/* * Copyright 2008 Advanced Micro Devices, Inc. * Copyright 2008 Red Hat Inc. * Copyright 2009 Jerome Glisse. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Authors: Dave Airlie * Alex Deucher * Jerome Glisse */ #include #include #include "amdgpu.h" #include "amdgpu_trace.h" /* * GPUVM * GPUVM is similar to the legacy gart on older asics, however * rather than there being a single global gart table * for the entire GPU, there are multiple VM page tables active * at any given time. The VM page tables can contain a mix * vram pages and system memory pages and system memory pages * can be mapped as snooped (cached system pages) or unsnooped * (uncached system pages). * Each VM has an ID associated with it and there is a page table * associated with each VMID. When execting a command buffer, * the kernel tells the the ring what VMID to use for that command * buffer. VMIDs are allocated dynamically as commands are submitted. * The userspace drivers maintain their own address space and the kernel * sets up their pages tables accordingly when they submit their * command buffers and a VMID is assigned. * Cayman/Trinity support up to 8 active VMs at any given time; * SI supports 16. */ /** * amdgpu_vm_num_pde - return the number of page directory entries * * @adev: amdgpu_device pointer * * Calculate the number of page directory entries (cayman+). */ static unsigned amdgpu_vm_num_pdes(struct amdgpu_device *adev) { return adev->vm_manager.max_pfn >> amdgpu_vm_block_size; } /** * amdgpu_vm_directory_size - returns the size of the page directory in bytes * * @adev: amdgpu_device pointer * * Calculate the size of the page directory in bytes (cayman+). */ static unsigned amdgpu_vm_directory_size(struct amdgpu_device *adev) { return AMDGPU_GPU_PAGE_ALIGN(amdgpu_vm_num_pdes(adev) * 8); } /** * amdgpu_vm_get_bos - add the vm BOs to a validation list * * @vm: vm providing the BOs * @head: head of validation list * * Add the page directory to the list of BOs to * validate for command submission (cayman+). */ struct amdgpu_bo_list_entry *amdgpu_vm_get_bos(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct list_head *head) { struct amdgpu_bo_list_entry *list; unsigned i, idx; list = drm_malloc_ab(vm->max_pde_used + 2, sizeof(struct amdgpu_bo_list_entry)); if (!list) return NULL; /* add the vm page table to the list */ list[0].robj = vm->page_directory; list[0].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM; list[0].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM; list[0].priority = 0; list[0].tv.bo = &vm->page_directory->tbo; list[0].tv.shared = true; list_add(&list[0].tv.head, head); for (i = 0, idx = 1; i <= vm->max_pde_used; i++) { if (!vm->page_tables[i].bo) continue; list[idx].robj = vm->page_tables[i].bo; list[idx].prefered_domains = AMDGPU_GEM_DOMAIN_VRAM; list[idx].allowed_domains = AMDGPU_GEM_DOMAIN_VRAM; list[idx].priority = 0; list[idx].tv.bo = &list[idx].robj->tbo; list[idx].tv.shared = true; list_add(&list[idx++].tv.head, head); } return list; } /** * amdgpu_vm_grab_id - allocate the next free VMID * * @ring: ring we want to submit job to * @vm: vm to allocate id for * * Allocate an id for the vm (cayman+). * Returns the fence we need to sync to (if any). * * Global and local mutex must be locked! */ struct amdgpu_fence *amdgpu_vm_grab_id(struct amdgpu_ring *ring, struct amdgpu_vm *vm) { struct amdgpu_fence *best[AMDGPU_MAX_RINGS] = {}; struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx]; struct amdgpu_device *adev = ring->adev; unsigned choices[2] = {}; unsigned i; /* check if the id is still valid */ if (vm_id->id && vm_id->last_id_use && vm_id->last_id_use == adev->vm_manager.active[vm_id->id]) return NULL; /* we definately need to flush */ vm_id->pd_gpu_addr = ~0ll; /* skip over VMID 0, since it is the system VM */ for (i = 1; i < adev->vm_manager.nvm; ++i) { struct amdgpu_fence *fence = adev->vm_manager.active[i]; if (fence == NULL) { /* found a free one */ vm_id->id = i; trace_amdgpu_vm_grab_id(i, ring->idx); return NULL; } if (amdgpu_fence_is_earlier(fence, best[fence->ring->idx])) { best[fence->ring->idx] = fence; choices[fence->ring == ring ? 