/* * Support for Marvell's crypto engine which can be found on some Orion5X * boards. * * Author: Sebastian Andrzej Siewior < sebastian at breakpoint dot cc > * License: GPLv2 * */ #include #include #include #include #include #include #include #include #include "mv_cesa.h" /* * STM: * /---------------------------------------\ * | | request complete * \./ | * IDLE -> new request -> BUSY -> done -> DEQUEUE * /°\ | * | | more scatter entries * \________________/ */ enum engine_status { ENGINE_IDLE, ENGINE_BUSY, ENGINE_W_DEQUEUE, }; /** * struct req_progress - used for every crypt request * @src_sg_it: sg iterator for src * @dst_sg_it: sg iterator for dst * @sg_src_left: bytes left in src to process (scatter list) * @src_start: offset to add to src start position (scatter list) * @crypt_len: length of current crypt process * @hw_nbytes: total bytes to process in hw for this request * @copy_back: whether to copy data back (crypt) or not (hash) * @sg_dst_left: bytes left dst to process in this scatter list * @dst_start: offset to add to dst start position (scatter list) * @hw_processed_bytes: number of bytes processed by hw (request). * * sg helper are used to iterate over the scatterlist. Since the size of the * SRAM may be less than the scatter size, this struct struct is used to keep * track of progress within current scatterlist. */ struct req_progress { struct sg_mapping_iter src_sg_it; struct sg_mapping_iter dst_sg_it; void (*complete) (void); void (*process) (int is_first); /* src mostly */ int sg_src_left; int src_start; int crypt_len; int hw_nbytes; /* dst mostly */ int copy_back; int sg_dst_left; int dst_start; int hw_processed_bytes; }; struct crypto_priv { void __iomem *reg; void __iomem *sram; int irq; struct task_struct *queue_th; /* the lock protects queue and eng_st */ spinlock_t lock; struct crypto_queue queue; enum engine_status eng_st; struct crypto_async_request *cur_req; struct req_progress p; int max_req_size; int sram_size; }; static struct crypto_priv *cpg; struct mv_ctx { u8 aes_enc_key[AES_KEY_LEN]; u32 aes_dec_key[8]; int key_len; u32 need_calc_aes_dkey; }; enum crypto_op { COP_AES_ECB, COP_AES_CBC, }; struct mv_req_ctx { enum crypto_op op; int decrypt; }; static void compute_aes_dec_key(struct mv_ctx *ctx) { struct crypto_aes_ctx gen_aes_key; int key_pos; if (!ctx->need_calc_aes_dkey) return; crypto_aes_expand_key(&gen_aes_key, ctx->aes_enc_key, ctx->key_len); key_pos = ctx->key_len + 24; memcpy(ctx->aes_dec_key, &gen_aes_key.key_enc[key_pos], 4 * 4); switch (ctx->key_len) { case AES_KEYSIZE_256: key_pos -= 2; /* fall */ case AES_KEYSIZE_192: key_pos -= 2; memcpy(&ctx->aes_dec_key[4], &gen_aes_key.key_enc[key_pos], 4 * 4); break; } ctx->need_calc_aes_dkey = 0; } static int mv_setkey_aes(struct crypto_ablkcipher *cipher, const u8 *key, unsigned int len) { struct crypto_tfm *tfm = crypto_ablkcipher_tfm(cipher); struct mv_ctx *ctx = crypto_tfm_ctx(tfm); switch (len) { case AES_KEYSIZE_128: case AES_KEYSIZE_192: case AES_KEYSIZE_256: break; default: crypto_ablkcipher_set_flags(cipher, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } ctx->key_len = len; ctx->need_calc_aes_dkey = 1; memcpy(ctx->aes_enc_key, key, AES_KEY_LEN); return 0; } static void copy_src_to_buf(struct req_progress *p, char *dbuf, int len) { int ret; void *sbuf; int copied = 0; while (1) { if (!p->sg_src_left) { ret = sg_miter_next(&p->src_sg_it); BUG_ON(!ret); p->sg_src_left = p->src_sg_it.length; p->src_start = 0; } sbuf = p->src_sg_it.addr + p->src_start; if (p->sg_src_left <= len - copied) { memcpy(dbuf + copied, sbuf, p->sg_src_left); copied += p->sg_src_left; p->sg_src_left = 0; if (copied >= len) break; } else { int copy_len = len - copied; memcpy(dbuf + copied, sbuf, copy_len); p->src_start += copy_len; p->sg_src_left -= copy_len; break; } } } static void setup_data_in(void) { struct req_progress *p = &cpg->p; int data_in_sram = min(p->hw_nbytes - p->hw_processed_bytes, cpg->max_req_size); copy_src_to_buf(p, cpg->sram + SRAM_DATA_IN_START + p->crypt_len, data_in_sram - p->crypt_len); p->crypt_len = data_in_sram; } static void mv_process_current_q(int first_block) { struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req); struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); struct sec_accel_config op; switch (req_ctx->op) { case COP_AES_ECB: op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_ECB; break; case COP_AES_CBC: default: op.config = CFG_OP_CRYPT_ONLY | CFG_ENCM_AES | CFG_ENC_MODE_CBC; op.enc_iv = ENC_IV_POINT(SRAM_DATA_IV) | ENC_IV_BUF_POINT(SRAM_DATA_IV_BUF); if (first_block) memcpy(cpg->sram + SRAM_DATA_IV, req->info, 16); break; } if (req_ctx->decrypt) { op.config |= CFG_DIR_DEC; memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_dec_key, AES_KEY_LEN); } else { op.config |= CFG_DIR_ENC; memcpy(cpg->sram + SRAM_DATA_KEY_P, ctx->aes_enc_key, AES_KEY_LEN); } switch (ctx->key_len) { case AES_KEYSIZE_128: op.config |= CFG_AES_LEN_128; break; case AES_KEYSIZE_192: op.config |= CFG_AES_LEN_192; break; case AES_KEYSIZE_256: op.config |= CFG_AES_LEN_256; break; } op.enc_p = ENC_P_SRC(SRAM_DATA_IN_START) | ENC_P_DST(SRAM_DATA_OUT_START); op.enc_key_p = SRAM_DATA_KEY_P; setup_data_in(); op.enc_len = cpg->p.crypt_len; memcpy(cpg->sram + SRAM_CONFIG, &op, sizeof(struct sec_accel_config)); writel(SRAM_CONFIG, cpg->reg + SEC_ACCEL_DESC_P0); /* GO */ writel(SEC_CMD_EN_SEC_ACCL0, cpg->reg + SEC_ACCEL_CMD); /* * XXX: add timer if the interrupt does not occur for some mystery * reason */ } static void mv_crypto_algo_completion(void) { struct ablkcipher_request *req = ablkcipher_request_cast(cpg->cur_req); struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); sg_miter_stop(&cpg->p.src_sg_it); sg_miter_stop(&cpg->p.dst_sg_it); if (req_ctx->op != COP_AES_CBC) return ; memcpy(req->info, cpg->sram + SRAM_DATA_IV_BUF, 16); } static void dequeue_complete_req(void) { struct crypto_async_request *req = cpg->cur_req; void *buf; int ret; cpg->p.hw_processed_bytes += cpg->p.crypt_len; if (cpg->p.copy_back) { int need_copy_len = cpg->p.crypt_len; int sram_offset = 0; do { int dst_copy; if (!cpg->p.sg_dst_left) { ret = sg_miter_next(&cpg->p.dst_sg_it); BUG_ON(!ret); cpg->p.sg_dst_left = cpg->p.dst_sg_it.length; cpg->p.dst_start = 0; } buf = cpg->p.dst_sg_it.addr; buf += cpg->p.dst_start; dst_copy = min(need_copy_len, cpg->p.sg_dst_left); memcpy(buf, cpg->sram + SRAM_DATA_OUT_START + sram_offset, dst_copy); sram_offset += dst_copy; cpg->p.sg_dst_left -= dst_copy; need_copy_len -= dst_copy; cpg->p.dst_start += dst_copy; } while (need_copy_len > 0); } cpg->p.crypt_len = 0; BUG_ON(cpg->eng_st != ENGINE_W_DEQUEUE); if (cpg->p.hw_processed_bytes < cpg->p.hw_nbytes) { /* process next scatter list entry */ cpg->eng_st = ENGINE_BUSY; cpg->p.process(0); } else { cpg->p.complete(); cpg->eng_st = ENGINE_IDLE; local_bh_disable(); req->complete(req, 0); local_bh_enable(); } } static