/****************************************************************************** AudioScience HPI driver Copyright (C) 1997-2010 AudioScience Inc. This program is free software; you can redistribute it and/or modify it under the terms of version 2 of the GNU General Public License as published by the Free Software Foundation; This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Hardware Programming Interface (HPI) for AudioScience ASI50xx, AS51xx, ASI6xxx, ASI87xx ASI89xx series adapters. These PCI and PCIe bus adapters are based on a TMS320C6205 PCI bus mastering DSP, and (except ASI50xx) TI TMS320C6xxx floating point DSP Exported function: void HPI_6205(struct hpi_message *phm, struct hpi_response *phr) (C) Copyright AudioScience Inc. 1998-2010 *******************************************************************************/ #define SOURCEFILE_NAME "hpi6205.c" #include "hpi_internal.h" #include "hpimsginit.h" #include "hpidebug.h" #include "hpi6205.h" #include "hpidspcd.h" #include "hpicmn.h" /*****************************************************************************/ /* HPI6205 specific error codes */ #define HPI6205_ERROR_BASE 1000 /* not actually used anywhere */ /* operational/messaging errors */ #define HPI6205_ERROR_MSG_RESP_IDLE_TIMEOUT 1015 #define HPI6205_ERROR_MSG_RESP_TIMEOUT 1016 /* initialization/bootload errors */ #define HPI6205_ERROR_6205_NO_IRQ 1002 #define HPI6205_ERROR_6205_INIT_FAILED 1003 #define HPI6205_ERROR_6205_REG 1006 #define HPI6205_ERROR_6205_DSPPAGE 1007 #define HPI6205_ERROR_C6713_HPIC 1009 #define HPI6205_ERROR_C6713_HPIA 1010 #define HPI6205_ERROR_C6713_PLL 1011 #define HPI6205_ERROR_DSP_INTMEM 1012 #define HPI6205_ERROR_DSP_EXTMEM 1013 #define HPI6205_ERROR_DSP_PLD 1014 #define HPI6205_ERROR_6205_EEPROM 1017 #define HPI6205_ERROR_DSP_EMIF 1018 /*****************************************************************************/ /* for C6205 PCI i/f */ /* Host Status Register (HSR) bitfields */ #define C6205_HSR_INTSRC 0x01 #define C6205_HSR_INTAVAL 0x02 #define C6205_HSR_INTAM 0x04 #define C6205_HSR_CFGERR 0x08 #define C6205_HSR_EEREAD 0x10 /* Host-to-DSP Control Register (HDCR) bitfields */ #define C6205_HDCR_WARMRESET 0x01 #define C6205_HDCR_DSPINT 0x02 #define C6205_HDCR_PCIBOOT 0x04 /* DSP Page Register (DSPP) bitfields, */ /* defines 4 Mbyte page that BAR0 points to */ #define C6205_DSPP_MAP1 0x400 /* BAR0 maps to prefetchable 4 Mbyte memory block set by DSPP. * BAR1 maps to non-prefetchable 8 Mbyte memory block * of DSP memory mapped registers (starting at 0x01800000). * 0x01800000 is hardcoded in the PCI i/f, so that only the offset from this * needs to be added to the BAR1 base address set in the PCI config reg */ #define C6205_BAR1_PCI_IO_OFFSET (0x027FFF0L) #define C6205_BAR1_HSR (C6205_BAR1_PCI_IO_OFFSET) #define C6205_BAR1_HDCR (C6205_BAR1_PCI_IO_OFFSET+4) #define C6205_BAR1_DSPP (C6205_BAR1_PCI_IO_OFFSET+8) /* used to control LED (revA) and reset C6713 (revB) */ #define C6205_BAR0_TIMER1_CTL (0x01980000L) /* For first 6713 in CE1 space, using DA17,16,2 */ #define HPICL_ADDR 0x01400000L #define HPICH_ADDR 0x01400004L #define HPIAL_ADDR 0x01410000L #define HPIAH_ADDR 0x01410004L #define HPIDIL_ADDR 0x01420000L #define HPIDIH_ADDR 0x01420004L #define HPIDL_ADDR 0x01430000L #define HPIDH_ADDR 0x01430004L #define C6713_EMIF_GCTL 0x01800000 #define C6713_EMIF_CE1 0x01800004 #define C6713_EMIF_CE0 0x01800008 #define C6713_EMIF_CE2 0x01800010 #define C6713_EMIF_CE3 0x01800014 #define C6713_EMIF_SDRAMCTL 0x01800018 #define C6713_EMIF_SDRAMTIMING 0x0180001C #define C6713_EMIF_SDRAMEXT 0x01800020 struct hpi_hw_obj { /* PCI registers */ __iomem u32 *prHSR; __iomem u32 *prHDCR; __iomem u32 *prDSPP; u32 dsp_page; struct consistent_dma_area h_locked_mem; struct bus_master_interface *p_interface_buffer; u16 flag_outstream_just_reset[HPI_MAX_STREAMS]; /* a non-NULL handle means there is an HPI allocated buffer */ struct consistent_dma_area instream_host_buffers[HPI_MAX_STREAMS]; struct consistent_dma_area outstream_host_buffers[HPI_MAX_STREAMS]; /* non-zero size means a buffer exists, may be external */ u32 instream_host_buffer_size[HPI_MAX_STREAMS]; u32 outstream_host_buffer_size[HPI_MAX_STREAMS]; struct consistent_dma_area h_control_cache; struct consistent_dma_area h_async_event_buffer; /* struct hpi_control_cache_single *pControlCache; */ struct hpi_async_event *p_async_event_buffer; struct hpi_control_cache *p_cache; }; /*****************************************************************************/ /* local prototypes */ #define check_before_bbm_copy(status, p_bbm_data, l_first_write, l_second_write) static int wait_dsp_ack(struct hpi_hw_obj *phw, int state, int timeout_us); static void send_dsp_command(struct hpi_hw_obj *phw, int cmd); static u16 adapter_boot_load_dsp(struct hpi_adapter_obj *pao, u32 *pos_error_code); static u16 message_response_sequence(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void hw_message(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); #define HPI6205_TIMEOUT 1000000 static void subsys_create_adapter(struct hpi_message *phm, struct hpi_response *phr); static void subsys_delete_adapter(struct hpi_message *phm, struct hpi_response *phr); static u16 create_adapter_obj(struct hpi_adapter_obj *pao, u32 *pos_error_code); static void delete_adapter_obj(struct hpi_adapter_obj *pao); static void outstream_host_buffer_allocate(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void outstream_host_buffer_get_info(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void outstream_host_buffer_free(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void outstream_write(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void outstream_get_info(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void outstream_start(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void outstream_open(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void outstream_reset(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void instream_host_buffer_allocate(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void instream_host_buffer_get_info(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void instream_host_buffer_free(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void