/* Intel Ethernet Switch Host Interface Driver * Copyright(c) 2013 - 2014 Intel Corporation. * * This program is free software; you can redistribute it and/or modify it * under the terms and conditions of the GNU General Public License, * version 2, as published by the Free Software Foundation. * * This program is distributed in the hope it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for * more details. * * The full GNU General Public License is included in this distribution in * the file called "COPYING". * * Contact Information: * e1000-devel Mailing List * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 */ #include "fm10k.h" #include #if IS_ENABLED(CONFIG_VXLAN) #include #endif /* CONFIG_VXLAN */ /** * fm10k_setup_tx_resources - allocate Tx resources (Descriptors) * @tx_ring: tx descriptor ring (for a specific queue) to setup * * Return 0 on success, negative on failure **/ int fm10k_setup_tx_resources(struct fm10k_ring *tx_ring) { struct device *dev = tx_ring->dev; int size; size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; tx_ring->tx_buffer = vzalloc(size); if (!tx_ring->tx_buffer) goto err; u64_stats_init(&tx_ring->syncp); /* round up to nearest 4K */ tx_ring->size = tx_ring->count * sizeof(struct fm10k_tx_desc); tx_ring->size = ALIGN(tx_ring->size, 4096); tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size, &tx_ring->dma, GFP_KERNEL); if (!tx_ring->desc) goto err; return 0; err: vfree(tx_ring->tx_buffer); tx_ring->tx_buffer = NULL; return -ENOMEM; } /** * fm10k_setup_all_tx_resources - allocate all queues Tx resources * @interface: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int fm10k_setup_all_tx_resources(struct fm10k_intfc *interface) { int i, err = 0; for (i = 0; i < interface->num_tx_queues; i++) { err = fm10k_setup_tx_resources(interface->tx_ring[i]); if (!err) continue; netif_err(interface, probe, interface->netdev, "Allocation for Tx Queue %u failed\n", i); goto err_setup_tx; } return 0; err_setup_tx: /* rewind the index freeing the rings as we go */ while (i--) fm10k_free_tx_resources(interface->tx_ring[i]); return err; } /** * fm10k_setup_rx_resources - allocate Rx resources (Descriptors) * @rx_ring: rx descriptor ring (for a specific queue) to setup * * Returns 0 on success, negative on failure **/ int fm10k_setup_rx_resources(struct fm10k_ring *rx_ring) { struct device *dev = rx_ring->dev; int size; size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; rx_ring->rx_buffer = vzalloc(size); if (!rx_ring->rx_buffer) goto err; u64_stats_init(&rx_ring->syncp); /* Round up to nearest 4K */ rx_ring->size = rx_ring->count * sizeof(union fm10k_rx_desc); rx_ring->size = ALIGN(rx_ring->size, 4096); rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size, &rx_ring->dma, GFP_KERNEL); if (!rx_ring->desc) goto err; return 0; err: vfree(rx_ring->rx_buffer); rx_ring->rx_buffer = NULL; return -ENOMEM; } /** * fm10k_setup_all_rx_resources - allocate all queues Rx resources * @interface: board private structure * * If this function returns with an error, then it's possible one or * more of the rings is populated (while the rest are not). It is the * callers duty to clean those orphaned rings. * * Return 0 on success, negative on failure **/ static int fm10k_setup_all_rx_resources(struct fm10k_intfc *interface) { int i, err = 0; for (i = 0; i < interface->num_rx_queues; i++) { err = fm10k_setup_rx_resources(interface->rx_ring[i]); if (!err) continue; netif_err(interface, probe, interface->netdev, "Allocation for Rx Queue %u failed\n", i); goto err_setup_rx; } return 0; err_setup_rx: /* rewind the index freeing the rings as we go */ while (i--) fm10k_free_rx_resources(interface->rx_ring[i]); return err; } void fm10k_unmap_and_free_tx_resource(struct fm10k_ring *ring, struct fm10k_tx_buffer *tx_buffer) { if (tx_buffer->skb) { dev_kfree_skb_any(tx_buffer->skb); if (dma_unmap_len(tx_buffer, len)) dma_unmap_single(ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } else if (dma_unmap_len(tx_buffer, len)) { dma_unmap_page(ring->dev, dma_unmap_addr(tx_buffer, dma), dma_unmap_len(tx_buffer, len), DMA_TO_DEVICE); } tx_buffer->next_to_watch = NULL; tx_buffer->skb = NULL; dma_unmap_len_set(tx_buffer, len, 0); /* tx_buffer must be completely set up in the transmit path */ } /** * fm10k_clean_tx_ring - Free Tx Buffers * @tx_ring: ring to be cleaned **/ static void fm10k_clean_tx_ring(struct fm10k_ring *tx_ring) { struct fm10k_tx_buffer *tx_buffer; unsigned long size; u16 i; /* ring already cleared, nothing to do */ if (!tx_ring->tx_buffer) return; /* Free all the Tx ring sk_buffs */ for (i = 0; i < tx_ring->count; i++) { tx_buffer = &tx_ring->tx_buffer[i]; fm10k_unmap_and_free_tx_resource(tx_ring, tx_buffer); } /* reset BQL values */ netdev_tx_reset_queue(txring_txq(tx_ring)); size = sizeof(struct fm10k_tx_buffer) * tx_ring->count; memset(tx_ring->tx_buffer, 0, size); /* Zero out the descriptor ring */ memset(tx_ring->desc, 0, tx_ring->size); } /** * fm10k_free_tx_resources - Free Tx Resources per Queue * @tx_ring: Tx descriptor ring for a specific queue * * Free all transmit software resources **/ void fm10k_free_tx_resources(struct fm10k_ring *tx_ring) { fm10k_clean_tx_ring(tx_ring); vfree(tx_ring->tx_buffer); tx_ring->tx_buffer = NULL; /* if not set, then don't free */ if (!tx_ring->desc) return; dma_free_coherent(tx_ring->dev, tx_ring->size, tx_ring->desc, tx_ring->dma); tx_ring->desc = NULL; } /** * fm10k_clean_all_tx_rings - Free Tx Buffers for all queues * @interface: board private structure **/ void fm10k_clean_all_tx_rings(struct fm10k_intfc *interface) { int i; for (i = 0; i < interface->num_tx_queues; i++) fm10k_clean_tx_ring(interface->tx_ring[i]); /* remove any stale timestamp buffers and free them */ skb_queue_purge(&interface->ts_tx_skb_queue); } /** * fm10k_free_all_tx_resources - Free Tx Resources for All Queues * @interface: board private structure * * Free all transmit software resources **/ static void fm10k_free_all_tx_resources(struct fm10k_intfc *interface) { int i = interface->num_tx_queues; while (i--) fm10k_free_tx_resources(interface->tx_ring[i]); } /** * fm10k_clean_rx_ring - Free Rx Buffers per Queue * @rx_ring: ring to free buffers from **/ static void fm10k_clean_rx_ring(struct fm10k_ring *rx_ring) { unsigned long size; u16 i; if (!rx_ring->rx_buffer) return; if (rx_ring->skb) dev_kfree_skb(rx_ring->skb); rx_ring->skb = NULL; /* Free all the Rx ring sk_buffs */ for (i = 0; i < rx_ring->count; i++) { struct fm10k_rx_buffer *buffer = &rx_ring->rx_buffer[i]; /* clean-up will only set page pointer to NULL */ if (!buffer->page) continue; dma_unmap_page(rx_ring->dev, buffer->dma, PAGE_SIZE, DMA_FROM_DEVICE); __free_page(buffer->page); buffer->page = NULL; } size = sizeof(struct fm10k_rx_buffer) * rx_ring->count; memset(rx_ring->rx_buffer, 0, size); /* Zero out the descriptor ring */ memset(rx_ring->desc, 0, rx_ring->size); rx_ring->next_to_alloc = 0; rx_ring->next_to_clean = 0; rx_ring->next_to_use = 0; } /** * fm10k_free_rx_resources - Free Rx Resources * @rx_ring: ring to clean the resources from * * Free all receive software resources **/ void fm10k_free_rx_resources(struct fm10k_ring *rx_ring) { fm10k_clean_rx_ring(rx_ring); vfree(rx_ring->rx_buffer); rx_ring->rx_buffer = NULL; /* if not set, then don't free */ if (!rx_ring->desc) return; dma_free_coherent(rx_ring->dev, rx_ring->size, rx_ring->desc, rx_ring->dma); rx_ring->desc = NULL; } /** * fm10k_clean_all_rx_rings - Free Rx Buffers for all queues * @interface: board private structure **/ void fm10k_clean_all_rx_rings(struct fm10k_intfc *interface) { int i; for (i = 0; i < interface->num_rx_queues; i++) fm10k_clean_rx_ring(interface->rx_ring[i]); } /** * fm10k_free_all_rx_resources - Free Rx Resources for All Queues * @interface: board private structure * * Free all receive software resources **/ static void fm10k_free_all_rx_resources(struct fm10k_intfc *interface) { int i = interface->num_rx_queues; while (i--) fm10k_free_rx_resources(interface->rx_ring[i]); } /** * fm10k_request_glort_range - Request GLORTs for use in configuring rules * @interface: board private structure * * This function allocates a range of glorts for this inteface to use. **/ static void fm10k_request_glort_range(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; u16 mask = (~hw->mac.dglort_map) >> FM10K_DGLORTMAP_MASK_SHIFT; /* establish GLORT base */ interface->glort = hw->mac.dglort_map & FM10K_DGLORTMAP_NONE; interface->glort_count = 0; /* nothing we can do until mask is allocated */ if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE) return; /* we support 3 possible GLORT configurations. * 1: VFs consume all but the last 1 * 2: VFs and PF split glorts with possible gap