int count_sgs(struct scatterlist *sl, unsigned int total_bytes) { int i = 0; size_t cur_len; while (1) { cur_len = sl[i].length; ++i; if (total_bytes > cur_len) total_bytes -= cur_len; else break; } return i; } static void mv_enqueue_new_req(struct ablkcipher_request *req) { struct req_progress *p = &cpg->p; int num_sgs; cpg->cur_req = &req->base; memset(p, 0, sizeof(struct req_progress)); p->hw_nbytes = req->nbytes; p->complete = mv_crypto_algo_completion; p->process = mv_process_current_q; p->copy_back = 1; num_sgs = count_sgs(req->src, req->nbytes); sg_miter_start(&p->src_sg_it, req->src, num_sgs, SG_MITER_FROM_SG); num_sgs = count_sgs(req->dst, req->nbytes); sg_miter_start(&p->dst_sg_it, req->dst, num_sgs, SG_MITER_TO_SG); mv_process_current_q(1); } static int queue_manag(void *data) { cpg->eng_st = ENGINE_IDLE; do { struct ablkcipher_request *req; struct crypto_async_request *async_req = NULL; struct crypto_async_request *backlog; __set_current_state(TASK_INTERRUPTIBLE); if (cpg->eng_st == ENGINE_W_DEQUEUE) dequeue_complete_req(); spin_lock_irq(&cpg->lock); if (cpg->eng_st == ENGINE_IDLE) { backlog = crypto_get_backlog(&cpg->queue); async_req = crypto_dequeue_request(&cpg->queue); if (async_req) { BUG_ON(cpg->eng_st != ENGINE_IDLE); cpg->eng_st = ENGINE_BUSY; } } spin_unlock_irq(&cpg->lock); if (backlog) { backlog->complete(backlog, -EINPROGRESS); backlog = NULL; } if (async_req) { req = container_of(async_req, struct ablkcipher_request, base); mv_enqueue_new_req(req); async_req = NULL; } schedule(); } while (!kthread_should_stop()); return 0; } static int mv_handle_req(struct crypto_async_request *req) { unsigned long flags; int ret; spin_lock_irqsave(&cpg->lock, flags); ret = crypto_enqueue_request(&cpg->queue, req); spin_unlock_irqrestore(&cpg->lock, flags); wake_up_process(cpg->queue_th); return ret; } static int mv_enc_aes_ecb(struct ablkcipher_request *req) { struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); req_ctx->op = COP_AES_ECB; req_ctx->decrypt = 0; return mv_handle_req(&req->base); } static int mv_dec_aes_ecb(struct ablkcipher_request *req) { struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); req_ctx->op = COP_AES_ECB; req_ctx->decrypt = 1; compute_aes_dec_key(ctx); return mv_handle_req(&req->base); } static int mv_enc_aes_cbc(struct ablkcipher_request *req) { struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); req_ctx->op = COP_AES_CBC; req_ctx->decrypt = 0; return mv_handle_req(&req->base); } static int mv_dec_aes_cbc(struct ablkcipher_request *req) { struct mv_ctx *ctx = crypto_tfm_ctx(req->base.tfm); struct mv_req_ctx *req_ctx = ablkcipher_request_ctx(req); req_ctx->op = COP_AES_CBC; req_ctx->decrypt = 1; compute_aes_dec_key(ctx); return mv_handle_req(&req->base); } static int mv_cra_init(struct crypto_tfm *tfm) { tfm->crt_ablkcipher.reqsize = sizeof(struct mv_req_ctx); return 0; } irqreturn_t crypto_int(int irq, void *priv) { u32 val; val = readl(cpg->reg + SEC_ACCEL_INT_STATUS); if (!(val & SEC_INT_ACCEL0_DONE)) return IRQ_NONE; val &= ~SEC_INT_ACCEL0_DONE; writel(val, cpg->reg + FPGA_INT_STATUS); writel(val, cpg->reg + SEC_ACCEL_INT_STATUS); BUG_ON(cpg->eng_st != ENGINE_BUSY); cpg->eng_st = ENGINE_W_DEQUEUE; wake_up_process(cpg->queue_th); return IRQ_HANDLED; } struct crypto_alg mv_aes_alg_ecb = { .cra_name = "ecb(aes)", .cra_driver_name = "mv-ecb-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = 16, .cra_ctxsize = sizeof(struct mv_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = mv_cra_init, .cra_u = { .ablkcipher = { .