/* * IDE DMA support (including IDE PCI BM-DMA). * * Copyright (C) 1995-1998 Mark Lord * Copyright (C) 1999-2000 Andre Hedrick * Copyright (C) 2004, 2007 Bartlomiej Zolnierkiewicz * * May be copied or modified under the terms of the GNU General Public License * * DMA is supported for all IDE devices (disk drives, cdroms, tapes, floppies). */ /* * Special Thanks to Mark for his Six years of work. */ /* * Thanks to "Christopher J. Reimer" for * fixing the problem with the BIOS on some Acer motherboards. * * Thanks to "Benoit Poulot-Cazajous" for testing * "TX" chipset compatibility and for providing patches for the "TX" chipset. * * Thanks to Christian Brunner for taking a good first crack * at generic DMA -- his patches were referred to when preparing this code. * * Most importantly, thanks to Robert Bringman * for supplying a Promise UDMA board & WD UDMA drive for this work! */ #include #include #include #include #include static const struct drive_list_entry drive_whitelist[] = { { "Micropolis 2112A" , NULL }, { "CONNER CTMA 4000" , NULL }, { "CONNER CTT8000-A" , NULL }, { "ST34342A" , NULL }, { NULL , NULL } }; static const struct drive_list_entry drive_blacklist[] = { { "WDC AC11000H" , NULL }, { "WDC AC22100H" , NULL }, { "WDC AC32500H" , NULL }, { "WDC AC33100H" , NULL }, { "WDC AC31600H" , NULL }, { "WDC AC32100H" , "24.09P07" }, { "WDC AC23200L" , "21.10N21" }, { "Compaq CRD-8241B" , NULL }, { "CRD-8400B" , NULL }, { "CRD-8480B", NULL }, { "CRD-8482B", NULL }, { "CRD-84" , NULL }, { "SanDisk SDP3B" , NULL }, { "SanDisk SDP3B-64" , NULL }, { "SANYO CD-ROM CRD" , NULL }, { "HITACHI CDR-8" , NULL }, { "HITACHI CDR-8335" , NULL }, { "HITACHI CDR-8435" , NULL }, { "Toshiba CD-ROM XM-6202B" , NULL }, { "TOSHIBA CD-ROM XM-1702BC", NULL }, { "CD-532E-A" , NULL }, { "E-IDE CD-ROM CR-840", NULL }, { "CD-ROM Drive/F5A", NULL }, { "WPI CDD-820", NULL }, { "SAMSUNG CD-ROM SC-148C", NULL }, { "SAMSUNG CD-ROM SC", NULL }, { "ATAPI CD-ROM DRIVE 40X MAXIMUM", NULL }, { "_NEC DV5800A", NULL }, { "SAMSUNG CD-ROM SN-124", "N001" }, { "Seagate STT20000A", NULL }, { "CD-ROM CDR_U200", "1.09" }, { NULL , NULL } }; /** * ide_dma_intr - IDE DMA interrupt handler * @drive: the drive the interrupt is for * * Handle an interrupt completing a read/write DMA transfer on an * IDE device */ ide_startstop_t ide_dma_intr(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; u8 stat = 0, dma_stat = 0; dma_stat = hwif->dma_ops->dma_end(drive); stat = hwif->tp_ops->read_status(hwif); if (OK_STAT(stat, DRIVE_READY, drive->bad_wstat | ATA_DRQ)) { if (!dma_stat) { struct ide_cmd *cmd = &hwif->cmd; if ((cmd->tf_flags & IDE_TFLAG_FS) == 0) ide_finish_cmd(drive, cmd, stat); else ide_complete_rq(drive, 0, cmd->rq->nr_sectors << 9); return ide_stopped; } printk(KERN_ERR "%s: %s: bad DMA status (0x%02x)\n", drive->name, __func__, dma_stat); } return ide_error(drive, "dma_intr", stat); } EXPORT_SYMBOL_GPL(ide_dma_intr); int ide_dma_good_drive(ide_drive_t *drive) { return ide_in_drive_list(drive->id, drive_whitelist); } /** * ide_build_sglist - map IDE scatter gather for DMA I/O * @drive: the drive to build the DMA table for * @rq: the