/* Intel(R) Gigabit Ethernet Linux driver
* Copyright(c) 2007-2015 Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, see .
*
* The full GNU General Public License is included in this distribution in
* the file called "COPYING".
*
* Contact Information:
* e1000-devel Mailing List
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*/
#include
#include
#include "e1000_mac.h"
#include "e1000_phy.h"
static s32 igb_phy_setup_autoneg(struct e1000_hw *hw);
static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
u16 *phy_ctrl);
static s32 igb_wait_autoneg(struct e1000_hw *hw);
static s32 igb_set_master_slave_mode(struct e1000_hw *hw);
/* Cable length tables */
static const u16 e1000_m88_cable_length_table[] = {
0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
static const u16 e1000_igp_2_cable_length_table[] = {
0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
104, 109, 114, 118, 121, 124};
/**
* igb_check_reset_block - Check if PHY reset is blocked
* @hw: pointer to the HW structure
*
* Read the PHY management control register and check whether a PHY reset
* is blocked. If a reset is not blocked return 0, otherwise
* return E1000_BLK_PHY_RESET (12).
**/
s32 igb_check_reset_block(struct e1000_hw *hw)
{
u32 manc;
manc = rd32(E1000_MANC);
return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
}
/**
* igb_get_phy_id - Retrieve the PHY ID and revision
* @hw: pointer to the HW structure
*
* Reads the PHY registers and stores the PHY ID and possibly the PHY
* revision in the hardware structure.
**/
s32 igb_get_phy_id(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_id;
ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
if (ret_val)
goto out;
phy->id = (u32)(phy_id << 16);
udelay(20);
ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
if (ret_val)
goto out;
phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
out:
return ret_val;
}
/**
* igb_phy_reset_dsp - Reset PHY DSP
* @hw: pointer to the HW structure
*
* Reset the digital signal processor.
**/
static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
{
s32 ret_val = 0;
if (!(hw->phy.ops.write_reg))
goto out;
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
if (ret_val)
goto out;
ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
out:
return ret_val;
}
/**
* igb_read_phy_reg_mdic - Read MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the MDI control regsiter in the PHY at offset and stores the
* information read to data.
**/
s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
s32 ret_val = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
hw_dbg("PHY Address %d is out of range\n", offset);
ret_val = -E1000_ERR_PARAM;
goto out;
}
/* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = ((offset << E1000_MDIC_REG_SHIFT) |
(phy->addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_READ));
wr32(E1000_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
udelay(50);
mdic = rd32(E1000_MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
hw_dbg("MDI Read did not complete\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
if (mdic & E1000_MDIC_ERROR) {
hw_dbg("MDI Error\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
*data = (u16) mdic;
out:
return ret_val;
}
/**
* igb_write_phy_reg_mdic - Write MDI control register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write to register at offset
*
* Writes data to MDI control register in the PHY at offset.
**/
s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, mdic = 0;
s32 ret_val = 0;
if (offset > MAX_PHY_REG_ADDRESS) {
hw_dbg("PHY Address %d is out of range\n", offset);
ret_val = -E1000_ERR_PARAM;
goto out;
}
/* Set up Op-code, Phy Address, and register offset in the MDI
* Control register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
mdic = (((u32)data) |
(offset << E1000_MDIC_REG_SHIFT) |
(phy->addr << E1000_MDIC_PHY_SHIFT) |
(E1000_MDIC_OP_WRITE));
wr32(E1000_MDIC, mdic);
/* Poll the ready bit to see if the MDI read completed
* Increasing the time out as testing showed failures with
* the lower time out
*/
for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
udelay(50);
mdic = rd32(E1000_MDIC);
if (mdic & E1000_MDIC_READY)
break;
}
if (!(mdic & E1000_MDIC_READY)) {
hw_dbg("MDI Write did not complete\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
if (mdic & E1000_MDIC_ERROR) {
hw_dbg("MDI Error\n");
ret_val = -E1000_ERR_PHY;
goto out;
}
out:
return ret_val;
}
/**
* igb_read_phy_reg_i2c - Read PHY register using i2c
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Reads the PHY register at offset using the i2c interface and stores the
* retrieved information in data.
**/
s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, i2ccmd = 0;
/* Set up Op-code, Phy Address, and register address in the I2CCMD
* register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
(phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
(E1000_I2CCMD_OPCODE_READ));
wr32(E1000_I2CCMD, i2ccmd);
/* Poll the ready bit to see if the I2C read completed */
for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
udelay(50);
i2ccmd = rd32(E1000_I2CCMD);
if (i2ccmd & E1000_I2CCMD_READY)
break;
}
if (!(i2ccmd & E1000_I2CCMD_READY)) {
hw_dbg("I2CCMD Read did not complete\n");
return -E1000_ERR_PHY;
}
if (i2ccmd & E1000_I2CCMD_ERROR) {
hw_dbg("I2CCMD Error bit set\n");
return -E1000_ERR_PHY;
}
/* Need to byte-swap the 16-bit value. */
*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
return 0;
}
/**
* igb_write_phy_reg_i2c - Write PHY register using i2c
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Writes the data to PHY register at the offset using the i2c interface.
**/
s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
{
struct e1000_phy_info *phy = &hw->phy;
u32 i, i2ccmd = 0;
u16 phy_data_swapped;
/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
hw_dbg("PHY I2C Address %d is out of range.\n",
hw->phy.addr);
return -E1000_ERR_CONFIG;
}
/* Swap the data bytes for the I2C interface */
phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
/* Set up Op-code, Phy Address, and register address in the I2CCMD
* register. The MAC will take care of interfacing with the
* PHY to retrieve the desired data.
*/
i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
(phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
E1000_I2CCMD_OPCODE_WRITE |
phy_data_swapped);
wr32(E1000_I2CCMD, i2ccmd);
/* Poll the ready bit to see if the I2C read completed */
for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
udelay(50);
i2ccmd = rd32(E1000_I2CCMD);
if (i2ccmd & E1000_I2CCMD_READY)
break;
}
if (!(i2ccmd & E1000_I2CCMD_READY)) {
hw_dbg("I2CCMD Write did not complete\n");
return -E1000_ERR_PHY;
}
if (i2ccmd & E1000_I2CCMD_ERROR) {
hw_dbg("I2CCMD Error bit set\n");
return -E1000_ERR_PHY;
}
return 0;
}
/**
* igb_read_sfp_data_byte - Reads SFP module data.
