic & E1000_MDIC_READY) break; } if (!(mdic & E1000_MDIC_READY)) { hw_dbg("MDI Write did not complete\n"); ret_val = -E1000_ERR_PHY; goto out; } if (mdic & E1000_MDIC_ERROR) { hw_dbg("MDI Error\n"); ret_val = -E1000_ERR_PHY; goto out; } out: return ret_val; } /** * igb_read_phy_reg_i2c - Read PHY register using i2c * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Reads the PHY register at offset using the i2c interface and stores the * retrieved information in data. **/ s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data) { struct e1000_phy_info *phy = &hw->phy; u32 i, i2ccmd = 0; /* Set up Op-code, Phy Address, and register address in the I2CCMD * register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | (E1000_I2CCMD_OPCODE_READ)); wr32(E1000_I2CCMD, i2ccmd); /* Poll the ready bit to see if the I2C read completed */ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { udelay(50); i2ccmd = rd32(E1000_I2CCMD); if (i2ccmd & E1000_I2CCMD_READY) break; } if (!(i2ccmd & E1000_I2CCMD_READY)) { hw_dbg("I2CCMD Read did not complete\n"); return -E1000_ERR_PHY; } if (i2ccmd & E1000_I2CCMD_ERROR) { hw_dbg("I2CCMD Error bit set\n"); return -E1000_ERR_PHY; } /* Need to byte-swap the 16-bit value. */ *data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00); return 0; } /** * igb_write_phy_reg_i2c - Write PHY register using i2c * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Writes the data to PHY register at the offset using the i2c interface. **/ s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data) { struct e1000_phy_info *phy = &hw->phy; u32 i, i2ccmd = 0; u16 phy_data_swapped; /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/ if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) { hw_dbg("PHY I2C Address %d is out of range.\n", hw->phy.addr); return -E1000_ERR_CONFIG; } /* Swap the data bytes for the I2C interface */ phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00); /* Set up Op-code, Phy Address, and register address in the I2CCMD * register. The MAC will take care of interfacing with the * PHY to retrieve the desired data. */ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) | E1000_I2CCMD_OPCODE_WRITE | phy_data_swapped); wr32(E1000_I2CCMD, i2ccmd); /* Poll the ready bit to see if the I2C read completed */ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { udelay(50); i2ccmd = rd32(E1000_I2CCMD); if (i2ccmd & E1000_I2CCMD_READY) break; } if (!(i2ccmd & E1000_I2CCMD_READY)) { hw_dbg("I2CCMD Write did not complete\n"); return -E1000_ERR_PHY; } if (i2ccmd & E1000_I2CCMD_ERROR) { hw_dbg("I2CCMD Error bit set\n"); return -E1000_ERR_PHY; } return 0; } /** * igb_read_sfp_data_byte - Reads SFP module data. * @hw: pointer to the HW structure * @offset: byte location offset to be read * @data: read data buffer pointer * * Reads one byte from SFP module data stored * in SFP resided EEPROM memory or SFP diagnostic area. * Function should be called with * E1000_I2CCMD_SFP_DATA_ADDR() for SFP module database access * E1000_I2CCMD_SFP_DIAG_ADDR() for SFP diagnostics parameters * access **/ s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data) { u32 i = 0; u32 i2ccmd = 0; u32 data_local = 0; if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) { hw_dbg("I2CCMD command address exceeds upper limit\n"); return -E1000_ERR_PHY; } /* Set up Op-code, EEPROM Address,in the I2CCMD * register. The MAC will take care of interfacing with the * EEPROM to retrieve the desired data. */ i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) | E1000_I2CCMD_OPCODE_READ); wr32(E1000_I2CCMD, i2ccmd); /* Poll the ready bit to see if the I2C read completed */ for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) { udelay(50); data_local = rd32(E1000_I2CCMD); if (data_local & E1000_I2CCMD_READY) break; } if (!(data_local & E1000_I2CCMD_READY)) { hw_dbg("I2CCMD Read did not complete\n"); return -E1000_ERR_PHY; } if (data_local & E1000_I2CCMD_ERROR) { hw_dbg("I2CCMD Error bit set\n"); return -E1000_ERR_PHY; } *data = (u8) data_local & 0xFF; return 0; } /** * igb_read_phy_reg_igp - Read igp PHY register * @hw: pointer to the HW structure * @offset: register offset to be read * @data: pointer to the read data * * Acquires semaphore, if necessary, then reads the PHY register at offset * and storing the retrieved information in data. Release any acquired * semaphores before exiting. **/ s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val = 0; if (!(hw->phy.ops.acquire)) goto out; ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; if (offset > MAX_PHY_MULTI_PAGE_REG) { ret_val = igb_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, (u16)offset); if (ret_val) { hw->phy.ops.release(hw); goto out; } } ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * igb_write_phy_reg_igp - Write igp PHY register * @hw: pointer to the HW structure * @offset: register offset to write to * @data: data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val = 0; if (!(hw->phy.ops.acquire)) goto out; ret_val = hw->phy.ops.acquire(hw); if (ret_val) goto out; if (offset > MAX_PHY_MULTI_PAGE_REG) { ret_val = igb_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, (u16)offset); if (ret_val) { hw->phy.ops.release(hw); goto out; } } ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset, data); hw->phy.ops.release(hw); out: return ret_val; } /** * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link * @hw: pointer to the HW structure * * Sets up Carrier-sense on Transmit and downshift values. **/ s32 igb_copper_link_setup_82580(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; if (phy->reset_disable) { ret_val = 0; goto out; } if (phy->type == e1000_phy_82580) { ret_val = hw->phy.ops.reset(hw); if (ret_val) { hw_dbg("Error resetting the PHY.\n"); goto out; } } /* Enable CRS on TX. This must be set for half-duplex operation. */ ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data); if (ret_val) goto out; phy_data |= I82580_CFG_ASSERT_CRS_ON_TX; /* Enable downshift */ phy_data |= I82580_CFG_ENABLE_DOWNSHIFT; ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data); if (ret_val) goto out; /* Set MDI/MDIX mode */ ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); if (ret_val) goto out; phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; /* Options: * 0 - Auto (default) * 1 - MDI mode * 2 - MDI-X mode */ switch (hw->phy.mdix) { case 1: break; case 2: phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX; break; case 0: default: phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX; break; } ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); out: return ret_val; } /** * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link * @hw: pointer to the HW structure * * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock * and downshift values are set also. **/ s32 igb_copper_link_setup_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; if (phy->reset_disable) { ret_val = 0; goto out; } /* Enable CRS on TX. This must be set for half-duplex operation. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; switch (phy->mdix) { case 1: phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; break; case 2: phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; break; case 3: phy_data |= M88E1000_PSCR_AUTO_X_1000T; break; case 0: default: phy_data |= M88E1000_PSCR_AUTO_X_MODE; break; } /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; if (phy->disable_polarity_correction == 1) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) goto out; if (phy->revision < E1000_REVISION_4) { /* Force TX_CLK in the Extended PHY Specific Control Register * to 25MHz clock. */ ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy_data |= M88E1000_EPSCR_TX_CLK_25; if ((phy->revision == E1000_REVISION_2) && (phy->id == M88E1111_I_PHY_ID)) { /* 82573L PHY - set the downshift counter to 5x. */ phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK; phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; } else { /* Configure Master and Slave downshift values */ phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); } ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) goto out; } /* Commit the changes. */ ret_val = igb_phy_sw_reset(hw); if (ret_val) { hw_dbg("Error committing the PHY changes\n"); goto out; } out: return ret_val; } /** * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link * @hw: pointer to the HW structure * * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's. * Also enables and sets the downshift parameters. **/ s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; if (phy->reset_disable) return 0; /* Enable CRS on Tx. This must be set for half-duplex operation. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) return ret_val; /* Options: * MDI/MDI-X = 0 (default) * 0 - Auto for all speeds * 1 - MDI mode * 2 - MDI-X mode * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) */ phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; switch (phy->mdix) { case 1: phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; break; case 2: phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; break; case 3: /* M88E1112 does not support this mode) */ if (phy->id != M88E1112_E_PHY_ID) { phy_data |= M88E1000_PSCR_AUTO_X_1000T; break; } case 0: default: phy_data |= M88E1000_PSCR_AUTO_X_MODE; break; } /* Options: * disable_polarity_correction = 0 (default) * Automatic Correction for Reversed Cable Polarity * 0 - Disabled * 1 - Enabled */ phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; if (phy->disable_polarity_correction == 1) phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; /* Enable downshift and setting it to X6 */ if (phy->id == M88E1543_E_PHY_ID) { phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; ret_val = igb_phy_sw_reset(hw); if (ret_val) { hw_dbg("Error committing the PHY changes\n"); return ret_val; } } phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK; phy_data |= I347AT4_PSCR_DOWNSHIFT_6X; phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) return ret_val; /* Commit the changes. */ ret_val = igb_phy_sw_reset(hw); if (ret_val) { hw_dbg("Error committing the PHY changes\n"); return ret_val; } ret_val = igb_set_master_slave_mode(hw); if (ret_val) return ret_val; return 0; } /** * igb_copper_link_setup_igp - Setup igp PHY's for copper link * @hw: pointer to the HW structure * * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for * igp PHY's. **/ s32 igb_copper_link_setup_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; if (phy->reset_disable) { ret_val = 0; goto out; } ret_val = phy->ops.reset(hw); if (ret_val) { hw_dbg("Error resetting the PHY.\n"); goto out; } /* Wait 100ms for MAC to configure PHY from NVM settings, to avoid * timeout issues when LFS is enabled. */ msleep(100); /* The NVM settings will configure LPLU in D3 for * non-IGP1 PHYs. */ if (phy->type == e1000_phy_igp) { /* disable lplu d3 during driver init */ if (phy->ops.set_d3_lplu_state) ret_val = phy->ops.set_d3_lplu_state(hw, false); if (ret_val) { hw_dbg("Error Disabling LPLU D3\n"); goto out; } } /* disable lplu d0 during driver init */ ret_val = phy->ops.set_d0_lplu_state(hw, false); if (ret_val) { hw_dbg("Error Disabling LPLU D0\n"); goto out; } /* Configure mdi-mdix settings */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCR_AUTO_MDIX; switch (phy->mdix) { case 1: data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 2: data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; break; case 0: default: data |= IGP01E1000_PSCR_AUTO_MDIX; break; } ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data); if (ret_val) goto out; /* set auto-master slave resolution settings */ if (hw->mac.autoneg) { /* when autonegotiation advertisement is only 1000Mbps then we * should disable SmartSpeed and enable Auto MasterSlave * resolution as hardware default. */ if (phy->autoneg_advertised == ADVERTISE_1000_FULL) { /* Disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; /* Set auto Master/Slave resolution process */ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); if (ret_val) goto out; data &= ~CR_1000T_MS_ENABLE; ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); if (ret_val) goto out; } ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data); if (ret_val) goto out; /* load defaults for future use */ phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ? ((data & CR_1000T_MS_VALUE) ? e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; switch (phy->ms_type) { case e1000_ms_force_master: data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); break; case e1000_ms_force_slave: data |= CR_1000T_MS_ENABLE; data &= ~(CR_1000T_MS_VALUE); break; case e1000_ms_auto: data &= ~CR_1000T_MS_ENABLE; default: break; } ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data); if (ret_val) goto out; } out: return ret_val; } /** * igb_copper_link_autoneg - Setup/Enable autoneg for copper link * @hw: pointer to the HW structure * * Performs initial bounds checking on autoneg advertisement parameter, then * configure to advertise the full capability. Setup the PHY to autoneg * and restart the negotiation process between the link partner. If * autoneg_wait_to_complete, then wait for autoneg to complete before exiting. **/ static s32 igb_copper_link_autoneg(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_ctrl; /* Perform some bounds checking on the autoneg advertisement * parameter. */ phy->autoneg_advertised &= phy->autoneg_mask; /* If autoneg_advertised is zero, we assume it was not defaulted * by the calling code so we set to advertise full capability. */ if (phy->autoneg_advertised == 