request holding the sg list * * Perform the DMA mapping magic necessary to access the source or * target buffers of a request via DMA. The lower layers of the * kernel provide the necessary cache management so that we can * operate in a portable fashion. */ int ide_build_sglist(ide_drive_t *drive, struct request *rq) { ide_hwif_t *hwif = drive->hwif; struct scatterlist *sg = hwif->sg_table; struct ide_cmd *cmd = &hwif->cmd; int i; ide_map_sg(drive, rq); if (rq_data_dir(rq) == READ) cmd->sg_dma_direction = DMA_FROM_DEVICE; else cmd->sg_dma_direction = DMA_TO_DEVICE; i = dma_map_sg(hwif->dev, sg, cmd->sg_nents, cmd->sg_dma_direction); if (i == 0) ide_map_sg(drive, rq); else { cmd->orig_sg_nents = cmd->sg_nents; cmd->sg_nents = i; } return i; } /** * ide_destroy_dmatable - clean up DMA mapping * @drive: The drive to unmap * * Teardown mappings after DMA has completed. This must be called * after the completion of each use of ide_build_dmatable and before * the next use of ide_build_dmatable. Failure to do so will cause * an oops as only one mapping can be live for each target at a given * time. */ void ide_destroy_dmatable(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; struct ide_cmd *cmd = &hwif->cmd; dma_unmap_sg(hwif->dev, hwif->sg_table, cmd->orig_sg_nents, cmd->sg_dma_direction); } EXPORT_SYMBOL_GPL(ide_destroy_dmatable); /** * ide_dma_off_quietly - Generic DMA kill * @drive: drive to control * * Turn off the current DMA on this IDE controller. */ void ide_dma_off_quietly(ide_drive_t *drive) { drive->dev_flags &= ~IDE_DFLAG_USING_DMA; ide_toggle_bounce(drive, 0); drive->hwif->dma_ops->dma_host_set(drive, 0); } EXPORT_SYMBOL(ide_dma_off_quietly); /** * ide_dma_off - disable DMA on a device * @drive: drive to disable DMA on * * Disable IDE DMA for a device on this IDE controller. * Inform the user that DMA has been disabled. */ void ide_dma_off(ide_drive_t *drive) { printk(KERN_INFO "%s: DMA disabled\n", drive->name); ide_dma_off_quietly(drive); } EXPORT_SYMBOL(ide_dma_off); /** * ide_dma_on - Enable DMA on a device * @drive: drive to enable DMA on * * Enable IDE DMA for a device on this IDE controller. */ void ide_dma_on(ide_drive_t *drive) { drive->dev_flags |= IDE_DFLAG_USING_DMA; ide_toggle_bounce(drive, 1); drive->hwif->dma_ops->dma_host_set(drive, 1); } int __ide_dma_bad_drive(ide_drive_t *drive) { u16 *id = drive->id; int blacklist = ide_in_drive_list(id, drive_blacklist); if (blacklist) { printk(KERN_WARNING "%s: Disabling (U)DMA for %s (blacklisted)\n", drive->name, (char *)&id[ATA_ID_PROD]); return blacklist; } return 0; } EXPORT_SYMBOL(__ide_dma_bad_drive); static const u8 xfer_mode_bases[] = { XFER_UDMA_0, XFER_MW_DMA_0, XFER_SW_DMA_0, }; static unsigned int ide_get_mode_mask(ide_drive_t *drive, u8 base, u8 req_mode) { u16 *id = drive->id; ide_hwif_t *hwif = drive->hwif; const struct ide_port_ops *port_ops = hwif->port_ops; unsigned int mask = 0; switch (base) { case XFER_UDMA_0: if ((id[ATA_ID_FIELD_VALID] & 4) == 0) break; if (port_ops && port_ops->udma_filter) mask = port_ops->udma_filter(drive); else mask = hwif->ultra_mask; mask &= id[ATA_ID_UDMA_MODES]; /* * avoid false cable