* @hw: pointer to the HW structure
* @offset: byte location offset to be read
* @data: read data buffer pointer
*
* Reads one byte from SFP module data stored
* in SFP resided EEPROM memory or SFP diagnostic area.
* Function should be called with
* E1000_I2CCMD_SFP_DATA_ADDR() for SFP module database access
* E1000_I2CCMD_SFP_DIAG_ADDR() for SFP diagnostics parameters
* access
**/
s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
{
u32 i = 0;
u32 i2ccmd = 0;
u32 data_local = 0;
if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
hw_dbg("I2CCMD command address exceeds upper limit\n");
return -E1000_ERR_PHY;
}
/* Set up Op-code, EEPROM Address,in the I2CCMD
* register. The MAC will take care of interfacing with the
* EEPROM to retrieve the desired data.
*/
i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
E1000_I2CCMD_OPCODE_READ);
wr32(E1000_I2CCMD, i2ccmd);
/* Poll the ready bit to see if the I2C read completed */
for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
udelay(50);
data_local = rd32(E1000_I2CCMD);
if (data_local & E1000_I2CCMD_READY)
break;
}
if (!(data_local & E1000_I2CCMD_READY)) {
hw_dbg("I2CCMD Read did not complete\n");
return -E1000_ERR_PHY;
}
if (data_local & E1000_I2CCMD_ERROR) {
hw_dbg("I2CCMD Error bit set\n");
return -E1000_ERR_PHY;
}
*data = (u8) data_local & 0xFF;
return 0;
}
/**
* igb_read_phy_reg_igp - Read igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to be read
* @data: pointer to the read data
*
* Acquires semaphore, if necessary, then reads the PHY register at offset
* and storing the retrieved information in data. Release any acquired
* semaphores before exiting.
**/
s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val = 0;
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
ret_val = igb_write_phy_reg_mdic(hw,
IGP01E1000_PHY_PAGE_SELECT,
(u16)offset);
if (ret_val) {
hw->phy.ops.release(hw);
goto out;
}
}
ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* igb_write_phy_reg_igp - Write igp PHY register
* @hw: pointer to the HW structure
* @offset: register offset to write to
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val = 0;
if (!(hw->phy.ops.acquire))
goto out;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
goto out;
if (offset > MAX_PHY_MULTI_PAGE_REG) {
ret_val = igb_write_phy_reg_mdic(hw,
IGP01E1000_PHY_PAGE_SELECT,
(u16)offset);
if (ret_val) {
hw->phy.ops.release(hw);
goto out;
}
}
ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
data);
hw->phy.ops.release(hw);
out:
return ret_val;
}
/**
* igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
* @hw: pointer to the HW structure
*
* Sets up Carrier-sense on Transmit and downshift values.
**/
s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
if (phy->reset_disable) {
ret_val = 0;
goto out;
}
if (phy->type == e1000_phy_82580) {
ret_val = hw->phy.ops.reset(hw);
if (ret_val) {
hw_dbg("Error resetting the PHY.\n");
goto out;
}
}
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
if (ret_val)
goto out;
phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
/* Enable downshift */
phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
if (ret_val)
goto out;
/* Set MDI/MDIX mode */
ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
if (ret_val)
goto out;
phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
/* Options:
* 0 - Auto (default)
* 1 - MDI mode
* 2 - MDI-X mode
*/
switch (hw->phy.mdix) {
case 1:
break;
case 2:
phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
break;
case 0:
default:
phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
break;
}
ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
out:
return ret_val;
}
/**
* igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
* and downshift values are set also.
**/
s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
if (phy->reset_disable) {
ret_val = 0;
goto out;
}
/* Enable CRS on TX. This must be set for half-duplex operation. */
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
goto out;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (phy->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if (phy->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
goto out;
if (phy->revision < E1000_REVISION_4) {
/* Force TX_CLK in the Extended PHY Specific Control Register
* to 25MHz clock.
*/
ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
&phy_data);
if (ret_val)
goto out;
phy_data |= M88E1000_EPSCR_TX_CLK_25;
if ((phy->revision == E1000_REVISION_2) &&
(phy->id == M88E1111_I_PHY_ID)) {
/* 82573L PHY - set the downshift counter to 5x. */
phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
} else {
/* Configure Master and Slave downshift values */
phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
}
ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
phy_data);
if (ret_val)
goto out;
}
/* Commit the changes. */
ret_val = igb_phy_sw_reset(hw);
if (ret_val) {
hw_dbg("Error committing the PHY changes\n");
goto out;
}
out:
return ret_val;
}
/**
* igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
* Also enables and sets the downshift parameters.
**/
s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
if (phy->reset_disable)
return 0;
/* Enable CRS on Tx. This must be set for half-duplex operation. */
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* Options:
* MDI/MDI-X = 0 (default)
* 0 - Auto for all speeds
* 1 - MDI mode
* 2 - MDI-X mode
* 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
*/
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
switch (phy->mdix) {
case 1:
phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
break;
case 2:
phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
break;
case 3:
/* M88E1112 does not support this mode) */
if (phy->id != M88E1112_E_PHY_ID) {
phy_data |= M88E1000_PSCR_AUTO_X_1000T;
break;
}
case 0:
default:
phy_data |= M88E1000_PSCR_AUTO_X_MODE;
break;
}
/* Options:
* disable_polarity_correction = 0 (default)
* Automatic Correction for Reversed Cable Polarity
* 0 - Disabled
* 1 - Enabled
*/
phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
if (phy->disable_polarity_correction == 1)
phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
/* Enable downshift and setting it to X6 */
if (phy->id == M88E1543_E_PHY_ID) {
phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
ret_val =
phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
ret_val = igb_phy_sw_reset(hw);
if (ret_val) {
hw_dbg("Error committing the PHY changes\n");
return ret_val;
}
}
phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
if (ret_val)
return ret_val;
/* Commit the changes. */
ret_val = igb_phy_sw_reset(hw);
if (ret_val) {
hw_dbg("Error committing the PHY changes\n");
return ret_val;
}
ret_val = igb_set_master_slave_mode(hw);
if (ret_val)
return ret_val;
return 0;
}
/**
* igb_copper_link_setup_igp - Setup igp PHY's for copper link
* @hw: pointer to the HW structure
*
* Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
* igp PHY's.