instream_read(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void instream_get_info(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static void instream_start(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr); static u32 boot_loader_read_mem32(struct hpi_adapter_obj *pao, int dsp_index, u32 address); static void boot_loader_write_mem32(struct hpi_adapter_obj *pao, int dsp_index, u32 address, u32 data); static u16 boot_loader_config_emif(struct hpi_adapter_obj *pao, int dsp_index); static u16 boot_loader_test_memory(struct hpi_adapter_obj *pao, int dsp_index, u32 address, u32 length); static u16 boot_loader_test_internal_memory(struct hpi_adapter_obj *pao, int dsp_index); static u16 boot_loader_test_external_memory(struct hpi_adapter_obj *pao, int dsp_index); static u16 boot_loader_test_pld(struct hpi_adapter_obj *pao, int dsp_index); /*****************************************************************************/ static void subsys_message(struct hpi_message *phm, struct hpi_response *phr) { switch (phm->function) { case HPI_SUBSYS_CREATE_ADAPTER: subsys_create_adapter(phm, phr); break; case HPI_SUBSYS_DELETE_ADAPTER: subsys_delete_adapter(phm, phr); break; default: phr->error = HPI_ERROR_INVALID_FUNC; break; } } static void control_message(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; u16 pending_cache_error = 0; switch (phm->function) { case HPI_CONTROL_GET_STATE: if (pao->has_control_cache) { rmb(); /* make sure we see updates DMAed from DSP */ if (hpi_check_control_cache(phw->p_cache, phm, phr)) { break; } else if (phm->u.c.attribute == HPI_METER_PEAK) { pending_cache_error = HPI_ERROR_CONTROL_CACHING; } } hw_message(pao, phm, phr); if (pending_cache_error && !phr->error) phr->error = pending_cache_error; break; case HPI_CONTROL_GET_INFO: hw_message(pao, phm, phr); break; case HPI_CONTROL_SET_STATE: hw_message(pao, phm, phr); if (pao->has_control_cache) hpi_cmn_control_cache_sync_to_msg(phw->p_cache, phm, phr); break; default: phr->error = HPI_ERROR_INVALID_FUNC; break; } } static void adapter_message(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { switch (phm->function) { default: hw_message(pao, phm, phr); break; } } static void outstream_message(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { if (phm->obj_index >= HPI_MAX_STREAMS) { phr->error = HPI_ERROR_INVALID_OBJ_INDEX; HPI_DEBUG_LOG(WARNING, "Message referencing invalid stream %d " "on adapter index %d\n", phm->obj_index, phm->adapter_index); return; } switch (phm->function) { case HPI_OSTREAM_WRITE: outstream_write(pao, phm, phr); break; case HPI_OSTREAM_GET_INFO: outstream_get_info(pao, phm, phr); break; case HPI_OSTREAM_HOSTBUFFER_ALLOC: outstream_host_buffer_allocate(pao, phm, phr); break; case HPI_OSTREAM_HOSTBUFFER_GET_INFO: outstream_host_buffer_get_info(pao, phm, phr); break; case HPI_OSTREAM_HOSTBUFFER_FREE: outstream_host_buffer_free(pao, phm, phr); break; case HPI_OSTREAM_START: outstream_start(pao, phm, phr); break; case HPI_OSTREAM_OPEN: outstream_open(pao, phm, phr); break; case HPI_OSTREAM_RESET: outstream_reset(pao, phm, phr); break; default: hw_message(pao, phm, phr); break; } } static void instream_message(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { if (phm->obj_index >= HPI_MAX_STREAMS) { phr->error = HPI_ERROR_INVALID_OBJ_INDEX; HPI_DEBUG_LOG(WARNING, "Message referencing invalid stream %d " "on adapter index %d\n", phm->obj_index, phm->adapter_index); return; } switch (phm->function) { case HPI_ISTREAM_READ: instream_read(pao, phm, phr); break; case HPI_ISTREAM_GET_INFO: instream_get_info(pao, phm, phr); break; case HPI_ISTREAM_HOSTBUFFER_ALLOC: instream_host_buffer_allocate(pao, phm, phr); break; case HPI_ISTREAM_HOSTBUFFER_GET_INFO: instream_host_buffer_get_info(pao, phm, phr); break; case HPI_ISTREAM_HOSTBUFFER_FREE: instream_host_buffer_free(pao, phm, phr); break; case HPI_ISTREAM_START: instream_start(pao, phm, phr); break; default: hw_message(pao, phm, phr); break; } } /*****************************************************************************/ /** Entry point to this HPI backend * All calls to the HPI start here */ void HPI_6205(struct hpi_message *phm, struct hpi_response *phr) { struct hpi_adapter_obj *pao = NULL; /* subsytem messages are processed by every HPI. * All other messages are ignored unless the adapter index matches * an adapter in the HPI */ /* HPI_DEBUG_LOG(DEBUG, "HPI Obj=%d, Func=%d\n", phm->wObject, phm->wFunction); */ /* if Dsp has crashed then do not communicate with it any more */ if (phm->object != HPI_OBJ_SUBSYSTEM) { pao = hpi_find_adapter(phm->adapter_index); if (!pao) { HPI_DEBUG_LOG(DEBUG, " %d,%d refused, for another HPI?\n", phm->object, phm->function); return; } if ((pao->dsp_crashed >= 10) && (phm->function != HPI_ADAPTER_DEBUG_READ)) { /* allow last resort debug read even after crash */ hpi_init_response(phr, phm->object, phm->function, HPI_ERROR_DSP_HARDWARE); HPI_DEBUG_LOG(WARNING, " %d,%d dsp crashed.\n", phm->object, phm->function); return; } } /* Init default response */ if (phm->function != HPI_SUBSYS_CREATE_ADAPTER) phr->error = HPI_ERROR_PROCESSING_MESSAGE; HPI_DEBUG_LOG(VERBOSE, "start of switch\n"); switch (phm->type) { case HPI_TYPE_MESSAGE: switch (phm->object) { case HPI_OBJ_SUBSYSTEM: subsys_message(phm, phr); break; case HPI_OBJ_ADAPTER: adapter_message(pao, phm, phr); break; case HPI_OBJ_CONTROLEX: case HPI_OBJ_CONTROL: control_message(pao, phm, phr); break; case HPI_OBJ_OSTREAM: outstream_message(pao, phm, phr); break; case HPI_OBJ_ISTREAM: instream_message(pao, phm, phr); break; default: hw_message(pao, phm, phr); break; } break; default: phr->error = HPI_ERROR_INVALID_TYPE; break; } } /*****************************************************************************/ /* SUBSYSTEM */ /** Create an adapter object and initialise it based on resource information * passed in in the message * *** NOTE - you cannot use this function AND the FindAdapters function at the * same time, the application must use only one of them to get the adapters *** */ static void subsys_create_adapter(struct hpi_message *phm, struct hpi_response *phr) { /* create temp adapter obj, because we don't know what index yet */ struct hpi_adapter_obj ao; u32 os_error_code; u16 