0 : 1] = i; } } for (i = 0; i < 2; ++i) { if (choices[i]) { vm_id->id = choices[i]; trace_amdgpu_vm_grab_id(choices[i], ring->idx); return adev->vm_manager.active[choices[i]]; } } /* should never happen */ BUG(); return NULL; } /** * amdgpu_vm_flush - hardware flush the vm * * @ring: ring to use for flush * @vm: vm we want to flush * @updates: last vm update that we waited for * * Flush the vm (cayman+). * * Global and local mutex must be locked! */ void amdgpu_vm_flush(struct amdgpu_ring *ring, struct amdgpu_vm *vm, struct amdgpu_fence *updates) { uint64_t pd_addr = amdgpu_bo_gpu_offset(vm->page_directory); struct amdgpu_vm_id *vm_id = &vm->ids[ring->idx]; if (pd_addr != vm_id->pd_gpu_addr || !vm_id->flushed_updates || amdgpu_fence_is_earlier(vm_id->flushed_updates, updates)) { trace_amdgpu_vm_flush(pd_addr, ring->idx, vm_id->id); amdgpu_fence_unref(&vm_id->flushed_updates); vm_id->flushed_updates = amdgpu_fence_ref(updates); vm_id->pd_gpu_addr = pd_addr; amdgpu_ring_emit_vm_flush(ring, vm_id->id, vm_id->pd_gpu_addr); } } /** * amdgpu_vm_fence - remember fence for vm * * @adev: amdgpu_device pointer * @vm: vm we want to fence * @fence: fence to remember * * Fence the vm (cayman+). * Set the fence used to protect page table and id. * * Global and local mutex must be locked! */ void amdgpu_vm_fence(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_fence *fence) { unsigned ridx = fence->ring->idx; unsigned vm_id = vm->ids[ridx].id; amdgpu_fence_unref(&adev->vm_manager.active[vm_id]); adev->vm_manager.active[vm_id] = amdgpu_fence_ref(fence); amdgpu_fence_unref(&vm->ids[ridx].last_id_use); vm->ids[ridx].last_id_use = amdgpu_fence_ref(fence); } /** * amdgpu_vm_bo_find - find the bo_va for a specific vm & bo * * @vm: requested vm * @bo: requested buffer object * * Find @bo inside the requested vm (cayman+). * Search inside the @bos vm list for the requested vm * Returns the found bo_va or NULL if none is found * * Object has to be reserved! */ struct amdgpu_bo_va *amdgpu_vm_bo_find(struct amdgpu_vm *vm, struct amdgpu_bo *bo) { struct amdgpu_bo_va *bo_va; list_for_each_entry(bo_va, &bo->va, bo_list) { if (bo_va->vm == vm) { return bo_va; } } return NULL; } /** * amdgpu_vm_update_pages - helper to call the right asic function * * @adev: amdgpu_device pointer * @ib: indirect buffer to fill with commands * @pe: addr of the page entry * @addr: dst addr to write into pe * @count: number of page entries to update * @incr: increase next addr by incr bytes * @flags: hw access flags * @gtt_flags: GTT hw access flags * * Traces the parameters and calls the right asic functions * to setup the page table using the DMA. */ static void amdgpu_vm_update_pages(struct amdgpu_device *adev, struct amdgpu_ib *ib, uint64_t pe, uint64_t addr, unsigned count, uint32_t incr, uint32_t flags, uint32_t gtt_flags) { trace_amdgpu_vm_set_page(pe, addr, count, incr, flags); if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) { uint64_t src = adev->gart.table_addr + (addr >> 12) * 8; amdgpu_vm_copy_pte(adev, ib, pe, src, count); } else if ((flags & AMDGPU_PTE_SYSTEM) || (count < 