**/
s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
if (phy->reset_disable) {
ret_val = 0;
goto out;
}
ret_val = phy->ops.reset(hw);
if (ret_val) {
hw_dbg("Error resetting the PHY.\n");
goto out;
}
/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
* timeout issues when LFS is enabled.
*/
msleep(100);
/* The NVM settings will configure LPLU in D3 for
* non-IGP1 PHYs.
*/
if (phy->type == e1000_phy_igp) {
/* disable lplu d3 during driver init */
if (phy->ops.set_d3_lplu_state)
ret_val = phy->ops.set_d3_lplu_state(hw, false);
if (ret_val) {
hw_dbg("Error Disabling LPLU D3\n");
goto out;
}
}
/* disable lplu d0 during driver init */
ret_val = phy->ops.set_d0_lplu_state(hw, false);
if (ret_val) {
hw_dbg("Error Disabling LPLU D0\n");
goto out;
}
/* Configure mdi-mdix settings */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
if (ret_val)
goto out;
data &= ~IGP01E1000_PSCR_AUTO_MDIX;
switch (phy->mdix) {
case 1:
data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 2:
data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
break;
case 0:
default:
data |= IGP01E1000_PSCR_AUTO_MDIX;
break;
}
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
if (ret_val)
goto out;
/* set auto-master slave resolution settings */
if (hw->mac.autoneg) {
/* when autonegotiation advertisement is only 1000Mbps then we
* should disable SmartSpeed and enable Auto MasterSlave
* resolution as hardware default.
*/
if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
/* Disable SmartSpeed */
ret_val = phy->ops.read_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
goto out;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
goto out;
/* Set auto Master/Slave resolution process */
ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
if (ret_val)
goto out;
data &= ~CR_1000T_MS_ENABLE;
ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
if (ret_val)
goto out;
}
ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
if (ret_val)
goto out;
/* load defaults for future use */
phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
((data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) :
e1000_ms_auto;
switch (phy->ms_type) {
case e1000_ms_force_master:
data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
data |= CR_1000T_MS_ENABLE;
data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
data &= ~CR_1000T_MS_ENABLE;
default:
break;
}
ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* igb_copper_link_autoneg - Setup/Enable autoneg for copper link
* @hw: pointer to the HW structure
*
* Performs initial bounds checking on autoneg advertisement parameter, then
* configure to advertise the full capability. Setup the PHY to autoneg
* and restart the negotiation process between the link partner. If
* autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
**/
static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_ctrl;
/* Perform some bounds checking on the autoneg advertisement
* parameter.
*/
phy->autoneg_advertised &= phy->autoneg_mask;
/* If autoneg_advertised is zero, we assume it was not defaulted
* by the calling code so we set to advertise full capability.
*/
if (phy->autoneg_advertised == 0)
phy->autoneg_advertised = phy->autoneg_mask;
hw_dbg("Reconfiguring auto-neg advertisement params\n");
ret_val = igb_phy_setup_autoneg(hw);
if (ret_val) {
hw_dbg("Error Setting up Auto-Negotiation\n");
goto out;
}
hw_dbg("Restarting Auto-Neg\n");
/* Restart auto-negotiation by setting the Auto Neg Enable bit and
* the Auto Neg Restart bit in the PHY control register.
*/
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
goto out;
phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
goto out;
/* Does the user want to wait for Auto-Neg to complete here, or
* check at a later time (for example, callback routine).
*/
if (phy->autoneg_wait_to_complete) {
ret_val = igb_wait_autoneg(hw);
if (ret_val) {
hw_dbg("Error while waiting for autoneg to complete\n");
goto out;
}
}
hw->mac.get_link_status = true;
out:
return ret_val;
}
/**
* igb_phy_setup_autoneg - Configure PHY for auto-negotiation
* @hw: pointer to the HW structure
*
* Reads the MII auto-neg advertisement register and/or the 1000T control
* register and if the PHY is already setup for auto-negotiation, then
* return successful. Otherwise, setup advertisement and flow control to
* the appropriate values for the wanted auto-negotiation.
**/
static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 mii_autoneg_adv_reg;
u16 mii_1000t_ctrl_reg = 0;
phy->autoneg_advertised &= phy->autoneg_mask;
/* Read the MII Auto-Neg Advertisement Register (Address 4). */
ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
if (ret_val)
goto out;
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
/* Read the MII 1000Base-T Control Register (Address 9). */
ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
&mii_1000t_ctrl_reg);
if (ret_val)
goto out;
}
/* Need to parse both autoneg_advertised and fc and set up
* the appropriate PHY registers. First we will parse for
* autoneg_advertised software override. Since we can advertise
* a plethora of combinations, we need to check each bit
* individually.
*/
/* First we clear all the 10/100 mb speed bits in the Auto-Neg
* Advertisement Register (Address 4) and the 1000 mb speed bits in
* the 1000Base-T Control Register (Address 9).
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
NWAY_AR_100TX_HD_CAPS |
NWAY_AR_10T_FD_CAPS |
NWAY_AR_10T_HD_CAPS);
mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
/* Do we want to advertise 10 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
hw_dbg("Advertise 10mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
}
/* Do we want to advertise 10 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
hw_dbg("Advertise 10mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
}
/* Do we want to advertise 100 Mb Half Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
hw_dbg("Advertise 100mb Half duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
}
/* Do we want to advertise 100 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
hw_dbg("Advertise 100mb Full duplex\n");
mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
}
/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
hw_dbg("Advertise 1000mb Half duplex request denied!\n");
/* Do we want to advertise 1000 Mb Full Duplex? */
if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
hw_dbg("Advertise 1000mb Full duplex\n");
mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
}
/* Check for a software override of the flow control settings, and
* setup the PHY advertisement registers accordingly. If
* auto-negotiation is enabled, then software will have to set the
* "PAUSE" bits to the correct value in the Auto-Negotiation
* Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
* negotiation.
