/* * Hardware monitoring driver for PMBus devices * * Copyright (c) 2010, 2011 Ericsson AB. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include "pmbus.h" /* * Constants needed to determine number of sensors, booleans, and labels. */ #define PMBUS_MAX_INPUT_SENSORS 22 /* 10*volt, 7*curr, 5*power */ #define PMBUS_VOUT_SENSORS_PER_PAGE 9 /* input, min, max, lcrit, crit, lowest, highest, avg, reset */ #define PMBUS_IOUT_SENSORS_PER_PAGE 8 /* input, min, max, crit, lowest, highest, avg, reset */ #define PMBUS_POUT_SENSORS_PER_PAGE 4 /* input, cap, max, crit */ #define PMBUS_MAX_SENSORS_PER_FAN 1 /* input */ #define PMBUS_MAX_SENSORS_PER_TEMP 8 /* input, min, max, lcrit, crit, lowest, highest, reset */ #define PMBUS_MAX_INPUT_BOOLEANS 7 /* v: min_alarm, max_alarm, lcrit_alarm, crit_alarm; c: alarm, crit_alarm; p: crit_alarm */ #define PMBUS_VOUT_BOOLEANS_PER_PAGE 4 /* min_alarm, max_alarm, lcrit_alarm, crit_alarm */ #define PMBUS_IOUT_BOOLEANS_PER_PAGE 3 /* alarm, lcrit_alarm, crit_alarm */ #define PMBUS_POUT_BOOLEANS_PER_PAGE 2 /* alarm, crit_alarm */ #define PMBUS_MAX_BOOLEANS_PER_FAN 2 /* alarm, fault */ #define PMBUS_MAX_BOOLEANS_PER_TEMP 4 /* min_alarm, max_alarm, lcrit_alarm, crit_alarm */ #define PMBUS_MAX_INPUT_LABELS 4 /* vin, vcap, iin, pin */ /* * status, status_vout, status_iout, status_fans, status_fan34, and status_temp * are paged. status_input is unpaged. */ #define PB_NUM_STATUS_REG (PMBUS_PAGES * 6 + 1) /* * Index into status register array, per status register group */ #define PB_STATUS_BASE 0 #define PB_STATUS_VOUT_BASE (PB_STATUS_BASE + PMBUS_PAGES) #define PB_STATUS_IOUT_BASE (PB_STATUS_VOUT_BASE + PMBUS_PAGES) #define PB_STATUS_FAN_BASE (PB_STATUS_IOUT_BASE + PMBUS_PAGES) #define PB_STATUS_FAN34_BASE (PB_STATUS_FAN_BASE + PMBUS_PAGES) #define PB_STATUS_INPUT_BASE (PB_STATUS_FAN34_BASE + PMBUS_PAGES) #define PB_STATUS_TEMP_BASE (PB_STATUS_INPUT_BASE + 1) #define PMBUS_NAME_SIZE 24 struct pmbus_sensor { char name[PMBUS_NAME_SIZE]; /* sysfs sensor name */ struct sensor_device_attribute attribute; u8 page; /* page number */ u16 reg; /* register */ enum pmbus_sensor_classes class; /* sensor class */ bool update; /* runtime sensor update needed */ int data; /* Sensor data. Negative if there was a read error */ }; struct pmbus_boolean { char name[PMBUS_NAME_SIZE]; /* sysfs boolean name */ struct sensor_device_attribute attribute; }; struct pmbus_label { char name[PMBUS_NAME_SIZE]; /* sysfs label name */ struct sensor_device_attribute attribute; char label[PMBUS_NAME_SIZE]; /* label */ }; struct pmbus_data { struct device *hwmon_dev; u32 flags; /* from platform data */ int exponent; /* linear mode: exponent for output voltages */ const struct pmbus_driver_info *info; int max_attributes; int num_attributes; struct attribute **attributes; struct attribute_group group; /* * Sensors cover both sensor and limit registers. */ int max_sensors; int num_sensors; struct pmbus_sensor *sensors; /* * Booleans are used for alarms. * Values are determined from status registers. */ int max_booleans; int num_booleans; struct pmbus_boolean *booleans; /* * Labels are used to map generic names (e.g., "in1") * to PMBus specific names (e.g., "vin" or "vout1"). */ int max_labels; int num_labels; struct pmbus_label *labels; struct mutex update_lock; bool valid; unsigned long last_updated; /* in jiffies */ /* * A single status register covers multiple attributes, * so we keep them all together. */ u8 status[PB_NUM_STATUS_REG]; u8 currpage; }; int pmbus_set_page(struct i2c_client *client, u8 page) { struct pmbus_data *data = i2c_get_clientdata(client); int rv = 0; int newpage; if (page != data->currpage) { rv = i2c_smbus_write_byte_data(client, PMBUS_PAGE, page); newpage = i2c_smbus_read_byte_data(client, PMBUS_PAGE); if (newpage != page) rv = -EIO; else data->currpage = page; } return rv; } EXPORT_SYMBOL_GPL(pmbus_set_page); int pmbus_write_byte(struct i2c_client *client, int page, u8 value) { int rv; if (page >= 0) { rv = pmbus_set_page(client, page); if (rv < 0) return rv; } return i2c_smbus_write_byte(client, value); } EXPORT_SYMBOL_GPL(pmbus_write_byte); /* * _pmbus_write_byte() is similar to pmbus_write_byte(), but checks if * a device specific mapping funcion exists and calls it if necessary. */ static int _pmbus_write_byte(struct i2c_client *client, int page, u8 value) { struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; int status; if (info->write_byte) { status = info->write_byte(client, page, value); if (status != -ENODATA) return status; } return pmbus_write_byte(client, page, value); } int pmbus_write_word_data(struct i2c_client *client, u8 page, u8 reg, u16 word) { int rv; rv = pmbus_set_page(client, page); if (rv < 0) return rv; return i2c_smbus_write_word_data(client, reg, word); } EXPORT_SYMBOL_GPL(pmbus_write_word_data); /* * _pmbus_write_word_data() is similar to pmbus_write_word_data(), but checks if * a device specific mapping function exists and calls it if necessary. */ static int _pmbus_write_word_data(struct i2c_client *client, int page, int reg, u16 word) { struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; int status; if (info->write_word_data) { status = info->write_word_data(client, page, reg, word); if (status != -ENODATA) return status; } if (reg >= PMBUS_VIRT_BASE) return -ENXIO; return pmbus_write_word_data(client, page, reg, word); } int pmbus_read_word_data(struct i2c_client *client, u8 page, u8 reg) { int rv; rv = pmbus_set_page(client, page); if (rv < 0) return rv; return i2c_smbus_read_word_data(client, reg); } EXPORT_SYMBOL_GPL(pmbus_read_word_data); /* * _pmbus_read_word_data() is similar to pmbus_read_word_data(), but checks if * a device specific mapping function exists and calls it if necessary. */ static int _pmbus_read_word_data(struct i2c_client *client, int page, int reg) { struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; int status; if (info->read_word_data) { status = info->read_word_data(client, page, reg); if (status != -ENODATA) return status; } if (reg >= PMBUS_VIRT_BASE) return -ENXIO; return pmbus_read_word_data(client, page, reg); } int pmbus_read_byte_data(struct i2c_client *client, int page, u8 reg) { int rv; if (page >= 0) { rv = pmbus_set_page(client, page); if (rv < 0) return rv; } return i2c_smbus_read_byte_data(client, reg); } EXPORT_SYMBOL_GPL(pmbus_read_byte_data); /* * _pmbus_read_byte_data() is similar to pmbus_read_byte_data(), but checks if * a device specific mapping function exists and calls it if necessary. */ static int _pmbus_read_byte_data(struct i2c_client *client, int page, int reg) { struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; int status; if (info->read_byte_data) { status = info->read_byte_data(client, page, reg); if (status != -ENODATA) return status; } return pmbus_read_byte_data(client, page, reg); } static void pmbus_clear_fault_page(struct i2c_client *client, int page) { _pmbus_write_byte(client, page, PMBUS_CLEAR_FAULTS); } void pmbus_clear_faults(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); int i; for (i = 0; i < data->info->pages; i++) pmbus_clear_fault_page(client, i); } EXPORT_SYMBOL_GPL(pmbus_clear_faults); static int pmbus_check_status_cml(struct i2c_client *client) { int status, status2; status = pmbus_read_byte_data(client, -1, PMBUS_STATUS_BYTE); if (status < 0 || (status & PB_STATUS_CML)) { status2 = pmbus_read_byte_data(client, -1, PMBUS_STATUS_CML); if (status2 < 0 || (status2 & PB_CML_FAULT_INVALID_COMMAND)) return -EIO; } return 0; } bool pmbus_check_byte_register(struct i2c_client *client, int page, int reg) { int rv; struct pmbus_data *data = i2c_get_clientdata(client); rv = _pmbus_read_byte_data(client, page, reg); if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) rv = pmbus_check_status_cml(client); pmbus_clear_fault_page(client, -1); return rv >= 0; } EXPORT_SYMBOL_GPL(pmbus_check_byte_register); bool pmbus_check_word_register(struct i2c_client *client, int page, int reg) { int rv; struct pmbus_data *data = i2c_get_clientdata(client); rv = _pmbus_read_word_data(client, page, reg); if (rv >= 0 && !(data->flags & PMBUS_SKIP_STATUS_CHECK)) rv = pmbus_check_status_cml(client); pmbus_clear_fault_page(client, -1); return rv >= 0; } EXPORT_SYMBOL_GPL(pmbus_check_word_register); const struct pmbus_driver_info *pmbus_get_driver_info(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); return data->info; } EXPORT_SYMBOL_GPL(pmbus_get_driver_info); static struct pmbus_data *pmbus_update_device(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct pmbus_data *data = i2c_get_clientdata(client); const struct pmbus_driver_info *info = data->info; mutex_lock(&data->update_lock); if (time_after(jiffies, data->last_updated + HZ) || !data->valid) { int i; for (i = 0; i < info->pages; i++) data->status[PB_STATUS_BASE + i] = pmbus_read_byte_data(client, i, PMBUS_STATUS_BYTE); for (i = 0; i < info->pages; i++) { if (!(info->func[i] & PMBUS_HAVE_STATUS_VOUT)) continue; data->status[PB_STATUS_VOUT_BASE + i] = _pmbus_read_byte_data(client, i, PMBUS_STATUS_VOUT); } for (i = 0; i < info->pages; i++) { if (!(info->func[i] & PMBUS_HAVE_STATUS_IOUT)) continue; data->status[PB_STATUS_IOUT_BASE + i] = _pmbus_read_byte_data(client, i, PMBUS_STATUS_IOUT); } for (i = 0; i < info->pages; i++) { if (!(info->func[i] & PMBUS_HAVE_STATUS_TEMP)) continue; data->status[PB_STATUS_TEMP_BASE + i] = _pmbus_read_byte_data(client, i, PMBUS_STATUS_TEMPERATURE); } for (i = 0; i < info->pages; i++) { if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN12)) continue; data->status[PB_STATUS_FAN_BASE + i] = _pmbus_read_byte_data(client, i, PMBUS_STATUS_FAN_12); } for (i = 0; i < info->pages; i++) { if (!