0) phy->autoneg_advertised = phy->autoneg_mask; hw_dbg("Reconfiguring auto-neg advertisement params\n"); ret_val = igb_phy_setup_autoneg(hw); if (ret_val) { hw_dbg("Error Setting up Auto-Negotiation\n"); goto out; } hw_dbg("Restarting Auto-Neg\n"); /* Restart auto-negotiation by setting the Auto Neg Enable bit and * the Auto Neg Restart bit in the PHY control register. */ ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); if (ret_val) goto out; phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl); if (ret_val) goto out; /* Does the user want to wait for Auto-Neg to complete here, or * check at a later time (for example, callback routine). */ if (phy->autoneg_wait_to_complete) { ret_val = igb_wait_autoneg(hw); if (ret_val) { hw_dbg("Error while waiting for autoneg to complete\n"); goto out; } } hw->mac.get_link_status = true; out: return ret_val; } /** * igb_phy_setup_autoneg - Configure PHY for auto-negotiation * @hw: pointer to the HW structure * * Reads the MII auto-neg advertisement register and/or the 1000T control * register and if the PHY is already setup for auto-negotiation, then * return successful. Otherwise, setup advertisement and flow control to * the appropriate values for the wanted auto-negotiation. **/ static s32 igb_phy_setup_autoneg(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 mii_autoneg_adv_reg; u16 mii_1000t_ctrl_reg = 0; phy->autoneg_advertised &= phy->autoneg_mask; /* Read the MII Auto-Neg Advertisement Register (Address 4). */ ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); if (ret_val) goto out; if (phy->autoneg_mask & ADVERTISE_1000_FULL) { /* Read the MII 1000Base-T Control Register (Address 9). */ ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); if (ret_val) goto out; } /* Need to parse both autoneg_advertised and fc and set up * the appropriate PHY registers. First we will parse for * autoneg_advertised software override. Since we can advertise * a plethora of combinations, we need to check each bit * individually. */ /* First we clear all the 10/100 mb speed bits in the Auto-Neg * Advertisement Register (Address 4) and the 1000 mb speed bits in * the 1000Base-T Control Register (Address 9). */ mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS | NWAY_AR_100TX_HD_CAPS | NWAY_AR_10T_FD_CAPS | NWAY_AR_10T_HD_CAPS); mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS); hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised); /* Do we want to advertise 10 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_HALF) { hw_dbg("Advertise 10mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; } /* Do we want to advertise 10 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_10_FULL) { hw_dbg("Advertise 10mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; } /* Do we want to advertise 100 Mb Half Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_HALF) { hw_dbg("Advertise 100mb Half duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; } /* Do we want to advertise 100 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_100_FULL) { hw_dbg("Advertise 100mb Full duplex\n"); mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; } /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ if (phy->autoneg_advertised & ADVERTISE_1000_HALF) hw_dbg("Advertise 1000mb Half duplex request denied!\n"); /* Do we want to advertise 1000 Mb Full Duplex? */ if (phy->autoneg_advertised & ADVERTISE_1000_FULL) { hw_dbg("Advertise 1000mb Full duplex\n"); mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; } /* Check for a software override of the flow control settings, and * setup the PHY advertisement registers accordingly. If * auto-negotiation is enabled, then software will have to set the * "PAUSE" bits to the correct value in the Auto-Negotiation * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto- * negotiation. * * The possible values of the "fc" parameter are: * 0: Flow control is completely disabled * 1: Rx flow control is enabled (we can receive pause frames * but not send pause frames). * 2: Tx flow control is enabled (we can send pause frames * but we do not support receiving pause frames). * 3: Both Rx and TX flow control (symmetric) are enabled. * other: No software override. The flow control configuration * in the EEPROM is used. */ switch (hw->fc.current_mode) { case e1000_fc_none: /* Flow control (RX & TX) is completely disabled by a * software over-ride. */ mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_rx_pause: /* RX Flow control is enabled, and TX Flow control is * disabled, by a software over-ride. * * Since there really isn't a way to advertise that we are * capable of RX Pause ONLY, we will advertise that we * support both symmetric and asymmetric RX PAUSE. Later * (in e1000_config_fc_after_link_up) we will disable the * hw's ability to send PAUSE frames. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; case e1000_fc_tx_pause: /* TX Flow control is enabled, and RX Flow control is * disabled, by a software over-ride. */ mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; break; case e1000_fc_full: /* Flow control (both RX and TX) is enabled by a software * over-ride. */ mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); break; default: hw_dbg("Flow control param set incorrectly\n"); ret_val = -E1000_ERR_CONFIG; goto out; } ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); if (ret_val) goto out; hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); if (phy->autoneg_mask & ADVERTISE_1000_FULL) { ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); if (ret_val) goto out; } out: return ret_val; } /** * igb_setup_copper_link - Configure copper link settings * @hw: pointer to the HW structure * * Calls the appropriate function to configure the link for auto-neg or forced * speed and duplex. Then we check for link, once link is established calls * to configure collision distance and flow control are called. If link is * not established, we return -E1000_ERR_PHY (-2). **/ s32 igb_setup_copper_link(struct e1000_hw *hw) { s32 ret_val; bool link; if (hw->mac.autoneg) { /* Setup autoneg and flow control advertisement and perform * autonegotiation. */ ret_val = igb_copper_link_autoneg(hw); if (ret_val) goto out; } else { /* PHY will be set to 10H, 10F, 100H or 100F * depending on user settings. */ hw_dbg("Forcing Speed and Duplex\n"); ret_val = hw->phy.ops.force_speed_duplex(hw); if (ret_val) { hw_dbg("Error Forcing Speed and Duplex\n"); goto out; } } /* Check link status. Wait up to 100 microseconds for link to become * valid. */ ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link); if (ret_val) goto out; if (link) { hw_dbg("Valid link established!!!\n"); igb_config_collision_dist(hw); ret_val = igb_config_fc_after_link_up(hw); } else { hw_dbg("Unable to establish link!!!