3)) { amdgpu_vm_write_pte(adev, ib, pe, addr, count, incr, flags); } else { amdgpu_vm_set_pte_pde(adev, ib, pe, addr, count, incr, flags); } } /** * amdgpu_vm_clear_bo - initially clear the page dir/table * * @adev: amdgpu_device pointer * @bo: bo to clear */ static int amdgpu_vm_clear_bo(struct amdgpu_device *adev, struct amdgpu_bo *bo) { struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring; struct amdgpu_ib ib; unsigned entries; uint64_t addr; int r; r = amdgpu_bo_reserve(bo, false); if (r) return r; r = ttm_bo_validate(&bo->tbo, &bo->placement, true, false); if (r) goto error_unreserve; addr = amdgpu_bo_gpu_offset(bo); entries = amdgpu_bo_size(bo) / 8; r = amdgpu_ib_get(ring, NULL, entries * 2 + 64, &ib); if (r) goto error_unreserve; ib.length_dw = 0; amdgpu_vm_update_pages(adev, &ib, addr, 0, entries, 0, 0, 0); amdgpu_vm_pad_ib(adev, &ib); WARN_ON(ib.length_dw > 64); r = amdgpu_ib_schedule(adev, 1, &ib, AMDGPU_FENCE_OWNER_VM); if (r) goto error_free; amdgpu_bo_fence(bo, ib.fence, false); error_free: amdgpu_ib_free(adev, &ib); error_unreserve: amdgpu_bo_unreserve(bo); return r; } /** * amdgpu_vm_map_gart - get the physical address of a gart page * * @adev: amdgpu_device pointer * @addr: the unmapped addr * * Look up the physical address of the page that the pte resolves * to (cayman+). * Returns the physical address of the page. */ uint64_t amdgpu_vm_map_gart(struct amdgpu_device *adev, uint64_t addr) { uint64_t result; /* page table offset */ result = adev->gart.pages_addr[addr >> PAGE_SHIFT]; /* in case cpu page size != gpu page size*/ result |= addr & (~PAGE_MASK); return result; } /** * amdgpu_vm_update_pdes - make sure that page directory is valid * * @adev: amdgpu_device pointer * @vm: requested vm * @start: start of GPU address range * @end: end of GPU address range * * Allocates new page tables if necessary * and updates the page directory (cayman+). * Returns 0 for success, error for failure. * * Global and local mutex must be locked! */ int amdgpu_vm_update_page_directory(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring; struct amdgpu_bo *pd = vm->page_directory; uint64_t pd_addr = amdgpu_bo_gpu_offset(pd); uint32_t incr = AMDGPU_VM_PTE_COUNT * 8; uint64_t last_pde = ~0, last_pt = ~0; unsigned count = 0, pt_idx, ndw; struct amdgpu_ib ib; int r; /* padding, etc. */ ndw = 64; /* assume the worst case */ ndw += vm->max_pde_used * 6; /* update too big for an IB */ if (ndw > 0xfffff) return -ENOMEM; r = amdgpu_ib_get(ring, NULL, ndw * 4, &ib); if (r) return r; ib.length_dw = 0; /* walk over the address space and update the page directory */ for (pt_idx = 0; pt_idx <= vm->max_pde_used; ++pt_idx) { struct amdgpu_bo *bo = vm->page_tables[pt_idx].bo; uint64_t pde, pt; if (bo == NULL) continue; pt = amdgpu_bo_gpu_offset(bo); if (vm->page_tables[pt_idx].addr == pt) continue; vm->page_tables[pt_idx].addr = pt; pde = pd_addr + pt_idx * 8; if (((last_pde + 8 * count) != pde) || ((last_pt + incr * count) != pt)) { if (count) { amdgpu_vm_update_pages(adev, &ib, last_pde, last_pt, count, incr, AMDGPU_PTE_VALID, 0); } count = 1; last_pde = pde; last_pt = pt; } else { ++count; } } if (count) amdgpu_vm_update_pages(adev, &ib, last_pde, last_pt, count, incr, AMDGPU_PTE_VALID, 0); if (ib.length_dw != 0) { amdgpu_vm_pad_ib(adev, &ib); amdgpu_sync_resv(adev, &ib.sync, pd->tbo.resv, AMDGPU_FENCE_OWNER_VM); WARN_ON(ib.length_dw > ndw); r = amdgpu_ib_schedule(adev, 1, &ib, AMDGPU_FENCE_OWNER_VM); if (r) { amdgpu_ib_free(adev, &ib); return r; } amdgpu_bo_fence(pd, ib.fence, false); } amdgpu_ib_free(adev, &ib); return 0; } /** * amdgpu_vm_frag_ptes - add fragment information to PTEs * * @adev: amdgpu_device pointer * @ib: IB for the update * @pe_start: first PTE to handle * @pe_end: last PTE to handle * @addr: addr those PTEs should point to * @flags: hw mapping flags * @gtt_flags: GTT hw mapping flags * * Global and local mutex must be locked! */ static void amdgpu_vm_frag_ptes(struct amdgpu_device *adev, struct amdgpu_ib *ib, uint64_t pe_start, uint64_t pe_end, uint64_t addr, uint32_t flags, uint32_t gtt_flags) { /** * The MC L1 TLB supports variable sized pages, based on a fragment * field in the PTE. When this field is set to a non-zero value, page * granularity is increased from 4KB to (1 << (12 + frag)). The PTE * flags are considered valid for all PTEs within the fragment range * and corresponding mappings are assumed to be physically contiguous. * * The L1 TLB can store a single PTE for the whole fragment, * significantly increasing the space available for translation * caching. This leads to large improvements in throughput when the * TLB is under pressure. * * The L2 TLB distributes small and large fragments into two * asymmetric partitions. The large fragment cache is significantly * larger. Thus, we try to use large fragments wherever possible. * Userspace can support this by aligning virtual base address and * allocation size to the fragment size. */ /* SI and newer are optimized for 64KB */ uint64_t frag_flags = AMDGPU_PTE_FRAG_64KB; uint64_t frag_align = 0x80; uint64_t frag_start = ALIGN(pe_start, frag_align); uint64_t frag_end = pe_end & ~(frag_align - 1); unsigned count; /* system pages are non continuously */ if ((flags & AMDGPU_PTE_SYSTEM) || !(flags & AMDGPU_PTE_VALID) || (frag_start >= frag_end)) { count = (pe_end - pe_start) / 8; amdgpu_vm_update_pages(adev, ib, pe_start, addr, count, AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags); return; } /* handle the 4K area at the beginning */ if (pe_start != frag_start) { count = (frag_start - pe_start) / 8; amdgpu_vm_update_pages(adev, ib, pe_start, addr, count, AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags); addr += AMDGPU_GPU_PAGE_SIZE * count; } /* handle the area in the middle */ count = (frag_end - frag_start) / 8; amdgpu_vm_update_pages(adev, ib, frag_start, addr, count, AMDGPU_GPU_PAGE_SIZE, flags | frag_flags, gtt_flags); /* handle the 4K area at the end */ if (frag_end != pe_end) { addr += AMDGPU_GPU_PAGE_SIZE * count; count = (pe_end - frag_end) / 8; amdgpu_vm_update_pages(adev, ib, frag_end, addr, count, AMDGPU_GPU_PAGE_SIZE, flags, gtt_flags); } } /** * amdgpu_vm_update_ptes - make sure that page tables are valid * * @adev: amdgpu_device pointer * @vm: requested vm * @start: start of GPU address range * @end: end of GPU address range * @dst: destination address to map to * @flags: mapping flags * * Update the page tables in the range @start - @end (cayman+). * * Global and local mutex must be locked! */ static int amdgpu_vm_update_ptes(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_ib *ib, uint64_t start, uint64_t end, uint64_t dst, uint32_t flags, uint32_t gtt_flags) { uint64_t mask = AMDGPU_VM_PTE_COUNT - 1; uint64_t last_pte = ~0, last_dst = ~0; unsigned count = 0; uint64_t addr; /* walk over the address space and update the page tables */ for (addr = start; addr < end; ) { uint64_t pt_idx = addr >> amdgpu_vm_block_size; struct amdgpu_bo *pt = vm->page_tables[pt_idx].bo; unsigned nptes; uint64_t pte; int r; amdgpu_sync_resv(adev, &ib->sync, pt->tbo.resv, AMDGPU_FENCE_OWNER_VM); r = reservation_object_reserve_shared(pt->tbo.resv); if (r) return r; if ((addr & ~mask) == (end & ~mask)) nptes = end - addr; else nptes = AMDGPU_VM_PTE_COUNT - (addr & mask); pte = amdgpu_bo_gpu_offset(pt); pte += (addr & mask) * 8; if ((last_pte + 8 * count) != pte) { if (count) { amdgpu_vm_frag_ptes(adev, ib, last_pte, last_pte + 8 * count, last_dst, flags, gtt_flags); } count = nptes; last_pte = pte; last_dst = dst; } else { count += nptes; } addr += nptes; dst += nptes * AMDGPU_GPU_PAGE_SIZE; } if (count) { amdgpu_vm_frag_ptes(adev, ib, last_pte, last_pte + 8 * count, last_dst, flags, gtt_flags); } return 0; } /** * amdgpu_vm_fence_pts - fence page tables after an update * * @vm: requested vm * @start: start of GPU address range * @end: end of GPU address range * @fence: fence to use * * Fence the page tables in the range @start - @end (cayman+). * * Global and local mutex must be locked! */ static void amdgpu_vm_fence_pts(struct amdgpu_vm *vm, uint64_t start, uint64_t end, struct amdgpu_fence *fence) { unsigned i; start >>= amdgpu_vm_block_size; end >>= amdgpu_vm_block_size; for (i = start; i <= end; ++i) amdgpu_bo_fence(vm->page_tables[i].bo, fence, true); } /** * amdgpu_vm_bo_update_mapping - update a mapping in the vm page table * * @adev: amdgpu_device pointer * @vm: requested vm * @mapping: mapped range and flags to use for the update * @addr: addr to set the area to * @gtt_flags: flags as they are used for GTT * @fence: optional resulting fence * * Fill in the page table entries for @mapping. * Returns 0 for success, -EINVAL for failure. * * Object have to be reserved and mutex must be locked! */ static int amdgpu_vm_bo_update_mapping(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo_va_mapping *mapping, uint64_t addr, uint32_t gtt_flags, struct amdgpu_fence **fence) { struct amdgpu_ring *ring = adev->vm_manager.vm_pte_funcs_ring; unsigned nptes, ncmds, ndw; uint32_t flags = gtt_flags; struct amdgpu_ib ib; int r; /* normally,bo_va->flags only contians READABLE and WIRTEABLE bit go here * but in case of something, we filter the flags in first place */ if (!(mapping->flags & AMDGPU_PTE_READABLE)) flags &= ~AMDGPU_PTE_READABLE; if (!(mapping->flags & AMDGPU_PTE_WRITEABLE)) flags &= ~AMDGPU_PTE_WRITEABLE; trace_amdgpu_vm_bo_update(mapping); nptes = mapping->it.last - mapping->it.start + 1; /* * reserve space for one command every (1 << BLOCK_SIZE) * entries or 2k dwords (whatever is smaller) */ ncmds = (nptes >> min(amdgpu_vm_block_size, 11)) + 1; /* padding, etc. */ ndw = 64; if ((flags & AMDGPU_PTE_SYSTEM) && (flags == gtt_flags)) { /* only copy commands needed */ ndw += ncmds * 7; } else if (flags & AMDGPU_PTE_SYSTEM) { /* header for write data commands */ ndw += ncmds * 4; /* body of write data command */ ndw += nptes * 2; } else { /* set page commands needed */ ndw += ncmds * 10; /* two extra commands for begin/end of fragment */ ndw += 2 * 10; } /* update too big for an IB */ if (ndw > 0xfffff) return -ENOMEM; r = amdgpu_ib_get(ring, NULL, ndw * 4, &ib); if (r) return r; ib.length_dw = 0; if (!(flags & AMDGPU_PTE_VALID)) { unsigned i; for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { struct amdgpu_fence *f = vm->ids[i].last_id_use; amdgpu_sync_fence(&ib.sync, f); } } r = amdgpu_vm_update_ptes(adev, vm, &ib, mapping->it.start, mapping->it.last + 1, addr + mapping->offset, flags, gtt_flags); if (r) { amdgpu_ib_free(adev, &ib); return r; } amdgpu_vm_pad_ib(adev, &ib); WARN_ON(ib.length_dw > ndw); r = amdgpu_ib_schedule(adev, 1, &ib, AMDGPU_FENCE_OWNER_VM); if (r) { amdgpu_ib_free(adev, &ib); return r; } amdgpu_vm_fence_pts(vm, mapping->it.start, mapping->it.last + 1, ib.fence); if (fence) { amdgpu_fence_unref(fence); *fence = amdgpu_fence_ref(ib.fence); } amdgpu_ib_free(adev, &ib); return 0; } /** * amdgpu_vm_bo_update - update all BO mappings in the vm page