warning from eighty_ninty_three() */ if (req_mode > XFER_UDMA_2) { if ((mask & 0x78) && (eighty_ninty_three(drive) == 0)) mask &= 0x07; } break; case XFER_MW_DMA_0: if ((id[ATA_ID_FIELD_VALID] & 2) == 0) break; if (port_ops && port_ops->mdma_filter) mask = port_ops->mdma_filter(drive); else mask = hwif->mwdma_mask; mask &= id[ATA_ID_MWDMA_MODES]; break; case XFER_SW_DMA_0: if (id[ATA_ID_FIELD_VALID] & 2) { mask = id[ATA_ID_SWDMA_MODES] & hwif->swdma_mask; } else if (id[ATA_ID_OLD_DMA_MODES] >> 8) { u8 mode = id[ATA_ID_OLD_DMA_MODES] >> 8; /* * if the mode is valid convert it to the mask * (the maximum allowed mode is XFER_SW_DMA_2) */ if (mode <= 2) mask = ((2 << mode) - 1) & hwif->swdma_mask; } break; default: BUG(); break; } return mask; } /** * ide_find_dma_mode - compute DMA speed * @drive: IDE device * @req_mode: requested mode * * Checks the drive/host capabilities and finds the speed to use for * the DMA transfer. The speed is then limited by the requested mode. * * Returns 0 if the drive/host combination is incapable of DMA transfers * or if the requested mode is not a DMA mode. */ u8 ide_find_dma_mode(ide_drive_t *drive, u8 req_mode) { ide_hwif_t *hwif = drive->hwif; unsigned int mask; int x, i; u8 mode = 0; if (drive->media != ide_disk) { if (hwif->host_flags & IDE_HFLAG_NO_ATAPI_DMA) return 0; } for (i = 0; i < ARRAY_SIZE(xfer_mode_bases); i++) { if (req_mode < xfer_mode_bases[i]) continue; mask = ide_get_mode_mask(drive, xfer_mode_bases[i], req_mode); x = fls(mask) - 1; if (x >= 0) { mode = xfer_mode_bases[i] + x; break; } } if (hwif->chipset == ide_acorn && mode == 0) { /* * is this correct? */ if (ide_dma_good_drive(drive) && drive->id[ATA_ID_EIDE_DMA_TIME] < 150) mode = XFER_MW_DMA_1; } mode = min(mode, req_mode); printk(KERN_INFO "%s: %s mode selected\n", drive->name, mode ? ide_xfer_verbose(mode) : "no DMA"); return mode; } EXPORT_SYMBOL_GPL(ide_find_dma_mode); static int ide_tune_dma(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; u8 speed; if (ata_id_has_dma(drive->id) == 0 || (drive->dev_flags & IDE_DFLAG_NODMA)) return 0; /* consult the list of known "bad" drives */ if (__ide_dma_bad_drive(drive)) return 0; if (ide_id_dma_bug(drive)) return 0; if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA) return config_drive_for_dma(drive); speed = ide_max_dma_mode(drive); if (!speed) return 0; if (ide_set_dma_mode(drive, speed)) return 0; return 1; } static int ide_dma_check(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; if (ide_tune_dma(drive)) return 0; /* TODO: always do PIO fallback */ if (hwif->host_flags & IDE_HFLAG_TRUST_BIOS_FOR_DMA) return -1; ide_set_max_pio(drive); return -1; } int ide_id_dma_bug(ide_drive_t *drive) { u16 *id = drive->id; if (id[ATA_ID_FIELD_VALID] & 4) { if ((id[ATA_ID_UDMA_MODES] >> 8) && (id[ATA_ID_MWDMA_MODES] >> 8)) goto err_out; } else if (id[ATA_ID_FIELD_VALID] & 2) { if ((id[ATA_ID_MWDMA_MODES] >> 8) && (id[ATA_ID_SWDMA_MODES] >> 8)) goto err_out; } return 0; err_out: printk(KERN_ERR "%s: bad DMA info in identify block\n", drive->name); return 1; } int ide_set_dma(ide_drive_t *drive) { int rc; /* * Force DMAing for the beginning of the