\n"); } out: return ret_val; } /** * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY * @hw: pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. Clears the * auto-crossover to force MDI manually. Waits for link and returns * successful if link up is successful, else -E1000_ERR_PHY (-2). **/ s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) goto out; igb_phy_force_speed_duplex_setup(hw, &phy_data); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); if (ret_val) goto out; /* Clear Auto-Crossover to force MDI manually. IGP requires MDI * forced whenever speed and duplex are forced. */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); if (ret_val) goto out; phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); if (ret_val) goto out; hw_dbg("IGP PSCR: %X\n", phy_data); udelay(1); if (phy->autoneg_wait_to_complete) { hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n"); ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); if (ret_val) goto out; if (!link) hw_dbg("Link taking longer than expected.\n"); /* Try once more */ ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link); if (ret_val) goto out; } out: return ret_val; } /** * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY * @hw: pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. Clears the * auto-crossover to force MDI manually. Resets the PHY to commit the * changes. If time expires while waiting for link up, we reset the DSP. * After reset, TX_CLK and CRS on TX must be set. Return successful upon * successful completion, else return corresponding error code. **/ s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; /* I210 and I211 devices support Auto-Crossover in forced operation. */ if (phy->type != e1000_phy_i210) { /* Clear Auto-Crossover to force MDI manually. M88E1000 * requires MDI forced whenever speed and duplex are forced. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); if (ret_val) goto out; hw_dbg("M88E1000 PSCR: %X\n", phy_data); } ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) goto out; igb_phy_force_speed_duplex_setup(hw, &phy_data); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); if (ret_val) goto out; /* Reset the phy to commit changes. */ ret_val = igb_phy_sw_reset(hw); if (ret_val) goto out; if (phy->autoneg_wait_to_complete) { hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n"); ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) goto out; if (!link) { bool reset_dsp = true; switch (hw->phy.id) { case I347AT4_E_PHY_ID: case M88E1112_E_PHY_ID: case M88E1543_E_PHY_ID: case M88E1512_E_PHY_ID: case I210_I_PHY_ID: reset_dsp = false; break; default: if (hw->phy.type != e1000_phy_m88) reset_dsp = false; break; } if (!reset_dsp) { hw_dbg("Link taking longer than expected.\n"); } else { /* We didn't get link. * Reset the DSP and cross our fingers. */ ret_val = phy->ops.write_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x001d); if (ret_val) goto out; ret_val = igb_phy_reset_dsp(hw); if (ret_val) goto out; } } /* Try once more */ ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) goto out; } if (hw->phy.type != e1000_phy_m88 || hw->phy.id == I347AT4_E_PHY_ID || hw->phy.id == M88E1112_E_PHY_ID || hw->phy.id == M88E1543_E_PHY_ID || hw->phy.id == M88E1512_E_PHY_ID || hw->phy.id == I210_I_PHY_ID) goto out; ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; /* Resetting the phy means we need to re-force TX_CLK in the * Extended PHY Specific Control Register to 25MHz clock from * the reset value of 2.5MHz. */ phy_data |= M88E1000_EPSCR_TX_CLK_25; ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); if (ret_val) goto out; /* In addition, we must re-enable CRS on Tx for both half and full * duplex. */ ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); out: return ret_val; } /** * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex * @hw: pointer to the HW structure * @phy_ctrl: pointer to current value of PHY_CONTROL * * Forces speed and duplex on the PHY by doing the following: disable flow * control, force speed/duplex on the MAC, disable auto speed detection, * disable auto-negotiation, configure duplex, configure speed, configure * the collision distance, write configuration to CTRL register. The * caller must write to the PHY_CONTROL register for these settings to * take affect. **/ static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw, u16 *phy_ctrl) { struct e1000_mac_info *mac = &hw->mac; u32 ctrl; /* Turn off flow control when forcing speed/duplex */ hw->fc.current_mode = e1000_fc_none; /* Force speed/duplex on the mac */ ctrl = rd32(E1000_CTRL); ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); ctrl &= ~E1000_CTRL_SPD_SEL; /* Disable Auto Speed Detection */ ctrl &= ~E1000_CTRL_ASDE; /* Disable autoneg on the phy */ *phy_ctrl &= ~MII_CR_AUTO_NEG_EN; /* Forcing Full or Half Duplex? */ if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) { ctrl &= ~E1000_CTRL_FD; *phy_ctrl &= ~MII_CR_FULL_DUPLEX; hw_dbg("Half Duplex\n"); } else { ctrl |= E1000_CTRL_FD; *phy_ctrl |= MII_CR_FULL_DUPLEX; hw_dbg("Full Duplex\n"); } /* Forcing 10mb or 100mb? */ if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) { ctrl |= E1000_CTRL_SPD_100; *phy_ctrl |= MII_CR_SPEED_100; *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); hw_dbg("Forcing 100mb\n"); } else { ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); *phy_ctrl |= MII_CR_SPEED_10; *phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); hw_dbg("Forcing 10mb\n"); } igb_config_collision_dist(hw); wr32(E1000_CTRL, ctrl); } /** * igb_set_d3_lplu_state - Sets low power link up state for D3 * @hw: pointer to the HW structure * @active: boolean used to enable/disable lplu * * Success returns 0, Failure returns 1 * * The low power link up (lplu) state is set to the power management level D3 * and SmartSpeed is disabled when active is true, else clear lplu for D3 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU * is used during Dx states where the power conservation is most important. * During driver activity, SmartSpeed should be enabled so performance is * maintained. **/ s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = 0; u16 data; if (!