table * * @adev: amdgpu_device pointer * @bo_va: requested BO and VM object * @mem: ttm mem * * Fill in the page table entries for @bo_va. * Returns 0 for success, -EINVAL for failure. * * Object have to be reserved and mutex must be locked! */ int amdgpu_vm_bo_update(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, struct ttm_mem_reg *mem) { struct amdgpu_vm *vm = bo_va->vm; struct amdgpu_bo_va_mapping *mapping; uint32_t flags; uint64_t addr; int r; if (mem) { addr = mem->start << PAGE_SHIFT; if (mem->mem_type != TTM_PL_TT) addr += adev->vm_manager.vram_base_offset; } else { addr = 0; } if (addr == bo_va->addr) return 0; flags = amdgpu_ttm_tt_pte_flags(adev, bo_va->bo->tbo.ttm, mem); list_for_each_entry(mapping, &bo_va->mappings, list) { r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, addr, flags, &bo_va->last_pt_update); if (r) return r; } bo_va->addr = addr; spin_lock(&vm->status_lock); list_del_init(&bo_va->vm_status); spin_unlock(&vm->status_lock); return 0; } /** * amdgpu_vm_clear_freed - clear freed BOs in the PT * * @adev: amdgpu_device pointer * @vm: requested vm * * Make sure all freed BOs are cleared in the PT. * Returns 0 for success. * * PTs have to be reserved and mutex must be locked! */ int amdgpu_vm_clear_freed(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_bo_va_mapping *mapping; int r; while (!list_empty(&vm->freed)) { mapping = list_first_entry(&vm->freed, struct amdgpu_bo_va_mapping, list); list_del(&mapping->list); r = amdgpu_vm_bo_update_mapping(adev, vm, mapping, 0, 0, NULL); kfree(mapping); if (r) return r; } return 0; } /** * amdgpu_vm_clear_invalids - clear invalidated BOs in the PT * * @adev: amdgpu_device pointer * @vm: requested vm * * Make sure all invalidated BOs are cleared in the PT. * Returns 0 for success. * * PTs have to be reserved and mutex must be locked! */ int amdgpu_vm_clear_invalids(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_bo_va *bo_va; int r; spin_lock(&vm->status_lock); while (!list_empty(&vm->invalidated)) { bo_va = list_first_entry(&vm->invalidated, struct amdgpu_bo_va, vm_status); spin_unlock(&vm->status_lock); r = amdgpu_vm_bo_update(adev, bo_va, NULL); if (r) return r; spin_lock(&vm->status_lock); } spin_unlock(&vm->status_lock); return 0; } /** * amdgpu_vm_bo_add - add a bo to a specific vm * * @adev: amdgpu_device pointer * @vm: requested vm * @bo: amdgpu buffer object * * Add @bo into the requested vm (cayman+). * Add @bo to the list of bos associated with the vm * Returns newly added bo_va or NULL for failure * * Object has to be reserved! */ struct amdgpu_bo_va *amdgpu_vm_bo_add(struct amdgpu_device *adev, struct amdgpu_vm *vm, struct amdgpu_bo *bo) { struct amdgpu_bo_va *bo_va; bo_va = kzalloc(sizeof(struct amdgpu_bo_va), GFP_KERNEL); if (bo_va == NULL) { return NULL; } bo_va->vm = vm; bo_va->bo = bo; bo_va->addr = 0; bo_va->ref_count = 1; INIT_LIST_HEAD(&bo_va->bo_list); INIT_LIST_HEAD(&bo_va->mappings); INIT_LIST_HEAD(&bo_va->vm_status); mutex_lock(&vm->mutex); list_add_tail(&bo_va->bo_list, &bo->va); mutex_unlock(&vm->mutex); return bo_va; } /** * amdgpu_vm_bo_map - map bo inside a vm * * @adev: amdgpu_device pointer * @bo_va: bo_va to store the address * @saddr: where to map the BO * @offset: requested offset in the BO * @flags: attributes of pages (read/write/valid/etc.) * * Add a mapping of the BO at the specefied addr into the VM. * Returns 0 for success, error for failure. * * Object has to be reserved and gets unreserved by this function! */ int amdgpu_vm_bo_map(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr, uint64_t offset, uint64_t size, uint32_t flags) { struct