check. * Some chipsets appear to do interesting * things, if not checked and cleared. * PARANOIA!!! */ ide_dma_off_quietly(drive); rc = ide_dma_check(drive); if (rc) return rc; ide_dma_on(drive); return 0; } void ide_check_dma_crc(ide_drive_t *drive) { u8 mode; ide_dma_off_quietly(drive); drive->crc_count = 0; mode = drive->current_speed; /* * Don't try non Ultra-DMA modes without iCRC's. Force the * device to PIO and make the user enable SWDMA/MWDMA modes. */ if (mode > XFER_UDMA_0 && mode <= XFER_UDMA_7) mode--; else mode = XFER_PIO_4; ide_set_xfer_rate(drive, mode); if (drive->current_speed >= XFER_SW_DMA_0) ide_dma_on(drive); } void ide_dma_lost_irq(ide_drive_t *drive) { printk(KERN_ERR "%s: DMA interrupt recovery\n", drive->name); } EXPORT_SYMBOL_GPL(ide_dma_lost_irq); void ide_dma_timeout(ide_drive_t *drive) { ide_hwif_t *hwif = drive->hwif; printk(KERN_ERR "%s: timeout waiting for DMA\n", drive->name); if (hwif->dma_ops->dma_test_irq(drive)) return; ide_dump_status(drive, "DMA timeout", hwif->tp_ops->read_status(hwif)); hwif->dma_ops->dma_end(drive); } EXPORT_SYMBOL_GPL(ide_dma_timeout); /* * un-busy the port etc, and clear any pending DMA status. we want to * retry the current request in pio mode instead of risking tossing it * all away */ ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error) { ide_hwif_t *hwif = drive->hwif; struct request *rq; ide_startstop_t ret = ide_stopped; /* * end current dma transaction */ if (error < 0) { printk(KERN_WARNING "%s: DMA timeout error\n", drive->name); (void)hwif->dma_ops->dma_end(drive); ret = ide_error(drive, "dma timeout error", hwif->tp_ops->read_status(hwif)); } else { printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name); hwif->dma_ops->dma_timeout(drive); } /* * disable dma for now, but remember that we did so because of * a timeout -- we'll reenable after we finish this next request * (or rather the first chunk of it) in pio. */ drive->dev_flags |= IDE_DFLAG_DMA_PIO_RETRY; drive->retry_pio++; ide_dma_off_quietly(drive); /* * un-busy drive etc and make sure request is sane */ rq = hwif->rq; if (!rq) goto out; hwif->rq = NULL; rq->errors = 0; if (!rq->bio) goto out; rq->sector = rq->bio->bi_sector; rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9; rq->hard_cur_sectors = rq->current_nr_sectors; rq->buffer = bio_data(rq->bio); out: return ret; } void ide_release_dma_engine(ide_hwif_t *hwif) { if (hwif->dmatable_cpu) { int prd_size = hwif->prd_max_nents * hwif->prd_ent_size; dma_free_coherent(hwif->dev, prd_size, hwif->dmatable_cpu, hwif->dmatable_dma); hwif->dmatable_cpu = NULL; } } EXPORT_SYMBOL_GPL(ide_release_dma_engine); int ide_allocate_dma_engine(ide_hwif_t *hwif) { int prd_size; if (hwif->prd_max_nents == 0) hwif->prd_max_nents = PRD_ENTRIES; if (hwif->prd_ent_size == 0) hwif->prd_ent_size = PRD_BYTES; prd_size = hwif->prd_max_nents * hwif->prd_ent_size; hwif->dmatable_cpu = dma_alloc_coherent(hwif->dev, prd_size, &hwif->dmatable_dma, GFP_ATOMIC); if (hwif->dmatable_cpu == NULL) { printk(KERN_ERR "%s: unable to allocate PRD table\n", hwif->name); return -ENOMEM; } return 0; } EXPORT_SYMBOL_GPL(ide_allocate_dma_engine);