*
* The possible values of the "fc" parameter are:
* 0: Flow control is completely disabled
* 1: Rx flow control is enabled (we can receive pause frames
* but not send pause frames).
* 2: Tx flow control is enabled (we can send pause frames
* but we do not support receiving pause frames).
* 3: Both Rx and TX flow control (symmetric) are enabled.
* other: No software override. The flow control configuration
* in the EEPROM is used.
*/
switch (hw->fc.current_mode) {
case e1000_fc_none:
/* Flow control (RX & TX) is completely disabled by a
* software over-ride.
*/
mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_rx_pause:
/* RX Flow control is enabled, and TX Flow control is
* disabled, by a software over-ride.
*
* Since there really isn't a way to advertise that we are
* capable of RX Pause ONLY, we will advertise that we
* support both symmetric and asymmetric RX PAUSE. Later
* (in e1000_config_fc_after_link_up) we will disable the
* hw's ability to send PAUSE frames.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
case e1000_fc_tx_pause:
/* TX Flow control is enabled, and RX Flow control is
* disabled, by a software over-ride.
*/
mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
break;
case e1000_fc_full:
/* Flow control (both RX and TX) is enabled by a software
* over-ride.
*/
mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
break;
default:
hw_dbg("Flow control param set incorrectly\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
if (ret_val)
goto out;
hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
ret_val = phy->ops.write_reg(hw,
PHY_1000T_CTRL,
mii_1000t_ctrl_reg);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* igb_setup_copper_link - Configure copper link settings
* @hw: pointer to the HW structure
*
* Calls the appropriate function to configure the link for auto-neg or forced
* speed and duplex. Then we check for link, once link is established calls
* to configure collision distance and flow control are called. If link is
* not established, we return -E1000_ERR_PHY (-2).
**/
s32 igb_setup_copper_link(struct e1000_hw *hw)
{
s32 ret_val;
bool link;
if (hw->mac.autoneg) {
/* Setup autoneg and flow control advertisement and perform
* autonegotiation.
*/
ret_val = igb_copper_link_autoneg(hw);
if (ret_val)
goto out;
} else {
/* PHY will be set to 10H, 10F, 100H or 100F
* depending on user settings.
*/
hw_dbg("Forcing Speed and Duplex\n");
ret_val = hw->phy.ops.force_speed_duplex(hw);
if (ret_val) {
hw_dbg("Error Forcing Speed and Duplex\n");
goto out;
}
}
/* Check link status. Wait up to 100 microseconds for link to become
* valid.
*/
ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
if (ret_val)
goto out;
if (link) {
hw_dbg("Valid link established!!!\n");
igb_config_collision_dist(hw);
ret_val = igb_config_fc_after_link_up(hw);
} else {
hw_dbg("Unable to establish link!!!\n");
}
out:
return ret_val;
}
/**
* igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Waits for link and returns
* successful if link up is successful, else -E1000_ERR_PHY (-2).
**/
s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
goto out;
igb_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
goto out;
/* Clear Auto-Crossover to force MDI manually. IGP requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
if (ret_val)
goto out;
phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
if (ret_val)
goto out;
hw_dbg("IGP PSCR: %X\n", phy_data);
udelay(1);
if (phy->autoneg_wait_to_complete) {
hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
if (ret_val)
goto out;
if (!link)
hw_dbg("Link taking longer than expected.\n");
/* Try once more */
ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Resets the PHY to commit the
* changes. If time expires while waiting for link up, we reset the DSP.
* After reset, TX_CLK and CRS on TX must be set. Return successful upon
* successful completion, else return corresponding error code.
**/
s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
/* I210 and I211 devices support Auto-Crossover in forced operation. */
if (phy->type != e1000_phy_i210) {
/* Clear Auto-Crossover to force MDI manually. M88E1000
* requires MDI forced whenever speed and duplex are forced.
*/
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
&phy_data);
if (ret_val)
goto out;
phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
phy_data);
if (ret_val)
goto out;
hw_dbg("M88E1000 PSCR: %X\n", phy_data);
}
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
goto out;
igb_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
goto out;
/* Reset the phy to commit changes. */
ret_val = igb_phy_sw_reset(hw);
if (ret_val)
goto out;
if (phy->autoneg_wait_to_complete) {
hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
if (ret_val)
goto out;
if (!link) {
bool reset_dsp = true;
switch (hw->phy.id) {
case I347AT4_E_PHY_ID:
case M88E1112_E_PHY_ID:
case M88E1543_E_PHY_ID:
case M88E1512_E_PHY_ID:
case I210_I_PHY_ID:
reset_dsp = false;
break;
default:
if (hw->phy.type != e1000_phy_m88)
reset_dsp = false;
break;
}
if (!reset_dsp) {
hw_dbg("Link taking longer than expected.\n");
} else {
/* We didn't get link.
* Reset the DSP and cross our fingers.
*/
ret_val = phy->ops.write_reg(hw,
M88E1000_PHY_PAGE_SELECT,
0x001d);
if (ret_val)
goto out;
ret_val = igb_phy_reset_dsp(hw);
if (ret_val)
goto out;
}
}
/* Try once more */
ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
100000, &link);
if (ret_val)
goto out;
}
if (hw->phy.type != e1000_phy_m88 ||
hw->phy.id == I347AT4_E_PHY_ID ||
hw->phy.id == M88E1112_E_PHY_ID ||
hw->phy.id == M88E1543_E_PHY_ID ||
hw->phy.id == M88E1512_E_PHY_ID ||
hw->phy.id == I210_I_PHY_ID)
goto out;
ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
goto out;
/* Resetting the phy means we need to re-force TX_CLK in the
* Extended PHY Specific Control Register to 25MHz clock from
* the reset value of 2.5MHz.
*/
phy_data |= M88E1000_EPSCR_TX_CLK_25;
ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
if (ret_val)
goto out;
/* In addition, we must re-enable CRS on Tx for both half and full
* duplex.
*/
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
goto out;
phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
out:
return ret_val;
}
/**
* igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
* @hw: pointer to the HW structure
* @phy_ctrl: pointer to current value of PHY_CONTROL
*
* Forces speed and duplex on the PHY by doing the following: disable flow
* control, force speed/duplex on the MAC, disable auto speed detection,
* disable auto-negotiation, configure duplex, configure speed, configure
* the collision distance, write configuration to CTRL register. The
* caller must write to the PHY_CONTROL register for these settings to
* take affect.