between * 3: VFs allocated first 64, all others belong to PF */ if (mask <= hw->iov.total_vfs) { interface->glort_count = 1; interface->glort += mask; } else if (mask < 64) { interface->glort_count = (mask + 1) / 2; interface->glort += interface->glort_count; } else { interface->glort_count = mask - 63; interface->glort += 64; } } /** * fm10k_del_vxlan_port_all * @interface: board private structure * * This function frees the entire vxlan_port list **/ static void fm10k_del_vxlan_port_all(struct fm10k_intfc *interface) { struct fm10k_vxlan_port *vxlan_port; /* flush all entries from list */ vxlan_port = list_first_entry_or_null(&interface->vxlan_port, struct fm10k_vxlan_port, list); while (vxlan_port) { list_del(&vxlan_port->list); kfree(vxlan_port); vxlan_port = list_first_entry_or_null(&interface->vxlan_port, struct fm10k_vxlan_port, list); } } /** * fm10k_restore_vxlan_port * @interface: board private structure * * This function restores the value in the tunnel_cfg register after reset **/ static void fm10k_restore_vxlan_port(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; struct fm10k_vxlan_port *vxlan_port; /* only the PF supports configuring tunnels */ if (hw->mac.type != fm10k_mac_pf) return; vxlan_port = list_first_entry_or_null(&interface->vxlan_port, struct fm10k_vxlan_port, list); /* restore tunnel configuration register */ fm10k_write_reg(hw, FM10K_TUNNEL_CFG, (vxlan_port ? ntohs(vxlan_port->port) : 0) | (ETH_P_TEB << FM10K_TUNNEL_CFG_NVGRE_SHIFT)); } /** * fm10k_add_vxlan_port * @netdev: network interface device structure * @sa_family: Address family of new port * @port: port number used for VXLAN * * This funciton is called when a new VXLAN interface has added a new port * number to the range that is currently in use for VXLAN. The new port * number is always added to the tail so that the port number list should * match the order in which the ports were allocated. The head of the list * is always used as the VXLAN port number for offloads. **/ static void fm10k_add_vxlan_port(struct net_device *dev, sa_family_t sa_family, __be16 port) { struct fm10k_intfc *interface = netdev_priv(dev); struct fm10k_vxlan_port *vxlan_port; /* only the PF supports configuring tunnels */ if (interface->hw.mac.type != fm10k_mac_pf) return; /* existing ports are pulled out so our new entry is always last */ fm10k_vxlan_port_for_each(vxlan_port, interface) { if ((vxlan_port->port == port) && (vxlan_port->sa_family == sa_family)) { list_del(&vxlan_port->list); goto insert_tail; } } /* allocate memory to track ports */ vxlan_port = kmalloc(sizeof(*vxlan_port), GFP_ATOMIC); if (!vxlan_port) return; vxlan_port->port = port; vxlan_port->sa_family = sa_family; insert_tail: /* add new port value to list */ list_add_tail(&vxlan_port->list, &interface->vxlan_port); fm10k_restore_vxlan_port(interface); } /** * fm10k_del_vxlan_port * @netdev: network interface device structure * @sa_family: Address family of freed port * @port: port number used for VXLAN * * This funciton is called when a new VXLAN interface has freed a port * number from the range that is currently in use for VXLAN. The freed * port is removed from the list and the new head is used to determine * the port number for offloads. **/ static void fm10k_del_vxlan_port(struct net_device *dev, sa_family_t sa_family, __be16 port) { struct fm10k_intfc *interface = netdev_priv(dev); struct fm10k_vxlan_port *vxlan_port; if (interface->hw.mac.type != fm10k_mac_pf) return; /* find the port in the list and free it */ fm10k_vxlan_port_for_each(vxlan_port, interface) { if ((vxlan_port->port == port) && (vxlan_port->sa_family == sa_family)) { list_del(&vxlan_port->list); kfree(vxlan_port); break; } } fm10k_restore_vxlan_port(interface); } /** * fm10k_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. **/ int fm10k_open(struct net_device *netdev) { struct fm10k_intfc *interface = netdev_priv(netdev); int err; /* allocate transmit descriptors */ err = fm10k_setup_all_tx_resources(interface); if (err) goto err_setup_tx; /* allocate receive descriptors */ err = fm10k_setup_all_rx_resources(interface); if (err) goto err_setup_rx; /* allocate interrupt resources */ err = fm10k_qv_request_irq(interface); if (err) goto err_req_irq; /* setup GLORT assignment for this port */ fm10k_request_glort_range(interface); /* Notify the stack of the actual queue