err; HPI_DEBUG_LOG(DEBUG, " subsys_create_adapter\n"); memset(&ao, 0, sizeof(ao)); ao.priv = kzalloc(sizeof(struct hpi_hw_obj), GFP_KERNEL); if (!ao.priv) { HPI_DEBUG_LOG(ERROR, "cant get mem for adapter object\n"); phr->error = HPI_ERROR_MEMORY_ALLOC; return; } ao.pci = *phm->u.s.resource.r.pci; err = create_adapter_obj(&ao, &os_error_code); if (err) { delete_adapter_obj(&ao); if (err >= HPI_ERROR_BACKEND_BASE) { phr->error = HPI_ERROR_DSP_BOOTLOAD; phr->specific_error = err; } else { phr->error = err; } phr->u.s.data = os_error_code; return; } phr->u.s.aw_adapter_list[ao.index] = ao.adapter_type; phr->u.s.adapter_index = ao.index; phr->u.s.num_adapters++; phr->error = 0; } /** delete an adapter - required by WDM driver */ static void subsys_delete_adapter(struct hpi_message *phm, struct hpi_response *phr) { struct hpi_adapter_obj *pao; struct hpi_hw_obj *phw; pao = hpi_find_adapter(phm->obj_index); if (!pao) { phr->error = HPI_ERROR_INVALID_OBJ_INDEX; return; } phw = (struct hpi_hw_obj *)pao->priv; /* reset adapter h/w */ /* Reset C6713 #1 */ boot_loader_write_mem32(pao, 0, C6205_BAR0_TIMER1_CTL, 0); /* reset C6205 */ iowrite32(C6205_HDCR_WARMRESET, phw->prHDCR); delete_adapter_obj(pao); hpi_delete_adapter(pao); phr->error = 0; } /** Create adapter object allocate buffers, bootload DSPs, initialise control cache */ static u16 create_adapter_obj(struct hpi_adapter_obj *pao, u32 *pos_error_code) { struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface; u32 phys_addr; #ifndef HPI6205_NO_HSR_POLL u32 time_out = HPI6205_TIMEOUT; u32 temp1; #endif int i; u16 err; /* init error reporting */ pao->dsp_crashed = 0; for (i = 0; i < HPI_MAX_STREAMS; i++) phw->flag_outstream_just_reset[i] = 1; /* The C6205 memory area 1 is 8Mbyte window into DSP registers */ phw->prHSR = pao->pci.ap_mem_base[1] + C6205_BAR1_HSR / sizeof(*pao->pci.ap_mem_base[1]); phw->prHDCR = pao->pci.ap_mem_base[1] + C6205_BAR1_HDCR / sizeof(*pao->pci.ap_mem_base[1]); phw->prDSPP = pao->pci.ap_mem_base[1] + C6205_BAR1_DSPP / sizeof(*pao->pci.ap_mem_base[1]); pao->has_control_cache = 0; if (hpios_locked_mem_alloc(&phw->h_locked_mem, sizeof(struct bus_master_interface), pao->pci.pci_dev)) phw->p_interface_buffer = NULL; else if (hpios_locked_mem_get_virt_addr(&phw->h_locked_mem, (void *)&phw->p_interface_buffer)) phw->p_interface_buffer = NULL; HPI_DEBUG_LOG(DEBUG, "interface buffer address %p\n", phw->p_interface_buffer); if (phw->p_interface_buffer) { memset((void *)phw->p_interface_buffer, 0, sizeof(struct bus_master_interface)); phw->p_interface_buffer->dsp_ack = H620_HIF_UNKNOWN; } err = adapter_boot_load_dsp(pao, pos_error_code); if (err) /* no need to clean up as SubSysCreateAdapter */ /* calls DeleteAdapter on error. */ return err; HPI_DEBUG_LOG(INFO, "load DSP code OK\n"); /* allow boot load even if mem alloc wont work */ if (!phw->p_interface_buffer) return HPI_ERROR_MEMORY_ALLOC; interface = phw->p_interface_buffer; #ifndef HPI6205_NO_HSR_POLL /* wait for first interrupt indicating the DSP init is done */ time_out = HPI6205_TIMEOUT * 10; temp1 = 0; while (((temp1 & C6205_HSR_INTSRC) == 0) && --time_out) temp1 = ioread32(phw->prHSR); if (temp1 & C6205_HSR_INTSRC) HPI_DEBUG_LOG(INFO, "Interrupt confirming DSP code running OK\n"); else { HPI_DEBUG_LOG(ERROR, "Timed out waiting for interrupt " "confirming DSP code running\n"); return HPI6205_ERROR_6205_NO_IRQ; } /* reset the interrupt */ iowrite32(C6205_HSR_INTSRC, phw->prHSR); #endif /* make sure the DSP has started ok */ if (!wait_dsp_ack(phw, H620_HIF_RESET, HPI6205_TIMEOUT * 10)) { HPI_DEBUG_LOG(ERROR, "timed out waiting reset state \n"); return HPI6205_ERROR_6205_INIT_FAILED; } /* Note that *pao, *phw are zeroed after allocation, * so pointers and flags are NULL by default. * Allocate bus mastering control cache buffer and tell the DSP about it */ if (interface->control_cache.number_of_controls) { u8 *p_control_cache_virtual; err = hpios_locked_mem_alloc(&phw->h_control_cache, interface->control_cache.size_in_bytes, pao->pci.pci_dev); if (!err) err = hpios_locked_mem_get_virt_addr(&phw-> h_control_cache, (void *)&p_control_cache_virtual); if (!err) { memset(p_control_cache_virtual, 0, interface->control_cache.size_in_bytes); phw->p_cache = hpi_alloc_control_cache(interface-> control_cache.number_of_controls, interface->control_cache.size_in_bytes, p_control_cache_virtual); if (!phw->p_cache) err = HPI_ERROR_MEMORY_ALLOC; } if (!err) { err = hpios_locked_mem_get_phys_addr(&phw-> h_control_cache, &phys_addr); interface->control_cache.physical_address32 = phys_addr; } if (!err) pao->has_control_cache = 1; else { if (hpios_locked_mem_valid(&phw->h_control_cache)) hpios_locked_mem_free(&phw->h_control_cache); pao->has_control_cache = 0; } } /* allocate bus mastering async buffer and tell the DSP about it */ if (interface->async_buffer.b.size) { err = hpios_locked_mem_alloc(&phw->h_async_event_buffer, interface->async_buffer.b.size * sizeof(struct hpi_async_event), pao->pci.pci_dev); if (!err) err = hpios_locked_mem_get_virt_addr (&phw->h_async_event_buffer, (void *) &phw->p_async_event_buffer); if (!err) memset((void *)phw->p_async_event_buffer, 0, interface->async_buffer.b.size * sizeof(struct hpi_async_event)); if (!err) { err = hpios_locked_mem_get_phys_addr (&phw->h_async_event_buffer, &phys_addr); interface->async_buffer.physical_address32 = phys_addr; } if (err) { if (hpios_locked_mem_valid(&phw-> h_async_event_buffer)) { hpios_locked_mem_free (&phw->h_async_event_buffer); phw->p_async_event_buffer = NULL; } } } send_dsp_command(phw, H620_HIF_IDLE); { struct hpi_message hm; struct hpi_response hr; u32 max_streams; HPI_DEBUG_LOG(VERBOSE, "init ADAPTER_GET_INFO\n"); memset(&hm, 0, sizeof(hm)); hm.type = HPI_TYPE_MESSAGE; hm.size = sizeof(hm); hm.object = HPI_OBJ_ADAPTER; hm.function = HPI_ADAPTER_GET_INFO; hm.adapter_index = 0; memset(&hr, 0, sizeof(hr)); hr.size = sizeof(hr); err = message_response_sequence(pao, &hm, &hr); if (err) { HPI_DEBUG_LOG(ERROR, "message transport error %d\n", err); return err; } if (hr.error) return hr.error; pao->adapter_type = hr.u.ax.info.adapter_type; pao->index = hr.u.ax.info.adapter_index; max_streams = hr.u.ax.info.num_outstreams + hr.u.ax.info.num_instreams; hpios_locked_mem_prepare((max_streams * 6) / 