amdgpu_bo_va_mapping *mapping; struct amdgpu_vm *vm = bo_va->vm; struct interval_tree_node *it; unsigned last_pfn, pt_idx; uint64_t eaddr; int r; /* validate the parameters */ if (saddr & AMDGPU_GPU_PAGE_MASK || offset & AMDGPU_GPU_PAGE_MASK || size == 0 || size & AMDGPU_GPU_PAGE_MASK) { amdgpu_bo_unreserve(bo_va->bo); return -EINVAL; } /* make sure object fit at this offset */ eaddr = saddr + size; if ((saddr >= eaddr) || (offset + size > amdgpu_bo_size(bo_va->bo))) { amdgpu_bo_unreserve(bo_va->bo); return -EINVAL; } last_pfn = eaddr / AMDGPU_GPU_PAGE_SIZE; if (last_pfn > adev->vm_manager.max_pfn) { dev_err(adev->dev, "va above limit (0x%08X > 0x%08X)\n", last_pfn, adev->vm_manager.max_pfn); amdgpu_bo_unreserve(bo_va->bo); return -EINVAL; } mutex_lock(&vm->mutex); saddr /= AMDGPU_GPU_PAGE_SIZE; eaddr /= AMDGPU_GPU_PAGE_SIZE; it = interval_tree_iter_first(&vm->va, saddr, eaddr - 1); if (it) { struct amdgpu_bo_va_mapping *tmp; tmp = container_of(it, struct amdgpu_bo_va_mapping, it); /* bo and tmp overlap, invalid addr */ dev_err(adev->dev, "bo %p va 0x%010Lx-0x%010Lx conflict with " "0x%010lx-0x%010lx\n", bo_va->bo, saddr, eaddr, tmp->it.start, tmp->it.last + 1); amdgpu_bo_unreserve(bo_va->bo); r = -EINVAL; goto error_unlock; } mapping = kmalloc(sizeof(*mapping), GFP_KERNEL); if (!mapping) { amdgpu_bo_unreserve(bo_va->bo); r = -ENOMEM; goto error_unlock; } INIT_LIST_HEAD(&mapping->list); mapping->it.start = saddr; mapping->it.last = eaddr - 1; mapping->offset = offset; mapping->flags = flags; list_add(&mapping->list, &bo_va->mappings); interval_tree_insert(&mapping->it, &vm->va); /* Make sure the page tables are allocated */ saddr >>= amdgpu_vm_block_size; eaddr >>= amdgpu_vm_block_size; BUG_ON(eaddr >= amdgpu_vm_num_pdes(adev)); if (eaddr > vm->max_pde_used) vm->max_pde_used = eaddr; amdgpu_bo_unreserve(bo_va->bo); /* walk over the address space and allocate the page tables */ for (pt_idx = saddr; pt_idx <= eaddr; ++pt_idx) { struct amdgpu_bo *pt; if (vm->page_tables[pt_idx].bo) continue; /* drop mutex to allocate and clear page table */ mutex_unlock(&vm->mutex); r = amdgpu_bo_create(adev, AMDGPU_VM_PTE_COUNT * 8, AMDGPU_GPU_PAGE_SIZE, true, AMDGPU_GEM_DOMAIN_VRAM, 0, NULL, &pt); if (r) goto error_free; r = amdgpu_vm_clear_bo(adev, pt); if (r) { amdgpu_bo_unref(&pt); goto error_free; } /* aquire mutex again */ mutex_lock(&vm->mutex); if (vm->page_tables[pt_idx].bo) { /* someone else allocated the pt in the meantime */ mutex_unlock(&vm->mutex); amdgpu_bo_unref(&pt); mutex_lock(&vm->mutex); continue; } vm->page_tables[pt_idx].addr = 0; vm->page_tables[pt_idx].bo = pt; } mutex_unlock(&vm->mutex); return 0; error_free: mutex_lock(&vm->mutex); list_del(&mapping->list); interval_tree_remove(&mapping->it, &vm->va); kfree(mapping); error_unlock: mutex_unlock(&vm->mutex); return r; } /** * amdgpu_vm_bo_unmap - remove bo mapping from vm * * @adev: amdgpu_device pointer * @bo_va: bo_va to remove the address from * @saddr: where to the BO is mapped * * Remove a mapping of the BO at the specefied addr from the VM. * Returns 0 for success, error for failure. * * Object has to be reserved and gets unreserved by this function! */ int amdgpu_vm_bo_unmap(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va, uint64_t saddr) { struct amdgpu_bo_va_mapping *mapping; struct amdgpu_vm *vm = bo_va->vm; list_for_each_entry(mapping, &bo_va->mappings, list) { if (mapping->it.start == saddr) break; } if (&mapping->list == &bo_va->mappings) { amdgpu_bo_unreserve(bo_va->bo); return -ENOENT; } mutex_lock(&vm->mutex); list_del(&mapping->list); interval_tree_remove(&mapping->it, &vm->va); if (bo_va->addr) { /* clear the