counts */ err = netif_set_real_num_tx_queues(netdev, interface->num_tx_queues); if (err) goto err_set_queues; err = netif_set_real_num_rx_queues(netdev, interface->num_rx_queues); if (err) goto err_set_queues; #if IS_ENABLED(CONFIG_VXLAN) /* update VXLAN port configuration */ vxlan_get_rx_port(netdev); #endif fm10k_up(interface); return 0; err_set_queues: fm10k_qv_free_irq(interface); err_req_irq: fm10k_free_all_rx_resources(interface); err_setup_rx: fm10k_free_all_tx_resources(interface); err_setup_tx: return err; } /** * fm10k_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. **/ int fm10k_close(struct net_device *netdev) { struct fm10k_intfc *interface = netdev_priv(netdev); fm10k_down(interface); fm10k_qv_free_irq(interface); fm10k_del_vxlan_port_all(interface); fm10k_free_all_tx_resources(interface); fm10k_free_all_rx_resources(interface); return 0; } static netdev_tx_t fm10k_xmit_frame(struct sk_buff *skb, struct net_device *dev) { struct fm10k_intfc *interface = netdev_priv(dev); unsigned int r_idx = skb->queue_mapping; int err; if ((skb->protocol == htons(ETH_P_8021Q)) && !vlan_tx_tag_present(skb)) { /* FM10K only supports hardware tagging, any tags in frame * are considered 2nd level or "outer" tags */ struct vlan_hdr *vhdr; __be16 proto; /* make sure skb is not shared */ skb = skb_share_check(skb, GFP_ATOMIC); if (!skb) return NETDEV_TX_OK; /* make sure there is enough room to move the ethernet header */ if (unlikely(!pskb_may_pull(skb, VLAN_ETH_HLEN))) return NETDEV_TX_OK; /* verify the skb head is not shared */ err = skb_cow_head(skb, 0); if (err) return NETDEV_TX_OK; /* locate vlan header */ vhdr = (struct vlan_hdr *)(skb->data + ETH_HLEN); /* pull the 2 key pieces of data out of it */ __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), ntohs(vhdr->h_vlan_TCI)); proto = vhdr->h_vlan_encapsulated_proto; skb->protocol = (ntohs(proto) >= 1536) ? proto : htons(ETH_P_802_2); /* squash it by moving the ethernet addresses up 4 bytes */ memmove(skb->data + VLAN_HLEN, skb->data, 12); __skb_pull(skb, VLAN_HLEN); skb_reset_mac_header(skb); } /* The minimum packet size for a single buffer is 17B so pad the skb * in order to meet this minimum size requirement. */ if (unlikely(skb->len < 17)) { int pad_len = 17 - skb->len; if (skb_pad(skb, pad_len)) return NETDEV_TX_OK; __skb_put(skb, pad_len); } /* prepare packet for hardware time stamping */ if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) fm10k_ts_tx_enqueue(interface, skb); if (r_idx >= interface->num_tx_queues) r_idx %= interface->num_tx_queues; err = fm10k_xmit_frame_ring(skb, interface->tx_ring[r_idx]); return err; } static int fm10k_change_mtu(struct net_device *dev, int new_mtu) { if (new_mtu < 68 || new_mtu > FM10K_MAX_JUMBO_FRAME_SIZE) return -EINVAL; dev->mtu = new_mtu; return 0; } /** * fm10k_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure **/ static void fm10k_tx_timeout(struct net_device *netdev) { struct fm10k_intfc *interface = netdev_priv(netdev); bool real_tx_hang = false; int i; #define TX_TIMEO_LIMIT 16000 for (i = 0; i < interface->num_tx_queues; i++) { struct fm10k_ring *tx_ring = interface->tx_ring[i]; if (check_for_tx_hang(tx_ring) && fm10k_check_tx_hang(tx_ring)) real_tx_hang = true; } if (real_tx_hang) { fm10k_tx_timeout_reset(interface); } else { netif_info(interface, drv, netdev, "Fake Tx hang detected with timeout of %d seconds\n", netdev->watchdog_timeo/HZ); /* fake Tx hang - increase the kernel timeout */ if (netdev->watchdog_timeo < TX_TIMEO_LIMIT) netdev->watchdog_timeo *= 2; } } static int fm10k_uc_vlan_unsync(struct net_device *netdev, const unsigned char *uc_addr) { struct fm10k_intfc *interface = netdev_priv(netdev); struct fm10k_hw *hw = &interface->hw; u16 glort = interface->glort; u16 vid = interface->vid; bool set = !!(vid / VLAN_N_VID); int err; /* drop any leading bits on the VLAN ID */ vid &= VLAN_N_VID - 1; err = hw->mac.ops.update_uc_addr(hw, glort, uc_addr, vid, set, 0); if (err) return err; /* return non-zero value as we are only doing a partial sync/unsync */ return 1; } static int fm10k_mc_vlan_unsync(struct net_device *netdev, const unsigned char *mc_addr) { struct fm10k_intfc *interface = netdev_priv(netdev); struct fm10k_hw *hw = &interface->hw; u16 glort = interface->glort; u16 vid = interface->vid; bool set = !!