/* * Kernel-based Virtual Machine driver for Linux * * derived from drivers/kvm/kvm_main.c * * Copyright (C) 2006 Qumranet, Inc. * Copyright (C) 2008 Qumranet, Inc. * Copyright IBM Corporation, 2008 * * Authors: * Avi Kivity * Yaniv Kamay * Amit Shah * Ben-Ami Yassour * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include "irq.h" #include "mmu.h" #include "i8254.h" #include "tss.h" #include "kvm_cache_regs.h" #include "x86.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #define MAX_IO_MSRS 256 #define CR0_RESERVED_BITS \ (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \ | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \ | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG)) #define CR4_RESERVED_BITS \ (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\ | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \ | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \ | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE)) #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR) /* EFER defaults: * - enable syscall per default because its emulated by KVM * - enable LME and LMA per default on 64 bit KVM */ #ifdef CONFIG_X86_64 static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffafeULL; #else static u64 __read_mostly efer_reserved_bits = 0xfffffffffffffffeULL; #endif #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries); struct kvm_x86_ops *kvm_x86_ops; EXPORT_SYMBOL_GPL(kvm_x86_ops); struct kvm_stats_debugfs_item debugfs_entries[] = { { "pf_fixed", VCPU_STAT(pf_fixed) }, { "pf_guest", VCPU_STAT(pf_guest) }, { "tlb_flush", VCPU_STAT(tlb_flush) }, { "invlpg", VCPU_STAT(invlpg) }, { "exits", VCPU_STAT(exits) }, { "io_exits", VCPU_STAT(io_exits) }, { "mmio_exits", VCPU_STAT(mmio_exits) }, { "signal_exits", VCPU_STAT(signal_exits) }, { "irq_window", VCPU_STAT(irq_window_exits) }, { "nmi_window", VCPU_STAT(nmi_window_exits) }, { "halt_exits", VCPU_STAT(halt_exits) }, { "halt_wakeup", VCPU_STAT(halt_wakeup) }, { "hypercalls", VCPU_STAT(hypercalls) }, { "request_irq", VCPU_STAT(request_irq_exits) }, { "request_nmi", VCPU_STAT(request_nmi_exits) }, { "irq_exits", VCPU_STAT(irq_exits) }, { "host_state_reload", VCPU_STAT(host_state_reload) }, { "efer_reload", VCPU_STAT(efer_reload) }, { "fpu_reload", VCPU_STAT(fpu_reload) }, { "insn_emulation", VCPU_STAT(insn_emulation) }, { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, { "irq_injections", VCPU_STAT(irq_injections) }, { "nmi_injections", VCPU_STAT(nmi_injections) }, { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, { "mmu_pte_write", VM_STAT(mmu_pte_write) }, { "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, { "mmu_flooded", VM_STAT(mmu_flooded) }, { "mmu_recycled", VM_STAT(mmu_recycled) }, { "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, { "mmu_unsync", VM_STAT(mmu_unsync) }, { "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, { "largepages", VM_STAT(lpages) }, { NULL } }; unsigned long segment_base(u16 selector) { struct descriptor_table gdt; struct desc_struct *d; unsigned long table_base; unsigned long v; if (selector == 0) return 0; asm("sgdt %0" : "=m"(gdt)); table_base = gdt.base; if (selector & 4) { /* from ldt */ u16 ldt_selector; asm("sldt %0" : "=g"(ldt_selector)); table_base = segment_base(ldt_selector); } d = (struct desc_struct *)(table_base + (selector & ~7)); v = d->base0 | ((unsigned long)d->base1 << 16) | ((unsigned long)d->base2 << 24); #ifdef CONFIG_X86_64 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; #endif return v; } EXPORT_SYMBOL_GPL(segment_base); u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) { if (irqchip_in_kernel(vcpu->kvm)) return vcpu->arch.apic_base; else return vcpu->arch.apic_base; } EXPORT_SYMBOL_GPL(kvm_get_apic_base); void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) { /* TODO: reserve bits check */ if (irqchip_in_kernel(vcpu->kvm)) kvm_lapic_set_base(vcpu, data); else vcpu->arch.apic_base = data; } EXPORT_SYMBOL_GPL(kvm_set_apic_base); void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) { WARN_ON(vcpu->arch.exception.pending); vcpu->arch.exception.pending = true; vcpu->arch.exception.has_error_code = false; vcpu->arch.exception.nr = nr; } EXPORT_SYMBOL_GPL(kvm_queue_exception); void kvm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, u32 error_code) { ++vcpu->stat.pf_guest; if (vcpu->arch.exception.pending) { if (vcpu->arch.exception.nr == PF_VECTOR) { printk(KERN_DEBUG "kvm: inject_page_fault:" " double fault 0x%lx\n", addr); vcpu->arch.exception.nr = DF_VECTOR; vcpu->arch.exception.error_code = 0; } else if (vcpu->arch.exception.nr == DF_VECTOR) { /* triple fault -> shutdown */ set_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests); } return; } vcpu->arch.cr2 = addr; kvm_queue_exception_e(vcpu, PF_VECTOR, error_code); } void kvm_inject_nmi(struct kvm_vcpu *vcpu) { vcpu->arch.nmi_pending = 1; } EXPORT_SYMBOL_GPL(kvm_inject_nmi); void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) { WARN_ON(vcpu->arch.exception.pending); vcpu->arch.exception.pending = true; vcpu->arch.exception.has_error_code = true; vcpu->arch.exception.nr = nr; vcpu->arch.exception.error_code = error_code; } EXPORT_SYMBOL_GPL(kvm_queue_exception_e); static void __queue_exception(struct kvm_vcpu *vcpu) { kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, vcpu->arch.exception.has_error_code, vcpu->arch.exception.error_code); } /* * Load the pae pdptrs. Return true is they are all valid. */ int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) { gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; int i; int ret; u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; ret = kvm_read_guest_page(vcpu->kvm, pdpt_gfn, pdpte, offset * sizeof(u64), sizeof(pdpte)); if (ret < 0) { ret = 0; goto out; } for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) { ret = 0; goto out; } } ret = 1; memcpy(vcpu->arch.pdptrs, pdpte, sizeof(vcpu->arch.pdptrs)); out: return ret; } EXPORT_SYMBOL_GPL(load_pdptrs); static bool pdptrs_changed(struct kvm_vcpu *vcpu) { u64 pdpte[ARRAY_SIZE(vcpu->arch.pdptrs)]; bool changed = true; int r; if (is_long_mode(vcpu) || !is_pae(vcpu)) return false; r = kvm_read_guest(vcpu->kvm, vcpu->arch.cr3 & ~31u, pdpte, sizeof(pdpte)); if (r < 0) goto out; changed = memcmp(pdpte, vcpu->arch.pdptrs, sizeof(pdpte)) != 0; out: return changed; } void kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { if (cr0 & CR0_RESERVED_BITS) { printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n", cr0, vcpu->arch.cr0); kvm_inject_gp(vcpu, 0); return; } if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) { printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n"); kvm_inject_gp(vcpu, 0); return; } if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) { printk(KERN_DEBUG "set_cr0: #GP, set PG flag " "and a clear PE flag\n"); kvm_inject_gp(vcpu, 0); return; } if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { #ifdef CONFIG_X86_64 if ((vcpu->arch.shadow_efer & EFER_LME)) { int cs_db, cs_l; if (!is_pae(vcpu)) { printk(KERN_DEBUG "set_cr0: #GP, start paging " "in long mode while PAE is disabled\n"); kvm_inject_gp(vcpu, 0); return; } kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); if (cs_l) { printk(KERN_DEBUG "set_cr0: #GP, start paging " "in long mode while CS.L == 1\n"); kvm_inject_gp(vcpu, 0); return; } } else #endif if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.cr3)) { printk(KERN_DEBUG "set_cr0: #GP, pdptrs " "reserved bits\n"); kvm_inject_gp(vcpu, 0); return; } } kvm_x86_ops->set_cr0(vcpu, cr0); vcpu->arch.cr0 = cr0; kvm_mmu_reset_context(vcpu); return; } EXPORT_SYMBOL_GPL(kvm_set_cr0); void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) { kvm_set_cr0(vcpu, (vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)); KVMTRACE_1D(LMSW, vcpu, (u32)((vcpu->arch.cr0 & ~0x0ful) | (msw & 0x0f)), handler); } EXPORT_SYMBOL_GPL(kvm_lmsw); void kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { if (cr4 & CR4_RESERVED_BITS) { printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n"); kvm_inject_gp(vcpu, 0); return; } if (is_long_mode(vcpu)) { if (!(cr4 & X86_CR4_PAE)) { printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while " "in long mode\n"); kvm_inject_gp(vcpu, 0); return; } } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE) && !load_pdptrs(vcpu, vcpu->arch.cr3)) { printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n"); kvm_inject_gp(vcpu, 0); return; } if (cr4 & X86_CR4_VMXE) { printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n"); kvm_inject_gp(vcpu, 0); return; } kvm_x86_ops->set_cr4(vcpu, cr4); vcpu->arch.cr4 = cr4; kvm_mmu_reset_context(vcpu); } EXPORT_SYMBOL_GPL(kvm_set_cr4); void kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) { if (cr3 == vcpu->arch.cr3 && !pdptrs_changed(vcpu)) { kvm_mmu_sync_roots(vcpu); kvm_mmu_flush_tlb(vcpu); return; } if (is_long_mode(vcpu)) { if (cr3 & CR3_L_MODE_RESERVED_BITS) { printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); kvm_inject_gp(vcpu, 0); return; } } else { if (is_pae(vcpu)) { if (cr3 & CR3_PAE_RESERVED_BITS) { printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n"); kvm_inject_gp(vcpu, 0); return; } if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) { printk(KERN_DEBUG "set_cr3: #GP, pdptrs " "reserved bits\n"); kvm_inject_gp(vcpu, 0); return; } } /* * We don't check reserved bits in nonpae mode, because * this isn't enforced, and VMware depends on this. */ } /* * Does the new cr3 value map to physical memory? (Note, we * catch an invalid cr3 even in real-mode, because it would * cause trouble later on when we turn on paging anyway.) * * A real CPU would silently accept an invalid cr3 and would * attempt to use it - with largely undefined (and often hard * to debug) behavior on the guest side. */ if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) kvm_inject_gp(vcpu, 0); else { vcpu->arch.cr3 = cr3; vcpu->arch.mmu.new_cr3(vcpu); } } EXPORT_SYMBOL_GPL(kvm_set_cr3); void kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) { if (cr8 & CR8_RESERVED_BITS) { printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8); kvm_inject_gp(vcpu, 0); return; } if (irqchip_in_kernel(vcpu->kvm)) kvm_lapic_set_tpr(vcpu, cr8); else vcpu->arch.cr8 = cr8; } EXPORT_SYMBOL_GPL(kvm_set_cr8); unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) { if (irqchip_in_kernel(vcpu->kvm)) return kvm_lapic_get_cr8(vcpu); else return vcpu->arch.cr8; } EXPORT_SYMBOL_GPL(kvm_get_cr8); /* * List of msr numbers which we expose to userspace through KVM_GET_MSRS * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. * * This list is modified at module load time to reflect the * capabilities of the host cpu. */ static u32 msrs_to_save[] = { MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, MSR_K6_STAR, #ifdef CONFIG_X86_64 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, #endif MSR_IA32_TIME_STAMP_COUNTER, MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, MSR_IA32_PERF_STATUS, }; static unsigned num_msrs_to_save; static u32 emulated_msrs[] = { MSR_IA32_MISC_ENABLE, }; static void set_efer(struct kvm_vcpu *vcpu, u64 efer) { if (efer & efer_reserved_bits) { printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n", efer); kvm_inject_gp(vcpu, 0); return; } if (is_paging(vcpu) && (vcpu->arch.shadow_efer & EFER_LME) != (efer & EFER_LME)) { printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n"); kvm_inject_gp(vcpu, 0); return; } kvm_x86_ops->set_efer(vcpu, efer); efer &= ~EFER_LMA; efer |= vcpu->arch.shadow_efer & EFER_LMA; vcpu->arch.shadow_efer = efer; } void kvm_enable_efer_bits(u64 mask) { efer_reserved_bits &= ~mask; } EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); /* * Writes msr value into into the appropriate "register". * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) { return kvm_x86_ops->set_msr(vcpu, msr_index, data); } /* * Adapt set_msr() to msr_io()'s calling convention */ static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) { return kvm_set_msr(vcpu, index, *data); } static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) { static int version; struct pvclock_wall_clock wc; struct timespec now, sys, boot; if (!wall_clock) return; version++; kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); /* * The guest calculates current wall clock time by adding * system time (updated by kvm_write_guest_time below) to the * wall clock specified here. guest system time equals host * system time for us, thus we must fill in host boot time here. */ now = current_kernel_time(); ktime_get_ts(&sys); boot = ns_to_timespec(timespec_to_ns(&now) - timespec_to_ns(&sys)); wc.sec = boot.tv_sec; wc.nsec = boot.tv_nsec; wc.version = version; kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); version++; kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); } static uint32_t div_frac(uint32_t dividend, uint32_t divisor) { uint32_t quotient, remainder; /* Don't try to replace with do_div(), this one calculates * "(dividend << 32) / divisor" */ __asm__ ( "divl %4" : "=a" (quotient), "=d" (remainder) : "0" (0), "1" (dividend), "r" (divisor) ); return quotient; } static void kvm_set_time_scale(uint32_t tsc_khz, struct pvclock_vcpu_time_info *hv_clock) { uint64_t nsecs = 1000000000LL; int32_t shift = 0; uint64_t tps64; uint32_t tps32; tps64 = tsc_khz * 1000LL; while (tps64 > nsecs*2) { tps64 >>= 1; shift--; } tps32 = (uint32_t)tps64; while (tps32 <= (uint32_t)nsecs) { tps32 <<= 1; shift++; } hv_clock->tsc_shift = shift; hv_clock->tsc_to_system_mul = div_frac(nsecs, tps32); pr_debug("%s: tsc_khz %u, tsc_shift %d, tsc_mul %u\n", __func__, tsc_khz, hv_clock->tsc_shift, hv_clock->tsc_to_system_mul); } static void kvm_write_guest_time(struct kvm_vcpu *v) { struct timespec ts; unsigned long flags; struct kvm_vcpu_arch *vcpu = &v->arch; void *shared_kaddr; if ((!vcpu->time_page)) return; if (unlikely(vcpu->hv_clock_tsc_khz != tsc_khz)) { kvm_set_time_scale(tsc_khz, &vcpu->hv_clock); vcpu->hv_clock_tsc_khz = tsc_khz; } /* Keep irq disabled to prevent changes to the clock */ local_irq_save(flags); kvm_get_msr(v, MSR_IA32_TIME_STAMP_COUNTER, &vcpu->hv_clock.tsc_timestamp); ktime_get_ts(&ts); local_irq_restore(flags); /* With all the info we got, fill in the values */ vcpu->hv_clock.system_time = ts.tv_nsec + (NSEC_PER_SEC * (u64)ts.tv_sec); /* * The interface expects us to write an even number signaling that the * update is finished. Since the guest won't see the intermediate * state, we just increase by 2 at the end. */ vcpu->hv_clock.version += 2; shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0); memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock, sizeof(vcpu->hv_clock)); kunmap_atomic(shared_kaddr, KM_USER0); mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT); } static bool msr_mtrr_valid(unsigned msr) { switch (msr) { case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: case MSR_MTRRfix64K_00000: case MSR_MTRRfix16K_80000: case MSR_MTRRfix16K_A0000: case MSR_MTRRfix4K_C0000: case MSR_MTRRfix4K_C8000: case MSR_MTRRfix4K_D0000: case MSR_MTRRfix4K_D8000: case MSR_MTRRfix4K_E0000: case MSR_MTRRfix4K_E8000: case MSR_MTRRfix4K_F0000: case MSR_MTRRfix4K_F8000: case MSR_MTRRdefType: case MSR_IA32_CR_PAT: return true; case 0x2f8: return true; } return false; } static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) { u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; if (!msr_mtrr_valid(msr)) return 1; if (msr == MSR_MTRRdefType) { vcpu->arch.mtrr_state.def_type = data; vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; } else if (msr == MSR_MTRRfix64K_00000) p[0] = data; else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) p[1 + msr - MSR_MTRRfix16K_80000] = data; else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) p[3 + msr - MSR_MTRRfix4K_C0000] = data; else if (msr == MSR_IA32_CR_PAT) vcpu->arch.pat = data; else { /* Variable MTRRs */ int idx, is_mtrr_mask; u64 *pt; idx = (msr - 0x200) / 2; is_mtrr_mask = msr - 0x200 - 2 * idx; if (!is_mtrr_mask) pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; else pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; *pt = data; } kvm_mmu_reset_context(vcpu); return 0; } int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data) { switch (msr) { case MSR_EFER: set_efer(vcpu, data); break; case MSR_IA32_MC0_STATUS: pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n", __func__, data); break; case MSR_IA32_MCG_STATUS: pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n", __func__, data); break; case MSR_IA32_MCG_CTL: pr_unimpl(vcpu, "%s: MSR_IA32_MCG_CTL 0x%llx, nop\n", __func__, data); break; case MSR_IA32_DEBUGCTLMSR: if (!data) { /* We support the non-activated case already */ break; } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { /* Values other than LBR and BTF are vendor-specific, thus reserved and should throw a #GP */ return 1; } pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", __func__, data); break; case MSR_IA32_UCODE_REV: case MSR_IA32_UCODE_WRITE: break; case 0x200 ... 0x2ff: return set_msr_mtrr(vcpu, msr, data); case MSR_IA32_APICBASE: kvm_set_apic_base(vcpu, data); break; case MSR_IA32_MISC_ENABLE: vcpu->arch.ia32_misc_enable_msr = data; break; case MSR_KVM_WALL_CLOCK: vcpu->kvm->arch.wall_clock = data; kvm_write_wall_clock(vcpu->kvm, data); break; case MSR_KVM_SYSTEM_TIME: { if (vcpu->arch.time_page) { kvm_release_page_dirty(vcpu->arch.time_page); vcpu->arch.time_page = NULL; } vcpu->arch.time = data; /* we verify if the enable bit is set... */ if (!(data & 1)) break; /* ...but clean it before doing the actual write */ vcpu->arch.time_offset = data & ~(PAGE_MASK | 1); vcpu->arch.time_page = gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT); if (is_error_page(vcpu->arch.time_page)) { kvm_release_page_clean(vcpu->arch.time_page); vcpu->arch.time_page = NULL; } kvm_write_guest_time(vcpu); break; } default: pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", msr, data); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_set_msr_common); /* * Reads an msr value (of 'msr_index') into 'pdata'. * Returns 0 on success, non-0 otherwise. * Assumes vcpu_load() was already called. */ int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) { return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); } static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; if (!msr_mtrr_valid(msr)) return 1; if (msr == MSR_MTRRdefType) *pdata = vcpu->arch.mtrr_state.def_type + (vcpu->arch.mtrr_state.enabled << 10); else if (msr == MSR_MTRRfix64K_00000) *pdata = p[0]; else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) *pdata = p[1 + msr - MSR_MTRRfix16K_80000]; else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) *pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; else if (msr == MSR_IA32_CR_PAT) *pdata = vcpu->arch.pat; else { /* Variable MTRRs */ int idx, is_mtrr_mask; u64 *pt; idx = (msr - 0x200) / 2; is_mtrr_mask = msr - 0x200 - 2 * idx; if (!is_mtrr_mask) pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; else pt = (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; *pdata = *pt; } return 0; } int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) { u64 data; switch (msr) { case 0xc0010010: /* SYSCFG */ case 0xc0010015: /* HWCR */ case MSR_IA32_PLATFORM_ID: case MSR_IA32_P5_MC_ADDR: case MSR_IA32_P5_MC_TYPE: case MSR_IA32_MC0_CTL: case MSR_IA32_MCG_STATUS: case MSR_IA32_MCG_CAP: case MSR_IA32_MCG_CTL: case MSR_IA32_MC0_MISC: case MSR_IA32_MC0_MISC+4: case MSR_IA32_MC0_MISC+8: case MSR_IA32_MC0_MISC+12: case MSR_IA32_MC0_MISC+16: case MSR_IA32_MC0_MISC+20: case MSR_IA32_UCODE_REV: case MSR_IA32_EBL_CR_POWERON: case MSR_IA32_DEBUGCTLMSR: case MSR_IA32_LASTBRANCHFROMIP: case MSR_IA32_LASTBRANCHTOIP: case MSR_IA32_LASTINTFROMIP: case MSR_IA32_LASTINTTOIP: data = 0; break; case MSR_MTRRcap: data = 0x500 | KVM_NR_VAR_MTRR; break; case 0x200 ... 0x2ff: return get_msr_mtrr(vcpu, msr, pdata); case 0xcd: /* fsb frequency */ data = 3; break; case MSR_IA32_APICBASE: data = kvm_get_apic_base(vcpu); break; case MSR_IA32_MISC_ENABLE: data = vcpu->arch.ia32_misc_enable_msr; break; case MSR_IA32_PERF_STATUS: /* TSC increment by tick */ data = 1000ULL; /* CPU multiplier */ data |= (((uint64_t)4ULL) << 40); break; case MSR_EFER: data = vcpu->arch.shadow_efer; break; case MSR_KVM_WALL_CLOCK: data = vcpu->kvm->arch.wall_clock; break; case MSR_KVM_SYSTEM_TIME: data = vcpu->arch.time; break; default: pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); return 1; } *pdata = data; return 0; } EXPORT_SYMBOL_GPL(kvm_get_msr_common); /* * Read or write a bunch of msrs. All parameters are kernel addresses. * * @return number of msrs set successfully. */ static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, struct kvm_msr_entry *entries, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data)) { int i; vcpu_load(vcpu); down_read(&vcpu->kvm->slots_lock); for (i = 0; i < msrs->nmsrs; ++i) if (do_msr(vcpu, entries[i].index, &entries[i].data)) break; up_read(&vcpu->kvm->slots_lock); vcpu_put(vcpu); return i; } /* * Read or write a bunch of msrs. Parameters are user addresses. * * @return number of msrs set successfully. */ static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, int (*do_msr)(struct kvm_vcpu *vcpu, unsigned index, u64 *data), int writeback) { struct kvm_msrs msrs; struct kvm_msr_entry *entries; int r, n; unsigned size; r = -EFAULT; if (copy_from_user(&msrs, user_msrs, sizeof msrs)) goto out; r = -E2BIG; if (msrs.nmsrs >= MAX_IO_MSRS) goto out; r = -ENOMEM; size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; entries = vmalloc(size); if (!entries) goto out; r = -EFAULT; if (copy_from_user(entries, user_msrs->entries, size)) goto out_free; r = n = __msr_io(vcpu, &msrs, entries, do_msr); if (r < 0) goto out_free; r = -EFAULT; if (writeback && copy_to_user(user_msrs->entries, entries, size)) goto out_free; r = n; out_free: vfree(entries); out: return r; } int kvm_dev_ioctl_check_extension(long ext) { int r; switch (ext) { case KVM_CAP_IRQCHIP: case KVM_CAP_HLT: case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: case KVM_CAP_USER_MEMORY: case KVM_CAP_SET_TSS_ADDR: case KVM_CAP_EXT_CPUID: case KVM_CAP_CLOCKSOURCE: case KVM_CAP_PIT: case KVM_CAP_NOP_IO_DELAY: case KVM_CAP_MP_STATE: case KVM_CAP_SYNC_MMU: r = 1; break; case KVM_CAP_COALESCED_MMIO: r = KVM_COALESCED_MMIO_PAGE_OFFSET; break; case KVM_CAP_VAPIC: r = !kvm_x86_ops->cpu_has_accelerated_tpr(); break; case KVM_CAP_NR_VCPUS: r = KVM_MAX_VCPUS; break; case KVM_CAP_NR_MEMSLOTS: r = KVM_MEMORY_SLOTS; break; case KVM_CAP_PV_MMU: r = !tdp_enabled; break; case KVM_CAP_IOMMU: r = intel_iommu_found(); break; default: r = 0; break; } return r; } long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { void __user *argp = (void __user *)arg; long r; switch (ioctl) { case KVM_GET_MSR_INDEX_LIST: { struct kvm_msr_list __user *user_msr_list = argp; struct kvm_msr_list msr_list; unsigned n; r = -EFAULT; if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) goto out; n = msr_list.nmsrs; msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) goto out; r = -E2BIG; if (n < num_msrs_to_save) goto out; r = -EFAULT; if (copy_to_user(user_msr_list->indices, &msrs_to_save, num_msrs_to_save * sizeof(u32))) goto out; if (copy_to_user(user_msr_list->indices + num_msrs_to_save * sizeof(u32), &emulated_msrs, ARRAY_SIZE(emulated_msrs) * sizeof(u32))) goto out; r = 0; break; } case KVM_GET_SUPPORTED_CPUID: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, cpuid_arg->entries); if (r) goto out; r = -EFAULT; if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) goto out; r = 0; break; } default: r = -EINVAL; } out: return r; } void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) { kvm_x86_ops->vcpu_load(vcpu, cpu); kvm_write_guest_time(vcpu); } void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) { kvm_x86_ops->vcpu_put(vcpu); kvm_put_guest_fpu(vcpu); } static int is_efer_nx(void) { u64 efer; rdmsrl(MSR_EFER, efer); return efer & EFER_NX; } static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu) { int i; struct kvm_cpuid_entry2 *e, *entry; entry = NULL; for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { e = &vcpu->arch.cpuid_entries[i]; if (e->function == 0x80000001) { entry = e; break; } } if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) { entry->edx &= ~(1 << 20); printk(KERN_INFO "kvm: guest NX capability removed\n"); } } /* when an old userspace process fills a new kernel module */ static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu, struct kvm_cpuid *cpuid, struct kvm_cpuid_entry __user *entries) { int r, i; struct kvm_cpuid_entry *cpuid_entries; r = -E2BIG; if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) goto out; r = -ENOMEM; cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent); if (!cpuid_entries) goto out; r = -EFAULT; if (copy_from_user(cpuid_entries, entries, cpuid->nent * sizeof(struct kvm_cpuid_entry))) goto out_free; for (i = 0; i < cpuid->nent; i++) { vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function; vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax; vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx; vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx; vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx; vcpu->arch.cpuid_entries[i].index = 0; vcpu->arch.cpuid_entries[i].flags = 0; vcpu->arch.cpuid_entries[i].padding[0] = 0; vcpu->arch.cpuid_entries[i].padding[1] = 0; vcpu->arch.cpuid_entries[i].padding[2] = 0; } vcpu->arch.cpuid_nent = cpuid->nent; cpuid_fix_nx_cap(vcpu); r = 0; out_free: vfree(cpuid_entries); out: return r; } static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries) { int r; r = -E2BIG; if (cpuid->nent > KVM_MAX_CPUID_ENTRIES) goto out; r = -EFAULT; if (copy_from_user(&vcpu->arch.cpuid_entries, entries, cpuid->nent * sizeof(struct kvm_cpuid_entry2))) goto out; vcpu->arch.cpuid_nent = cpuid->nent; return 0; out: return r; } static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu, struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries) { int r; r = -E2BIG; if (cpuid->nent < vcpu->arch.cpuid_nent) goto out; r = -EFAULT; if (copy_to_user(entries, &vcpu->arch.cpuid_entries, vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2))) goto out; return 0; out: cpuid->nent = vcpu->arch.cpuid_nent; return r; } static inline u32 bit(int bitno) { return 1 << (bitno & 31); } static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function, u32 index) { entry->function = function; entry->index = index; cpuid_count(entry->function, entry->index, &entry->eax, &entry->ebx, &entry->ecx, &entry->edx); entry->flags = 0; } static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function, u32 index, int *nent, int maxnent) { const u32 kvm_supported_word0_x86_features = bit(X86_FEATURE_FPU) | bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) | bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) | bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) | bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) | bit(X86_FEATURE_SEP) | bit(X86_FEATURE_PGE) | bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) | bit(X86_FEATURE_CLFLSH) | bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_XMM) | bit(X86_FEATURE_XMM2) | bit(X86_FEATURE_SELFSNOOP); const u32 kvm_supported_word1_x86_features = bit(X86_FEATURE_FPU) | bit(X86_FEATURE_VME) | bit(X86_FEATURE_DE) | bit(X86_FEATURE_PSE) | bit(X86_FEATURE_TSC) | bit(X86_FEATURE_MSR) | bit(X86_FEATURE_PAE) | bit(X86_FEATURE_CX8) | bit(X86_FEATURE_APIC) | bit(X86_FEATURE_PGE) | bit(X86_FEATURE_CMOV) | bit(X86_FEATURE_PSE36) | bit(X86_FEATURE_MMX) | bit(X86_FEATURE_FXSR) | bit(X86_FEATURE_SYSCALL) | (bit(X86_FEATURE_NX) && is_efer_nx()) | #ifdef CONFIG_X86_64 bit(X86_FEATURE_LM) | #endif bit(X86_FEATURE_MMXEXT) | bit(X86_FEATURE_3DNOWEXT) | bit(X86_FEATURE_3DNOW); const u32 kvm_supported_word3_x86_features = bit(X86_FEATURE_XMM3) | bit(X86_FEATURE_CX16); const u32 kvm_supported_word6_x86_features = bit(X86_FEATURE_LAHF_LM) | bit(X86_FEATURE_CMP_LEGACY); /* all func 2 cpuid_count() should be called on the same cpu */ get_cpu(); do_cpuid_1_ent(entry, function, index); ++*nent; switch (function) { case 0: entry->eax = min(entry->eax, (u32)0xb); break; case 1: entry->edx &= kvm_supported_word0_x86_features; entry->ecx &= kvm_supported_word3_x86_features; break; /* function 2 entries are STATEFUL. That is, repeated cpuid commands * may return different values. This forces us to get_cpu() before * issuing the first command, and also to emulate this annoying behavior * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */ case 2: { int t, times = entry->eax & 0xff; entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; for (t = 1; t < times && *nent < maxnent; ++t) { do_cpuid_1_ent(&entry[t], function, 0); entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC; ++*nent; } break; } /* function 4 and 0xb have additional index. */ case 4: { int i, cache_type; entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; /* read more entries until cache_type is zero */ for (i = 1; *nent < maxnent; ++i) { cache_type = entry[i - 1].eax & 0x1f; if (!cache_type) break; do_cpuid_1_ent(&entry[i], function, i); entry[i].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; ++*nent; } break; } case 0xb: { int i, level_type; entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; /* read more entries until level_type is zero */ for (i = 1; *nent < maxnent; ++i) { level_type = entry[i - 1].ecx & 0xff; if (!level_type) break; do_cpuid_1_ent(&entry[i], function, i); entry[i].flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX; ++*nent; } break; } case 0x80000000: entry->eax = min(entry->eax, 0x8000001a); break; case 0x80000001: entry->edx &= kvm_supported_word1_x86_features; entry->ecx &= kvm_supported_word6_x86_features; break; } put_cpu(); } static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid, struct kvm_cpuid_entry2 __user *entries) { struct kvm_cpuid_entry2 *cpuid_entries; int limit, nent = 0, r = -E2BIG; u32 func; if (cpuid->nent < 1) goto out; r = -ENOMEM; cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent); if (!cpuid_entries) goto out; do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent); limit = cpuid_entries[0].eax; for (func = 1; func <= limit && nent < cpuid->nent; ++func) do_cpuid_ent(&cpuid_entries[nent], func, 0, &nent, cpuid->nent); r = -E2BIG; if (nent >= cpuid->nent) goto out_free; do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent); limit = cpuid_entries[nent - 1].eax; for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func) do_cpuid_ent(&cpuid_entries[nent], func, 0, &nent, cpuid->nent); r = -EFAULT; if (copy_to_user(entries, cpuid_entries, nent * sizeof(struct kvm_cpuid_entry2))) goto out_free; cpuid->nent = nent; r = 0; out_free: vfree(cpuid_entries); out: return r; } static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { vcpu_load(vcpu); memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); vcpu_put(vcpu); return 0; } static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, struct kvm_lapic_state *s) { vcpu_load(vcpu); memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s); kvm_apic_post_state_restore(vcpu); vcpu_put(vcpu); return 0; } static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq) { if (irq->irq < 0 || irq->irq >= 256) return -EINVAL; if (irqchip_in_kernel(vcpu->kvm)) return -ENXIO; vcpu_load(vcpu); set_bit(irq->irq, vcpu->arch.irq_pending); set_bit(irq->irq / BITS_PER_LONG, &vcpu->arch.irq_summary); vcpu_put(vcpu); return 0; } static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) { vcpu_load(vcpu); kvm_inject_nmi(vcpu); vcpu_put(vcpu); return 0; } static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, struct kvm_tpr_access_ctl *tac) { if (tac->flags) return -EINVAL; vcpu->arch.tpr_access_reporting = !!tac->enabled; return 0; } long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm_vcpu *vcpu = filp->private_data; void __user *argp = (void __user *)arg; int r; struct kvm_lapic_state *lapic = NULL; switch (ioctl) { case KVM_GET_LAPIC: { lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); r = -ENOMEM; if (!lapic) goto out; r = kvm_vcpu_ioctl_get_lapic(vcpu, lapic); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, lapic, sizeof(struct kvm_lapic_state))) goto out; r = 0; break; } case KVM_SET_LAPIC: { lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); r = -ENOMEM; if (!lapic) goto out; r = -EFAULT; if (copy_from_user(lapic, argp, sizeof(struct kvm_lapic_state))) goto out; r = kvm_vcpu_ioctl_set_lapic(vcpu, lapic); if (r) goto out; r = 0; break; } case KVM_INTERRUPT: { struct kvm_interrupt irq; r = -EFAULT; if (copy_from_user(&irq, argp, sizeof irq)) goto out; r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); if (r) goto out; r = 0; break; } case KVM_NMI: { r = kvm_vcpu_ioctl_nmi(vcpu); if (r) goto out; r = 0; break; } case KVM_SET_CPUID: { struct kvm_cpuid __user *cpuid_arg = argp; struct kvm_cpuid cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; break; } case KVM_SET_CPUID2: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; break; } case KVM_GET_CPUID2: { struct kvm_cpuid2 __user *cpuid_arg = argp; struct kvm_cpuid2 cpuid; r = -EFAULT; if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) goto out; r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, cpuid_arg->entries); if (r) goto out; r = -EFAULT; if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) goto out; r = 0; break; } case KVM_GET_MSRS: r = msr_io(vcpu, argp, kvm_get_msr, 1); break; case KVM_SET_MSRS: r = msr_io(vcpu, argp, do_set_msr, 0); break; case KVM_TPR_ACCESS_REPORTING: { struct kvm_tpr_access_ctl tac; r = -EFAULT; if (copy_from_user(&tac, argp, sizeof tac)) goto out; r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &tac, sizeof tac)) goto out; r = 0; break; }; case KVM_SET_VAPIC_ADDR: { struct kvm_vapic_addr va; r = -EINVAL; if (!irqchip_in_kernel(vcpu->kvm)) goto out; r = -EFAULT; if (copy_from_user(&va, argp, sizeof va)) goto out; r = 0; kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); break; } default: r = -EINVAL; } out: if (lapic) kfree(lapic); return r; } static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) { int ret; if (addr > (unsigned int)(-3 * PAGE_SIZE)) return -1; ret = kvm_x86_ops->set_tss_addr(kvm, addr); return ret; } static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, u32 kvm_nr_mmu_pages) { if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) return -EINVAL; down_write(&kvm->slots_lock); kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; up_write(&kvm->slots_lock); return 0; } static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) { return kvm->arch.n_alloc_mmu_pages; } gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn) { int i; struct kvm_mem_alias *alias; for (i = 0; i < kvm->arch.naliases; ++i) { alias = &kvm->arch.aliases[i]; if (gfn >= alias->base_gfn && gfn < alias->base_gfn + alias->npages) return alias->target_gfn + gfn - alias->base_gfn; } return gfn; } /* * Set a new alias region. Aliases map a portion of physical memory into * another portion. This is useful for memory windows, for example the PC * VGA region. */ static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm, struct kvm_memory_alias *alias) { int r, n; struct kvm_mem_alias *p; r = -EINVAL; /* General sanity checks */ if (alias->memory_size & (PAGE_SIZE - 1)) goto out; if (alias->guest_phys_addr & (PAGE_SIZE - 1)) goto out; if (alias->slot >= KVM_ALIAS_SLOTS) goto out; if (alias->guest_phys_addr + alias->memory_size < alias->guest_phys_addr) goto out; if (alias->target_phys_addr + alias->memory_size < alias->target_phys_addr) goto out; down_write(&kvm->slots_lock); spin_lock(&kvm->mmu_lock); p = &kvm->arch.aliases[alias->slot]; p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT; p->npages = alias->memory_size >> PAGE_SHIFT; p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT; for (n = KVM_ALIAS_SLOTS; n > 0; --n) if (kvm->arch.aliases[n - 1].npages) break; kvm->arch.naliases = n; spin_unlock(&kvm->mmu_lock); kvm_mmu_zap_all(kvm); up_write(&kvm->slots_lock); return 0; out: return r; } static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_PIC_MASTER: memcpy(&chip->chip.pic, &pic_irqchip(kvm)->pics[0], sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_PIC_SLAVE: memcpy(&chip->chip.pic, &pic_irqchip(kvm)->pics[1], sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_IOAPIC: memcpy(&chip->chip.ioapic, ioapic_irqchip(kvm), sizeof(struct kvm_ioapic_state)); break; default: r = -EINVAL; break; } return r; } static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) { int r; r = 0; switch (chip->chip_id) { case KVM_IRQCHIP_PIC_MASTER: memcpy(&pic_irqchip(kvm)->pics[0], &chip->chip.pic, sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_PIC_SLAVE: memcpy(&pic_irqchip(kvm)->pics[1], &chip->chip.pic, sizeof(struct kvm_pic_state)); break; case KVM_IRQCHIP_IOAPIC: memcpy(ioapic_irqchip(kvm), &chip->chip.ioapic, sizeof(struct kvm_ioapic_state)); break; default: r = -EINVAL; break; } kvm_pic_update_irq(pic_irqchip(kvm)); return r; } static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) { int r = 0; memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); return r; } static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) { int r = 0; memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); kvm_pit_load_count(kvm, 0, ps->channels[0].count); return r; } /* * Get (and clear) the dirty memory log for a memory slot. */ int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) { int r; int n; struct kvm_memory_slot *memslot; int is_dirty = 0; down_write(&kvm->slots_lock); r = kvm_get_dirty_log(kvm, log, &is_dirty); if (r) goto out; /* If nothing is dirty, don't bother messing with page tables. */ if (is_dirty) { kvm_mmu_slot_remove_write_access(kvm, log->slot); kvm_flush_remote_tlbs(kvm); memslot = &kvm->memslots[log->slot]; n = ALIGN(memslot->npages, BITS_PER_LONG) / 8; memset(memslot->dirty_bitmap, 0, n); } r = 0; out: up_write(&kvm->slots_lock); return r; } long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) { struct kvm *kvm = filp->private_data; void __user *argp = (void __user *)arg; int r = -EINVAL; /* * This union makes it completely explicit to gcc-3.x * that these two variables' stack usage should be * combined, not added together. */ union { struct kvm_pit_state ps; struct kvm_memory_alias alias; } u; switch (ioctl) { case KVM_SET_TSS_ADDR: r = kvm_vm_ioctl_set_tss_addr(kvm, arg); if (r < 0) goto out; break; case KVM_SET_MEMORY_REGION: { struct kvm_memory_region kvm_mem; struct kvm_userspace_memory_region kvm_userspace_mem; r = -EFAULT; if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem)) goto out; kvm_userspace_mem.slot = kvm_mem.slot; kvm_userspace_mem.flags = kvm_mem.flags; kvm_userspace_mem.guest_phys_addr = kvm_mem.guest_phys_addr; kvm_userspace_mem.memory_size = kvm_mem.memory_size; r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 0); if (r) goto out; break; } case KVM_SET_NR_MMU_PAGES: r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); if (r) goto out; break; case KVM_GET_NR_MMU_PAGES: r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); break; case KVM_SET_MEMORY_ALIAS: r = -EFAULT; if (copy_from_user(&u.alias, argp, sizeof(struct kvm_memory_alias))) goto out; r = kvm_vm_ioctl_set_memory_alias(kvm, &u.alias); if (r) goto out; break; case KVM_CREATE_IRQCHIP: r = -ENOMEM; kvm->arch.vpic = kvm_create_pic(kvm); if (kvm->arch.vpic) { r = kvm_ioapic_init(kvm); if (r) { kfree(kvm->arch.vpic); kvm->arch.vpic = NULL; goto out; } } else goto out; break; case KVM_CREATE_PIT: r = -ENOMEM; kvm->arch.vpit = kvm_create_pit(kvm); if (kvm->arch.vpit) r = 0; break; case KVM_IRQ_LINE: { struct kvm_irq_level irq_event; r = -EFAULT; if (copy_from_user(&irq_event, argp, sizeof irq_event)) goto out; if (irqchip_in_kernel(kvm)) { mutex_lock(&kvm->lock); kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, irq_event.irq, irq_event.level); mutex_unlock(&kvm->lock); r = 0; } break; } case KVM_GET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); r = -ENOMEM; if (!chip) goto out; r = -EFAULT; if (copy_from_user(chip, argp, sizeof *chip)) goto get_irqchip_out; r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto get_irqchip_out; r = kvm_vm_ioctl_get_irqchip(kvm, chip); if (r) goto get_irqchip_out; r = -EFAULT; if (copy_to_user(argp, chip, sizeof *chip)) goto get_irqchip_out; r = 0; get_irqchip_out: kfree(chip); if (r) goto out; break; } case KVM_SET_IRQCHIP: { /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL); r = -ENOMEM; if (!chip) goto out; r = -EFAULT; if (copy_from_user(chip, argp, sizeof *chip)) goto set_irqchip_out; r = -ENXIO; if (!irqchip_in_kernel(kvm)) goto set_irqchip_out; r = kvm_vm_ioctl_set_irqchip(kvm, chip); if (r) goto set_irqchip_out; r = 0; set_irqchip_out: kfree(chip); if (r) goto out; break; } case KVM_GET_PIT: { r = -EFAULT; if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_get_pit(kvm, &u.ps); if (r) goto out; r = -EFAULT; if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) goto out; r = 0; break; } case KVM_SET_PIT: { r = -EFAULT; if (copy_from_user(&u.ps, argp, sizeof u.ps)) goto out; r = -ENXIO; if (!kvm->arch.vpit) goto out; r = kvm_vm_ioctl_set_pit(kvm, &u.ps); if (r) goto out; r = 0; break; } default: ; } out: return r; } static void kvm_init_msr_list(void) { u32 dummy[2]; unsigned i, j; for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) { if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) continue; if (j < i) msrs_to_save[j] = msrs_to_save[i]; j++; } num_msrs_to_save = j; } /* * Only apic need an MMIO device hook, so shortcut now.. */ static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu, gpa_t addr, int len, int is_write) { struct kvm_io_device *dev; if (vcpu->arch.apic) { dev = &vcpu->arch.apic->dev; if (dev->in_range(dev, addr, len, is_write)) return dev; } return NULL; } static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu, gpa_t addr, int len, int is_write) { struct kvm_io_device *dev; dev = vcpu_find_pervcpu_dev(vcpu, addr, len, is_write); if (dev == NULL) dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr, len, is_write); return dev; } int emulator_read_std(unsigned long addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu) { void *data = val; int r = X86EMUL_CONTINUE; while (bytes) { gpa_t gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); unsigned offset = addr & (PAGE_SIZE-1); unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset); int ret; if (gpa == UNMAPPED_GVA) { r = X86EMUL_PROPAGATE_FAULT; goto out; } ret = kvm_read_guest(vcpu->kvm, gpa, data, tocopy); if (ret < 0) { r = X86EMUL_UNHANDLEABLE; goto out; } bytes -= tocopy; data += tocopy; addr += tocopy; } out: return r; } EXPORT_SYMBOL_GPL(emulator_read_std); static int emulator_read_emulated(unsigned long addr, void *val, unsigned int bytes, struct kvm_vcpu *vcpu) { struct kvm_io_device *mmio_dev; gpa_t gpa; if (vcpu->mmio_read_completed) { memcpy(val, vcpu->mmio_data, bytes); vcpu->mmio_read_completed = 0; return X86EMUL_CONTINUE; } gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); /* For APIC access vmexit */ if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) goto mmio; if (emulator_read_std(addr, val, bytes, vcpu) == X86EMUL_CONTINUE) return X86EMUL_CONTINUE; if (gpa == UNMAPPED_GVA) return X86EMUL_PROPAGATE_FAULT; mmio: /* * Is this MMIO handled locally? */ mutex_lock(&vcpu->kvm->lock); mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 0); if (mmio_dev) { kvm_iodevice_read(mmio_dev, gpa, bytes, val); mutex_unlock(&vcpu->kvm->lock); return X86EMUL_CONTINUE; } mutex_unlock(&vcpu->kvm->lock); vcpu->mmio_needed = 1; vcpu->mmio_phys_addr = gpa; vcpu->mmio_size = bytes; vcpu->mmio_is_write = 0; return X86EMUL_UNHANDLEABLE; } int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, const void *val, int bytes) { int ret; ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); if (ret < 0) return 0; kvm_mmu_pte_write(vcpu, gpa, val, bytes); return 1; } static int emulator_write_emulated_onepage(unsigned long addr, const void *val, unsigned int bytes, struct kvm_vcpu *vcpu) { struct kvm_io_device *mmio_dev; gpa_t gpa; gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); if (gpa == UNMAPPED_GVA) { kvm_inject_page_fault(vcpu, addr, 2); return X86EMUL_PROPAGATE_FAULT; } /* For APIC access vmexit */ if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) goto mmio; if (emulator_write_phys(vcpu, gpa, val, bytes)) return X86EMUL_CONTINUE; mmio: /* * Is this MMIO handled locally? */ mutex_lock(&vcpu->kvm->lock); mmio_dev = vcpu_find_mmio_dev(vcpu, gpa, bytes, 1); if (mmio_dev) { kvm_iodevice_write(mmio_dev, gpa, bytes, val); mutex_unlock(&vcpu->kvm->lock); return X86EMUL_CONTINUE; } mutex_unlock(&vcpu->kvm->lock); vcpu->mmio_needed = 1; vcpu->mmio_phys_addr = gpa; vcpu->mmio_size = bytes; vcpu->mmio_is_write = 1; memcpy(vcpu->mmio_data, val, bytes); return X86EMUL_CONTINUE; } int emulator_write_emulated(unsigned long addr, const void *val, unsigned int bytes, struct kvm_vcpu *vcpu) { /* Crossing a page boundary? */ if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { int rc, now; now = -addr & ~PAGE_MASK; rc = emulator_write_emulated_onepage(addr, val, now, vcpu); if (rc != X86EMUL_CONTINUE) return rc; addr += now; val += now; bytes -= now; } return emulator_write_emulated_onepage(addr, val, bytes, vcpu); } EXPORT_SYMBOL_GPL(emulator_write_emulated); static int emulator_cmpxchg_emulated(unsigned long addr, const void *old, const void *new, unsigned int bytes, struct kvm_vcpu *vcpu) { static int reported; if (!reported) { reported = 1; printk(KERN_WARNING "kvm: emulating exchange as write\n"); } #ifndef CONFIG_X86_64 /* guests cmpxchg8b have to be emulated atomically */ if (bytes == 8) { gpa_t gpa; struct page *page; char *kaddr; u64 val; gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, addr); if (gpa == UNMAPPED_GVA || (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) goto emul_write; if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) goto emul_write; val = *(u64 *)new; page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); kaddr = kmap_atomic(page, KM_USER0); set_64bit((u64 *)(kaddr + offset_in_page(gpa)), val); kunmap_atomic(kaddr, KM_USER0); kvm_release_page_dirty(page); } emul_write: #endif return emulator_write_emulated(addr, new, bytes, vcpu); } static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) { return kvm_x86_ops->get_segment_base(vcpu, seg); } int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address) { kvm_mmu_invlpg(vcpu, address); return X86EMUL_CONTINUE; } int emulate_clts(struct kvm_vcpu *vcpu) { KVMTRACE_0D(CLTS, vcpu, handler); kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 & ~X86_CR0_TS); return X86EMUL_CONTINUE; } int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) { struct kvm_vcpu *vcpu = ctxt->vcpu; switch (dr) { case 0 ... 