(info->func[i] & PMBUS_HAVE_STATUS_FAN34)) continue; data->status[PB_STATUS_FAN34_BASE + i] = _pmbus_read_byte_data(client, i, PMBUS_STATUS_FAN_34); } if (info->func[0] & PMBUS_HAVE_STATUS_INPUT) data->status[PB_STATUS_INPUT_BASE] = _pmbus_read_byte_data(client, 0, PMBUS_STATUS_INPUT); for (i = 0; i < data->num_sensors; i++) { struct pmbus_sensor *sensor = &data->sensors[i]; if (!data->valid || sensor->update) sensor->data = _pmbus_read_word_data(client, sensor->page, sensor->reg); } pmbus_clear_faults(client); data->last_updated = jiffies; data->valid = 1; } mutex_unlock(&data->update_lock); return data; } /* * Convert linear sensor values to milli- or micro-units * depending on sensor type. */ static long pmbus_reg2data_linear(struct pmbus_data *data, struct pmbus_sensor *sensor) { s16 exponent; s32 mantissa; long val; if (sensor->class == PSC_VOLTAGE_OUT) { /* LINEAR16 */ exponent = data->exponent; mantissa = (u16) sensor->data; } else { /* LINEAR11 */ exponent = (sensor->data >> 11) & 0x001f; mantissa = sensor->data & 0x07ff; if (exponent > 0x0f) exponent |= 0xffe0; /* sign extend exponent */ if (mantissa > 0x03ff) mantissa |= 0xfffff800; /* sign extend mantissa */ } val = mantissa; /* scale result to milli-units for all sensors except fans */ if (sensor->class != PSC_FAN) val = val * 1000L; /* scale result to micro-units for power sensors */ if (sensor->class == PSC_POWER) val = val * 1000L; if (exponent >= 0) val <<= exponent; else val >>= -exponent; return val; } /* * Convert direct sensor values to milli- or micro-units * depending on sensor type. */ static long pmbus_reg2data_direct(struct pmbus_data *data, struct pmbus_sensor *sensor) { long val = (s16) sensor->data; long m, b, R; m = data->info->m[sensor->class]; b = data->info->b[sensor->class]; R = data->info->R[sensor->class]; if (m == 0) return 0; /* X = 1/m * (Y * 10^-R - b) */ R = -R; /* scale result to milli-units for everything but fans */ if (sensor->class != PSC_FAN) { R += 3; b *= 1000; } /* scale result to micro-units for power sensors */ if (sensor->class == PSC_POWER) { R += 3; b *= 1000; } while (R > 0) { val *= 10; R--; } while (R < 0) { val = DIV_ROUND_CLOSEST(val, 10); R++; } return (val - b) / m; } /* * Convert VID sensor values to milli- or micro-units * depending on sensor type. * We currently only support VR11. */ static long pmbus_reg2data_vid(struct pmbus_data *data, struct pmbus_sensor *sensor) { long val = sensor->data; if (val < 0x02 || val > 0xb2) return 0; return DIV_ROUND_CLOSEST(160000 - (val - 2) * 625, 100); } static long pmbus_reg2data(struct pmbus_data *data, struct pmbus_sensor *sensor) { long val; switch (data->info->format[sensor->class]) { case direct: val = pmbus_reg2data_direct(data, sensor); break; case vid: val = pmbus_reg2data_vid(data, sensor); break; case linear: default: val = pmbus_reg2data_linear(data, sensor); break; } return val; } #define MAX_MANTISSA (1023 * 1000) #define MIN_MANTISSA (511 * 1000) static u16 pmbus_data2reg_linear(struct pmbus_data *data, enum pmbus_sensor_classes class, long val) { s16 exponent = 0, mantissa; bool negative = false; /* simple case */ if (val == 0) return 0; if (class == PSC_VOLTAGE_OUT) { /* LINEAR16 does not support negative voltages */ if (val < 0) return 0; /* * For a static exponents, we don't have a choice * but to adjust the value to it. */ if (data->exponent < 0) val <<= -data->exponent; else val >>= data->exponent; val = DIV_ROUND_CLOSEST(val, 1000); return val & 0xffff; } if (val < 0) { negative = true; val = -val; } /* Power is in uW. Convert to mW before converting. */ if (class == PSC_POWER) val = DIV_ROUND_CLOSEST(val, 1000L); /* * For simplicity, convert fan data to milli-units * before calculating the exponent. */ if (class == PSC_FAN) val = val * 1000; /* Reduce large mantissa until it fits into 10 bit */ while (val >= MAX_MANTISSA && exponent < 15) { exponent++; val >>= 1; } /* Increase small mantissa to improve precision */ while (val < MIN_MANTISSA && exponent > -15) { exponent--; val <<= 1; } /* Convert mantissa from milli-units to units */ mantissa = DIV_ROUND_CLOSEST(val, 1000); /* Ensure that resulting number is within range */ if (mantissa > 0x3ff) mantissa = 0x3ff; /* restore sign */ if (negative) mantissa = -mantissa; /* Convert to 5 bit exponent, 11 bit mantissa */ return (mantissa & 0x7ff) | ((exponent << 11) & 0xf800); } static u16 pmbus_data2reg_direct(struct pmbus_data *data, enum pmbus_sensor_classes class, long val) { long m, b, R; m = data->info->m[class]; b = data->info->b[class]; R = data->info->R[class]; /* Power is in uW. Adjust R and b. */ if (class == PSC_POWER) { R -= 3; b *= 1000; } /* Calculate Y = (m * X + b) * 10^R */ if (class != PSC_FAN) { R -= 3; /* Adjust R and b for data in milli-units */ b *= 1000; } val = val * m + b; while (R > 0) { val *= 10; R--; } while (R < 0) { val = DIV_ROUND_CLOSEST(val, 10); R++; } return val; } static u16 pmbus_data2reg_vid(struct pmbus_data *data, enum pmbus_sensor_classes class, long val) { val = SENSORS_LIMIT(val, 500, 1600); return 2 + DIV_ROUND_CLOSEST((1600 - val) * 100, 625); } static u16 pmbus_data2reg(struct pmbus_data *data, enum pmbus_sensor_classes class, long val) { u16 regval; switch (data->info->format[class]) { case direct: regval = pmbus_data2reg_direct(data, class, val); break; case vid: regval = pmbus_data2reg_vid(data, class, val); break; case linear: default: regval = pmbus_data2reg_linear(data, class, val); break; } return regval; } /* * Return boolean calculated from converted data. * defines a status register index and mask, and optionally * two sensor indexes. * The upper half-word references the two sensors, * two sensor indices. * The upper half-word references the two optional sensors, * the lower half word references status register and mask. * The function returns true if (status[reg] & mask) is true and, * if specified, if v1 >= v2. * To determine if