(vid / VLAN_N_VID); int err; /* drop any leading bits on the VLAN ID */ vid &= VLAN_N_VID - 1; err = hw->mac.ops.update_mc_addr(hw, glort, mc_addr, vid, set); if (err) return err; /* return non-zero value as we are only doing a partial sync/unsync */ return 1; } static int fm10k_update_vid(struct net_device *netdev, u16 vid, bool set) { struct fm10k_intfc *interface = netdev_priv(netdev); struct fm10k_hw *hw = &interface->hw; s32 err; /* updates do not apply to VLAN 0 */ if (!vid) return 0; if (vid >= VLAN_N_VID) return -EINVAL; /* Verify we have permission to add VLANs */ if (hw->mac.vlan_override) return -EACCES; /* if default VLAN is already present do nothing */ if (vid == hw->mac.default_vid) return -EBUSY; /* update active_vlans bitmask */ set_bit(vid, interface->active_vlans); if (!set) clear_bit(vid, interface->active_vlans); fm10k_mbx_lock(interface); /* only need to update the VLAN if not in promiscous mode */ if (!(netdev->flags & IFF_PROMISC)) { err = hw->mac.ops.update_vlan(hw, vid, 0, set); if (err) goto err_out; } /* update our base MAC address */ err = hw->mac.ops.update_uc_addr(hw, interface->glort, hw->mac.addr, vid, set, 0); if (err) goto err_out; /* set vid prior to syncing/unsyncing the VLAN */ interface->vid = vid + (set ? VLAN_N_VID : 0); /* Update the unicast and multicast address list to add/drop VLAN */ __dev_uc_unsync(netdev, fm10k_uc_vlan_unsync); __dev_mc_unsync(netdev, fm10k_mc_vlan_unsync); err_out: fm10k_mbx_unlock(interface); return err; } static int fm10k_vlan_rx_add_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { /* update VLAN and address table based on changes */ return fm10k_update_vid(netdev, vid, true); } static int fm10k_vlan_rx_kill_vid(struct net_device *netdev, __always_unused __be16 proto, u16 vid) { /* update VLAN and address table based on changes */ return fm10k_update_vid(netdev, vid, false); } static u16 fm10k_find_next_vlan(struct fm10k_intfc *interface, u16 vid) { struct fm10k_hw *hw = &interface->hw; u16 default_vid = hw->mac.default_vid; u16 vid_limit = vid < default_vid ? default_vid : VLAN_N_VID; vid = find_next_bit(interface->active_vlans, vid_limit, ++vid); return vid; } static void fm10k_clear_unused_vlans(struct fm10k_intfc *interface) { struct fm10k_hw *hw = &interface->hw; u32 vid, prev_vid; /* loop through and find any gaps in the table */ for (vid = 0, prev_vid = 0; prev_vid < VLAN_N_VID; prev_vid = vid + 1, vid = fm10k_find_next_vlan(interface, vid)) { if (prev_vid == vid) continue; /* send request to clear multiple bits at a time */ prev_vid += (vid - prev_vid - 1) << FM10K_VLAN_LENGTH_SHIFT; hw->mac.ops.update_vlan(hw, prev_vid, 0, false); } } static int __fm10k_uc_sync(struct net_device *dev, const unsigned char *addr, bool sync) { struct fm10k_intfc *interface = netdev_priv(dev); struct fm10k_hw *hw = &interface->hw; u16 vid, glort = interface->glort; s32 err; if (!is_valid_ether_addr(addr)) return -EADDRNOTAVAIL; /* update table with current entries */ for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0; vid < VLAN_N_VID; vid = fm10k_find_next_vlan(interface, vid)) { err = hw->mac.ops.update_uc_addr(hw, glort, addr, vid, sync, 0); if (err) return err; } return 0; } static int fm10k_uc_sync(struct net_device *dev, const unsigned char *addr) { return __fm10k_uc_sync(dev, addr, true); } static int fm10k_uc_unsync(struct net_device *dev, const unsigned char *addr) { return __fm10k_uc_sync(dev, addr, false); } static int fm10k_set_mac(struct net_device *dev, void *p) { struct fm10k_intfc *interface = netdev_priv(dev); struct fm10k_hw *hw = &interface->hw; struct sockaddr *addr = p; s32 err = 0; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (dev->flags & IFF_UP) { /* setting MAC address requires mailbox */ fm10k_mbx_lock(interface); err = fm10k_uc_sync(dev, addr->sa_data); if (!err) fm10k_uc_unsync(dev, hw->mac.addr); fm10k_mbx_unlock(interface); } if (!err) { ether_addr_copy(dev->dev_addr, addr->sa_data); ether_addr_copy(hw->mac.addr, addr->sa_data); dev->addr_assign_type &= ~NET_ADDR_RANDOM; } /* if we had a mailbox error suggest trying again */ return err ? -EAGAIN : 0; } static int __fm10k_mc_sync(struct net_device *dev, const unsigned char *addr, bool sync) { struct fm10k_intfc *interface = netdev_priv(dev); struct fm10k_hw *hw = &interface->hw; u16 vid, glort = interface->glort; s32 err; if (!is_multicast_ether_addr(addr)) return -EADDRNOTAVAIL; /* update