**/
static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
u16 *phy_ctrl)
{
struct e1000_mac_info *mac = &hw->mac;
u32 ctrl;
/* Turn off flow control when forcing speed/duplex */
hw->fc.current_mode = e1000_fc_none;
/* Force speed/duplex on the mac */
ctrl = rd32(E1000_CTRL);
ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
ctrl &= ~E1000_CTRL_SPD_SEL;
/* Disable Auto Speed Detection */
ctrl &= ~E1000_CTRL_ASDE;
/* Disable autoneg on the phy */
*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
/* Forcing Full or Half Duplex? */
if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
ctrl &= ~E1000_CTRL_FD;
*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
hw_dbg("Half Duplex\n");
} else {
ctrl |= E1000_CTRL_FD;
*phy_ctrl |= MII_CR_FULL_DUPLEX;
hw_dbg("Full Duplex\n");
}
/* Forcing 10mb or 100mb? */
if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
ctrl |= E1000_CTRL_SPD_100;
*phy_ctrl |= MII_CR_SPEED_100;
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
hw_dbg("Forcing 100mb\n");
} else {
ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
*phy_ctrl |= MII_CR_SPEED_10;
*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
hw_dbg("Forcing 10mb\n");
}
igb_config_collision_dist(hw);
wr32(E1000_CTRL, ctrl);
}
/**
* igb_set_d3_lplu_state - Sets low power link up state for D3
* @hw: pointer to the HW structure
* @active: boolean used to enable/disable lplu
*
* Success returns 0, Failure returns 1
*
* The low power link up (lplu) state is set to the power management level D3
* and SmartSpeed is disabled when active is true, else clear lplu for D3
* and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
* is used during Dx states where the power conservation is most important.
* During driver activity, SmartSpeed should be enabled so performance is
* maintained.
**/
s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 data;
if (!(hw->phy.ops.read_reg))
goto out;
ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
if (ret_val)
goto out;
if (!active) {
data &= ~IGP02E1000_PM_D3_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
data);
if (ret_val)
goto out;
/* LPLU and SmartSpeed are mutually exclusive. LPLU is used
* during Dx states where the power conservation is most
* important. During driver activity we should enable
* SmartSpeed, so performance is maintained.
*/
if (phy->smart_speed == e1000_smart_speed_on) {
ret_val = phy->ops.read_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
goto out;
data |= IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
goto out;
} else if (phy->smart_speed == e1000_smart_speed_off) {
ret_val = phy->ops.read_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
goto out;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw,
IGP01E1000_PHY_PORT_CONFIG,
data);
if (ret_val)
goto out;
}
} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
(phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
(phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
data |= IGP02E1000_PM_D3_LPLU;
ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
data);
if (ret_val)
goto out;
/* When LPLU is enabled, we should disable SmartSpeed */
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
&data);
if (ret_val)
goto out;
data &= ~IGP01E1000_PSCFR_SMART_SPEED;
ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
data);
}
out:
return ret_val;
}
/**
* igb_check_downshift - Checks whether a downshift in speed occurred
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns 1
*
* A downshift is detected by querying the PHY link health.
**/
s32 igb_check_downshift(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, offset, mask;
switch (phy->type) {
case e1000_phy_i210:
case e1000_phy_m88:
case e1000_phy_gg82563:
offset = M88E1000_PHY_SPEC_STATUS;
mask = M88E1000_PSSR_DOWNSHIFT;
break;
case e1000_phy_igp_2:
case e1000_phy_igp:
case e1000_phy_igp_3:
offset = IGP01E1000_PHY_LINK_HEALTH;
mask = IGP01E1000_PLHR_SS_DOWNGRADE;
break;
default:
/* speed downshift not supported */
phy->speed_downgraded = false;
ret_val = 0;
goto out;
}
ret_val = phy->ops.read_reg(hw, offset, &phy_data);
if (!ret_val)
phy->speed_downgraded = (phy_data & mask) ? true : false;
out:
return ret_val;
}
/**
* igb_check_polarity_m88 - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY specific status register.
**/
s32 igb_check_polarity_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
if (!ret_val)
phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* igb_check_polarity_igp - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY port status register, and the
* current speed (since there is no polarity at 100Mbps).
**/
static s32 igb_check_polarity_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data, offset, mask;
/* Polarity is determined based on the speed of
* our connection.
*/
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
goto out;
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
offset = IGP01E1000_PHY_PCS_INIT_REG;
mask = IGP01E1000_PHY_POLARITY_MASK;
} else {
/* This really only applies to 10Mbps since
* there is no polarity for 100Mbps (always 0).
*/
offset = IGP01E1000_PHY_PORT_STATUS;
mask = IGP01E1000_PSSR_POLARITY_REVERSED;
}
ret_val = phy->ops.read_reg(hw, offset, &data);
if (!ret_val)
phy->cable_polarity = (data & mask)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
out:
return ret_val;
}
/**
* igb_wait_autoneg - Wait for auto-neg completion
* @hw: pointer to the HW structure
*
* Waits for auto-negotiation to complete or for the auto-negotiation time
* limit to expire, which ever happens first.
**/
static s32 igb_wait_autoneg(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 i, phy_status;
/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_AUTONEG_COMPLETE)
break;
msleep(100);
}
/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
* has completed.
*/
return ret_val;
}
/**
* igb_phy_has_link - Polls PHY for link
* @hw: pointer to the HW structure
* @iterations: number of times to poll for link
* @usec_interval: delay between polling attempts
* @success: pointer to whether polling was successful or not
*
* Polls the PHY status register for link, 'iterations' number of times.
**/
s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
u32 usec_interval, bool *success)
{
s32 ret_val = 0;
u16 i, phy_status;
for (i = 0; i < iterations; i++) {
/* Some PHYs require the PHY_STATUS register to be read
* twice due to the link bit being sticky. No harm doing
* it across the board.
*/
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val && usec_interval > 0) {
/* If the first read fails, another entity may have
* ownership of the resources, wait and try again to
* see if they have relinquished the resources yet.