10, max_streams, 65536, pao->pci.pci_dev); HPI_DEBUG_LOG(VERBOSE, "got adapter info type %x index %d serial %d\n", hr.u.ax.info.adapter_type, hr.u.ax.info.adapter_index, hr.u.ax.info.serial_number); } pao->open = 0; /* upon creation the adapter is closed */ if (phw->p_cache) phw->p_cache->adap_idx = pao->index; HPI_DEBUG_LOG(INFO, "bootload DSP OK\n"); return hpi_add_adapter(pao); } /** Free memory areas allocated by adapter * this routine is called from SubSysDeleteAdapter, * and SubSysCreateAdapter if duplicate index */ static void delete_adapter_obj(struct hpi_adapter_obj *pao) { struct hpi_hw_obj *phw; int i; phw = pao->priv; if (hpios_locked_mem_valid(&phw->h_async_event_buffer)) { hpios_locked_mem_free(&phw->h_async_event_buffer); phw->p_async_event_buffer = NULL; } if (hpios_locked_mem_valid(&phw->h_control_cache)) { hpios_locked_mem_free(&phw->h_control_cache); hpi_free_control_cache(phw->p_cache); } if (hpios_locked_mem_valid(&phw->h_locked_mem)) { hpios_locked_mem_free(&phw->h_locked_mem); phw->p_interface_buffer = NULL; } for (i = 0; i < HPI_MAX_STREAMS; i++) if (hpios_locked_mem_valid(&phw->instream_host_buffers[i])) { hpios_locked_mem_free(&phw->instream_host_buffers[i]); /*?phw->InStreamHostBuffers[i] = NULL; */ phw->instream_host_buffer_size[i] = 0; } for (i = 0; i < HPI_MAX_STREAMS; i++) if (hpios_locked_mem_valid(&phw->outstream_host_buffers[i])) { hpios_locked_mem_free(&phw->outstream_host_buffers [i]); phw->outstream_host_buffer_size[i] = 0; } hpios_locked_mem_unprepare(pao->pci.pci_dev); kfree(phw); } /*****************************************************************************/ /* OutStream Host buffer functions */ /** Allocate or attach buffer for busmastering */ static void outstream_host_buffer_allocate(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { u16 err = 0; u32 command = phm->u.d.u.buffer.command; struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface = phw->p_interface_buffer; hpi_init_response(phr, phm->object, phm->function, 0); if (command == HPI_BUFFER_CMD_EXTERNAL || command == HPI_BUFFER_CMD_INTERNAL_ALLOC) { /* ALLOC phase, allocate a buffer with power of 2 size, get its bus address for PCI bus mastering */ phm->u.d.u.buffer.buffer_size = roundup_pow_of_two(phm->u.d.u.buffer.buffer_size); /* return old size and allocated size, so caller can detect change */ phr->u.d.u.stream_info.data_available = phw->outstream_host_buffer_size[phm->obj_index]; phr->u.d.u.stream_info.buffer_size = phm->u.d.u.buffer.buffer_size; if (phw->outstream_host_buffer_size[phm->obj_index] == phm->u.d.u.buffer.buffer_size) { /* Same size, no action required */ return; } if (hpios_locked_mem_valid(&phw->outstream_host_buffers[phm-> obj_index])) hpios_locked_mem_free(&phw->outstream_host_buffers [phm->obj_index]); err = hpios_locked_mem_alloc(&phw->outstream_host_buffers [phm->obj_index], phm->u.d.u.buffer.buffer_size, pao->pci.pci_dev); if (err) { phr->error = HPI_ERROR_INVALID_DATASIZE; phw->outstream_host_buffer_size[phm->obj_index] = 0; return; } err = hpios_locked_mem_get_phys_addr (&phw->outstream_host_buffers[phm->obj_index], &phm->u.d.u.buffer.pci_address); /* get the phys addr into msg for single call alloc caller * needs to do this for split alloc (or use the same message) * return the phy address for split alloc in the respose too */ phr->u.d.u.stream_info.auxiliary_data_available = phm->u.d.u.buffer.pci_address; if (err) { hpios_locked_mem_free(&phw->outstream_host_buffers [phm->obj_index]); phw->outstream_host_buffer_size[phm->obj_index] = 0; phr->error = HPI_ERROR_MEMORY_ALLOC; return; } } if (command == HPI_BUFFER_CMD_EXTERNAL || command == HPI_BUFFER_CMD_INTERNAL_GRANTADAPTER) { /* GRANT phase. Set up the BBM status, tell the DSP about the buffer so it can start using BBM. */ struct hpi_hostbuffer_status *status; if (phm->u.d.u.buffer.buffer_size & (phm->u.d.u.buffer. buffer_size - 1)) { HPI_DEBUG_LOG(ERROR, "Buffer size must be 2^N not %d\n", phm->u.d.u.buffer.buffer_size); phr->error = HPI_ERROR_INVALID_DATASIZE; return; } phw->outstream_host_buffer_size[phm->obj_index] = phm->u.d.u.buffer.buffer_size; status = &interface->outstream_host_buffer_status[phm-> obj_index]; status->samples_processed = 0; status->stream_state = HPI_STATE_STOPPED; status->dSP_index = 0; status->host_index = status->dSP_index; status->size_in_bytes = phm->u.d.u.buffer.buffer_size; status->auxiliary_data_available = 0; hw_message(pao, phm, phr); if (phr->error && hpios_locked_mem_valid(&phw-> outstream_host_buffers[phm->obj_index])) { hpios_locked_mem_free(&phw->outstream_host_buffers [phm->obj_index]); phw->outstream_host_buffer_size[phm->obj_index] = 0; } } } static void outstream_host_buffer_get_info(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface = phw->p_interface_buffer; struct hpi_hostbuffer_status *status; u8 *p_bbm_data; if (hpios_locked_mem_valid(&phw->outstream_host_buffers[phm-> obj_index])) { if (hpios_locked_mem_get_virt_addr(&phw-> outstream_host_buffers[phm->obj_index], (void *)&p_bbm_data)) { phr->error = HPI_ERROR_INVALID_OPERATION; return; } status = &interface->outstream_host_buffer_status[phm-> obj_index]; hpi_init_response(phr, HPI_OBJ_OSTREAM, HPI_OSTREAM_HOSTBUFFER_GET_INFO, 0); phr->u.d.u.hostbuffer_info.p_buffer = p_bbm_data; phr->u.d.u.hostbuffer_info.p_status = status; } else { hpi_init_response(phr, HPI_OBJ_OSTREAM, HPI_OSTREAM_HOSTBUFFER_GET_INFO, HPI_ERROR_INVALID_OPERATION); } } static void outstream_host_buffer_free(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; u32 command = phm->u.d.u.buffer.command; if (phw->outstream_host_buffer_size[phm->obj_index]) { if (command == HPI_BUFFER_CMD_EXTERNAL || command == HPI_BUFFER_CMD_INTERNAL_REVOKEADAPTER) { phw->outstream_host_buffer_size[phm->obj_index] = 0; hw_message(pao, phm, phr); /* Tell adapter to stop using the host buffer. */ } if (command == HPI_BUFFER_CMD_EXTERNAL || command == HPI_BUFFER_CMD_INTERNAL_FREE) hpios_locked_mem_free(&phw->outstream_host_buffers [phm->obj_index]); } /* Should HPI_ERROR_INVALID_OPERATION be returned if no host buffer is allocated? */ else hpi_init_response(phr, HPI_OBJ_OSTREAM, HPI_OSTREAM_HOSTBUFFER_FREE, 0); } static u32 outstream_get_space_available(struct hpi_hostbuffer_status *status) { return