an object exceeds upper limits, specify . * To determine if an object exceeds lower limits, specify . * * For booleans created with pmbus_add_boolean_reg(), only the lower 16 bits of * index are set. s1 and s2 (the sensor index values) are zero in this case. * The function returns true if (status[reg] & mask) is true. * * If the boolean was created with pmbus_add_boolean_cmp(), a comparison against * a specified limit has to be performed to determine the boolean result. * In this case, the function returns true if v1 >= v2 (where v1 and v2 are * sensor values referenced by sensor indices s1 and s2). * * To determine if an object exceeds upper limits, specify = . * To determine if an object exceeds lower limits, specify = . * * If a negative value is stored in any of the referenced registers, this value * reflects an error code which will be returned. */ static int pmbus_get_boolean(struct pmbus_data *data, int index, int *val) { u8 s1 = (index >> 24) & 0xff; u8 s2 = (index >> 16) & 0xff; u8 reg = (index >> 8) & 0xff; u8 mask = index & 0xff; int status; u8 regval; status = data->status[reg]; if (status < 0) return status; regval = status & mask; if (!s1 && !s2) *val = !!regval; else { long v1, v2; struct pmbus_sensor *sensor1, *sensor2; sensor1 = &data->sensors[s1]; if (sensor1->data < 0) return sensor1->data; sensor2 = &data->sensors[s2]; if (sensor2->data < 0) return sensor2->data; v1 = pmbus_reg2data(data, sensor1); v2 = pmbus_reg2data(data, sensor2); *val = !!(regval && v1 >= v2); } return 0; } static ssize_t pmbus_show_boolean(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct pmbus_data *data = pmbus_update_device(dev); int val; int err; err = pmbus_get_boolean(data, attr->index, &val); if (err) return err; return snprintf(buf, PAGE_SIZE, "%d\n", val); } static ssize_t pmbus_show_sensor(struct device *dev, struct device_attribute *da, char *buf) { struct sensor_device_attribute *attr = to_sensor_dev_attr(da); struct pmbus_data *data = pmbus_update_device(dev); struct pmbus_sensor *sensor; sensor = &data->sensors[attr->index]; if (sensor->data < 0) return sensor->data; return snprintf(buf, PAGE_SIZE, "%ld\n", pmbus_reg2data(data, sensor)); } static ssize_t pmbus_set_sensor(struct device *dev, struct device_attribute *devattr, const char *buf, size_t count) { struct sensor_device_attribute *attr = to_sensor_dev_attr(devattr); struct i2c_client *client = to_i2c_client(dev); struct pmbus_data *data = i2c_get_clientdata(client); struct pmbus_sensor *sensor = &data->sensors[attr->index]; ssize_t rv = count; long val = 0; int ret; u16 regval; if (strict_strtol(buf, 10, &val) < 0) return -EINVAL; mutex_lock(&data->update_lock); regval = pmbus_data2reg(data, sensor->class, val); ret = _pmbus_write_word_data(client, sensor->page, sensor->reg, regval); if (ret < 0) rv = ret; else data->sensors[attr->index].data = regval; mutex_unlock(&data->update_lock); return rv; } static ssize_t pmbus_show_label(struct device *dev, struct device_attribute *da, char *buf) { struct i2c_client *client = to_i2c_client(dev); struct pmbus_data *data = i2c_get_clientdata(client); struct sensor_device_attribute *attr = to_sensor_dev_attr(da); return snprintf(buf, PAGE_SIZE, "%s\n", data->labels[attr->index].label); } #define PMBUS_ADD_ATTR(data, _name, _idx, _mode, _type, _show, _set) \ do { \ struct sensor_device_attribute *a \ = &data->_type##s[data->num_##_type##s].attribute; \ BUG_ON(data->num_attributes >= data->max_attributes); \ sysfs_attr_init(&a->dev_attr.attr); \ a->dev_attr.attr.name = _name; \ a->dev_attr.attr.mode = _mode; \ a->dev_attr.show = _show; \ a->dev_attr.store = _set; \ a->index = _idx; \ data->attributes[data->num_attributes] = &a->dev_attr.attr; \ data->num_attributes++; \ } while (0) #define PMBUS_ADD_GET_ATTR(data, _name, _type, _idx) \ PMBUS_ADD_ATTR(data, _name, _idx, S_IRUGO, _type, \ pmbus_show_##_type, NULL) #define PMBUS_ADD_SET_ATTR(data, _name, _type, _idx) \ PMBUS_ADD_ATTR(data, _name, _idx, S_IWUSR | S_IRUGO, _type, \ pmbus_show_##_type, pmbus_set_##_type) static void pmbus_add_boolean(struct pmbus_data *data, const char *name, const char *type, int seq, int idx) { struct pmbus_boolean *boolean; BUG_ON(data->num_booleans >= data->max_booleans); boolean = &data->booleans[data->num_booleans]; snprintf(boolean->name, sizeof(boolean->name), "%s%d_%s", name, seq, type); PMBUS_ADD_GET_ATTR(data, boolean->name, boolean, idx); data->num_booleans++; } static void pmbus_add_boolean_reg(struct pmbus_data *data, const char *name, const char *type, int seq, int reg, int bit) { pmbus_add_boolean(data, name, type, seq, (reg << 8) | bit); } static void pmbus_add_boolean_cmp(struct pmbus_data *data, const char *name, const char *type, int seq, int i1, int i2, int reg, int mask) { pmbus_add_boolean(data, name, type, seq, (i1 << 24) | (i2 << 16) | (reg << 8) | mask); } static void pmbus_add_sensor(struct pmbus_data *data, const char *name, const char *type, int seq, int page, int reg, enum pmbus_sensor_classes class, bool update, bool readonly) { struct pmbus_sensor *sensor; BUG_ON(data->num_sensors >= data->max_sensors); sensor = &data->sensors[data->num_sensors]; snprintf(sensor->name, sizeof(sensor->name), "%s%d_%s", name, seq, type); sensor->page = page; sensor->reg = reg; sensor->class = class; sensor->update = update; if (readonly) PMBUS_ADD_GET_ATTR(data, sensor->name, sensor, data->num_sensors); else PMBUS_ADD_SET_ATTR(data, sensor->name, sensor, data->num_sensors); data->num_sensors++; } static void pmbus_add_label(struct pmbus_data *data, const char *name, int seq, const char *lstring, int index) { struct pmbus_label *label; BUG_ON(data->num_labels >= data->max_labels); label = &data->labels[data->num_labels]; snprintf(label->name, sizeof(label->name), "%s%d_label", name, seq); if (!index) strncpy(label->label, lstring, sizeof(label->label) - 1); else snprintf(label->label, sizeof(label->label), "%s%d", lstring, index); PMBUS_ADD_GET_ATTR(data, label->name, label, data->num_labels); data->num_labels++; } /* * Determine maximum number of sensors, booleans, and labels. * To keep things simple, only make a rough high estimate. */ static void pmbus_find_max_attr(struct i2c_client *client, struct pmbus_data *data) { const struct pmbus_driver_info *info = data->info; int page, max_sensors, max_booleans, max_labels; max_sensors = PMBUS_MAX_INPUT_SENSORS; max_booleans = PMBUS_MAX_INPUT_BOOLEANS; max_labels = PMBUS_MAX_INPUT_LABELS; for (page = 0; page < info->pages; page++) { if (info->func[page] & PMBUS_HAVE_VOUT) { max_sensors += PMBUS_VOUT_SENSORS_PER_PAGE; max_booleans += PMBUS_VOUT_BOOLEANS_PER_PAGE; max_labels++; } if (info->func[page] & PMBUS_HAVE_IOUT) { max_sensors += PMBUS_IOUT_SENSORS_PER_PAGE; max_booleans += PMBUS_IOUT_BOOLEANS_PER_PAGE; max_labels++; } if (info->func[page] & PMBUS_HAVE_POUT) { max_sensors += PMBUS_POUT_SENSORS_PER_PAGE; max_booleans += PMBUS_POUT_BOOLEANS_PER_PAGE; max_labels++; } if (info->func[page] & PMBUS_HAVE_FAN12) { max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN; max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN; } if (info->func[page] & PMBUS_HAVE_FAN34) { max_sensors += 2 * PMBUS_MAX_SENSORS_PER_FAN; max_booleans += 2 * PMBUS_MAX_BOOLEANS_PER_FAN; } if (info->func[page] & PMBUS_HAVE_TEMP) { max_sensors += PMBUS_MAX_SENSORS_PER_TEMP; max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP; } if (info->func[page] & PMBUS_HAVE_TEMP2) { max_sensors += PMBUS_MAX_SENSORS_PER_TEMP; max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP; } if (info->func[page] & PMBUS_HAVE_TEMP3) { max_sensors += PMBUS_MAX_SENSORS_PER_TEMP; max_booleans += PMBUS_MAX_BOOLEANS_PER_TEMP; } } data->max_sensors = max_sensors; data->max_booleans = max_booleans; data->max_labels = max_labels; data->max_attributes = max_sensors + max_booleans + max_labels; } /* * Search for attributes. Allocate sensors, booleans, and labels as needed. */ /* * The pmbus_limit_attr structure describes a single limit attribute * and its associated alarm attribute. */ struct pmbus_limit_attr { u16 reg; /* Limit register */ bool update; /* True if register needs updates */ bool low; /* True if low limit; for limits with compare functions only */ const char *attr; /* Attribute name */ const char *alarm; /* Alarm attribute name */ u32 sbit; /* Alarm attribute status bit */ }; /* * The pmbus_sensor_attr structure describes one sensor attribute. This * description includes a reference to the associated limit attributes. */ struct pmbus_sensor_attr { u8 reg; /* sensor register */ enum pmbus_sensor_classes class;/* sensor class */ const char *label; /* sensor label */ bool paged; /* true if paged sensor */ bool update; /* true if update needed */ bool compare; /* true if compare function needed */ u32 func; /* sensor mask */ u32 sfunc; /* sensor status mask */ int sbase; /* status base register */ u32 gbit; /* generic status bit */ const struct pmbus_limit_attr *limit;/* limit registers */ int nlimit; /* # of limit registers */ }; /* * Add a set of limit attributes and, if supported, the associated * alarm attributes. */ static bool pmbus_add_limit_attrs(struct i2c_client *client, struct pmbus_data *data, const struct pmbus_driver_info *info, const char *name, int index, int page, int cbase, const struct pmbus_sensor_attr *attr) { const struct pmbus_limit_attr *l = attr->limit; int nlimit = attr->nlimit; bool have_alarm = false; int i, cindex; for (i = 0; i < nlimit; i++) { if (pmbus_check_word_register(client, page, l->reg)) { cindex = data->num_sensors; pmbus_add_sensor(data, name, l->attr, index, page, l->reg, attr->class, attr->update || l->update, false); if (l->sbit && (info->func[page] & attr->sfunc)) { if (attr->compare) { pmbus_add_boolean_cmp(data, name, l->alarm, index, l->low ? cindex : cbase, l->low ? cbase : cindex, attr->sbase + page, l->sbit); } else { pmbus_add_boolean_reg(data, name, l->alarm, index, attr->sbase + page, l->sbit); } have_alarm = true; } } l++; } return have_alarm; } static void pmbus_add_sensor_attrs_one(struct i2c_client *client, struct pmbus_data *data, const struct pmbus_driver_info *info, const char *name, int index, int page, const struct pmbus_sensor_attr *attr) { bool have_alarm; int cbase = data->num_sensors; if (attr->label) pmbus_add_label(data, name, index, attr->label, attr->paged ? page + 1 : 0); pmbus_add_sensor(data, name, "input", index, page, attr->reg, attr->class, true, true); if (attr->sfunc) { have_alarm = pmbus_add_limit_attrs(client, data, info, name, index, page, cbase, attr); /* * Add generic alarm attribute only if there are no individual * alarm attributes, if there is a global alarm bit, and if * the generic status register for this page is accessible. */ if (!have_alarm && attr->gbit && pmbus_check_byte_register(client, page, PMBUS_STATUS_BYTE)) pmbus_add_boolean_reg(data, name, "alarm", index, PB_STATUS_BASE + page, attr->gbit); } } static void pmbus_add_sensor_attrs(struct i2c_client *client, struct pmbus_data *data, const char *name, const struct pmbus_sensor_attr *attrs, int nattrs) { const struct pmbus_driver_info *info = data->info; int index, i; index = 1; for (i = 0; i < nattrs; i++) { int page, pages; pages = attrs->paged ? info->pages : 1; for (page = 0; page < pages; page++) { if (!(info->func[page] & attrs->func)) continue; pmbus_add_sensor_attrs_one(client, data, info, name, index, page, attrs); index++; } attrs++; } } static const struct pmbus_limit_attr vin_limit_attrs[] = { { .reg = PMBUS_VIN_UV_WARN_LIMIT, .attr = "min", .alarm = "min_alarm", .sbit = PB_VOLTAGE_UV_WARNING, }, { .reg = PMBUS_VIN_UV_FAULT_LIMIT, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_VOLTAGE_UV_FAULT, }, { .reg = PMBUS_VIN_OV_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_VOLTAGE_OV_WARNING, }, { .reg = PMBUS_VIN_OV_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_VOLTAGE_OV_FAULT, }, { .reg = PMBUS_VIRT_READ_VIN_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_VIN_MIN, .update = true, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_VIN_MAX, .update = true, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_VIN_HISTORY, .attr = "reset_history", }, }; static const struct pmbus_limit_attr vout_limit_attrs[] = { { .reg = PMBUS_VOUT_UV_WARN_LIMIT, .attr = "min", .alarm = "min_alarm", .sbit = PB_VOLTAGE_UV_WARNING, }, { .reg = PMBUS_VOUT_UV_FAULT_LIMIT, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_VOLTAGE_UV_FAULT, }, { .reg = PMBUS_VOUT_OV_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_VOLTAGE_OV_WARNING, }, { .reg = PMBUS_VOUT_OV_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_VOLTAGE_OV_FAULT, }, { .reg = PMBUS_VIRT_READ_VOUT_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_VOUT_MIN, .update = true, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_VOUT_MAX, .update = true, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_VOUT_HISTORY, .attr = "reset_history", } }; static const struct pmbus_sensor_attr voltage_attributes[] = { { .reg = PMBUS_READ_VIN, .class = PSC_VOLTAGE_IN, .label = "vin", .func = PMBUS_HAVE_VIN, .sfunc = PMBUS_HAVE_STATUS_INPUT, .sbase = PB_STATUS_INPUT_BASE, .gbit = PB_STATUS_VIN_UV, .limit = vin_limit_attrs, .nlimit = ARRAY_SIZE(vin_limit_attrs), }, { .reg = PMBUS_READ_VCAP, .class = PSC_VOLTAGE_IN, .label = "vcap", .func = PMBUS_HAVE_VCAP, }, { .reg = PMBUS_READ_VOUT, .class = PSC_VOLTAGE_OUT, .label = "vout", .paged = true, .func = PMBUS_HAVE_VOUT, .sfunc = PMBUS_HAVE_STATUS_VOUT, .sbase = PB_STATUS_VOUT_BASE, .gbit = PB_STATUS_VOUT_OV, .limit = vout_limit_attrs, .nlimit = ARRAY_SIZE(vout_limit_attrs), } }; /* Current attributes */ static const struct pmbus_limit_attr iin_limit_attrs[] = { { .reg = PMBUS_IIN_OC_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_IIN_OC_WARNING, }, { .reg = PMBUS_IIN_OC_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_IIN_OC_FAULT, }, { .reg = PMBUS_VIRT_READ_IIN_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_IIN_MIN, .update = true, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_IIN_MAX, .update = true, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_IIN_HISTORY, .attr = "reset_history", } }; static const struct pmbus_limit_attr iout_limit_attrs[] = { { .reg = PMBUS_IOUT_OC_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_IOUT_OC_WARNING, }, { .reg = PMBUS_IOUT_UC_FAULT_LIMIT, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_IOUT_UC_FAULT, }, { .reg = PMBUS_IOUT_OC_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_IOUT_OC_FAULT, }, { .reg = PMBUS_VIRT_READ_IOUT_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_IOUT_MIN, .update = true, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_IOUT_MAX, .update = true, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_IOUT_HISTORY, .attr = "reset_history", } }; static const struct pmbus_sensor_attr current_attributes[] = { { .reg = PMBUS_READ_IIN, .class = PSC_CURRENT_IN, .label = "iin", .func = PMBUS_HAVE_IIN, .sfunc = PMBUS_HAVE_STATUS_INPUT, .sbase = PB_STATUS_INPUT_BASE, .limit = iin_limit_attrs, .nlimit = ARRAY_SIZE(iin_limit_attrs), }, { .reg = PMBUS_READ_IOUT, .class = PSC_CURRENT_OUT, .label = "iout", .paged = true, .func = PMBUS_HAVE_IOUT, .sfunc = PMBUS_HAVE_STATUS_IOUT, .sbase = PB_STATUS_IOUT_BASE, .gbit = PB_STATUS_IOUT_OC, .limit = iout_limit_attrs, .nlimit = ARRAY_SIZE(iout_limit_attrs), } }; /* Power attributes */ static const struct pmbus_limit_attr pin_limit_attrs[] = { { .reg = PMBUS_PIN_OP_WARN_LIMIT, .attr = "max", .alarm = "alarm", .sbit = PB_PIN_OP_WARNING, }, { .reg = PMBUS_VIRT_READ_PIN_AVG, .update = true, .attr = "average", }, { .reg = PMBUS_VIRT_READ_PIN_MAX, .update = true, .attr = "input_highest", }, { .reg = PMBUS_VIRT_RESET_PIN_HISTORY, .attr = "reset_history", } }; static const struct pmbus_limit_attr pout_limit_attrs[] = { { .reg = PMBUS_POUT_MAX, .attr = "cap", .alarm = "cap_alarm", .sbit = PB_POWER_LIMITING, }, { .reg = PMBUS_POUT_OP_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_POUT_OP_WARNING, }, { .reg = PMBUS_POUT_OP_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_POUT_OP_FAULT, } }; static const struct pmbus_sensor_attr power_attributes[] = { { .reg = PMBUS_READ_PIN, .class = PSC_POWER, .label = "pin", .func = PMBUS_HAVE_PIN, .sfunc = PMBUS_HAVE_STATUS_INPUT, .sbase = PB_STATUS_INPUT_BASE, .limit = pin_limit_attrs, .nlimit = ARRAY_SIZE(pin_limit_attrs), }, { .reg = PMBUS_READ_POUT, .class = PSC_POWER, .label = "pout", .paged = true, .func = PMBUS_HAVE_POUT, .sfunc = PMBUS_HAVE_STATUS_IOUT, .sbase = PB_STATUS_IOUT_BASE, .limit = pout_limit_attrs, .nlimit = ARRAY_SIZE(pout_limit_attrs), } }; /* Temperature atributes */ static const struct pmbus_limit_attr temp_limit_attrs[] = { { .reg = PMBUS_UT_WARN_LIMIT, .low = true, .attr = "min", .alarm = "min_alarm", .sbit = PB_TEMP_UT_WARNING, }, { .reg = PMBUS_UT_FAULT_LIMIT, .low = true, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_TEMP_UT_FAULT, }, { .reg = PMBUS_OT_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_TEMP_OT_WARNING, }, { .reg = PMBUS_OT_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_TEMP_OT_FAULT, }, { .reg = PMBUS_VIRT_READ_TEMP_MIN, .attr = "lowest", }, { .reg = PMBUS_VIRT_READ_TEMP_MAX, .attr = "highest", }, { .reg = PMBUS_VIRT_RESET_TEMP_HISTORY, .attr = "reset_history", } }; static const struct pmbus_limit_attr temp_limit_attrs23[] = { { .reg = PMBUS_UT_WARN_LIMIT, .low = true, .attr = "min", .alarm = "min_alarm", .sbit = PB_TEMP_UT_WARNING, }, { .reg = PMBUS_UT_FAULT_LIMIT, .low = true, .attr = "lcrit", .alarm = "lcrit_alarm", .sbit = PB_TEMP_UT_FAULT, }, { .reg = PMBUS_OT_WARN_LIMIT, .attr = "max", .alarm = "max_alarm", .sbit = PB_TEMP_OT_WARNING, }, { .reg = PMBUS_OT_FAULT_LIMIT, .attr = "crit", .alarm = "crit_alarm", .sbit = PB_TEMP_OT_FAULT, } }; static const struct pmbus_sensor_attr temp_attributes[] = { { .reg = PMBUS_READ_TEMPERATURE_1, .class = PSC_TEMPERATURE, .paged = true, .update = true, .compare = true, .func = PMBUS_HAVE_TEMP, .sfunc = PMBUS_HAVE_STATUS_TEMP, .sbase = PB_STATUS_TEMP_BASE, .gbit = PB_STATUS_TEMPERATURE, .limit = temp_limit_attrs, .nlimit = ARRAY_SIZE(temp_limit_attrs), }, { .reg = PMBUS_READ_TEMPERATURE_2, .class = PSC_TEMPERATURE, .paged = true, .update = true, .compare = true, .func = PMBUS_HAVE_TEMP2, .sfunc = PMBUS_HAVE_STATUS_TEMP, .sbase = PB_STATUS_TEMP_BASE, .gbit = PB_STATUS_TEMPERATURE, .limit = temp_limit_attrs23, .nlimit = ARRAY_SIZE(temp_limit_attrs23), }, { .reg = PMBUS_READ_TEMPERATURE_3, .class = PSC_TEMPERATURE, .paged = true, .update = true, .compare = true, .func = PMBUS_HAVE_TEMP3, .sfunc = PMBUS_HAVE_STATUS_TEMP, .sbase = PB_STATUS_TEMP_BASE, .gbit = PB_STATUS_TEMPERATURE, .limit = temp_limit_attrs23, .nlimit = ARRAY_SIZE(temp_limit_attrs23), } }; static const int pmbus_fan_registers[] = { PMBUS_READ_FAN_SPEED_1, PMBUS_READ_FAN_SPEED_2, PMBUS_READ_FAN_SPEED_3, PMBUS_READ_FAN_SPEED_4 }; static const int pmbus_fan_config_registers[] = { PMBUS_FAN_CONFIG_12, PMBUS_FAN_CONFIG_12, PMBUS_FAN_CONFIG_34, PMBUS_FAN_CONFIG_34 }; static const int pmbus_fan_status_registers[] = { PMBUS_STATUS_FAN_12, PMBUS_STATUS_FAN_12, PMBUS_STATUS_FAN_34, PMBUS_STATUS_FAN_34 }; static const u32 pmbus_fan_flags[] = { PMBUS_HAVE_FAN12, PMBUS_HAVE_FAN12, PMBUS_HAVE_FAN34, PMBUS_HAVE_FAN34 }; static const u32 pmbus_fan_status_flags[] = { PMBUS_HAVE_STATUS_FAN12, PMBUS_HAVE_STATUS_FAN12, PMBUS_HAVE_STATUS_FAN34, PMBUS_HAVE_STATUS_FAN34 }; /* Fans */ static void pmbus_add_fan_attributes(struct i2c_client *client, struct pmbus_data *data) { const struct pmbus_driver_info *info = data->info; int index = 1; int page; for (page = 0; page < info->pages; page++) { int f; for (f = 0; f < ARRAY_SIZE(pmbus_fan_registers); f++) { int regval; if (!(info->func[page] & pmbus_fan_flags[f])) break; if (!pmbus_check_word_register(client, page, pmbus_fan_registers[f])) break; /* * Skip fan if not installed. * Each fan configuration register covers multiple fans, * so we have to do some magic. */ regval = _pmbus_read_byte_data(client, page, pmbus_fan_config_registers[f]); if (regval < 0 || (!