*/
if (usec_interval >= 1000)
mdelay(usec_interval/1000);
else
udelay(usec_interval);
}
ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
if (ret_val)
break;
if (phy_status & MII_SR_LINK_STATUS)
break;
if (usec_interval >= 1000)
mdelay(usec_interval/1000);
else
udelay(usec_interval);
}
*success = (i < iterations) ? true : false;
return ret_val;
}
/**
* igb_get_cable_length_m88 - Determine cable length for m88 PHY
* @hw: pointer to the HW structure
*
* Reads the PHY specific status register to retrieve the cable length
* information. The cable length is determined by averaging the minimum and
* maximum values to get the "average" cable length. The m88 PHY has four
* possible cable length values, which are:
* Register Value Cable Length
* 0 < 50 meters
* 1 50 - 80 meters
* 2 80 - 110 meters
* 3 110 - 140 meters
* 4 > 140 meters
**/
s32 igb_get_cable_length_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, index;
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
goto out;
index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
ret_val = -E1000_ERR_PHY;
goto out;
}
phy->min_cable_length = e1000_m88_cable_length_table[index];
phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
out:
return ret_val;
}
s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, phy_data2, index, default_page, is_cm;
switch (hw->phy.id) {
case I210_I_PHY_ID:
/* Get cable length from PHY Cable Diagnostics Control Reg */
ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
(I347AT4_PCDL + phy->addr),
&phy_data);
if (ret_val)
return ret_val;
/* Check if the unit of cable length is meters or cm */
ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
I347AT4_PCDC, &phy_data2);
if (ret_val)
return ret_val;
is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
/* Populate the phy structure with cable length in meters */
phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
phy->cable_length = phy_data / (is_cm ? 100 : 1);
break;
case M88E1543_E_PHY_ID:
case M88E1512_E_PHY_ID:
case I347AT4_E_PHY_ID:
/* Remember the original page select and set it to 7 */
ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
&default_page);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
if (ret_val)
goto out;
/* Get cable length from PHY Cable Diagnostics Control Reg */
ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
&phy_data);
if (ret_val)
goto out;
/* Check if the unit of cable length is meters or cm */
ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
if (ret_val)
goto out;
is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
/* Populate the phy structure with cable length in meters */
phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
phy->cable_length = phy_data / (is_cm ? 100 : 1);
/* Reset the page selec to its original value */
ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
default_page);
if (ret_val)
goto out;
break;
case M88E1112_E_PHY_ID:
/* Remember the original page select and set it to 5 */
ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
&default_page);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
if (ret_val)
goto out;
ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
&phy_data);
if (ret_val)
goto out;
index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
M88E1000_PSSR_CABLE_LENGTH_SHIFT;
if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
ret_val = -E1000_ERR_PHY;
goto out;
}
phy->min_cable_length = e1000_m88_cable_length_table[index];
phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
phy->cable_length = (phy->min_cable_length +
phy->max_cable_length) / 2;
/* Reset the page select to its original value */
ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
default_page);
if (ret_val)
goto out;
break;
default:
ret_val = -E1000_ERR_PHY;
goto out;
}
out:
return ret_val;
}
/**
* igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
* @hw: pointer to the HW structure
*
* The automatic gain control (agc) normalizes the amplitude of the
* received signal, adjusting for the attenuation produced by the
* cable. By reading the AGC registers, which represent the
* combination of coarse and fine gain value, the value can be put
* into a lookup table to obtain the approximate cable length
* for each channel.
**/
s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
u16 phy_data, i, agc_value = 0;
u16 cur_agc_index, max_agc_index = 0;
u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
IGP02E1000_PHY_AGC_A,
IGP02E1000_PHY_AGC_B,
IGP02E1000_PHY_AGC_C,
IGP02E1000_PHY_AGC_D
};
/* Read the AGC registers for all channels */
for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
if (ret_val)
goto out;
/* Getting bits 15:9, which represent the combination of
* coarse and fine gain values. The result is a number
* that can be put into the lookup table to obtain the
* approximate cable length.
*/
cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
IGP02E1000_AGC_LENGTH_MASK;
/* Array index bound check. */
if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
(cur_agc_index == 0)) {
ret_val = -E1000_ERR_PHY;
goto out;
}
/* Remove min & max AGC values from calculation. */
if (e1000_igp_2_cable_length_table[min_agc_index] >
e1000_igp_2_cable_length_table[cur_agc_index])
min_agc_index = cur_agc_index;
if (e1000_igp_2_cable_length_table[max_agc_index] <
e1000_igp_2_cable_length_table[cur_agc_index])
max_agc_index = cur_agc_index;
agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
}
agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
e1000_igp_2_cable_length_table[max_agc_index]);
agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
/* Calculate cable length with the error range of +/- 10 meters. */
phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
(agc_value - IGP02E1000_AGC_RANGE) : 0;
phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
out:
return ret_val;
}
/**
* igb_get_phy_info_m88 - Retrieve PHY information
* @hw: pointer to the HW structure
*
* Valid for only copper links. Read the PHY status register (sticky read)
* to verify that link is up. Read the PHY special control register to
* determine the polarity and 10base-T extended distance. Read the PHY
* special status register to determine MDI/MDIx and current speed. If
* speed is 1000, then determine cable length, local and remote receiver.
**/
s32 igb_get_phy_info_m88(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
if (phy->media_type != e1000_media_type_copper) {
hw_dbg("Phy info is only valid for copper media\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
ret_val = igb_phy_has_link(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link) {
hw_dbg("Phy info is only valid if link is up\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
if (ret_val)
goto out;
phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
? true : false;
ret_val = igb_check_polarity_m88(hw);
if (ret_val)
goto out;
ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
if (ret_val)
goto out;
phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
ret_val = phy->ops.get_cable_length(hw);
if (ret_val)
goto out;
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
if (ret_val)
goto out;
phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
/* Set values to "undefined" */
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
out:
return ret_val;
}
/**
* igb_get_phy_info_igp - Retrieve igp PHY information
* @hw: pointer to the HW structure
*
* Read PHY status to determine if link is up. If link is up, then
* set/determine 10base-T extended distance and polarity correction. Read
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
* determine on the cable length, local and remote receiver.