table with current entries */ for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0; vid < VLAN_N_VID; vid = fm10k_find_next_vlan(interface, vid)) { err = hw->mac.ops.update_mc_addr(hw, glort, addr, vid, sync); if (err) return err; } return 0; } static int fm10k_mc_sync(struct net_device *dev, const unsigned char *addr) { return __fm10k_mc_sync(dev, addr, true); } static int fm10k_mc_unsync(struct net_device *dev, const unsigned char *addr) { return __fm10k_mc_sync(dev, addr, false); } static void fm10k_set_rx_mode(struct net_device *dev) { struct fm10k_intfc *interface = netdev_priv(dev); struct fm10k_hw *hw = &interface->hw; int xcast_mode; /* no need to update the harwdare if we are not running */ if (!(dev->flags & IFF_UP)) return; /* determine new mode based on flags */ xcast_mode = (dev->flags & IFF_PROMISC) ? FM10K_XCAST_MODE_PROMISC : (dev->flags & IFF_ALLMULTI) ? FM10K_XCAST_MODE_ALLMULTI : (dev->flags & (IFF_BROADCAST | IFF_MULTICAST)) ? FM10K_XCAST_MODE_MULTI : FM10K_XCAST_MODE_NONE; fm10k_mbx_lock(interface); /* syncronize all of the addresses */ if (xcast_mode != FM10K_XCAST_MODE_PROMISC) { __dev_uc_sync(dev, fm10k_uc_sync, fm10k_uc_unsync); if (xcast_mode != FM10K_XCAST_MODE_ALLMULTI) __dev_mc_sync(dev, fm10k_mc_sync, fm10k_mc_unsync); } /* if we aren't changing modes there is nothing to do */ if (interface->xcast_mode != xcast_mode) { /* update VLAN table */ if (xcast_mode == FM10K_XCAST_MODE_PROMISC) hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0, true); if (interface->xcast_mode == FM10K_XCAST_MODE_PROMISC) fm10k_clear_unused_vlans(interface); /* update xcast mode */ hw->mac.ops.update_xcast_mode(hw, interface->glort, xcast_mode); /* record updated xcast mode state */ interface->xcast_mode = xcast_mode; } fm10k_mbx_unlock(interface); } void fm10k_restore_rx_state(struct fm10k_intfc *interface) { struct net_device *netdev = interface->netdev; struct fm10k_hw *hw = &interface->hw; int xcast_mode; u16 vid, glort; /* restore our address if perm_addr is set */ if (hw->mac.type == fm10k_mac_vf) { if (is_valid_ether_addr(hw->mac.perm_addr)) { ether_addr_copy(hw->mac.addr, hw->mac.perm_addr); ether_addr_copy(netdev->perm_addr, hw->mac.perm_addr); ether_addr_copy(netdev->dev_addr, hw->mac.perm_addr); netdev->addr_assign_type &= ~NET_ADDR_RANDOM; } if (hw->mac.vlan_override) netdev->features &= ~NETIF_F_HW_VLAN_CTAG_RX; else netdev->features |= NETIF_F_HW_VLAN_CTAG_RX; } /* record glort for this interface */ glort = interface->glort; /* convert interface flags to xcast mode */ if (netdev->flags & IFF_PROMISC) xcast_mode = FM10K_XCAST_MODE_PROMISC; else if (netdev->flags & IFF_ALLMULTI) xcast_mode = FM10K_XCAST_MODE_ALLMULTI; else if (netdev->flags & (IFF_BROADCAST | IFF_MULTICAST)) xcast_mode = FM10K_XCAST_MODE_MULTI; else xcast_mode = FM10K_XCAST_MODE_NONE; fm10k_mbx_lock(interface); /* Enable logical port */ hw->mac.ops.update_lport_state(hw, glort, interface->glort_count, true); /* update VLAN table */ hw->mac.ops.update_vlan(hw, FM10K_VLAN_ALL, 0, xcast_mode == FM10K_XCAST_MODE_PROMISC); /* Add filter for VLAN 0 */ hw->mac.ops.update_vlan(hw, 0, 0, true); /* update table with current entries */ for (vid = hw->mac.default_vid ? fm10k_find_next_vlan(interface, 0) : 0; vid < VLAN_N_VID; vid = fm10k_find_next_vlan(interface, vid)) { hw->mac.ops.update_vlan(hw, vid, 0, true); hw->mac.ops.update_uc_addr(hw, glort, hw->mac.addr, vid, true, 0); } /* syncronize all of the addresses */ if (xcast_mode != FM10K_XCAST_MODE_PROMISC) { __dev_uc_sync(netdev, fm10k_uc_sync, fm10k_uc_unsync); if (xcast_mode != FM10K_XCAST_MODE_ALLMULTI) __dev_mc_sync(netdev, fm10k_mc_sync, fm10k_mc_unsync); } /* update xcast mode */ hw->mac.ops.update_xcast_mode(hw, glort, xcast_mode); fm10k_mbx_unlock(interface); /* record updated xcast mode state */ interface->xcast_mode = xcast_mode; /* Restore tunnel configuration */ fm10k_restore_vxlan_port(interface); } void fm10k_reset_rx_state(struct fm10k_intfc *interface) { struct net_device *netdev = interface->netdev; struct fm10k_hw *hw = &interface->hw; fm10k_mbx_lock(interface); /* clear the logical port state on lower device */ hw->mac.ops.update_lport_state(hw, interface->glort, interface->glort_count, false); fm10k_mbx_unlock(interface); /* reset flags to default state */ interface->xcast_mode = FM10K_XCAST_MODE_NONE; /* clear the sync flag