(regval & (PB_FAN_1_INSTALLED >> ((f & 1) * 4))))) continue; pmbus_add_sensor(data, "fan", "input", index, page, pmbus_fan_registers[f], PSC_FAN, true, true); /* * Each fan status register covers multiple fans, * so we have to do some magic. */ if ((info->func[page] & pmbus_fan_status_flags[f]) && pmbus_check_byte_register(client, page, pmbus_fan_status_registers[f])) { int base; if (f > 1) /* fan 3, 4 */ base = PB_STATUS_FAN34_BASE + page; else base = PB_STATUS_FAN_BASE + page; pmbus_add_boolean_reg(data, "fan", "alarm", index, base, PB_FAN_FAN1_WARNING >> (f & 1)); pmbus_add_boolean_reg(data, "fan", "fault", index, base, PB_FAN_FAN1_FAULT >> (f & 1)); } index++; } } } static void pmbus_find_attributes(struct i2c_client *client, struct pmbus_data *data) { /* Voltage sensors */ pmbus_add_sensor_attrs(client, data, "in", voltage_attributes, ARRAY_SIZE(voltage_attributes)); /* Current sensors */ pmbus_add_sensor_attrs(client, data, "curr", current_attributes, ARRAY_SIZE(current_attributes)); /* Power sensors */ pmbus_add_sensor_attrs(client, data, "power", power_attributes, ARRAY_SIZE(power_attributes)); /* Temperature sensors */ pmbus_add_sensor_attrs(client, data, "temp", temp_attributes, ARRAY_SIZE(temp_attributes)); /* Fans */ pmbus_add_fan_attributes(client, data); } /* * Identify chip parameters. * This function is called for all chips. */ static int pmbus_identify_common(struct i2c_client *client, struct pmbus_data *data) { int vout_mode = -1, exponent; if (pmbus_check_byte_register(client, 0, PMBUS_VOUT_MODE)) vout_mode = pmbus_read_byte_data(client, 0, PMBUS_VOUT_MODE); if (vout_mode >= 0 && vout_mode != 0xff) { /* * Not all chips support the VOUT_MODE command, * so a failure to read it is not an error. */ switch (vout_mode >> 5) { case 0: /* linear mode */ if (data->info->format[PSC_VOLTAGE_OUT] != linear) return -ENODEV; exponent = vout_mode & 0x1f; /* and sign-extend it */ if (exponent & 0x10) exponent |= ~0x1f; data->exponent = exponent; break; case 1: /* VID mode */ if (data->info->format[PSC_VOLTAGE_OUT] != vid) return -ENODEV; break; case 2: /* direct mode */ if (data->info->format[PSC_VOLTAGE_OUT] != direct) return -ENODEV; break; default: return -ENODEV; } } /* Determine maximum number of sensors, booleans, and labels */ pmbus_find_max_attr(client, data); pmbus_clear_fault_page(client, 0); return 0; } int pmbus_do_probe(struct i2c_client *client, const struct i2c_device_id *id, struct pmbus_driver_info *info) { const struct pmbus_platform_data *pdata = client->dev.platform_data; struct pmbus_data *data; int ret; if (!info) { dev_err(&client->dev, "Missing chip information"); return -ENODEV; } if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE | I2C_FUNC_SMBUS_BYTE_DATA | I2C_FUNC_SMBUS_WORD_DATA)) return -ENODEV; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) { dev_err(&client->dev, "No memory to allocate driver data\n"); return -ENOMEM; } i2c_set_clientdata(client, data); mutex_init(&data->update_lock); /* Bail out if PMBus status register does not exist. */ if (i2c_smbus_read_byte_data(client, PMBUS_STATUS_BYTE) < 0) { dev_err(&client->dev, "PMBus status register not found\n"); ret = -ENODEV; goto out_data; } if (pdata) data->flags = pdata->flags; data->info = info; pmbus_clear_faults(client); if (info->identify) { ret = (*info->identify)(client, info); if (ret < 0) { dev_err(&client->dev, "Chip identification failed\n"); goto out_data; } } if (info->pages <= 0 || info->pages > PMBUS_PAGES) { dev_err(&client->dev, "Bad number of PMBus pages: %d\n", info->pages); ret = -ENODEV; goto out_data; } ret = pmbus_identify_common(client, data); if (ret < 0) { dev_err(&client->dev, "Failed to identify chip capabilities\n"); goto out_data; } ret = -ENOMEM; data->sensors = kzalloc(sizeof(struct pmbus_sensor) * data->max_sensors, GFP_KERNEL); if (!data->sensors) { dev_err(&client->dev, "No memory to allocate sensor data\n"); goto out_data; } data->booleans = kzalloc(sizeof(struct pmbus_boolean) * data->max_booleans, GFP_KERNEL); if (!data->booleans) { dev_err(&client->dev, "No memory to allocate boolean data\n"); goto out_sensors; } data->labels = kzalloc(sizeof(struct pmbus_label) * data->max_labels, GFP_KERNEL); if (!data->labels) { dev_err(&client->dev, "No memory to allocate label data\n"); goto out_booleans; } data->attributes = kzalloc(sizeof(struct attribute *) * data->max_attributes, GFP_KERNEL); if (!data->attributes) { dev_err(&client->dev, "No memory to allocate attribute data\n"); goto out_labels; } pmbus_find_attributes(client, data); /* * If there are no attributes, something is wrong. * Bail out instead of trying to register nothing. */ if (!data->num_attributes) { dev_err(&client->dev, "No attributes found\n"); ret = -ENODEV; goto out_attributes; } /* Register sysfs hooks */ data->group.attrs = data->attributes; ret = sysfs_create_group(&client->dev.kobj, &data->group); if (ret) { dev_err(&client->dev, "Failed to create sysfs entries\n"); goto out_attributes; } data->hwmon_dev = hwmon_device_register(&client->dev); if (IS_ERR(data->hwmon_dev)) { ret = PTR_ERR(data->hwmon_dev); dev_err(&client->dev, "Failed to register hwmon device\n"); goto out_hwmon_device_register; } return 0; out_hwmon_device_register: sysfs_remove_group(&client->dev.kobj, &data->group); out_attributes: kfree(data->attributes); out_labels: kfree(data->labels); out_booleans: kfree(data->booleans); out_sensors: kfree(data->sensors); out_data: kfree(data); return ret; } EXPORT_SYMBOL_GPL(pmbus_do_probe); void pmbus_do_remove(struct i2c_client *client) { struct pmbus_data *data = i2c_get_clientdata(client); hwmon_device_unregister(data->hwmon_dev); sysfs_remove_group(&client->dev.kobj, &data->group); kfree(data->attributes); kfree(data->labels); kfree(data->booleans); kfree(data->sensors); kfree(data); } EXPORT_SYMBOL_GPL(pmbus_do_remove); MODULE_AUTHOR("Guenter Roeck"); MODULE_DESCRIPTION("PMBus core driver"); MODULE_LICENSE("GPL");