3: *dest = kvm_x86_ops->get_dr(vcpu, dr); return X86EMUL_CONTINUE; default: pr_unimpl(vcpu, "%s: unexpected dr %u\n", __func__, dr); return X86EMUL_UNHANDLEABLE; } } int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) { unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U; int exception; kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception); if (exception) { /* FIXME: better handling */ return X86EMUL_UNHANDLEABLE; } return X86EMUL_CONTINUE; } void kvm_report_emulation_failure(struct kvm_vcpu *vcpu, const char *context) { u8 opcodes[4]; unsigned long rip = kvm_rip_read(vcpu); unsigned long rip_linear; if (!printk_ratelimit()) return; rip_linear = rip + get_segment_base(vcpu, VCPU_SREG_CS); emulator_read_std(rip_linear, (void *)opcodes, 4, vcpu); printk(KERN_ERR "emulation failed (%s) rip %lx %02x %02x %02x %02x\n", context, rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]); } EXPORT_SYMBOL_GPL(kvm_report_emulation_failure); static struct x86_emulate_ops emulate_ops = { .read_std = emulator_read_std, .read_emulated = emulator_read_emulated, .write_emulated = emulator_write_emulated, .cmpxchg_emulated = emulator_cmpxchg_emulated, }; static void cache_all_regs(struct kvm_vcpu *vcpu) { kvm_register_read(vcpu, VCPU_REGS_RAX); kvm_register_read(vcpu, VCPU_REGS_RSP); kvm_register_read(vcpu, VCPU_REGS_RIP); vcpu->arch.regs_dirty = ~0; } int emulate_instruction(struct kvm_vcpu *vcpu, struct kvm_run *run, unsigned long cr2, u16 error_code, int emulation_type) { int r; struct decode_cache *c; kvm_clear_exception_queue(vcpu); vcpu->arch.mmio_fault_cr2 = cr2; /* * TODO: fix x86_emulate.c to use guest_read/write_register * instead of direct ->regs accesses, can save hundred cycles * on Intel for instructions that don't read/change RSP, for * for example. */ cache_all_regs(vcpu); vcpu->mmio_is_write = 0; vcpu->arch.pio.string = 0; if (!(emulation_type & EMULTYPE_NO_DECODE)) { int cs_db, cs_l; kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); vcpu->arch.emulate_ctxt.vcpu = vcpu; vcpu->arch.emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu); vcpu->arch.emulate_ctxt.mode = (vcpu->arch.emulate_ctxt.eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_REAL : cs_l ? X86EMUL_MODE_PROT64 : cs_db ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16; r = x86_decode_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); /* Reject the instructions other than VMCALL/VMMCALL when * try to emulate invalid opcode */ c = &vcpu->arch.emulate_ctxt.decode; if ((emulation_type & EMULTYPE_TRAP_UD) && (!(c->twobyte && c->b == 0x01 && (c->modrm_reg == 0 || c->modrm_reg == 3) && c->modrm_mod == 3 && c->modrm_rm == 1))) return EMULATE_FAIL; ++vcpu->stat.insn_emulation; if (r) { ++vcpu->stat.insn_emulation_fail; if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) return EMULATE_DONE; return EMULATE_FAIL; } } r = x86_emulate_insn(&vcpu->arch.emulate_ctxt, &emulate_ops); if (vcpu->arch.pio.string) return EMULATE_DO_MMIO; if ((r || vcpu->mmio_is_write) && run) { run->exit_reason = KVM_EXIT_MMIO; run->mmio.phys_addr = vcpu->mmio_phys_addr; memcpy(run->mmio.data, vcpu->mmio_data, 8); run->mmio.len = vcpu->mmio_size; run->mmio.is_write = vcpu->mmio_is_write; } if (r) { if (kvm_mmu_unprotect_page_virt(vcpu, cr2)) return EMULATE_DONE; if (!vcpu->mmio_needed) { kvm_report_emulation_failure(vcpu, "mmio"); return EMULATE_FAIL; } return EMULATE_DO_MMIO; } kvm_x86_ops->set_rflags(vcpu, vcpu->arch.emulate_ctxt.eflags); if (vcpu->mmio_is_write) { vcpu->mmio_needed = 0; return EMULATE_DO_MMIO; } return EMULATE_DONE; } EXPORT_SYMBOL_GPL(emulate_instruction); static void free_pio_guest_pages(struct kvm_vcpu *vcpu) { int i; for (i = 0; i < ARRAY_SIZE(vcpu->arch.pio.guest_pages); ++i) if (vcpu->arch.pio.guest_pages[i]) { kvm_release_page_dirty(vcpu->arch.pio.guest_pages[i]); vcpu->arch.pio.guest_pages[i] = NULL; } } static int pio_copy_data(struct kvm_vcpu *vcpu) { void *p = vcpu->arch.pio_data; void *q; unsigned bytes; int nr_pages = vcpu->arch.pio.guest_pages[1] ? 2 : 1; q = vmap(vcpu->arch.pio.guest_pages, nr_pages, VM_READ|VM_WRITE, PAGE_KERNEL); if (!q) { free_pio_guest_pages(vcpu); return -ENOMEM; } q += vcpu->arch.pio.guest_page_offset; bytes = vcpu->arch.pio.size * vcpu->arch.pio.cur_count; if (vcpu->arch.pio.in) memcpy(q, p, bytes); else memcpy(p, q, bytes); q -= vcpu->arch.pio.guest_page_offset; vunmap(q); free_pio_guest_pages(vcpu); return 0; } int complete_pio(struct kvm_vcpu *vcpu) { struct kvm_pio_request *io = &vcpu->arch.pio; long delta; int r; unsigned long val; if (!io->string) { if (io->in) { val = kvm_register_read(vcpu, VCPU_REGS_RAX); memcpy(&val, vcpu->arch.pio_data, io->size); kvm_register_write(vcpu, VCPU_REGS_RAX, val); } } else { if (io->in) { r = pio_copy_data(vcpu); if (r) return r; } delta = 1; if (io->rep) { delta *= io->cur_count; /* * The size of the register should really depend on * current address size. */ val = kvm_register_read(vcpu, VCPU_REGS_RCX); val -= delta; kvm_register_write(vcpu, VCPU_REGS_RCX, val); } if (io->down) delta = -delta; delta *= io->size; if (io->in) { val = kvm_register_read(vcpu, VCPU_REGS_RDI); val += delta; kvm_register_write(vcpu, VCPU_REGS_RDI, val); } else { val = kvm_register_read(vcpu, VCPU_REGS_RSI); val += delta; kvm_register_write(vcpu, VCPU_REGS_RSI, val); } } io->count -= io->cur_count; io->cur_count = 0; return 0; } static void kernel_pio(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu, void *pd) { /* TODO: String I/O for in kernel device */ mutex_lock(&vcpu->kvm->lock); if (vcpu->arch.pio.in) kvm_iodevice_read(pio_dev, vcpu->arch.pio.port, vcpu->arch.pio.size, pd); else kvm_iodevice_write(pio_dev, vcpu->arch.pio.port, vcpu->arch.pio.size, pd); mutex_unlock(&vcpu->kvm->lock); } static void pio_string_write(struct kvm_io_device *pio_dev, struct kvm_vcpu *vcpu) { struct kvm_pio_request *io = &vcpu->arch.pio; void *pd = vcpu->arch.pio_data; int i; mutex_lock(&vcpu->kvm->lock); for (i = 0; i < io->cur_count; i++) { kvm_iodevice_write(pio_dev, io->port, io->size, pd); pd += io->size; } mutex_unlock(&vcpu->kvm->lock); } static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu, gpa_t addr, int len, int is_write) { return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr, len, is_write); } int kvm_emulate_pio(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, int size, unsigned port) { struct kvm_io_device *pio_dev; unsigned long val; vcpu->run->exit_reason = KVM_EXIT_IO; vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; vcpu->run->io.size = vcpu->arch.pio.size = size; vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = 1; vcpu->run->io.port = vcpu->arch.pio.port = port; vcpu->arch.pio.in = in; vcpu->arch.pio.string = 0; vcpu->arch.pio.down = 0; vcpu->arch.pio.guest_page_offset = 0; vcpu->arch.pio.rep = 0; if (vcpu->run->io.direction == KVM_EXIT_IO_IN) KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size, handler); else KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size, handler); val = kvm_register_read(vcpu, VCPU_REGS_RAX); memcpy(vcpu->arch.pio_data, &val, 4); kvm_x86_ops->skip_emulated_instruction(vcpu); pio_dev = vcpu_find_pio_dev(vcpu, port, size, !in); if (pio_dev) { kernel_pio(pio_dev, vcpu, vcpu->arch.pio_data); complete_pio(vcpu); return 1; } return 0; } EXPORT_SYMBOL_GPL(kvm_emulate_pio); int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in, int size, unsigned long count, int down, gva_t address, int rep, unsigned port) { unsigned now, in_page; int i, ret = 0; int nr_pages = 1; struct page *page; struct kvm_io_device *pio_dev; vcpu->run->exit_reason = KVM_EXIT_IO; vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; vcpu->run->io.size = vcpu->arch.pio.size = size; vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; vcpu->run->io.count = vcpu->arch.pio.count = vcpu->arch.pio.cur_count = count; vcpu->run->io.port = vcpu->arch.pio.port = port; vcpu->arch.pio.in = in; vcpu->arch.pio.string = 1; vcpu->arch.pio.down = down; vcpu->arch.pio.guest_page_offset = offset_in_page(address); vcpu->arch.pio.rep = rep; if (vcpu->run->io.direction == KVM_EXIT_IO_IN) KVMTRACE_2D(IO_READ, vcpu, vcpu->run->io.port, (u32)size, handler); else KVMTRACE_2D(IO_WRITE, vcpu, vcpu->run->io.port, (u32)size, handler); if (!count) { kvm_x86_ops->skip_emulated_instruction(vcpu); return 1; } if (!down) in_page = PAGE_SIZE - offset_in_page(address); else in_page = offset_in_page(address) + size; now = min(count, (unsigned long)in_page / size); if (!now) { /* * String I/O straddles page boundary. Pin two guest pages * so that we satisfy atomicity constraints. Do just one * transaction to avoid complexity. */ nr_pages = 2; now = 1; } if (down) { /* * String I/O in reverse. Yuck. Kill the guest, fix later. */ pr_unimpl(vcpu, "guest string pio down\n"); kvm_inject_gp(vcpu, 0); return 1; } vcpu->run->io.count = now; vcpu->arch.pio.cur_count = now; if (vcpu->arch.pio.cur_count == vcpu->arch.pio.count) kvm_x86_ops->skip_emulated_instruction(vcpu); for (i = 0; i < nr_pages; ++i) { page = gva_to_page(vcpu, address + i * PAGE_SIZE); vcpu->arch.pio.guest_pages[i] = page; if (!page) { kvm_inject_gp(vcpu, 0); free_pio_guest_pages(vcpu); return 1; } } pio_dev = vcpu_find_pio_dev(vcpu, port, vcpu->arch.pio.cur_count, !vcpu->arch.pio.in); if (!vcpu->arch.pio.in) { /* string PIO write */ ret = pio_copy_data(vcpu); if (ret >= 0 && pio_dev) { pio_string_write(pio_dev, vcpu); complete_pio(vcpu); if (vcpu->arch.pio.count == 0) ret = 1; } } else if (pio_dev) pr_unimpl(vcpu, "no string pio read support yet, " "port %x size %d count %ld\n", port, size, count); return ret; } EXPORT_SYMBOL_GPL(kvm_emulate_pio_string); int kvm_arch_init(void *opaque) { int r; struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; if (kvm_x86_ops) { printk(KERN_ERR "kvm: already loaded the other module\n"); r = -EEXIST; goto out; } if (!ops->cpu_has_kvm_support()) { printk(KERN_ERR "kvm: no hardware support\n"); r = -EOPNOTSUPP; goto out; } if (ops->disabled_by_bios()) { printk(KERN_ERR "kvm: disabled by bios\n"); r = -EOPNOTSUPP; goto out; } r = kvm_mmu_module_init(); if (r) goto out; kvm_init_msr_list(); kvm_x86_ops = ops; kvm_mmu_set_nonpresent_ptes(0ull, 0ull); kvm_mmu_set_base_ptes(PT_PRESENT_MASK); kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, PT_DIRTY_MASK, PT64_NX_MASK, 0); return 0; out: return r; } void kvm_arch_exit(void) { kvm_x86_ops = NULL; kvm_mmu_module_exit(); } int kvm_emulate_halt(struct kvm_vcpu *vcpu) { ++vcpu->stat.halt_exits; KVMTRACE_0D(HLT, vcpu, handler); if (irqchip_in_kernel(vcpu->kvm)) { vcpu->arch.mp_state = KVM_MP_STATE_HALTED; return 1; } else { vcpu->run->exit_reason = KVM_EXIT_HLT; return 0; } } EXPORT_SYMBOL_GPL(kvm_emulate_halt); static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0, unsigned long a1) { if (is_long_mode(vcpu)) return a0; else return a0 | ((gpa_t)a1 << 32); } int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) { unsigned long nr, a0, a1, a2, a3, ret; int r = 1; nr = kvm_register_read(vcpu, VCPU_REGS_RAX); a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); KVMTRACE_1D(VMMCALL, vcpu, (u32)nr, handler); if (!is_long_mode(vcpu)) { nr &= 0xFFFFFFFF; a0 &= 0xFFFFFFFF; a1 &= 0xFFFFFFFF; a2 &= 0xFFFFFFFF; a3 &= 0xFFFFFFFF; } switch (nr) { case KVM_HC_VAPIC_POLL_IRQ: ret = 0; break; case KVM_HC_MMU_OP: r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret); break; default: ret = -KVM_ENOSYS; break; } kvm_register_write(vcpu, VCPU_REGS_RAX, ret); ++vcpu->stat.hypercalls; return r; } EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); int kvm_fix_hypercall(struct kvm_vcpu *vcpu) { char instruction[3]; int ret = 0; unsigned long rip = kvm_rip_read(vcpu); /* * Blow out the MMU to ensure that no other VCPU has an active mapping * to ensure that the updated hypercall appears atomically across all * VCPUs. */ kvm_mmu_zap_all(vcpu->kvm); kvm_x86_ops->patch_hypercall(vcpu, instruction); if (emulator_write_emulated(rip, instruction, 3, vcpu) != X86EMUL_CONTINUE) ret = -EFAULT; return ret; } static u64 mk_cr_64(u64 curr_cr, u32 new_val) { return (curr_cr & ~((1ULL << 32) - 1)) | new_val; } void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) { struct descriptor_table dt = { limit, base }; kvm_x86_ops->set_gdt(vcpu, &dt); } void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base) { struct descriptor_table dt = { limit, base }; kvm_x86_ops->set_idt(vcpu, &dt); } void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw, unsigned long *rflags) { kvm_lmsw(vcpu, msw); *rflags = kvm_x86_ops->get_rflags(vcpu); } unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr) { unsigned long value; kvm_x86_ops->decache_cr4_guest_bits(vcpu); switch (cr) { case 0: value = vcpu->arch.cr0; break; case 2: value = vcpu->arch.cr2; break; case 3: value = vcpu->arch.cr3; break; case 4: value = vcpu->arch.cr4; break; case 8: value = kvm_get_cr8(vcpu); break; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); return 0; } KVMTRACE_3D(CR_READ, vcpu, (u32)cr, (u32)value, (u32)((u64)value >> 32), handler); return value; } void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val, unsigned long *rflags) { KVMTRACE_3D(CR_WRITE, vcpu, (u32)cr, (u32)val, (u32)((u64)val >> 32), handler); switch (cr) { case 0: kvm_set_cr0(vcpu, mk_cr_64(vcpu->arch.cr0, val)); *rflags = kvm_x86_ops->get_rflags(vcpu); break; case 2: vcpu->arch.cr2 = val; break; case 3: kvm_set_cr3(vcpu, val); break; case 4: kvm_set_cr4(vcpu, mk_cr_64(vcpu->arch.cr4, val)); break; case 8: kvm_set_cr8(vcpu, val & 0xfUL); break; default: vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr); } } static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i) { struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i]; int j, nent = vcpu->arch.cpuid_nent; e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT; /* when no next entry is found, the current entry[i] is reselected */ for (j = i + 1; j == i; j = (j + 1) % nent) { struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j]; if (ej->function == e->function) { ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT; return j; } } return 0; /* silence gcc, even though control never reaches here */ } /* find an entry with matching function, matching index (if needed), and that * should be read next (if it's stateful) */ static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e, u32 function, u32 index) { if (e->function != function) return 0; if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index) return 0; if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) && !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT)) return 0; return 1; } void kvm_emulate_cpuid(struct kvm_vcpu *vcpu) { int i; u32 function, index; struct kvm_cpuid_entry2 *e, *best; function = kvm_register_read(vcpu, VCPU_REGS_RAX); index = kvm_register_read(vcpu, VCPU_REGS_RCX); kvm_register_write(vcpu, VCPU_REGS_RAX, 0); kvm_register_write(vcpu, VCPU_REGS_RBX, 0); kvm_register_write(vcpu, VCPU_REGS_RCX, 0); kvm_register_write(vcpu, VCPU_REGS_RDX, 0); best = NULL; for (i = 0; i < vcpu->arch.cpuid_nent; ++i) { e = &vcpu->arch.cpuid_entries[i]; if (is_matching_cpuid_entry(e, function, index)) { if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) move_to_next_stateful_cpuid_entry(vcpu, i); best = e; break; } /* * Both basic or both extended? */ if (((e->function ^ function) & 0x80000000) == 0) if (!best || e->function > best->function) best = e; } if (best) { kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax); kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx); kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx); kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx); } kvm_x86_ops->skip_emulated_instruction(vcpu); KVMTRACE_5D(CPUID, vcpu, function, (u32)kvm_register_read(vcpu, VCPU_REGS_RAX), (u32)kvm_register_read(vcpu, VCPU_REGS_RBX), (u32)kvm_register_read(vcpu, VCPU_REGS_RCX), (u32)kvm_register_read(vcpu, VCPU_REGS_RDX), handler); } EXPORT_SYMBOL_GPL(kvm_emulate_cpuid); /* * Check if userspace requested an interrupt window, and that the * interrupt window is open. * * No need to exit to userspace if we already have an interrupt queued. */ static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { return (!vcpu->arch.irq_summary && kvm_run->request_interrupt_window && vcpu->arch.interrupt_window_open && (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF)); } /* * Check if userspace requested a NMI window, and that the NMI window * is open. * * No need to exit to userspace if we already have a NMI queued. */ static int dm_request_for_nmi_injection(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { return (!vcpu->arch.nmi_pending && kvm_run->request_nmi_window && vcpu->arch.nmi_window_open); } static void post_kvm_run_save(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { kvm_run->if_flag = (kvm_x86_ops->get_rflags(vcpu) & X86_EFLAGS_IF) != 0; kvm_run->cr8 = kvm_get_cr8(vcpu); kvm_run->apic_base = kvm_get_apic_base(vcpu); if (irqchip_in_kernel(vcpu->kvm)) { kvm_run->ready_for_interrupt_injection = 1; kvm_run->ready_for_nmi_injection = 1; } else { kvm_run->ready_for_interrupt_injection = (vcpu->arch.interrupt_window_open && vcpu->arch.irq_summary == 0); kvm_run->ready_for_nmi_injection = (vcpu->arch.nmi_window_open && vcpu->arch.nmi_pending == 0); } } static void vapic_enter(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; struct page *page; if (!apic || !apic->vapic_addr) return; page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); vcpu->arch.apic->vapic_page = page; } static void vapic_exit(struct kvm_vcpu *vcpu) { struct kvm_lapic *apic = vcpu->arch.apic; if (!apic || !apic->vapic_addr) return; down_read(&vcpu->kvm->slots_lock); kvm_release_page_dirty(apic->vapic_page); mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); up_read(&vcpu->kvm->slots_lock); } static int vcpu_enter_guest(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { int r; if (vcpu->requests) if (test_and_clear_bit(KVM_REQ_MMU_RELOAD, &vcpu->requests)) kvm_mmu_unload(vcpu); r = kvm_mmu_reload(vcpu); if (unlikely(r)) goto out; if (vcpu->requests) { if (test_and_clear_bit(KVM_REQ_MIGRATE_TIMER, &vcpu->requests)) __kvm_migrate_timers(vcpu); if (test_and_clear_bit(KVM_REQ_MMU_SYNC, &vcpu->requests)) kvm_mmu_sync_roots(vcpu); if (test_and_clear_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests)) kvm_x86_ops->tlb_flush(vcpu); if (test_and_clear_bit(KVM_REQ_REPORT_TPR_ACCESS, &vcpu->requests)) { kvm_run->exit_reason = KVM_EXIT_TPR_ACCESS; r = 0; goto out; } if (test_and_clear_bit(KVM_REQ_TRIPLE_FAULT, &vcpu->requests)) { kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; r = 0; goto out; } } clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); kvm_inject_pending_timer_irqs(vcpu); preempt_disable(); kvm_x86_ops->prepare_guest_switch(vcpu); kvm_load_guest_fpu(vcpu); local_irq_disable(); if (vcpu->requests || need_resched() || signal_pending(current)) { local_irq_enable(); preempt_enable(); r = 1; goto out; } if (vcpu->guest_debug.enabled) kvm_x86_ops->guest_debug_pre(vcpu); vcpu->guest_mode = 1; /* * Make sure that guest_mode assignment won't happen after * testing the pending IRQ vector bitmap. */ smp_wmb(); if (vcpu->arch.exception.pending) __queue_exception(vcpu); else if (irqchip_in_kernel(vcpu->kvm)) kvm_x86_ops->inject_pending_irq(vcpu); else kvm_x86_ops->inject_pending_vectors(vcpu, kvm_run); kvm_lapic_sync_to_vapic(vcpu); up_read(&vcpu->kvm->slots_lock); kvm_guest_enter(); KVMTRACE_0D(VMENTRY, vcpu, entryexit); kvm_x86_ops->run(vcpu, kvm_run); vcpu->guest_mode = 0; local_irq_enable(); ++vcpu->stat.exits; /* * We must have an instruction between local_irq_enable() and * kvm_guest_exit(), so the timer interrupt isn't delayed by * the interrupt shadow. The stat.exits increment will do nicely. * But we need to prevent reordering, hence this barrier(): */ barrier(); kvm_guest_exit(); preempt_enable(); down_read(&vcpu->kvm->slots_lock); /* * Profile KVM exit RIPs: */ if (unlikely(prof_on == KVM_PROFILING)) { unsigned long rip = kvm_rip_read(vcpu); profile_hit(KVM_PROFILING, (void *)rip); } if (vcpu->arch.exception.pending && kvm_x86_ops->exception_injected(vcpu)) vcpu->arch.exception.pending = false; kvm_lapic_sync_from_vapic(vcpu); r = kvm_x86_ops->handle_exit(kvm_run, vcpu); out: return r; } static int __vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { int r; if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) { pr_debug("vcpu %d received sipi with vector # %x\n", vcpu->vcpu_id, vcpu->arch.sipi_vector); kvm_lapic_reset(vcpu); r = kvm_arch_vcpu_reset(vcpu); if (r) return r; vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; } down_read(&vcpu->kvm->slots_lock); vapic_enter(vcpu); r = 1; while (r > 0) { if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE) r = vcpu_enter_guest(vcpu, kvm_run); else { up_read(&vcpu->kvm->slots_lock); kvm_vcpu_block(vcpu); down_read(&vcpu->kvm->slots_lock); if (test_and_clear_bit(KVM_REQ_UNHALT, &vcpu->requests)) if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) r = -EINTR; } if (r > 0) { if (dm_request_for_nmi_injection(vcpu, kvm_run)) { r = -EINTR; kvm_run->exit_reason = KVM_EXIT_NMI; ++vcpu->stat.request_nmi_exits; } if (dm_request_for_irq_injection(vcpu, kvm_run)) { r = -EINTR; kvm_run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.request_irq_exits; } if (signal_pending(current)) { r = -EINTR; kvm_run->exit_reason = KVM_EXIT_INTR; ++vcpu->stat.signal_exits; } if (need_resched()) { up_read(&vcpu->kvm->slots_lock); kvm_resched(vcpu); down_read(&vcpu->kvm->slots_lock); } } } up_read(&vcpu->kvm->slots_lock); post_kvm_run_save(vcpu, kvm_run); vapic_exit(vcpu); return r; } int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { int r; sigset_t sigsaved; vcpu_load(vcpu); if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { kvm_vcpu_block(vcpu); clear_bit(KVM_REQ_UNHALT, &vcpu->requests); r = -EAGAIN; goto out; } /* re-sync apic's tpr */ if (!irqchip_in_kernel(vcpu->kvm)) kvm_set_cr8(vcpu, kvm_run->cr8); if (vcpu->arch.pio.cur_count) { r = complete_pio(vcpu); if (r) goto out; } #if CONFIG_HAS_IOMEM if (vcpu->mmio_needed) { memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8); vcpu->mmio_read_completed = 1; vcpu->mmio_needed = 0; down_read(&vcpu->kvm->slots_lock); r = emulate_instruction(vcpu, kvm_run, vcpu->arch.mmio_fault_cr2, 0, EMULTYPE_NO_DECODE); up_read(&vcpu->kvm->slots_lock); if (r == EMULATE_DO_MMIO) { /* * Read-modify-write. Back to userspace. */ r = 0; goto out; } } #endif if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) kvm_register_write(vcpu, VCPU_REGS_RAX, kvm_run->hypercall.ret); r = __vcpu_run(vcpu, kvm_run); out: if (vcpu->sigset_active) sigprocmask(SIG_SETMASK, &sigsaved, NULL); vcpu_put(vcpu); return r; } int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_load(vcpu); regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); #ifdef