**/
s32 igb_get_phy_info_igp(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = igb_phy_has_link(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link) {
hw_dbg("Phy info is only valid if link is up\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
phy->polarity_correction = true;
ret_val = igb_check_polarity_igp(hw);
if (ret_val)
goto out;
ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
if (ret_val)
goto out;
phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
IGP01E1000_PSSR_SPEED_1000MBPS) {
ret_val = phy->ops.get_cable_length(hw);
if (ret_val)
goto out;
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
if (ret_val)
goto out;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
out:
return ret_val;
}
/**
* igb_phy_sw_reset - PHY software reset
* @hw: pointer to the HW structure
*
* Does a software reset of the PHY by reading the PHY control register and
* setting/write the control register reset bit to the PHY.
**/
s32 igb_phy_sw_reset(struct e1000_hw *hw)
{
s32 ret_val = 0;
u16 phy_ctrl;
if (!(hw->phy.ops.read_reg))
goto out;
ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
if (ret_val)
goto out;
phy_ctrl |= MII_CR_RESET;
ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
if (ret_val)
goto out;
udelay(1);
out:
return ret_val;
}
/**
* igb_phy_hw_reset - PHY hardware reset
* @hw: pointer to the HW structure
*
* Verify the reset block is not blocking us from resetting. Acquire
* semaphore (if necessary) and read/set/write the device control reset
* bit in the PHY. Wait the appropriate delay time for the device to
* reset and release the semaphore (if necessary).
**/
s32 igb_phy_hw_reset(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u32 ctrl;
ret_val = igb_check_reset_block(hw);
if (ret_val) {
ret_val = 0;
goto out;
}
ret_val = phy->ops.acquire(hw);
if (ret_val)
goto out;
ctrl = rd32(E1000_CTRL);
wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
wrfl();
udelay(phy->reset_delay_us);
wr32(E1000_CTRL, ctrl);
wrfl();
udelay(150);
phy->ops.release(hw);
ret_val = phy->ops.get_cfg_done(hw);
out:
return ret_val;
}
/**
* igb_phy_init_script_igp3 - Inits the IGP3 PHY
* @hw: pointer to the HW structure
*
* Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
**/
s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
{
hw_dbg("Running IGP 3 PHY init script\n");
/* PHY init IGP 3 */
/* Enable rise/fall, 10-mode work in class-A */
hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
/* Remove all caps from Replica path filter */
hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
/* Bias trimming for ADC, AFE and Driver (Default) */
hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
/* Increase Hybrid poly bias */
hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
/* Add 4% to TX amplitude in Giga mode */
hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
/* Disable trimming (TTT) */
hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
/* Poly DC correction to 94.6% + 2% for all channels */
hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
/* ABS DC correction to 95.9% */
hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
/* BG temp curve trim */
hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
/* Increasing ADC OPAMP stage 1 currents to max */
hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
/* Force 1000 ( required for enabling PHY regs configuration) */
hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
/* Set upd_freq to 6 */
hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
/* Disable NPDFE */
hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
/* Disable adaptive fixed FFE (Default) */
hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
/* Enable FFE hysteresis */
hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
/* Fixed FFE for short cable lengths */
hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
/* Fixed FFE for medium cable lengths */
hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
/* Fixed FFE for long cable lengths */
hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
/* Enable Adaptive Clip Threshold */
hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
/* AHT reset limit to 1 */
hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
/* Set AHT master delay to 127 msec */
hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
/* Set scan bits for AHT */
hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
/* Set AHT Preset bits */
hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
/* Change integ_factor of channel A to 3 */
hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
/* Change prop_factor of channels BCD to 8 */
hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
/* Change cg_icount + enable integbp for channels BCD */
hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
/* Change cg_icount + enable integbp + change prop_factor_master
* to 8 for channel A
*/
hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
/* Disable AHT in Slave mode on channel A */
hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
/* Enable LPLU and disable AN to 1000 in non-D0a states,
* Enable SPD+B2B
*/
hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
/* Enable restart AN on an1000_dis change */
hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
/* Enable wh_fifo read clock in 10/100 modes */
hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
/* Restart AN, Speed selection is 1000 */
hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
return 0;
}
/**
* igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
* @hw: pointer to the HW structure
*
* Initialize Marvel 1512 to work correctly with Avoton.
**/
s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
/* Switch to PHY page 0xFF. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
if (ret_val)
goto out;
/* Switch to PHY page 0xFB. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
if (ret_val)
goto out;
/* Switch to PHY page 0x12. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
if (ret_val)
goto out;
/* Change mode to SGMII-to-Copper */
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
if (ret_val)
goto out;
/* Return the PHY to page 0. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
if (ret_val)
goto out;
ret_val = igb_phy_sw_reset(hw);
if (ret_val) {
hw_dbg("Error committing the PHY changes\n");
return ret_val;
}
/* msec_delay(1000); */
usleep_range(1000, 2000);
out:
return ret_val;
}
/**
* igb_initialize_M88E1543_phy - Initialize M88E1512 PHY
* @hw: pointer to the HW structure
*
* Initialize Marvell 1543 to work correctly with Avoton.
**/
s32 igb_initialize_M88E1543_phy(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val = 0;
/* Switch to PHY page 0xFF. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xDC0C);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
if (ret_val)
goto out;
/* Switch to PHY page 0xFB. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
if (ret_val)
goto out;
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x0C0D);
if (ret_val)
goto out;
/* Switch to PHY page 0x12. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
if (ret_val)
goto out;
/* Change mode to SGMII-to-Copper */
ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
if (ret_val)
goto out;
/* Switch to PHY page 1. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x1);
if (ret_val)
goto out;
/* Change mode to 1000BASE-X/SGMII and autoneg enable */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_FIBER_CTRL, 0x9140);
if (ret_val)
goto out;
/* Return the PHY to page 0. */
ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
if (ret_val)
goto out;
ret_val = igb_phy_sw_reset(hw);
if (ret_val) {
hw_dbg("Error committing the PHY changes\n");
return ret_val;
}
/* msec_delay(1000); */
usleep_range(1000, 2000);
out:
return ret_val;
}
/**
* igb_power_up_phy_copper - Restore copper link in case of PHY power down
* @hw: pointer to the HW structure
*
* In the case of a PHY power down to save power, or to turn off link during a
* driver unload, restore the link to previous settings.