status->size_in_bytes - (status->host_index - status->dSP_index); } static void outstream_write(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface = phw->p_interface_buffer; struct hpi_hostbuffer_status *status; u32 space_available; if (!phw->outstream_host_buffer_size[phm->obj_index]) { /* there is no BBM buffer, write via message */ hw_message(pao, phm, phr); return; } hpi_init_response(phr, phm->object, phm->function, 0); status = &interface->outstream_host_buffer_status[phm->obj_index]; space_available = outstream_get_space_available(status); if (space_available < phm->u.d.u.data.data_size) { phr->error = HPI_ERROR_INVALID_DATASIZE; return; } /* HostBuffers is used to indicate host buffer is internally allocated. otherwise, assumed external, data written externally */ if (phm->u.d.u.data.pb_data && hpios_locked_mem_valid(&phw->outstream_host_buffers[phm-> obj_index])) { u8 *p_bbm_data; u32 l_first_write; u8 *p_app_data = (u8 *)phm->u.d.u.data.pb_data; if (hpios_locked_mem_get_virt_addr(&phw-> outstream_host_buffers[phm->obj_index], (void *)&p_bbm_data)) { phr->error = HPI_ERROR_INVALID_OPERATION; return; } /* either all data, or enough to fit from current to end of BBM buffer */ l_first_write = min(phm->u.d.u.data.data_size, status->size_in_bytes - (status->host_index & (status->size_in_bytes - 1))); memcpy(p_bbm_data + (status->host_index & (status->size_in_bytes - 1)), p_app_data, l_first_write); /* remaining data if any */ memcpy(p_bbm_data, p_app_data + l_first_write, phm->u.d.u.data.data_size - l_first_write); } /* * This version relies on the DSP code triggering an OStream buffer * update immediately following a SET_FORMAT call. The host has * already written data into the BBM buffer, but the DSP won't know * about it until dwHostIndex is adjusted. */ if (phw->flag_outstream_just_reset[phm->obj_index]) { /* Format can only change after reset. Must tell DSP. */ u16 function = phm->function; phw->flag_outstream_just_reset[phm->obj_index] = 0; phm->function = HPI_OSTREAM_SET_FORMAT; hw_message(pao, phm, phr); /* send the format to the DSP */ phm->function = function; if (phr->error) return; } status->host_index += phm->u.d.u.data.data_size; } static void outstream_get_info(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface = phw->p_interface_buffer; struct hpi_hostbuffer_status *status; if (!phw->outstream_host_buffer_size[phm->obj_index]) { hw_message(pao, phm, phr); return; } hpi_init_response(phr, phm->object, phm->function, 0); status = &interface->outstream_host_buffer_status[phm->obj_index]; phr->u.d.u.stream_info.state = (u16)status->stream_state; phr->u.d.u.stream_info.samples_transferred = status->samples_processed; phr->u.d.u.stream_info.buffer_size = status->size_in_bytes; phr->u.d.u.stream_info.data_available = status->size_in_bytes - outstream_get_space_available(status); phr->u.d.u.stream_info.auxiliary_data_available = status->auxiliary_data_available; } static void outstream_start(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { hw_message(pao, phm, phr); } static void outstream_reset(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; phw->flag_outstream_just_reset[phm->obj_index] = 1; hw_message(pao, phm, phr); } static void outstream_open(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { outstream_reset(pao, phm, phr); } /*****************************************************************************/ /* InStream Host buffer functions */ static void instream_host_buffer_allocate(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { u16 err = 0; u32 command = phm->u.d.u.buffer.command; struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface = phw->p_interface_buffer; hpi_init_response(phr, phm->object, phm->function, 0); if (command == HPI_BUFFER_CMD_EXTERNAL || command == HPI_BUFFER_CMD_INTERNAL_ALLOC) { phm->u.d.u.buffer.buffer_size = roundup_pow_of_two(phm->u.d.u.buffer.buffer_size); phr->u.d.u.stream_info.data_available = phw->instream_host_buffer_size[phm->obj_index]; phr->u.d.u.stream_info.buffer_size = phm->u.d.u.buffer.buffer_size; if (phw->instream_host_buffer_size[phm->obj_index] == phm->u.d.u.buffer.buffer_size) { /* Same size, no action required */ return; } if (hpios_locked_mem_valid(&phw->instream_host_buffers[phm-> obj_index])) hpios_locked_mem_free(&phw->instream_host_buffers [phm->obj_index]); err = hpios_locked_mem_alloc(&phw->instream_host_buffers[phm-> obj_index], phm->u.d.u.buffer.buffer_size, pao->pci.pci_dev); if (err) { phr->error = HPI_ERROR_INVALID_DATASIZE; phw->instream_host_buffer_size[phm->obj_index] = 0; return; } err = hpios_locked_mem_get_phys_addr (&phw->instream_host_buffers[phm->obj_index], &phm->u.d.u.buffer.pci_address); /* get the phys addr into msg for single call alloc. Caller needs to do this for split alloc so return the phy address */ phr->u.d.u.stream_info.auxiliary_data_available = phm->u.d.u.buffer.pci_address; if (err) { hpios_locked_mem_free(&phw->instream_host_buffers [phm->obj_index]); phw->instream_host_buffer_size[phm->obj_index] = 0; phr->error = HPI_ERROR_MEMORY_ALLOC; return; } } if (command == HPI_BUFFER_CMD_EXTERNAL || command == HPI_BUFFER_CMD_INTERNAL_GRANTADAPTER) { struct hpi_hostbuffer_status *status; if (phm->u.d.u.buffer.buffer_size & (phm->u.d.u.buffer. buffer_size - 1)) { HPI_DEBUG_LOG(ERROR, "Buffer size must be 2^N not %d\n", phm->u.d.u.buffer.buffer_size); phr->error = HPI_ERROR_INVALID_DATASIZE; return; } phw->instream_host_buffer_size[phm->obj_index] = phm->u.d.u.buffer.buffer_size; status = &interface->instream_host_buffer_status[phm-> obj_index]; status->samples_processed = 0; status->stream_state = HPI_STATE_STOPPED; status->dSP_index = 0; status->host_index = status->dSP_index; status->size_in_bytes = phm->u.d.u.buffer.buffer_size; status->auxiliary_data_available = 0; hw_message(pao, phm, phr); if (phr->error && hpios_locked_mem_valid(&phw-> instream_host_buffers[phm->obj_index])) { hpios_locked_mem_free(&phw->instream_host_buffers [phm->obj_index]); phw->instream_host_buffer_size[phm->obj_index] = 0; } } } static void instream_host_buffer_get_info(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface = phw->p_interface_buffer; struct hpi_hostbuffer_status *status; u8 *p_bbm_data; if (hpios_locked_mem_valid(&phw->instream_host_buffers[phm-> obj_index])) { if (hpios_locked_mem_get_virt_addr(&phw-> instream_host_buffers[phm->obj_index], (void *)&p_bbm_data)) { phr->error = HPI_ERROR_INVALID_OPERATION; return; } status = &interface->instream_host_buffer_status[phm-> obj_index]; hpi_init_response(phr, HPI_OBJ_ISTREAM, HPI_ISTREAM_HOSTBUFFER_GET_INFO, 0); phr->u.d.u.hostbuffer_info.p_buffer = p_bbm_data; phr->u.d.u.hostbuffer_info.p_status = status; } else { hpi_init_response(phr, HPI_OBJ_ISTREAM, HPI_ISTREAM_HOSTBUFFER_GET_INFO, HPI_ERROR_INVALID_OPERATION); } } static void instream_host_buffer_free(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; u32 command = phm->u.d.u.buffer.command; if (phw->instream_host_buffer_size[phm->obj_index]) { if (command == HPI_BUFFER_CMD_EXTERNAL || command == HPI_BUFFER_CMD_INTERNAL_REVOKEADAPTER) { phw->instream_host_buffer_size[phm->obj_index] = 0; hw_message(pao, phm, phr); } if (command == HPI_BUFFER_CMD_EXTERNAL || command == HPI_BUFFER_CMD_INTERNAL_FREE) hpios_locked_mem_free(&phw->instream_host_buffers [phm->obj_index]); } else { /* Should HPI_ERROR_INVALID_OPERATION be returned if no host buffer is allocated? */ hpi_init_response(phr, HPI_OBJ_ISTREAM, HPI_ISTREAM_HOSTBUFFER_FREE, 0); } } static void instream_start(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { hw_message(pao, phm, phr); } static u32 instream_get_bytes_available(struct hpi_hostbuffer_status *status) { return status->dSP_index - status->host_index; } static void instream_read(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface = phw->p_interface_buffer; struct hpi_hostbuffer_status *status; u32 data_available; u8 *p_bbm_data; u32 l_first_read; u8 *p_app_data = (u8 *)phm->u.d.u.data.pb_data; if (!phw->instream_host_buffer_size[phm->obj_index]) { hw_message(pao, phm, phr); return; } hpi_init_response(phr, phm->object, phm->function, 0); status = &interface->instream_host_buffer_status[phm->obj_index]; data_available = instream_get_bytes_available(status); if (data_available < phm->u.d.u.data.data_size) { phr->error = HPI_ERROR_INVALID_DATASIZE; return; } if (hpios_locked_mem_valid(&phw->instream_host_buffers[phm-> obj_index])) { if (hpios_locked_mem_get_virt_addr(&phw-> instream_host_buffers[phm->obj_index], (void *)&p_bbm_data)) { phr->error = HPI_ERROR_INVALID_OPERATION; return; } /* either all data, or enough to fit from current to end of BBM buffer */ l_first_read = min(phm->u.d.u.data.data_size, status->size_in_bytes - (status->host_index & (status->size_in_bytes - 1))); memcpy(p_app_data, p_bbm_data + (status->host_index & (status->size_in_bytes - 1)), l_first_read); /* remaining data if any */ memcpy(p_app_data + l_first_read, p_bbm_data, phm->u.d.u.data.data_size - l_first_read); } status->host_index += phm->u.d.u.data.data_size; } static void instream_get_info(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface = phw->p_interface_buffer; struct hpi_hostbuffer_status *status; if (!phw->instream_host_buffer_size[phm->obj_index]) { hw_message(pao, phm, phr); return; } status = &interface->instream_host_buffer_status[phm->obj_index]; hpi_init_response(phr, phm->object, phm->function, 0); phr->u.d.u.stream_info.state = (u16)status->stream_state; phr->u.d.u.stream_info.samples_transferred = status->samples_processed; phr->u.d.u.stream_info.buffer_size = status->size_in_bytes; phr->u.d.u.stream_info.data_available = instream_get_bytes_available(status); phr->u.d.u.stream_info.auxiliary_data_available = status->auxiliary_data_available; } /*****************************************************************************/ /* LOW-LEVEL */ #define HPI6205_MAX_FILES_TO_LOAD 2 static u16 adapter_boot_load_dsp(struct hpi_adapter_obj *pao, u32 *pos_error_code) { struct hpi_hw_obj *phw = pao->priv; struct dsp_code dsp_code; u16 boot_code_id[HPI6205_MAX_FILES_TO_LOAD]; u16 firmware_id = pao->pci.pci_dev->subsystem_device; u32 temp; int dsp = 0, i = 0; u16 err = 0; boot_code_id[0] = HPI_ADAPTER_ASI(0x6205); /* special cases where firmware_id != subsys ID */ switch (firmware_id) { case HPI_ADAPTER_FAMILY_ASI(0x5000): boot_code_id[0] = firmware_id; firmware_id = 0; break; case HPI_ADAPTER_FAMILY_ASI(0x5300): case HPI_ADAPTER_FAMILY_ASI(0x5400): case HPI_ADAPTER_FAMILY_ASI(0x6300): firmware_id = HPI_ADAPTER_FAMILY_ASI(0x6400); break; case HPI_ADAPTER_FAMILY_ASI(0x5600): case HPI_ADAPTER_FAMILY_ASI(0x6500): firmware_id = HPI_ADAPTER_FAMILY_ASI(0x6600); break; case HPI_ADAPTER_FAMILY_ASI(0x8800): firmware_id = HPI_ADAPTER_FAMILY_ASI(0x8900); break; } boot_code_id[1] = firmware_id; /* reset DSP by writing a 1 to the WARMRESET bit */ temp = C6205_HDCR_WARMRESET; iowrite32(temp, phw->prHDCR); hpios_delay_micro_seconds(1000); /* check that PCI i/f was configured by EEPROM */ temp = ioread32(phw->prHSR); if ((temp & (C6205_HSR_CFGERR | C6205_HSR_EEREAD)) != C6205_HSR_EEREAD) return HPI6205_ERROR_6205_EEPROM; temp |= 0x04; /* disable PINTA interrupt */ iowrite32(temp, phw->prHSR); /* check control register reports PCI boot mode */ temp = ioread32(phw->prHDCR); if (!(temp & C6205_HDCR_PCIBOOT)) return HPI6205_ERROR_6205_REG; /* try writing a few numbers to the DSP page register */ /* and reading them back. */ temp = 3; iowrite32(temp, phw->prDSPP); if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP)) return HPI6205_ERROR_6205_DSPPAGE; temp = 2; iowrite32(temp, phw->prDSPP); if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP)) return HPI6205_ERROR_6205_DSPPAGE; temp = 1; iowrite32(temp, phw->prDSPP); if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP)) return HPI6205_ERROR_6205_DSPPAGE; /* reset DSP page to the correct number */ temp = 0; iowrite32(temp, phw->prDSPP); if ((temp | C6205_DSPP_MAP1) != ioread32(phw->prDSPP)) return HPI6205_ERROR_6205_DSPPAGE; phw->dsp_page = 0; /* release 6713 from reset before 6205 is bootloaded. This ensures that the EMIF is inactive, and the 6713 HPI gets the correct bootmode etc */ if (boot_code_id[1] != 0) { /* DSP 1 is a C6713 */ /* CLKX0 <- '1' release the C6205 bootmode pulldowns */ boot_loader_write_mem32(pao, 0, (0x018C0024L), 0x00002202); hpios_delay_micro_seconds(100); /* Reset the 6713 #1 - revB */ boot_loader_write_mem32(pao, 0, C6205_BAR0_TIMER1_CTL, 0); /* dummy read every 4 words for 6205 