(hw->phy.ops.read_reg)) goto out; ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data); if (ret_val) goto out; if (!active) { data &= ~IGP02E1000_PM_D3_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) goto out; /* LPLU and SmartSpeed are mutually exclusive. LPLU is used * during Dx states where the power conservation is most * important. During driver activity we should enable * SmartSpeed, so performance is maintained. */ if (phy->smart_speed == e1000_smart_speed_on) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data |= IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } else if (phy->smart_speed == e1000_smart_speed_off) { ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); if (ret_val) goto out; } } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) || (phy->autoneg_advertised == E1000_ALL_NOT_GIG) || (phy->autoneg_advertised == E1000_ALL_10_SPEED)) { data |= IGP02E1000_PM_D3_LPLU; ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT, data); if (ret_val) goto out; /* When LPLU is enabled, we should disable SmartSpeed */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &data); if (ret_val) goto out; data &= ~IGP01E1000_PSCFR_SMART_SPEED; ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG, data); } out: return ret_val; } /** * igb_check_downshift - Checks whether a downshift in speed occurred * @hw: pointer to the HW structure * * Success returns 0, Failure returns 1 * * A downshift is detected by querying the PHY link health. **/ s32 igb_check_downshift(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, offset, mask; switch (phy->type) { case e1000_phy_i210: case e1000_phy_m88: case e1000_phy_gg82563: offset = M88E1000_PHY_SPEC_STATUS; mask = M88E1000_PSSR_DOWNSHIFT; break; case e1000_phy_igp_2: case e1000_phy_igp: case e1000_phy_igp_3: offset = IGP01E1000_PHY_LINK_HEALTH; mask = IGP01E1000_PLHR_SS_DOWNGRADE; break; default: /* speed downshift not supported */ phy->speed_downgraded = false; ret_val = 0; goto out; } ret_val = phy->ops.read_reg(hw, offset, &phy_data); if (!ret_val) phy->speed_downgraded = (phy_data & mask) ? true : false; out: return ret_val; } /** * igb_check_polarity_m88 - Checks the polarity. * @hw: pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) * * Polarity is determined based on the PHY specific status register. **/ s32 igb_check_polarity_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data); if (!ret_val) phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal; return ret_val; } /** * igb_check_polarity_igp - Checks the polarity. * @hw: pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) * * Polarity is determined based on the PHY port status register, and the * current speed (since there is no polarity at 100Mbps). **/ static s32 igb_check_polarity_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data, offset, mask; /* Polarity is determined based on the speed of * our connection. */ ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); if (ret_val) goto out; if ((data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { offset = IGP01E1000_PHY_PCS_INIT_REG; mask = IGP01E1000_PHY_POLARITY_MASK; } else { /* This really only applies to 10Mbps since * there is no polarity for 100Mbps (always 0). */ offset = IGP01E1000_PHY_PORT_STATUS; mask = IGP01E1000_PSSR_POLARITY_REVERSED; } ret_val = phy->ops.read_reg(hw, offset, &data); if (!ret_val) phy->cable_polarity = (data & mask) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal; out: return ret_val; } /** * igb_wait_autoneg - Wait for auto-neg completion * @hw: pointer to the HW structure * * Waits for auto-negotiation to complete or for the auto-negotiation time * limit to expire, which ever happens first. **/ static s32 igb_wait_autoneg(struct e1000_hw *hw) { s32 ret_val = 0; u16 i, phy_status; /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */ for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) { ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_AUTONEG_COMPLETE) break; msleep(100); } /* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation * has completed. */ return ret_val; } /** * igb_phy_has_link - Polls PHY for link * @hw: pointer to the HW structure * @iterations: number of times to poll for link * @usec_interval: delay between polling attempts * @success: pointer to whether polling was successful or not * * Polls the PHY status register for link, 'iterations' number of times. **/ s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations, u32 usec_interval, bool *success) { s32 ret_val = 0; u16 i, phy_status; for (i = 0; i < iterations; i++) { /* Some PHYs require the PHY_STATUS register to be read * twice due to the link bit being sticky. No harm doing * it across the board. */ ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val && usec_interval > 0) { /* If the first read fails, another entity may have * ownership of the resources, wait and try again to * see if they have relinquished the resources yet. */ if (usec_interval >= 1000) mdelay(usec_interval/1000); else udelay(usec_interval); } ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status); if (ret_val) break; if (phy_status & MII_SR_LINK_STATUS) break; if (usec_interval >= 1000) mdelay(usec_interval/1000); else udelay(usec_interval); } *success = (i < iterations) ? true : false; return ret_val; } /** * igb_get_cable_length_m88 - Determine cable length for m88 PHY * @hw: pointer to the HW structure * * Reads the PHY specific status register to retrieve the cable length * information. The cable length is determined by averaging the minimum and * maximum values to get the "average" cable length. The m88 PHY has four * possible cable length values, which are: * Register Value Cable Length * 0 < 50 meters * 1 50 - 80 meters * 2 80 - 110 meters * 3 110 - 140 meters * 4 > 140 meters **/ s32 igb_get_cable_length_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, index; ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) goto out; index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT; if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) { ret_val = -E1000_ERR_PHY; goto out; } phy->min_cable_length = e1000_m88_cable_length_table[index]; phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; out: return ret_val; } s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, phy_data2, index, default_page, is_cm; switch (hw->phy.id) { case I210_I_PHY_ID: /* Get cable length from PHY Cable Diagnostics Control Reg */ ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + (I347AT4_PCDL + phy->addr), &phy_data); if (ret_val) return ret_val; /* Check if the unit of cable length is meters or cm */ ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) + I347AT4_PCDC, &phy_data2); if (ret_val) return ret_val; is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); /* Populate the phy structure with cable length in meters */ phy->min_cable_length = phy_data / (is_cm ? 100 : 1); phy->max_cable_length = phy_data / (is_cm ? 100 : 1); phy->cable_length = phy_data / (is_cm ? 100 : 1); break; case M88E1543_E_PHY_ID: case M88E1512_E_PHY_ID: case I347AT4_E_PHY_ID: /* Remember the original page select and set it to 7 */ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, &default_page); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07); if (ret_val) goto out; /* Get cable length from PHY Cable Diagnostics Control Reg */ ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr), &phy_data); if (ret_val) goto out; /* Check if the unit of cable length is meters or cm */ ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2); if (ret_val) goto out; is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT); /* Populate the phy structure with cable length in meters */ phy->min_cable_length = phy_data / (is_cm ? 