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mv_setkey_aes, .encrypt = mv_enc_aes_ecb, .decrypt = mv_dec_aes_ecb, }, }, }; struct crypto_alg mv_aes_alg_cbc = { .cra_name = "cbc(aes)", .cra_driver_name = "mv-cbc-aes", .cra_priority = 300, .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | CRYPTO_ALG_ASYNC, .cra_blocksize = AES_BLOCK_SIZE, .cra_ctxsize = sizeof(struct mv_ctx), .cra_alignmask = 0, .cra_type = &crypto_ablkcipher_type, .cra_module = THIS_MODULE, .cra_init = mv_cra_init, .cra_u = { .ablkcipher = { .ivsize = AES_BLOCK_SIZE, .min_keysize = AES_MIN_KEY_SIZE, .max_keysize = AES_MAX_KEY_SIZE, .setkey = mv_setkey_aes, .encrypt = mv_enc_aes_cbc, .decrypt = mv_dec_aes_cbc, }, }, }; static int mv_probe(struct platform_device *pdev) { struct crypto_priv *cp; struct resource *res; int irq; int ret; if (cpg) { printk(KERN_ERR "Second crypto dev?\n"); return -EEXIST; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs"); if (!res) return -ENXIO; cp = kzalloc(sizeof(*cp), GFP_KERNEL); if (!cp) return -ENOMEM; spin_lock_init(&cp->lock); crypto_init_queue(&cp->queue, 50); cp->reg = ioremap(res->start, res->end - res->start + 1); if (!cp->reg) { ret = -ENOMEM; goto err; } res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "sram"); if (!res) { ret = -ENXIO; goto err_unmap_reg; } cp->sram_size = res->end - res->start + 1; cp->max_req_size = cp->sram_size - SRAM_CFG_SPACE; cp->sram = ioremap(res->start, cp->sram_size); if (!cp->sram) { ret = -ENOMEM; goto err_unmap_reg; } irq = platform_get_irq(pdev, 0); if (irq < 0 || irq == NO_IRQ) { ret = irq; goto err_unmap_sram; } cp->irq = irq; platform_set_drvdata(pdev, cp); cpg = cp; cp->queue_th = kthread_run(queue_manag, cp, "mv_crypto"); if (IS_ERR(cp->queue_th)) { ret = PTR_ERR(cp->queue_th); goto err_thread; } ret = request_irq(irq, crypto_int, IRQF_DISABLED, dev_name(&pdev->dev), cp); if (ret) goto err_unmap_sram; writel(SEC_INT_ACCEL0_DONE, cpg->reg + SEC_ACCEL_INT_MASK); writel(SEC_CFG_STOP_DIG_ERR, cpg->reg + SEC_ACCEL_CFG); ret = crypto_register_alg(&mv_aes_alg_ecb); if (ret) goto err_reg; ret = crypto_register_alg(&mv_aes_alg_cbc); if (ret) goto err_unreg_ecb; return 0; err_unreg_ecb: crypto_unregister_alg(&mv_aes_alg_ecb); err_thread: free_irq(irq, cp); err_reg: kthread_stop(cp->queue_th); err_unmap_sram: iounmap(cp->sram); err_unmap_reg: iounmap(cp->reg); err: kfree(cp); cpg = NULL; platform_set_drvdata(pdev, NULL); return ret; } static int mv_remove(struct platform_device *pdev) { struct crypto_priv *cp = platform_get_drvdata(pdev); crypto_unregister_alg(&mv_aes_alg_ecb); crypto_unregister_alg(&mv_aes_alg_cbc); kthread_stop(cp->queue_th); free_irq(cp->irq, cp); memset(cp->sram, 0, cp->sram_size); iounmap(cp->sram); iounmap(cp->reg); kfree(cp); cpg = NULL; return 0; } static struct platform_driver marvell_crypto = { .probe = mv_probe, .remove = mv_remove, .driver = { .owner = THIS_MODULE, .name = "mv_crypto", }, }; MODULE_ALIAS("platform:mv_crypto"); static int __init mv_crypto_init(void) { return platform_driver_register(&marvell_crypto); } module_init(mv_crypto_init); static void __exit mv_crypto_exit(void) { platform_driver_unregister(&marvell_crypto); } module_exit(mv_crypto_exit); MODULE_AUTHOR("Sebastian Andrzej Siewior "); MODULE_DESCRIPTION("Support for Marvell's cryptographic engine"); MODULE_LICENSE("GPL");