old address */ list_add(&mapping->list, &vm->freed); } else { kfree(mapping); } mutex_unlock(&vm->mutex); amdgpu_bo_unreserve(bo_va->bo); return 0; } /** * amdgpu_vm_bo_rmv - remove a bo to a specific vm * * @adev: amdgpu_device pointer * @bo_va: requested bo_va * * Remove @bo_va->bo from the requested vm (cayman+). * * Object have to be reserved! */ void amdgpu_vm_bo_rmv(struct amdgpu_device *adev, struct amdgpu_bo_va *bo_va) { struct amdgpu_bo_va_mapping *mapping, *next; struct amdgpu_vm *vm = bo_va->vm; list_del(&bo_va->bo_list); mutex_lock(&vm->mutex); spin_lock(&vm->status_lock); list_del(&bo_va->vm_status); spin_unlock(&vm->status_lock); list_for_each_entry_safe(mapping, next, &bo_va->mappings, list) { list_del(&mapping->list); interval_tree_remove(&mapping->it, &vm->va); if (bo_va->addr) list_add(&mapping->list, &vm->freed); else kfree(mapping); } amdgpu_fence_unref(&bo_va->last_pt_update); kfree(bo_va); mutex_unlock(&vm->mutex); } /** * amdgpu_vm_bo_invalidate - mark the bo as invalid * * @adev: amdgpu_device pointer * @vm: requested vm * @bo: amdgpu buffer object * * Mark @bo as invalid (cayman+). */ void amdgpu_vm_bo_invalidate(struct amdgpu_device *adev, struct amdgpu_bo *bo) { struct amdgpu_bo_va *bo_va; list_for_each_entry(bo_va, &bo->va, bo_list) { if (bo_va->addr) { spin_lock(&bo_va->vm->status_lock); list_del(&bo_va->vm_status); list_add(&bo_va->vm_status, &bo_va->vm->invalidated); spin_unlock(&bo_va->vm->status_lock); } } } /** * amdgpu_vm_init - initialize a vm instance * * @adev: amdgpu_device pointer * @vm: requested vm * * Init @vm fields (cayman+). */ int amdgpu_vm_init(struct amdgpu_device *adev, struct amdgpu_vm *vm) { const unsigned align = min(AMDGPU_VM_PTB_ALIGN_SIZE, AMDGPU_VM_PTE_COUNT * 8); unsigned pd_size, pd_entries, pts_size; int i, r; for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { vm->ids[i].id = 0; vm->ids[i].flushed_updates = NULL; vm->ids[i].last_id_use = NULL; } mutex_init(&vm->mutex); vm->va = RB_ROOT; spin_lock_init(&vm->status_lock); INIT_LIST_HEAD(&vm->invalidated); INIT_LIST_HEAD(&vm->freed); pd_size = amdgpu_vm_directory_size(adev); pd_entries = amdgpu_vm_num_pdes(adev); /* allocate page table array */ pts_size = pd_entries * sizeof(struct amdgpu_vm_pt); vm->page_tables = kzalloc(pts_size, GFP_KERNEL); if (vm->page_tables == NULL) { DRM_ERROR("Cannot allocate memory for page table array\n"); return -ENOMEM; } r = amdgpu_bo_create(adev, pd_size, align, true, AMDGPU_GEM_DOMAIN_VRAM, 0, NULL, &vm->page_directory); if (r) return r; r = amdgpu_vm_clear_bo(adev, vm->page_directory); if (r) { amdgpu_bo_unref(&vm->page_directory); vm->page_directory = NULL; return r; } return 0; } /** * amdgpu_vm_fini - tear down a vm instance * * @adev: amdgpu_device pointer * @vm: requested vm * * Tear down @vm (cayman+). * Unbind the VM and remove all bos from the vm bo list */ void amdgpu_vm_fini(struct amdgpu_device *adev, struct amdgpu_vm *vm) { struct amdgpu_bo_va_mapping *mapping, *tmp; int i; if (!RB_EMPTY_ROOT(&vm->va)) { dev_err(adev->dev, "still active bo inside vm\n"); } rbtree_postorder_for_each_entry_safe(mapping, tmp, &vm->va, it.rb) { list_del(&mapping->list); interval_tree_remove(&mapping->it, &vm->va); kfree(mapping); } list_for_each_entry_safe(mapping, tmp, &vm->freed, list) { list_del(&mapping->list); kfree(mapping); } for (i = 0; i < amdgpu_vm_num_pdes(adev); i++) amdgpu_bo_unref(&vm->page_tables[i].bo); kfree(vm->page_tables); amdgpu_bo_unref(&vm->page_directory); for (i = 0; i < AMDGPU_MAX_RINGS; ++i) { amdgpu_fence_unref(&vm->ids[i].flushed_updates); amdgpu_fence_unref(&vm->ids[i].last_id_use); } mutex_destroy(&vm->mutex); }