advisory 1.4.4 */ boot_loader_read_mem32(pao, 0, 0); hpios_delay_micro_seconds(100); /* Release C6713 from reset - revB */ boot_loader_write_mem32(pao, 0, C6205_BAR0_TIMER1_CTL, 4); hpios_delay_micro_seconds(100); } for (dsp = 0; dsp < HPI6205_MAX_FILES_TO_LOAD; dsp++) { /* is there a DSP to load? */ if (boot_code_id[dsp] == 0) continue; err = boot_loader_config_emif(pao, dsp); if (err) return err; err = boot_loader_test_internal_memory(pao, dsp); if (err) return err; err = boot_loader_test_external_memory(pao, dsp); if (err) return err; err = boot_loader_test_pld(pao, dsp); if (err) return err; /* write the DSP code down into the DSPs memory */ dsp_code.ps_dev = pao->pci.pci_dev; err = hpi_dsp_code_open(boot_code_id[dsp], &dsp_code, pos_error_code); if (err) return err; while (1) { u32 length; u32 address; u32 type; u32 *pcode; err = hpi_dsp_code_read_word(&dsp_code, &length); if (err) break; if (length == 0xFFFFFFFF) break; /* end of code */ err = hpi_dsp_code_read_word(&dsp_code, &address); if (err) break; err = hpi_dsp_code_read_word(&dsp_code, &type); if (err) break; err = hpi_dsp_code_read_block(length, &dsp_code, &pcode); if (err) break; for (i = 0; i < (int)length; i++) { boot_loader_write_mem32(pao, dsp, address, *pcode); /* dummy read every 4 words */ /* for 6205 advisory 1.4.4 */ if (i % 4 == 0) boot_loader_read_mem32(pao, dsp, address); pcode++; address += 4; } } if (err) { hpi_dsp_code_close(&dsp_code); return err; } /* verify code */ hpi_dsp_code_rewind(&dsp_code); while (1) { u32 length = 0; u32 address = 0; u32 type = 0; u32 *pcode = NULL; u32 data = 0; hpi_dsp_code_read_word(&dsp_code, &length); if (length == 0xFFFFFFFF) break; /* end of code */ hpi_dsp_code_read_word(&dsp_code, &address); hpi_dsp_code_read_word(&dsp_code, &type); hpi_dsp_code_read_block(length, &dsp_code, &pcode); for (i = 0; i < (int)length; i++) { data = boot_loader_read_mem32(pao, dsp, address); if (data != *pcode) { err = 0; break; } pcode++; address += 4; } if (err) break; } hpi_dsp_code_close(&dsp_code); if (err) return err; } /* After bootloading all DSPs, start DSP0 running * The DSP0 code will handle starting and synchronizing with its slaves */ if (phw->p_interface_buffer) { /* we need to tell the card the physical PCI address */ u32 physicalPC_iaddress; struct bus_master_interface *interface = phw->p_interface_buffer; u32 host_mailbox_address_on_dsp; u32 physicalPC_iaddress_verify = 0; int time_out = 10; /* set ack so we know when DSP is ready to go */ /* (dwDspAck will be changed to HIF_RESET) */ interface->dsp_ack = H620_HIF_UNKNOWN; wmb(); /* ensure ack is written before dsp writes back */ err = hpios_locked_mem_get_phys_addr(&phw->h_locked_mem, &physicalPC_iaddress); /* locate the host mailbox on the DSP. */ host_mailbox_address_on_dsp = 0x80000000; while ((physicalPC_iaddress != physicalPC_iaddress_verify) && time_out--) { boot_loader_write_mem32(pao, 0, host_mailbox_address_on_dsp, physicalPC_iaddress); physicalPC_iaddress_verify = boot_loader_read_mem32(pao, 0, host_mailbox_address_on_dsp); } } HPI_DEBUG_LOG(DEBUG, "starting DS_ps running\n"); /* enable interrupts */ temp = ioread32(phw->prHSR); temp &= ~(u32)C6205_HSR_INTAM; iowrite32(temp, phw->prHSR); /* start code running... */ temp = ioread32(phw->prHDCR); temp |= (u32)C6205_HDCR_DSPINT; iowrite32(temp, phw->prHDCR); /* give the DSP 10ms to start up */ hpios_delay_micro_seconds(10000); return err; } /*****************************************************************************/ /* Bootloader utility functions */ static u32 boot_loader_read_mem32(struct hpi_adapter_obj *pao, int dsp_index, u32 address) { struct hpi_hw_obj *phw = pao->priv; u32 data = 0; __iomem u32 *p_data; if (dsp_index == 0) { /* DSP 0 is always C6205 */ if ((address >= 0x01800000) & (address < 0x02000000)) { /* BAR1 register access */ p_data = pao->pci.ap_mem_base[1] + (address & 0x007fffff) / sizeof(*pao->pci.ap_mem_base[1]); /* HPI_DEBUG_LOG(WARNING, "BAR1 access %08x\n", dwAddress); */ } else { u32 dw4M_page = address >> 22L; if (dw4M_page != phw->dsp_page) { phw->dsp_page = dw4M_page; /* *INDENT OFF* */ iowrite32(phw->dsp_page, phw->prDSPP); /* *INDENT-ON* */ } address &= 0x3fffff; /* address within 4M page */ /* BAR0 memory access */ p_data = pao->pci.ap_mem_base[0] + address / sizeof(u32); } data = ioread32(p_data); } else if (dsp_index == 1) { /* DSP 1 is a C6713 */ u32 lsb; boot_loader_write_mem32(pao, 0, HPIAL_ADDR, address); boot_loader_write_mem32(pao, 0, HPIAH_ADDR, address >> 16); lsb = boot_loader_read_mem32(pao, 0, HPIDL_ADDR); data = boot_loader_read_mem32(pao, 0, HPIDH_ADDR); data = (data << 16) | (lsb & 0xFFFF); } return data; } static void boot_loader_write_mem32(struct hpi_adapter_obj *pao, int dsp_index, u32 address, u32 data) { struct hpi_hw_obj *phw = pao->priv; __iomem u32 *p_data; /* u32 dwVerifyData=0; */ if (dsp_index == 0) { /* DSP 0 is always C6205 */ if ((address >= 0x01800000) & (address < 0x02000000)) { /* BAR1 - DSP register access using */ /* Non-prefetchable PCI access */ p_data = pao->pci.ap_mem_base[1] + (address & 0x007fffff) / sizeof(*pao->pci.ap_mem_base[1]); } else { /* BAR0 access - all of DSP memory using */ /* pre-fetchable PCI access */ u32 dw4M_page = address >> 22L; if (dw4M_page != phw->dsp_page) { phw->dsp_page = dw4M_page; /* *INDENT-OFF* */ iowrite32(phw->dsp_page, phw->prDSPP); /* *INDENT-ON* */ } address &= 0x3fffff; /* address within 4M page */ p_data = pao->pci.ap_mem_base[0] + address / sizeof(u32); } iowrite32(data, p_data); } else if (dsp_index == 1) { /* DSP 1 is a C6713 */ boot_loader_write_mem32(pao, 0, HPIAL_ADDR, address); boot_loader_write_mem32(pao, 0, HPIAH_ADDR, address >> 16); /* dummy read every 4 words for 6205 advisory 1.4.4 */ boot_loader_read_mem32(pao, 0, 0); boot_loader_write_mem32(pao, 0, HPIDL_ADDR, data); boot_loader_write_mem32(pao, 0, HPIDH_ADDR, data >> 16); /* dummy read every 4 words for 6205 advisory 1.4.4 */ boot_loader_read_mem32(pao, 0, 0); } } static u16 boot_loader_config_emif(struct hpi_adapter_obj *pao, int dsp_index) { if (dsp_index == 0) { u32 setting; /* DSP 0 is always C6205 */ /* Set the EMIF */ /* memory map of C6205 */ /* 00000000-0000FFFF 16Kx32 internal program */ /* 00400000-00BFFFFF CE0 2Mx32 SDRAM running @ 100MHz */ /* EMIF config */ /*------------ */ /* Global EMIF control */ boot_loader_write_mem32(pao, dsp_index, 0x01800000, 0x3779); #define WS_OFS 28 #define WST_OFS 22 #define WH_OFS 20 #define RS_OFS 16 #define RST_OFS 8 #define MTYPE_OFS 4 #define RH_OFS 0 /* EMIF CE0 setup - 2Mx32 Sync DRAM on ASI5000 cards only */ setting = 0x00000030; boot_loader_write_mem32(pao, dsp_index, 0x01800008, setting); if (setting != boot_loader_read_mem32(pao, dsp_index, 0x01800008)) return HPI6205_ERROR_DSP_EMIF; /* EMIF CE1 setup - 32 bit async. This is 6713 #1 HPI, */ /* which occupies D15..0. 