**/
void igb_power_up_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg &= ~MII_CR_POWER_DOWN;
hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
}
/**
* igb_power_down_phy_copper - Power down copper PHY
* @hw: pointer to the HW structure
*
* Power down PHY to save power when interface is down and wake on lan
* is not enabled.
**/
void igb_power_down_phy_copper(struct e1000_hw *hw)
{
u16 mii_reg = 0;
/* The PHY will retain its settings across a power down/up cycle */
hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
mii_reg |= MII_CR_POWER_DOWN;
hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
usleep_range(1000, 2000);
}
/**
* igb_check_polarity_82580 - Checks the polarity.
* @hw: pointer to the HW structure
*
* Success returns 0, Failure returns -E1000_ERR_PHY (-2)
*
* Polarity is determined based on the PHY specific status register.
**/
static s32 igb_check_polarity_82580(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
if (!ret_val)
phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
? e1000_rev_polarity_reversed
: e1000_rev_polarity_normal;
return ret_val;
}
/**
* igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
* @hw: pointer to the HW structure
*
* Calls the PHY setup function to force speed and duplex. Clears the
* auto-crossover to force MDI manually. Waits for link and returns
* successful if link up is successful, else -E1000_ERR_PHY (-2).
**/
s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data;
bool link;
ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
if (ret_val)
goto out;
igb_phy_force_speed_duplex_setup(hw, &phy_data);
ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
if (ret_val)
goto out;
/* Clear Auto-Crossover to force MDI manually. 82580 requires MDI
* forced whenever speed and duplex are forced.
*/
ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
if (ret_val)
goto out;
phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
if (ret_val)
goto out;
hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
udelay(1);
if (phy->autoneg_wait_to_complete) {
hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
if (ret_val)
goto out;
if (!link)
hw_dbg("Link taking longer than expected.\n");
/* Try once more */
ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
if (ret_val)
goto out;
}
out:
return ret_val;
}
/**
* igb_get_phy_info_82580 - Retrieve I82580 PHY information
* @hw: pointer to the HW structure
*
* Read PHY status to determine if link is up. If link is up, then
* set/determine 10base-T extended distance and polarity correction. Read
* PHY port status to determine MDI/MDIx and speed. Based on the speed,
* determine on the cable length, local and remote receiver.
**/
s32 igb_get_phy_info_82580(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 data;
bool link;
ret_val = igb_phy_has_link(hw, 1, 0, &link);
if (ret_val)
goto out;
if (!link) {
hw_dbg("Phy info is only valid if link is up\n");
ret_val = -E1000_ERR_CONFIG;
goto out;
}
phy->polarity_correction = true;
ret_val = igb_check_polarity_82580(hw);
if (ret_val)
goto out;
ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
if (ret_val)
goto out;
phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
I82580_PHY_STATUS2_SPEED_1000MBPS) {
ret_val = hw->phy.ops.get_cable_length(hw);
if (ret_val)
goto out;
ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
if (ret_val)
goto out;
phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
? e1000_1000t_rx_status_ok
: e1000_1000t_rx_status_not_ok;
} else {
phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
phy->local_rx = e1000_1000t_rx_status_undefined;
phy->remote_rx = e1000_1000t_rx_status_undefined;
}
out:
return ret_val;
}
/**
* igb_get_cable_length_82580 - Determine cable length for 82580 PHY
* @hw: pointer to the HW structure
*
* Reads the diagnostic status register and verifies result is valid before
* placing it in the phy_cable_length field.
**/
s32 igb_get_cable_length_82580(struct e1000_hw *hw)
{
struct e1000_phy_info *phy = &hw->phy;
s32 ret_val;
u16 phy_data, length;
ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
if (ret_val)
goto out;
length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
I82580_DSTATUS_CABLE_LENGTH_SHIFT;
if (length == E1000_CABLE_LENGTH_UNDEFINED)
ret_val = -E1000_ERR_PHY;
phy->cable_length = length;
out:
return ret_val;
}
/**
* igb_write_phy_reg_gs40g - Write GS40G PHY register
* @hw: pointer to the HW structure
* @offset: lower half is register offset to write to
* upper half is page to use.
* @data: data to write at register offset
*
* Acquires semaphore, if necessary, then writes the data to PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
{
s32 ret_val;
u16 page = offset >> GS40G_PAGE_SHIFT;
offset = offset & GS40G_OFFSET_MASK;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
if (ret_val)
goto release;
ret_val = igb_write_phy_reg_mdic(hw, offset, data);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* igb_read_phy_reg_gs40g - Read GS40G PHY register
* @hw: pointer to the HW structure
* @offset: lower half is register offset to read to
* upper half is page to use.
* @data: data to read at register offset
*
* Acquires semaphore, if necessary, then reads the data in the PHY register
* at the offset. Release any acquired semaphores before exiting.
**/
s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
{
s32 ret_val;
u16 page = offset >> GS40G_PAGE_SHIFT;
offset = offset & GS40G_OFFSET_MASK;
ret_val = hw->phy.ops.acquire(hw);
if (ret_val)
return ret_val;
ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
if (ret_val)
goto release;
ret_val = igb_read_phy_reg_mdic(hw, offset, data);
release:
hw->phy.ops.release(hw);
return ret_val;
}
/**
* igb_set_master_slave_mode - Setup PHY for Master/slave mode
* @hw: pointer to the HW structure
*
* Sets up Master/slave mode
**/
static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
{
s32 ret_val;
u16 phy_data;
/* Resolve Master/Slave mode */
ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
if (ret_val)
return ret_val;
/* load defaults for future use */
hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
((phy_data & CR_1000T_MS_VALUE) ?
e1000_ms_force_master :
e1000_ms_force_slave) : e1000_ms_auto;
switch (hw->phy.ms_type) {
case e1000_ms_force_master:
phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
break;
case e1000_ms_force_slave:
phy_data |= CR_1000T_MS_ENABLE;
phy_data &= ~(CR_1000T_MS_VALUE);
break;
case e1000_ms_auto:
phy_data &= ~CR_1000T_MS_ENABLE;
/* fall-through */
default:
break;
}
return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
}