100 : 1); phy->max_cable_length = phy_data / (is_cm ? 100 : 1); phy->cable_length = phy_data / (is_cm ? 100 : 1); /* Reset the page selec to its original value */ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, default_page); if (ret_val) goto out; break; case M88E1112_E_PHY_ID: /* Remember the original page select and set it to 5 */ ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT, &default_page); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE, &phy_data); if (ret_val) goto out; index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> M88E1000_PSSR_CABLE_LENGTH_SHIFT; if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) { ret_val = -E1000_ERR_PHY; goto out; } phy->min_cable_length = e1000_m88_cable_length_table[index]; phy->max_cable_length = e1000_m88_cable_length_table[index + 1]; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; /* Reset the page select to its original value */ ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, default_page); if (ret_val) goto out; break; default: ret_val = -E1000_ERR_PHY; goto out; } out: return ret_val; } /** * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY * @hw: pointer to the HW structure * * The automatic gain control (agc) normalizes the amplitude of the * received signal, adjusting for the attenuation produced by the * cable. By reading the AGC registers, which represent the * combination of coarse and fine gain value, the value can be put * into a lookup table to obtain the approximate cable length * for each channel. **/ s32 igb_get_cable_length_igp_2(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = 0; u16 phy_data, i, agc_value = 0; u16 cur_agc_index, max_agc_index = 0; u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1; static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = { IGP02E1000_PHY_AGC_A, IGP02E1000_PHY_AGC_B, IGP02E1000_PHY_AGC_C, IGP02E1000_PHY_AGC_D }; /* Read the AGC registers for all channels */ for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data); if (ret_val) goto out; /* Getting bits 15:9, which represent the combination of * coarse and fine gain values. The result is a number * that can be put into the lookup table to obtain the * approximate cable length. */ cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & IGP02E1000_AGC_LENGTH_MASK; /* Array index bound check. */ if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) || (cur_agc_index == 0)) { ret_val = -E1000_ERR_PHY; goto out; } /* Remove min & max AGC values from calculation. */ if (e1000_igp_2_cable_length_table[min_agc_index] > e1000_igp_2_cable_length_table[cur_agc_index]) min_agc_index = cur_agc_index; if (e1000_igp_2_cable_length_table[max_agc_index] < e1000_igp_2_cable_length_table[cur_agc_index]) max_agc_index = cur_agc_index; agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; } agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + e1000_igp_2_cable_length_table[max_agc_index]); agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); /* Calculate cable length with the error range of +/- 10 meters. */ phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? (agc_value - IGP02E1000_AGC_RANGE) : 0; phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE; phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2; out: return ret_val; } /** * igb_get_phy_info_m88 - Retrieve PHY information * @hw: pointer to the HW structure * * Valid for only copper links. Read the PHY status register (sticky read) * to verify that link is up. Read the PHY special control register to * determine the polarity and 10base-T extended distance. Read the PHY * special status register to determine MDI/MDIx and current speed. If * speed is 1000, then determine cable length, local and remote receiver. **/ s32 igb_get_phy_info_m88(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; if (phy->media_type != e1000_media_type_copper) { hw_dbg("Phy info is only valid for copper media\n"); ret_val = -E1000_ERR_CONFIG; goto out; } ret_val = igb_phy_has_link(hw, 1, 0, &link); if (ret_val) goto out; if (!link) { hw_dbg("Phy info is only valid if link is up\n"); ret_val = -E1000_ERR_CONFIG; goto out; } ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); if (ret_val) goto out; phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL) ? true : false; ret_val = igb_check_polarity_m88(hw); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); if (ret_val) goto out; phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false; if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { ret_val = phy->ops.get_cable_length(hw); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data); if (ret_val) goto out; phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; } else { /* Set values to "undefined" */ phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; phy->local_rx = e1000_1000t_rx_status_undefined; phy->remote_rx = e1000_1000t_rx_status_undefined; } out: return ret_val; } /** * igb_get_phy_info_igp - Retrieve igp PHY information * @hw: pointer to the HW structure * * Read PHY status to determine if link is up. If link is up, then * set/determine 10base-T extended distance and polarity correction. Read * PHY port status to determine MDI/MDIx and speed. Based on the speed, * determine on the cable length, local and remote receiver. **/ s32 igb_get_phy_info_igp(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; bool link; ret_val = igb_phy_has_link(hw, 1, 0, &link); if (ret_val) goto out; if (!link) { hw_dbg("Phy info is only valid if link is up\n"); ret_val = -E1000_ERR_CONFIG; goto out; } phy->polarity_correction = true; ret_val = igb_check_polarity_igp(hw); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data); if (ret_val) goto out; phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false; if ((data & IGP01E1000_PSSR_SPEED_MASK) == IGP01E1000_PSSR_SPEED_1000MBPS) { ret_val = phy->ops.get_cable_length(hw); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); if (ret_val) goto out; phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; } else { phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; phy->local_rx = e1000_1000t_rx_status_undefined; phy->remote_rx = e1000_1000t_rx_status_undefined; } out: return ret_val; } /** * igb_phy_sw_reset - PHY software reset * @hw: pointer to the HW structure * * Does a software reset of the PHY by reading the PHY control register and * setting/write the control register reset bit to the PHY. **/ s32 igb_phy_sw_reset(struct e1000_hw *hw) { s32 ret_val = 0; u16 phy_ctrl; if (!