CONFIG_X86_64 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); #endif regs->rip = kvm_rip_read(vcpu); regs->rflags = kvm_x86_ops->get_rflags(vcpu); /* * Don't leak debug flags in case they were set for guest debugging */ if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep) regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) { vcpu_load(vcpu); kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); #ifdef CONFIG_X86_64 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); #endif kvm_rip_write(vcpu, regs->rip); kvm_x86_ops->set_rflags(vcpu, regs->rflags); vcpu->arch.exception.pending = false; vcpu_put(vcpu); return 0; } void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { kvm_x86_ops->get_segment(vcpu, var, seg); } void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { struct kvm_segment cs; kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); *db = cs.db; *l = cs.l; } EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { struct descriptor_table dt; int pending_vec; vcpu_load(vcpu); kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); kvm_x86_ops->get_idt(vcpu, &dt); sregs->idt.limit = dt.limit; sregs->idt.base = dt.base; kvm_x86_ops->get_gdt(vcpu, &dt); sregs->gdt.limit = dt.limit; sregs->gdt.base = dt.base; kvm_x86_ops->decache_cr4_guest_bits(vcpu); sregs->cr0 = vcpu->arch.cr0; sregs->cr2 = vcpu->arch.cr2; sregs->cr3 = vcpu->arch.cr3; sregs->cr4 = vcpu->arch.cr4; sregs->cr8 = kvm_get_cr8(vcpu); sregs->efer = vcpu->arch.shadow_efer; sregs->apic_base = kvm_get_apic_base(vcpu); if (irqchip_in_kernel(vcpu->kvm)) { memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); pending_vec = kvm_x86_ops->get_irq(vcpu); if (pending_vec >= 0) set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap); } else memcpy(sregs->interrupt_bitmap, vcpu->arch.irq_pending, sizeof sregs->interrupt_bitmap); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { vcpu_load(vcpu); mp_state->mp_state = vcpu->arch.mp_state; vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, struct kvm_mp_state *mp_state) { vcpu_load(vcpu); vcpu->arch.mp_state = mp_state->mp_state; vcpu_put(vcpu); return 0; } static void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { kvm_x86_ops->set_segment(vcpu, var, seg); } static void seg_desct_to_kvm_desct(struct desc_struct *seg_desc, u16 selector, struct kvm_segment *kvm_desct) { kvm_desct->base = seg_desc->base0; kvm_desct->base |= seg_desc->base1 << 16; kvm_desct->base |= seg_desc->base2 << 24; kvm_desct->limit = seg_desc->limit0; kvm_desct->limit |= seg_desc->limit << 16; if (seg_desc->g) { kvm_desct->limit <<= 12; kvm_desct->limit |= 0xfff; } kvm_desct->selector = selector; kvm_desct->type = seg_desc->type; kvm_desct->present = seg_desc->p; kvm_desct->dpl = seg_desc->dpl; kvm_desct->db = seg_desc->d; kvm_desct->s = seg_desc->s; kvm_desct->l = seg_desc->l; kvm_desct->g = seg_desc->g; kvm_desct->avl = seg_desc->avl; if (!selector) kvm_desct->unusable = 1; else kvm_desct->unusable = 0; kvm_desct->padding = 0; } static void get_segment_descritptor_dtable(struct kvm_vcpu *vcpu, u16 selector, struct descriptor_table *dtable) { if (selector & 1 << 2) { struct kvm_segment kvm_seg; kvm_get_segment(vcpu, &kvm_seg, VCPU_SREG_LDTR); if (kvm_seg.unusable) dtable->limit = 0; else dtable->limit = kvm_seg.limit; dtable->base = kvm_seg.base; } else kvm_x86_ops->get_gdt(vcpu, dtable); } /* allowed just for 8 bytes segments */ static int load_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, struct desc_struct *seg_desc) { gpa_t gpa; struct descriptor_table dtable; u16 index = selector >> 3; get_segment_descritptor_dtable(vcpu, selector, &dtable); if (dtable.limit < index * 8 + 7) { kvm_queue_exception_e(vcpu, GP_VECTOR, selector & 0xfffc); return 1; } gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base); gpa += index * 8; return kvm_read_guest(vcpu->kvm, gpa, seg_desc, 8); } /* allowed just for 8 bytes segments */ static int save_guest_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, struct desc_struct *seg_desc) { gpa_t gpa; struct descriptor_table dtable; u16 index = selector >> 3; get_segment_descritptor_dtable(vcpu, selector, &dtable); if (dtable.limit < index * 8 + 7) return 1; gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, dtable.base); gpa += index * 8; return kvm_write_guest(vcpu->kvm, gpa, seg_desc, 8); } static u32 get_tss_base_addr(struct kvm_vcpu *vcpu, struct desc_struct *seg_desc) { u32 base_addr; base_addr = seg_desc->base0; base_addr |= (seg_desc->base1 << 16); base_addr |= (seg_desc->base2 << 24); return vcpu->arch.mmu.gva_to_gpa(vcpu, base_addr); } static u16 get_segment_selector(struct kvm_vcpu *vcpu, int seg) { struct kvm_segment kvm_seg; kvm_get_segment(vcpu, &kvm_seg, seg); return kvm_seg.selector; } static int load_segment_descriptor_to_kvm_desct(struct kvm_vcpu *vcpu, u16 selector, struct kvm_segment *kvm_seg) { struct desc_struct seg_desc; if (load_guest_segment_descriptor(vcpu, selector, &seg_desc)) return 1; seg_desct_to_kvm_desct(&seg_desc, selector, kvm_seg); return 0; } static int kvm_load_realmode_segment(struct kvm_vcpu *vcpu, u16 selector, int seg) { struct kvm_segment segvar = { .base = selector << 4, .limit = 0xffff, .selector = selector, .type = 3, .present = 1, .dpl = 3, .db = 0, .s = 1, .l = 0, .g = 0, .avl = 0, .unusable = 0, }; kvm_x86_ops->set_segment(vcpu, &segvar, seg); return 0; } int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int type_bits, int seg) { struct kvm_segment kvm_seg; if (!(vcpu->arch.cr0 & X86_CR0_PE)) return kvm_load_realmode_segment(vcpu, selector, seg); if (load_segment_descriptor_to_kvm_desct(vcpu, selector, &kvm_seg)) return 1; kvm_seg.type |= type_bits; if (seg != VCPU_SREG_SS && seg != VCPU_SREG_CS && seg != VCPU_SREG_LDTR) if (!kvm_seg.s) kvm_seg.unusable = 1; kvm_set_segment(vcpu, &kvm_seg, seg); return 0; } static void save_state_to_tss32(struct kvm_vcpu *vcpu, struct tss_segment_32 *tss) { tss->cr3 = vcpu->arch.cr3; tss->eip = kvm_rip_read(vcpu); tss->eflags = kvm_x86_ops->get_rflags(vcpu); tss->eax = kvm_register_read(vcpu, VCPU_REGS_RAX); tss->ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); tss->edx = kvm_register_read(vcpu, VCPU_REGS_RDX); tss->ebx = kvm_register_read(vcpu, VCPU_REGS_RBX); tss->esp = kvm_register_read(vcpu, VCPU_REGS_RSP); tss->ebp = kvm_register_read(vcpu, VCPU_REGS_RBP); tss->esi = kvm_register_read(vcpu, VCPU_REGS_RSI); tss->edi = kvm_register_read(vcpu, VCPU_REGS_RDI); tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); tss->fs = get_segment_selector(vcpu, VCPU_SREG_FS); tss->gs = get_segment_selector(vcpu, VCPU_SREG_GS); tss->ldt_selector = get_segment_selector(vcpu, VCPU_SREG_LDTR); tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR); } static int load_state_from_tss32(struct kvm_vcpu *vcpu, struct tss_segment_32 *tss) { kvm_set_cr3(vcpu, tss->cr3); kvm_rip_write(vcpu, tss->eip); kvm_x86_ops->set_rflags(vcpu, tss->eflags | 2); kvm_register_write(vcpu, VCPU_REGS_RAX, tss->eax); kvm_register_write(vcpu, VCPU_REGS_RCX, tss->ecx); kvm_register_write(vcpu, VCPU_REGS_RDX, tss->edx); kvm_register_write(vcpu, VCPU_REGS_RBX, tss->ebx); kvm_register_write(vcpu, VCPU_REGS_RSP, tss->esp); kvm_register_write(vcpu, VCPU_REGS_RBP, tss->ebp); kvm_register_write(vcpu, VCPU_REGS_RSI, tss->esi); kvm_register_write(vcpu, VCPU_REGS_RDI, tss->edi); if (kvm_load_segment_descriptor(vcpu, tss->ldt_selector, 0, VCPU_SREG_LDTR)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->fs, 1, VCPU_SREG_FS)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->gs, 1, VCPU_SREG_GS)) return 1; return 0; } static void save_state_to_tss16(struct kvm_vcpu *vcpu, struct tss_segment_16 *tss) { tss->ip = kvm_rip_read(vcpu); tss->flag = kvm_x86_ops->get_rflags(vcpu); tss->ax = kvm_register_read(vcpu, VCPU_REGS_RAX); tss->cx = kvm_register_read(vcpu, VCPU_REGS_RCX); tss->dx = kvm_register_read(vcpu, VCPU_REGS_RDX); tss->bx = kvm_register_read(vcpu, VCPU_REGS_RBX); tss->sp = kvm_register_read(vcpu, VCPU_REGS_RSP); tss->bp = kvm_register_read(vcpu, VCPU_REGS_RBP); tss->si = kvm_register_read(vcpu, VCPU_REGS_RSI); tss->di = kvm_register_read(vcpu, VCPU_REGS_RDI); tss->es = get_segment_selector(vcpu, VCPU_SREG_ES); tss->cs = get_segment_selector(vcpu, VCPU_SREG_CS); tss->ss = get_segment_selector(vcpu, VCPU_SREG_SS); tss->ds = get_segment_selector(vcpu, VCPU_SREG_DS); tss->ldt = get_segment_selector(vcpu, VCPU_SREG_LDTR); tss->prev_task_link = get_segment_selector(vcpu, VCPU_SREG_TR); } static int load_state_from_tss16(struct kvm_vcpu *vcpu, struct tss_segment_16 *tss) { kvm_rip_write(vcpu, tss->ip); kvm_x86_ops->set_rflags(vcpu, tss->flag | 2); kvm_register_write(vcpu, VCPU_REGS_RAX, tss->ax); kvm_register_write(vcpu, VCPU_REGS_RCX, tss->cx); kvm_register_write(vcpu, VCPU_REGS_RDX, tss->dx); kvm_register_write(vcpu, VCPU_REGS_RBX, tss->bx); kvm_register_write(vcpu, VCPU_REGS_RSP, tss->sp); kvm_register_write(vcpu, VCPU_REGS_RBP, tss->bp); kvm_register_write(vcpu, VCPU_REGS_RSI, tss->si); kvm_register_write(vcpu, VCPU_REGS_RDI, tss->di); if (kvm_load_segment_descriptor(vcpu, tss->ldt, 0, VCPU_SREG_LDTR)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->es, 1, VCPU_SREG_ES)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->cs, 9, VCPU_SREG_CS)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->ss, 1, VCPU_SREG_SS)) return 1; if (kvm_load_segment_descriptor(vcpu, tss->ds, 1, VCPU_SREG_DS)) return 1; return 0; } static int kvm_task_switch_16(struct kvm_vcpu *vcpu, u16 tss_selector, u32 old_tss_base, struct desc_struct *nseg_desc) { struct tss_segment_16 tss_segment_16; int ret = 0; if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_16, sizeof tss_segment_16)) goto out; save_state_to_tss16(vcpu, &tss_segment_16); if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_16, sizeof tss_segment_16)) goto out; if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc), &tss_segment_16, sizeof tss_segment_16)) goto out; if (load_state_from_tss16(vcpu, &tss_segment_16)) goto out; ret = 1; out: return ret; } static int kvm_task_switch_32(struct kvm_vcpu *vcpu, u16 tss_selector, u32 old_tss_base, struct desc_struct *nseg_desc) { struct tss_segment_32 tss_segment_32; int ret = 0; if (kvm_read_guest(vcpu->kvm, old_tss_base, &tss_segment_32, sizeof tss_segment_32)) goto out; save_state_to_tss32(vcpu, &tss_segment_32); if (kvm_write_guest(vcpu->kvm, old_tss_base, &tss_segment_32, sizeof tss_segment_32)) goto out; if (kvm_read_guest(vcpu->kvm, get_tss_base_addr(vcpu, nseg_desc), &tss_segment_32, sizeof tss_segment_32)) goto out; if (load_state_from_tss32(vcpu, &tss_segment_32)) goto out; ret = 1; out: return ret; } int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason) { struct kvm_segment tr_seg; struct desc_struct cseg_desc; struct desc_struct nseg_desc; int ret = 0; u32 old_tss_base = get_segment_base(vcpu, VCPU_SREG_TR); u16 old_tss_sel = get_segment_selector(vcpu, VCPU_SREG_TR); old_tss_base = vcpu->arch.mmu.gva_to_gpa(vcpu, old_tss_base); /* FIXME: Handle errors. Failure to read either TSS or their * descriptors should generate a pagefault. */ if (load_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc)) goto out; if (load_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc)) goto out; if (reason != TASK_SWITCH_IRET) { int cpl; cpl = kvm_x86_ops->get_cpl(vcpu); if ((tss_selector & 3) > nseg_desc.dpl || cpl > nseg_desc.dpl) { kvm_queue_exception_e(vcpu, GP_VECTOR, 0); return 1; } } if (!nseg_desc.p || (nseg_desc.limit0 | nseg_desc.limit << 16) < 0x67) { kvm_queue_exception_e(vcpu, TS_VECTOR, tss_selector & 0xfffc); return 1; } if (reason == TASK_SWITCH_IRET || reason == TASK_SWITCH_JMP) { cseg_desc.type &= ~(1 << 1); //clear the B flag save_guest_segment_descriptor(vcpu, old_tss_sel, &cseg_desc); } if (reason == TASK_SWITCH_IRET) { u32 eflags = kvm_x86_ops->get_rflags(vcpu); kvm_x86_ops->set_rflags(vcpu, eflags & ~X86_EFLAGS_NT); } kvm_x86_ops->skip_emulated_instruction(vcpu); if (nseg_desc.type & 8) ret = kvm_task_switch_32(vcpu, tss_selector, old_tss_base, &nseg_desc); else ret = kvm_task_switch_16(vcpu, tss_selector, old_tss_base, &nseg_desc); if (reason == TASK_SWITCH_CALL || reason == TASK_SWITCH_GATE) { u32 eflags = kvm_x86_ops->get_rflags(vcpu); kvm_x86_ops->set_rflags(vcpu, eflags | X86_EFLAGS_NT); } if (reason != TASK_SWITCH_IRET) { nseg_desc.type |= (1 << 1); save_guest_segment_descriptor(vcpu, tss_selector, &nseg_desc); } kvm_x86_ops->set_cr0(vcpu, vcpu->arch.cr0 | X86_CR0_TS); seg_desct_to_kvm_desct(&nseg_desc, tss_selector, &tr_seg); tr_seg.type = 11; kvm_set_segment(vcpu, &tr_seg, VCPU_SREG_TR); out: return ret; } EXPORT_SYMBOL_GPL(kvm_task_switch); int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) { int mmu_reset_needed = 0; int i, pending_vec, max_bits; struct descriptor_table dt; vcpu_load(vcpu); dt.limit = sregs->idt.limit; dt.base = sregs->idt.base; kvm_x86_ops->set_idt(vcpu, &dt); dt.limit = sregs->gdt.limit; dt.base = sregs->gdt.base; kvm_x86_ops->set_gdt(vcpu, &dt); vcpu->arch.cr2 = sregs->cr2; mmu_reset_needed |= vcpu->arch.cr3 != sregs->cr3; vcpu->arch.cr3 = sregs->cr3; kvm_set_cr8(vcpu, sregs->cr8); mmu_reset_needed |= vcpu->arch.shadow_efer != sregs->efer; kvm_x86_ops->set_efer(vcpu, sregs->efer); kvm_set_apic_base(vcpu, sregs->apic_base); kvm_x86_ops->decache_cr4_guest_bits(vcpu); mmu_reset_needed |= vcpu->arch.cr0 != sregs->cr0; kvm_x86_ops->set_cr0(vcpu, sregs->cr0); vcpu->arch.cr0 = sregs->cr0; mmu_reset_needed |= vcpu->arch.cr4 != sregs->cr4; kvm_x86_ops->set_cr4(vcpu, sregs->cr4); if (!is_long_mode(vcpu) && is_pae(vcpu)) load_pdptrs(vcpu, vcpu->arch.cr3); if (mmu_reset_needed) kvm_mmu_reset_context(vcpu); if (!irqchip_in_kernel(vcpu->kvm)) { memcpy(vcpu->arch.irq_pending, sregs->interrupt_bitmap, sizeof vcpu->arch.irq_pending); vcpu->arch.irq_summary = 0; for (i = 0; i < ARRAY_SIZE(vcpu->arch.irq_pending); ++i) if (vcpu->arch.irq_pending[i]) __set_bit(i, &vcpu->arch.irq_summary); } else { max_bits = (sizeof sregs->interrupt_bitmap) << 3; pending_vec = find_first_bit( (const unsigned long *)sregs->interrupt_bitmap, max_bits); /* Only pending external irq is handled here */ if (pending_vec < max_bits) { kvm_x86_ops->set_irq(vcpu, pending_vec); pr_debug("Set back pending irq %d\n", pending_vec); } kvm_pic_clear_isr_ack(vcpu->kvm); } kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); /* Older userspace won't unhalt the vcpu on reset. */ if (vcpu->vcpu_id == 0 && kvm_rip_read(vcpu) == 0xfff0 && sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && !(vcpu->arch.cr0 & X86_CR0_PE)) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) { int r; vcpu_load(vcpu); r = kvm_x86_ops->set_guest_debug(vcpu, dbg); vcpu_put(vcpu); return r; } /* * fxsave fpu state. Taken from x86_64/processor.h. To be killed when * we have asm/x86/processor.h */ struct fxsave { u16 cwd; u16 swd; u16 twd; u16 fop; u64 rip; u64 rdp; u32 mxcsr; u32 mxcsr_mask; u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */ #ifdef CONFIG_X86_64 u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */ #else u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */ #endif }; /* * Translate a guest virtual address to a guest physical address. */ int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, struct kvm_translation *tr) { unsigned long vaddr = tr->linear_address; gpa_t gpa; vcpu_load(vcpu); down_read(&vcpu->kvm->slots_lock); gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, vaddr); up_read(&vcpu->kvm->slots_lock); tr->physical_address = gpa; tr->valid = gpa != UNMAPPED_GVA; tr->writeable = 1; tr->usermode = 0; vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; vcpu_load(vcpu); memcpy(fpu->fpr, fxsave->st_space, 128); fpu->fcw = fxsave->cwd; fpu->fsw = fxsave->swd; fpu->ftwx = fxsave->twd; fpu->last_opcode = fxsave->fop; fpu->last_ip = fxsave->rip; fpu->last_dp = fxsave->rdp; memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); vcpu_put(vcpu); return 0; } int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) { struct fxsave *fxsave = (struct fxsave *)&vcpu->arch.guest_fx_image; vcpu_load(vcpu); memcpy(fxsave->st_space, fpu->fpr, 128); fxsave->cwd = fpu->fcw; fxsave->swd = fpu->fsw; fxsave->twd = fpu->ftwx; fxsave->fop = fpu->last_opcode; fxsave->rip = fpu->last_ip; fxsave->rdp = fpu->last_dp; memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); vcpu_put(vcpu); return 0; } void fx_init(struct kvm_vcpu *vcpu) { unsigned after_mxcsr_mask; /* * Touch the fpu the first time in non atomic context as if * this is the first fpu instruction the exception handler * will fire before the instruction returns and it'll have to * allocate ram with GFP_KERNEL. */ if (!used_math()) kvm_fx_save(&vcpu->arch.host_fx_image); /* Initialize guest FPU by resetting ours and saving into guest's */ preempt_disable(); kvm_fx_save(&vcpu->arch.host_fx_image); kvm_fx_finit(); kvm_fx_save(&vcpu->arch.guest_fx_image); kvm_fx_restore(&vcpu->arch.host_fx_image); preempt_enable(); vcpu->arch.cr0 |= X86_CR0_ET; after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space); vcpu->arch.guest_fx_image.mxcsr = 0x1f80; memset((void *)&vcpu->arch.guest_fx_image + after_mxcsr_mask, 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask); } EXPORT_SYMBOL_GPL(fx_init); void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) { if (!vcpu->fpu_active || vcpu->guest_fpu_loaded) return; vcpu->guest_fpu_loaded = 1; kvm_fx_save(&vcpu->arch.host_fx_image); kvm_fx_restore(&vcpu->arch.guest_fx_image); } EXPORT_SYMBOL_GPL(kvm_load_guest_fpu); void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) { if (!vcpu->guest_fpu_loaded) return; vcpu->guest_fpu_loaded = 0; kvm_fx_save(&vcpu->arch.guest_fx_image); kvm_fx_restore(&vcpu->arch.host_fx_image); ++vcpu->stat.fpu_reload; } EXPORT_SYMBOL_GPL(kvm_put_guest_fpu); void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) { kvm_x86_ops->vcpu_free(vcpu); } struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id) { return kvm_x86_ops->vcpu_create(kvm, id); } int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) { int r; /* We do fxsave: this must be aligned. */ BUG_ON((unsigned long)&vcpu->arch.host_fx_image & 0xF); vcpu->arch.mtrr_state.have_fixed = 1; vcpu_load(vcpu); r = kvm_arch_vcpu_reset(vcpu); if (r == 0) r = kvm_mmu_setup(vcpu); vcpu_put(vcpu); if (r < 0) goto free_vcpu; return 0; free_vcpu: kvm_x86_ops->vcpu_free(vcpu); return r; } void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) { vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); kvm_x86_ops->vcpu_free(vcpu); } int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu) { vcpu->arch.nmi_pending = false; vcpu->arch.nmi_injected = false; return kvm_x86_ops->vcpu_reset(vcpu); } void kvm_arch_hardware_enable(void *garbage) { kvm_x86_ops->hardware_enable(garbage); } void kvm_arch_hardware_disable(void *garbage) { kvm_x86_ops->hardware_disable(garbage); } int kvm_arch_hardware_setup(void) { return kvm_x86_ops->hardware_setup(); } void kvm_arch_hardware_unsetup(void) { kvm_x86_ops->hardware_unsetup(); } void kvm_arch_check_processor_compat(void *rtn) { kvm_x86_ops->check_processor_compatibility(rtn); } int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) { struct page *page; struct kvm *kvm; int r; BUG_ON(vcpu->kvm == NULL); kvm = vcpu->kvm; vcpu->arch.mmu.root_hpa = INVALID_PAGE; if (!irqchip_in_kernel(kvm) || vcpu->vcpu_id == 0) vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; else vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; page = alloc_page(GFP_KERNEL | __GFP_ZERO); if (!page) { r = -ENOMEM; goto fail; } vcpu->arch.pio_data = page_address(page); r = kvm_mmu_create(vcpu); if (r < 0) goto fail_free_pio_data; if (irqchip_in_kernel(kvm)) { r = kvm_create_lapic(vcpu); if (r < 0) goto fail_mmu_destroy; } return 0; fail_mmu_destroy: kvm_mmu_destroy(vcpu); fail_free_pio_data: free_page((unsigned long)vcpu->arch.pio_data); fail: return r; } void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) { kvm_free_lapic(vcpu); down_read(&vcpu->kvm->slots_lock); kvm_mmu_destroy(vcpu); up_read(&vcpu->kvm->slots_lock); free_page((unsigned long)vcpu->arch.pio_data); } struct kvm *kvm_arch_create_vm(void) { struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL); if (!kvm) return ERR_PTR(-ENOMEM); INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); return kvm; } static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) { vcpu_load(vcpu); kvm_mmu_unload(vcpu); vcpu_put(vcpu); } static void kvm_free_vcpus(struct kvm *kvm) { unsigned int i; /* * Unpin any mmu pages first. */ for (i = 0; i < KVM_MAX_VCPUS; ++i) if (kvm->vcpus[i]) kvm_unload_vcpu_mmu(kvm->vcpus[i]); for (i = 0; i < KVM_MAX_VCPUS; ++i) { if (kvm->vcpus[i]) { kvm_arch_vcpu_free(kvm->vcpus[i]); kvm->vcpus[i] = NULL; } } } void kvm_arch_destroy_vm(struct kvm *kvm) { kvm_iommu_unmap_guest(kvm); kvm_free_all_assigned_devices(kvm); kvm_free_pit(kvm); kfree(kvm->arch.vpic); kfree(kvm->arch.vioapic); kvm_free_vcpus(kvm); kvm_free_physmem(kvm); if (kvm->arch.apic_access_page) put_page(kvm->arch.apic_access_page); if (kvm->arch.ept_identity_pagetable) put_page(kvm->arch.ept_identity_pagetable); kfree(kvm); } int kvm_arch_set_memory_region(struct kvm *kvm, struct kvm_userspace_memory_region *mem, struct kvm_memory_slot old, int user_alloc) { int npages = mem->memory_size >> PAGE_SHIFT; struct kvm_memory_slot *memslot = &kvm->memslots[mem->slot]; /*To keep backward compatibility with older userspace, *x86 needs to hanlde !user_alloc case. */ if (!user_alloc) { if (npages && !old.rmap) { unsigned long userspace_addr; down_write(¤t->mm->mmap_sem); userspace_addr = do_mmap(NULL, 0, npages * PAGE_SIZE, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, 0); up_write(¤t->mm->mmap_sem); if (IS_ERR((void *)userspace_addr)) return PTR_ERR((void *)userspace_addr); /* set userspace_addr atomically for kvm_hva_to_rmapp */ spin_lock(&kvm->mmu_lock); memslot->userspace_addr = userspace_addr; spin_unlock(&kvm->mmu_lock); } else { if (!old.user_alloc && old.rmap) { int ret; down_write(¤t->mm->mmap_sem); ret = do_munmap(current->mm, old.userspace_addr, old.npages * PAGE_SIZE); up_write(¤t->mm->mmap_sem); if (ret < 0) printk(KERN_WARNING "kvm_vm_ioctl_set_memory_region: " "failed to munmap memory\n"); } } } if (!kvm->arch.n_requested_mmu_pages) { unsigned int nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); } kvm_mmu_slot_remove_write_access(kvm, mem->slot); kvm_flush_remote_tlbs(kvm); return 0; } void kvm_arch_flush_shadow(struct kvm *kvm) { kvm_mmu_zap_all(kvm); } int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) { return vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED || vcpu->arch.nmi_pending; } static void vcpu_kick_intr(void *info) { #ifdef DEBUG struct kvm_vcpu *vcpu = (struct kvm_vcpu *)info; printk(KERN_DEBUG "vcpu_kick_intr %p \n", vcpu); #endif } void kvm_vcpu_kick(struct kvm_vcpu *vcpu) { int ipi_pcpu = vcpu->cpu; int cpu = get_cpu(); if (waitqueue_active(&vcpu->wq)) { wake_up_interruptible(&vcpu->wq); ++vcpu->stat.halt_wakeup; } /* * We may be called synchronously with irqs disabled in guest mode, * So need not to call smp_call_function_single() in that case. */ if (vcpu->guest_mode && vcpu->cpu != cpu) smp_call_function_single(ipi_pcpu, vcpu_kick_intr, vcpu, 0); put_cpu(); }