since the lport has been dropped */ __dev_uc_unsync(netdev, NULL); __dev_mc_unsync(netdev, NULL); } /** * fm10k_get_stats64 - Get System Network Statistics * @netdev: network interface device structure * @stats: storage space for 64bit statistics * * Returns 64bit statistics, for use in the ndo_get_stats64 callback. This * function replaces fm10k_get_stats for kernels which support it. */ static struct rtnl_link_stats64 *fm10k_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats) { struct fm10k_intfc *interface = netdev_priv(netdev); struct fm10k_ring *ring; unsigned int start, i; u64 bytes, packets; rcu_read_lock(); for (i = 0; i < interface->num_rx_queues; i++) { ring = ACCESS_ONCE(interface->rx_ring[i]); if (!ring) continue; do { start = u64_stats_fetch_begin_irq(&ring->syncp); packets = ring->stats.packets; bytes = ring->stats.bytes; } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); stats->rx_packets += packets; stats->rx_bytes += bytes; } for (i = 0; i < interface->num_tx_queues; i++) { ring = ACCESS_ONCE(interface->rx_ring[i]); if (!ring) continue; do { start = u64_stats_fetch_begin_irq(&ring->syncp); packets = ring->stats.packets; bytes = ring->stats.bytes; } while (u64_stats_fetch_retry_irq(&ring->syncp, start)); stats->tx_packets += packets; stats->tx_bytes += bytes; } rcu_read_unlock(); /* following stats updated by fm10k_service_task() */ stats->rx_missed_errors = netdev->stats.rx_missed_errors; return stats; } int fm10k_setup_tc(struct net_device *dev, u8 tc) { struct fm10k_intfc *interface = netdev_priv(dev); /* Currently only the PF supports priority classes */ if (tc && (interface->hw.mac.type != fm10k_mac_pf)) return -EINVAL; /* Hardware supports up to 8 traffic classes */ if (tc > 8) return -EINVAL; /* Hardware has to reinitialize queues to match packet * buffer alignment. Unfortunately, the hardware is not * flexible enough to do this dynamically. */ if (netif_running(dev)) fm10k_close(dev); fm10k_mbx_free_irq(interface); fm10k_clear_queueing_scheme(interface); /* we expect the prio_tc map to be repopulated later */ netdev_reset_tc(dev); netdev_set_num_tc(dev, tc); fm10k_init_queueing_scheme(interface); fm10k_mbx_request_irq(interface); if (netif_running(dev)) fm10k_open(dev); /* flag to indicate SWPRI has yet to be updated */ interface->flags |= FM10K_FLAG_SWPRI_CONFIG; return 0; } static int fm10k_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGHWTSTAMP: return fm10k_get_ts_config(netdev, ifr); case SIOCSHWTSTAMP: return fm10k_set_ts_config(netdev, ifr); default: return -EOPNOTSUPP; } } static void fm10k_assign_l2_accel(struct fm10k_intfc *interface, struct fm10k_l2_accel *l2_accel) { struct fm10k_ring *ring; int i; for (i = 0; i < interface->num_rx_queues; i++) { ring = interface->rx_ring[i]; rcu_assign_pointer(ring->l2_accel, l2_accel); } interface->l2_accel = l2_accel; } static void *fm10k_dfwd_add_station(struct net_device *dev, struct net_device *sdev) { struct fm10k_intfc *interface = netdev_priv(dev); struct fm10k_l2_accel *l2_accel = interface->l2_accel; struct fm10k_l2_accel *old_l2_accel = NULL; struct fm10k_dglort_cfg dglort = { 0 }; struct fm10k_hw *hw = &interface->hw; int size = 0, i; u16 glort; /* allocate l2 accel structure if it is not available */ if (!l2_accel) { /* verify there is enough free GLORTs to support l2_accel */ if (interface->glort_count < 7) return ERR_PTR(-EBUSY); size = offsetof(struct fm10k_l2_accel, macvlan[7]); l2_accel = kzalloc(size, GFP_KERNEL); if (!l2_accel) return ERR_PTR(-ENOMEM); l2_accel->size = 7; l2_accel->dglort = interface->glort; /* update pointers */ fm10k_assign_l2_accel(interface, l2_accel); /* do not expand if we are at our limit */ } else if ((l2_accel->count == FM10K_MAX_STATIONS) || (l2_accel->count == (interface->glort_count - 1))) { return ERR_PTR(-EBUSY); /* expand if we have hit the size limit */ } else if (l2_accel->count == l2_accel->size) { old_l2_accel = l2_accel; size = offsetof(struct fm10k_l2_accel, macvlan[(l2_accel->size * 2) + 1]); l2_accel = kzalloc(size, GFP_KERNEL); if (!l2_accel) return ERR_PTR(-ENOMEM); memcpy(l2_accel, old_l2_accel, offsetof(struct fm10k_l2_accel, macvlan[old_l2_accel->size])); l2_accel->size = (old_l2_accel->size * 2) + 1; /* update pointers */ fm10k_assign_l2_accel(interface, l2_accel); kfree_rcu(old_l2_accel, rcu); } /* add macvlan to accel table, and record