(hw->phy.ops.read_reg)) goto out; ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl); if (ret_val) goto out; phy_ctrl |= MII_CR_RESET; ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl); if (ret_val) goto out; udelay(1); out: return ret_val; } /** * igb_phy_hw_reset - PHY hardware reset * @hw: pointer to the HW structure * * Verify the reset block is not blocking us from resetting. Acquire * semaphore (if necessary) and read/set/write the device control reset * bit in the PHY. Wait the appropriate delay time for the device to * reset and release the semaphore (if necessary). **/ s32 igb_phy_hw_reset(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u32 ctrl; ret_val = igb_check_reset_block(hw); if (ret_val) { ret_val = 0; goto out; } ret_val = phy->ops.acquire(hw); if (ret_val) goto out; ctrl = rd32(E1000_CTRL); wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST); wrfl(); udelay(phy->reset_delay_us); wr32(E1000_CTRL, ctrl); wrfl(); udelay(150); phy->ops.release(hw); ret_val = phy->ops.get_cfg_done(hw); out: return ret_val; } /** * igb_phy_init_script_igp3 - Inits the IGP3 PHY * @hw: pointer to the HW structure * * Initializes a Intel Gigabit PHY3 when an EEPROM is not present. **/ s32 igb_phy_init_script_igp3(struct e1000_hw *hw) { hw_dbg("Running IGP 3 PHY init script\n"); /* PHY init IGP 3 */ /* Enable rise/fall, 10-mode work in class-A */ hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018); /* Remove all caps from Replica path filter */ hw->phy.ops.write_reg(hw, 0x2F52, 0x0000); /* Bias trimming for ADC, AFE and Driver (Default) */ hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24); /* Increase Hybrid poly bias */ hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0); /* Add 4% to TX amplitude in Giga mode */ hw->phy.ops.write_reg(hw, 0x2010, 0x10B0); /* Disable trimming (TTT) */ hw->phy.ops.write_reg(hw, 0x2011, 0x0000); /* Poly DC correction to 94.6% + 2% for all channels */ hw->phy.ops.write_reg(hw, 0x20DD, 0x249A); /* ABS DC correction to 95.9% */ hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3); /* BG temp curve trim */ hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE); /* Increasing ADC OPAMP stage 1 currents to max */ hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4); /* Force 1000 ( required for enabling PHY regs configuration) */ hw->phy.ops.write_reg(hw, 0x0000, 0x0140); /* Set upd_freq to 6 */ hw->phy.ops.write_reg(hw, 0x1F30, 0x1606); /* Disable NPDFE */ hw->phy.ops.write_reg(hw, 0x1F31, 0xB814); /* Disable adaptive fixed FFE (Default) */ hw->phy.ops.write_reg(hw, 0x1F35, 0x002A); /* Enable FFE hysteresis */ hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067); /* Fixed FFE for short cable lengths */ hw->phy.ops.write_reg(hw, 0x1F54, 0x0065); /* Fixed FFE for medium cable lengths */ hw->phy.ops.write_reg(hw, 0x1F55, 0x002A); /* Fixed FFE for long cable lengths */ hw->phy.ops.write_reg(hw, 0x1F56, 0x002A); /* Enable Adaptive Clip Threshold */ hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0); /* AHT reset limit to 1 */ hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF); /* Set AHT master delay to 127 msec */ hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC); /* Set scan bits for AHT */ hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF); /* Set AHT Preset bits */ hw->phy.ops.write_reg(hw, 0x1F79, 0x0210); /* Change integ_factor of channel A to 3 */ hw->phy.ops.write_reg(hw, 0x1895, 0x0003); /* Change prop_factor of channels BCD to 8 */ hw->phy.ops.write_reg(hw, 0x1796, 0x0008); /* Change cg_icount + enable integbp for channels BCD */ hw->phy.ops.write_reg(hw, 0x1798, 0xD008); /* Change cg_icount + enable integbp + change prop_factor_master * to 8 for channel A */ hw->phy.ops.write_reg(hw, 0x1898, 0xD918); /* Disable AHT in Slave mode on channel A */ hw->phy.ops.write_reg(hw, 0x187A, 0x0800); /* Enable LPLU and disable AN to 1000 in non-D0a states, * Enable SPD+B2B */ hw->phy.ops.write_reg(hw, 0x0019, 0x008D); /* Enable restart AN on an1000_dis change */ hw->phy.ops.write_reg(hw, 0x001B, 0x2080); /* Enable wh_fifo read clock in 10/100 modes */ hw->phy.ops.write_reg(hw, 0x0014, 0x0045); /* Restart AN, Speed selection is 1000 */ hw->phy.ops.write_reg(hw, 0x0000, 0x1340); return 0; } /** * igb_initialize_M88E1512_phy - Initialize M88E1512 PHY * @hw: pointer to the HW structure * * Initialize Marvel 1512 to work correctly with Avoton. **/ s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = 0; /* Switch to PHY page 0xFF. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); if (ret_val) goto out; /* Switch to PHY page 0xFB. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D); if (ret_val) goto out; /* Switch to PHY page 0x12. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); if (ret_val) goto out; /* Change mode to SGMII-to-Copper */ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); if (ret_val) goto out; /* Return the PHY to page 0. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); if (ret_val) goto out; ret_val = igb_phy_sw_reset(hw); if (ret_val) { hw_dbg("Error committing the PHY changes\n"); return ret_val; } /* msec_delay(1000); */ usleep_range(1000, 2000); out: return ret_val; } /** * igb_initialize_M88E1543_phy - Initialize M88E1512 PHY * @hw: pointer to the HW structure * * Initialize Marvell 1543 to work correctly with Avoton. **/ s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val = 0; /* Switch to PHY page 0xFF. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159); if (ret_val) goto out; /* Switch to PHY page 0xFB. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB); if (ret_val) goto out; ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D); if (ret_val) goto out; /* Switch to PHY page 0x12. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12); if (ret_val) goto out; /* Change mode to SGMII-to-Copper */ ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001); if (ret_val) goto out; /* Switch to PHY page 1. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1); if (ret_val) goto out; /* Change mode to 1000BASE-X/SGMII and autoneg enable */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140); if (ret_val) goto out; /* Return the PHY to page 0. */ ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0); if (ret_val) goto out; ret_val = igb_phy_sw_reset(hw); if (ret_val) { hw_dbg("Error committing the PHY changes\n"); return ret_val; } /* msec_delay(1000); */ usleep_range(1000, 2000); out: return ret_val; } /** * igb_power_up_phy_copper - Restore copper link in case of PHY power down * @hw: pointer to the HW structure * * In the case of a PHY power down to save power, or to turn off link during a * driver unload, restore the link to previous settings. **/ void igb_power_up_phy_copper(struct e1000_hw *hw) { u16 mii_reg = 0; /* The PHY will retain its settings across a power down/up cycle */ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); mii_reg &= ~MII_CR_POWER_DOWN; hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); } /** * igb_power_down_phy_copper - Power down copper PHY * @hw: pointer to the HW structure * * Power down PHY to save power when interface is down and wake on lan * is not enabled. **/ void igb_power_down_phy_copper(struct e1000_hw *hw) { u16 mii_reg = 0; /* The PHY will retain its settings across a power down/up cycle */ hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg); mii_reg |= MII_CR_POWER_DOWN; hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg); usleep_range(1000, 2000); } /** * igb_check_polarity_82580 - Checks the polarity. * @hw: pointer to the HW structure * * Success returns 0, Failure returns -E1000_ERR_PHY (-2) * * Polarity is determined based on the PHY specific status register. **/ static s32 igb_check_polarity_82580(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); if (!ret_val) phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY) ? e1000_rev_polarity_reversed : e1000_rev_polarity_normal; return ret_val; } /** * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY * @hw: pointer to the HW structure * * Calls the PHY setup function to force speed and duplex. Clears the * auto-crossover to force MDI manually. Waits for link and returns * successful if link up is successful, else -E1000_ERR_PHY (-2). **/ s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data; bool link; ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data); if (ret_val) goto out; igb_phy_force_speed_duplex_setup(hw, &phy_data); ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data); if (ret_val) goto out; /* Clear Auto-Crossover to force MDI manually. 82580 requires MDI * forced whenever speed and duplex are forced. */ ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data); if (ret_val) goto out; phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK; ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data); if (ret_val) goto out; hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data); udelay(1); if (phy->autoneg_wait_to_complete) { hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n"); ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) goto out; if (!link) hw_dbg("Link taking longer than expected.\n"); /* Try once more */ ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link); if (ret_val) goto out; } out: return ret_val; } /** * igb_get_phy_info_82580 - Retrieve I82580 PHY information * @hw: pointer to the HW structure * * Read PHY status to determine if link is up. If link is up, then * set/determine 10base-T extended distance and polarity correction. Read * PHY port status to determine MDI/MDIx and speed. Based on the speed, * determine on the cable length, local and remote receiver. **/ s32 igb_get_phy_info_82580(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 data; bool link; ret_val = igb_phy_has_link(hw, 1, 0, &link); if (ret_val) goto out; if (!link) { hw_dbg("Phy info is only valid if link is up\n"); ret_val = -E1000_ERR_CONFIG; goto out; } phy->polarity_correction = true; ret_val = igb_check_polarity_82580(hw); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data); if (ret_val) goto out; phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false; if ((data & I82580_PHY_STATUS2_SPEED_MASK) == I82580_PHY_STATUS2_SPEED_1000MBPS) { ret_val = hw->phy.ops.get_cable_length(hw); if (ret_val) goto out; ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data); if (ret_val) goto out; phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS) ? e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; } else { phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED; phy->local_rx = e1000_1000t_rx_status_undefined; phy->remote_rx = e1000_1000t_rx_status_undefined; } out: return ret_val; } /** * igb_get_cable_length_82580 - Determine cable length for 82580 PHY * @hw: pointer to the HW structure * * Reads the diagnostic status register and verifies result is valid before * placing it in the phy_cable_length field. **/ s32 igb_get_cable_length_82580(struct e1000_hw *hw) { struct e1000_phy_info *phy = &hw->phy; s32 ret_val; u16 phy_data, length; ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data); if (ret_val) goto out; length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >> I82580_DSTATUS_CABLE_LENGTH_SHIFT; if (length == E1000_CABLE_LENGTH_UNDEFINED) ret_val = -E1000_ERR_PHY; phy->cable_length = length; out: return ret_val; } /** * igb_write_phy_reg_gs40g - Write GS40G PHY register * @hw: pointer to the HW structure * @offset: lower half is register offset to write to * upper half is page to use. * @data: data to write at register offset * * Acquires semaphore, if necessary, then writes the data to PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data) { s32 ret_val; u16 page = offset >> GS40G_PAGE_SHIFT; offset = offset & GS40G_OFFSET_MASK; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); if (ret_val) goto release; ret_val = igb_write_phy_reg_mdic(hw, offset, data); release: hw->phy.ops.release(hw); return ret_val; } /** * igb_read_phy_reg_gs40g - Read GS40G PHY register * @hw: pointer to the HW structure * @offset: lower half is register offset to read to * upper half is page to use. * @data: data to read at register offset * * Acquires semaphore, if necessary, then reads the data in the PHY register * at the offset. Release any acquired semaphores before exiting. **/ s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data) { s32 ret_val; u16 page = offset >> GS40G_PAGE_SHIFT; offset = offset & GS40G_OFFSET_MASK; ret_val = hw->phy.ops.acquire(hw); if (ret_val) return ret_val; ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page); if (ret_val) goto release; ret_val = igb_read_phy_reg_mdic(hw, offset, data); release: hw->phy.ops.release(hw); return ret_val; } /** * igb_set_master_slave_mode - Setup PHY for Master/slave mode * @hw: pointer to the HW structure * * Sets up Master/slave mode **/ static s32 igb_set_master_slave_mode(struct e1000_hw *hw) { s32 ret_val; u16 phy_data; /* Resolve Master/Slave mode */ ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data); if (ret_val) return ret_val; /* load defaults for future use */ hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ? ((phy_data & CR_1000T_MS_VALUE) ? e1000_ms_force_master : e1000_ms_force_slave) : e1000_ms_auto; switch (hw->phy.ms_type) { case e1000_ms_force_master: phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); break; case e1000_ms_force_slave: phy_data |= CR_1000T_MS_ENABLE; phy_data &= ~(CR_1000T_MS_VALUE); break; case e1000_ms_auto: phy_data &= ~CR_1000T_MS_ENABLE; /* fall-through */ default: break; } return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data); }