GLORT for position */ for (i = 0; i < l2_accel->size; i++) { if (!l2_accel->macvlan[i]) break; } /* record station */ l2_accel->macvlan[i] = sdev; l2_accel->count++; /* configure default DGLORT mapping for RSS/DCB */ dglort.idx = fm10k_dglort_pf_rss; dglort.inner_rss = 1; dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); dglort.glort = interface->glort; dglort.shared_l = fls(l2_accel->size); hw->mac.ops.configure_dglort_map(hw, &dglort); /* Add rules for this specific dglort to the switch */ fm10k_mbx_lock(interface); glort = l2_accel->dglort + 1 + i; hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_MULTI); hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, true, 0); fm10k_mbx_unlock(interface); return sdev; } static void fm10k_dfwd_del_station(struct net_device *dev, void *priv) { struct fm10k_intfc *interface = netdev_priv(dev); struct fm10k_l2_accel *l2_accel = ACCESS_ONCE(interface->l2_accel); struct fm10k_dglort_cfg dglort = { 0 }; struct fm10k_hw *hw = &interface->hw; struct net_device *sdev = priv; int i; u16 glort; if (!l2_accel) return; /* search table for matching interface */ for (i = 0; i < l2_accel->size; i++) { if (l2_accel->macvlan[i] == sdev) break; } /* exit if macvlan not found */ if (i == l2_accel->size) return; /* Remove any rules specific to this dglort */ fm10k_mbx_lock(interface); glort = l2_accel->dglort + 1 + i; hw->mac.ops.update_xcast_mode(hw, glort, FM10K_XCAST_MODE_NONE); hw->mac.ops.update_uc_addr(hw, glort, sdev->dev_addr, 0, false, 0); fm10k_mbx_unlock(interface); /* record removal */ l2_accel->macvlan[i] = NULL; l2_accel->count--; /* configure default DGLORT mapping for RSS/DCB */ dglort.idx = fm10k_dglort_pf_rss; dglort.inner_rss = 1; dglort.rss_l = fls(interface->ring_feature[RING_F_RSS].mask); dglort.pc_l = fls(interface->ring_feature[RING_F_QOS].mask); dglort.glort = interface->glort; if (l2_accel) dglort.shared_l = fls(l2_accel->size); hw->mac.ops.configure_dglort_map(hw, &dglort); /* If table is empty remove it */ if (l2_accel->count == 0) { fm10k_assign_l2_accel(interface, NULL); kfree_rcu(l2_accel, rcu); } } static const struct net_device_ops fm10k_netdev_ops = { .ndo_open = fm10k_open, .ndo_stop = fm10k_close, .ndo_validate_addr = eth_validate_addr, .ndo_start_xmit = fm10k_xmit_frame, .ndo_set_mac_address = fm10k_set_mac, .ndo_change_mtu = fm10k_change_mtu, .ndo_tx_timeout = fm10k_tx_timeout, .ndo_vlan_rx_add_vid = fm10k_vlan_rx_add_vid, .ndo_vlan_rx_kill_vid = fm10k_vlan_rx_kill_vid, .ndo_set_rx_mode = fm10k_set_rx_mode, .ndo_get_stats64 = fm10k_get_stats64, .ndo_setup_tc = fm10k_setup_tc, .ndo_set_vf_mac = fm10k_ndo_set_vf_mac, .ndo_set_vf_vlan = fm10k_ndo_set_vf_vlan, .ndo_set_vf_rate = fm10k_ndo_set_vf_bw, .ndo_get_vf_config = fm10k_ndo_get_vf_config, .ndo_add_vxlan_port = fm10k_add_vxlan_port, .ndo_del_vxlan_port = fm10k_del_vxlan_port, .ndo_do_ioctl = fm10k_ioctl, .ndo_dfwd_add_station = fm10k_dfwd_add_station, .ndo_dfwd_del_station = fm10k_dfwd_del_station, }; #define DEFAULT_DEBUG_LEVEL_SHIFT 3 struct net_device *fm10k_alloc_netdev(void) { struct fm10k_intfc *interface; struct net_device *dev; dev = alloc_etherdev_mq(sizeof(struct fm10k_intfc), MAX_QUEUES); if (!dev) return NULL; /* set net device and ethtool ops */ dev->netdev_ops = &fm10k_netdev_ops; fm10k_set_ethtool_ops(dev); /* configure default debug level */ interface = netdev_priv(dev); interface->msg_enable = (1 << DEFAULT_DEBUG_LEVEL_SHIFT) - 1; /* configure default features */ dev->features |= NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM | NETIF_F_SG | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_RXHASH | NETIF_F_RXCSUM; /* all features defined to this point should be changeable */ dev->hw_features |= dev->features; /* allow user to enable L2 forwarding acceleration */ dev->hw_features |= NETIF_F_HW_L2FW_DOFFLOAD; /* configure VLAN features */ dev->vlan_features |= dev->features; /* configure tunnel offloads */ dev->hw_enc_features = NETIF_F_IP_CSUM | NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN | NETIF_F_GSO_UDP_TUNNEL | NETIF_F_IPV6_CSUM | NETIF_F_SG; /* we want to leave these both on as we cannot disable VLAN tag * insertion or stripping on the hardware since it is contained * in the FTAG and not in the frame itself. */ dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER; dev->priv_flags |= IFF_UNICAST_FLT; return dev; }