6713 starts at 27MHz, so need */ /* plenty of wait states. See dsn8701.rtf, and 6713 errata. */ /* WST should be 71, but 63 is max possible */ setting = (1L << WS_OFS) | (63L << WST_OFS) | (1L << WH_OFS) | (1L << RS_OFS) | (63L << RST_OFS) | (1L << RH_OFS) | (2L << MTYPE_OFS); boot_loader_write_mem32(pao, dsp_index, 0x01800004, setting); if (setting != boot_loader_read_mem32(pao, dsp_index, 0x01800004)) return HPI6205_ERROR_DSP_EMIF; /* EMIF CE2 setup - 32 bit async. This is 6713 #2 HPI, */ /* which occupies D15..0. 6713 starts at 27MHz, so need */ /* plenty of wait states */ setting = (1L << WS_OFS) | (28L << WST_OFS) | (1L << WH_OFS) | (1L << RS_OFS) | (63L << RST_OFS) | (1L << RH_OFS) | (2L << MTYPE_OFS); boot_loader_write_mem32(pao, dsp_index, 0x01800010, setting); if (setting != boot_loader_read_mem32(pao, dsp_index, 0x01800010)) return HPI6205_ERROR_DSP_EMIF; /* EMIF CE3 setup - 32 bit async. */ /* This is the PLD on the ASI5000 cards only */ setting = (1L << WS_OFS) | (10L << WST_OFS) | (1L << WH_OFS) | (1L << RS_OFS) | (10L << RST_OFS) | (1L << RH_OFS) | (2L << MTYPE_OFS); boot_loader_write_mem32(pao, dsp_index, 0x01800014, setting); if (setting != boot_loader_read_mem32(pao, dsp_index, 0x01800014)) return HPI6205_ERROR_DSP_EMIF; /* set EMIF SDRAM control for 2Mx32 SDRAM (512x32x4 bank) */ /* need to use this else DSP code crashes? */ boot_loader_write_mem32(pao, dsp_index, 0x01800018, 0x07117000); /* EMIF SDRAM Refresh Timing */ /* EMIF SDRAM timing (orig = 0x410, emulator = 0x61a) */ boot_loader_write_mem32(pao, dsp_index, 0x0180001C, 0x00000410); } else if (dsp_index == 1) { /* test access to the C6713s HPI registers */ u32 write_data = 0, read_data = 0, i = 0; /* Set up HPIC for little endian, by setiing HPIC:HWOB=1 */ write_data = 1; boot_loader_write_mem32(pao, 0, HPICL_ADDR, write_data); boot_loader_write_mem32(pao, 0, HPICH_ADDR, write_data); /* C67 HPI is on lower 16bits of 32bit EMIF */ read_data = 0xFFF7 & boot_loader_read_mem32(pao, 0, HPICL_ADDR); if (write_data != read_data) { HPI_DEBUG_LOG(ERROR, "HPICL %x %x\n", write_data, read_data); return HPI6205_ERROR_C6713_HPIC; } /* HPIA - walking ones test */ write_data = 1; for (i = 0; i < 32; i++) { boot_loader_write_mem32(pao, 0, HPIAL_ADDR, write_data); boot_loader_write_mem32(pao, 0, HPIAH_ADDR, (write_data >> 16)); read_data = 0xFFFF & boot_loader_read_mem32(pao, 0, HPIAL_ADDR); read_data = read_data | ((0xFFFF & boot_loader_read_mem32(pao, 0, HPIAH_ADDR)) << 16); if (read_data != write_data) { HPI_DEBUG_LOG(ERROR, "HPIA %x %x\n", write_data, read_data); return HPI6205_ERROR_C6713_HPIA; } write_data = write_data << 1; } /* setup C67x PLL * ** C6713 datasheet says we cannot program PLL from HPI, * and indeed if we try to set the PLL multiply from the HPI, * the PLL does not seem to lock, so we enable the PLL and * use the default multiply of x 7, which for a 27MHz clock * gives a DSP speed of 189MHz */ /* bypass PLL */ boot_loader_write_mem32(pao, dsp_index, 0x01B7C100, 0x0000); hpios_delay_micro_seconds(1000); /* EMIF = 189/3=63MHz */ boot_loader_write_mem32(pao, dsp_index, 0x01B7C120, 0x8002); /* peri = 189/2 */ boot_loader_write_mem32(pao, dsp_index, 0x01B7C11C, 0x8001); /* cpu = 189/1 */ boot_loader_write_mem32(pao, dsp_index, 0x01B7C118, 0x8000); hpios_delay_micro_seconds(1000); /* ** SGT test to take GPO3 high when we start the PLL */ /* and low when the delay is completed */ /* FSX0 <- '1' (GPO3) */ boot_loader_write_mem32(pao, 0, (0x018C0024L), 0x00002A0A); /* PLL not bypassed */ boot_loader_write_mem32(pao, dsp_index, 0x01B7C100, 0x0001); hpios_delay_micro_seconds(1000); /* FSX0 <- '0' (GPO3) */ boot_loader_write_mem32(pao, 0, (0x018C0024L), 0x00002A02); /* 6205 EMIF CE1 resetup - 32 bit async. */ /* Now 6713 #1 is running at 189MHz can reduce waitstates */ boot_loader_write_mem32(pao, 0, 0x01800004, /* CE1 */ (1L << WS_OFS) | (8L << WST_OFS) | (1L << WH_OFS) | (1L << RS_OFS) | (12L << RST_OFS) | (1L << RH_OFS) | (2L << MTYPE_OFS)); hpios_delay_micro_seconds(1000); /* check that we can read one of the PLL registers */ /* PLL should not be bypassed! */ if ((boot_loader_read_mem32(pao, dsp_index, 0x01B7C100) & 0xF) != 0x0001) { return HPI6205_ERROR_C6713_PLL; } /* setup C67x EMIF (note this is the only use of BAR1 via BootLoader_WriteMem32) */ boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_GCTL, 0x000034A8); boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_CE0, 0x00000030); boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_SDRAMEXT, 0x001BDF29); boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_SDRAMCTL, 0x47117000); boot_loader_write_mem32(pao, dsp_index, C6713_EMIF_SDRAMTIMING, 0x00000410); hpios_delay_micro_seconds(1000); } else if (dsp_index == 2) { /* DSP 2 is a C6713 */ } return 0; } static u16 boot_loader_test_memory(struct hpi_adapter_obj *pao, int dsp_index, u32 start_address, u32 length) { u32 i = 0, j = 0; u32 test_addr = 0; u32 test_data = 0, data = 0; length = 1000; /* for 1st word, test each bit in the 32bit word, */ /* dwLength specifies number of 32bit words to test */ /*for(i=0; ipci.pci_dev->subsystem_device == 0x5000) { /* DSP 0 is always C6205 */ dRAM_start_address = 0x00400000; dRAM_size = 0x200000; /*dwDRAMinc=1024; */ } else return 0; } else if (dsp_index == 1) { /* DSP 1 is a C6713 */ dRAM_start_address = 0x80000000; dRAM_size = 0x200000; /*dwDRAMinc=1024; */ } if (boot_loader_test_memory(pao, dsp_index, dRAM_start_address, dRAM_size)) return HPI6205_ERROR_DSP_EXTMEM; return 0; } static u16 boot_loader_test_pld(struct hpi_adapter_obj *pao, int dsp_index) { u32 data = 0; if (dsp_index == 0) { /* only test for DSP0 PLD on ASI5000 card */ if (pao->pci.pci_dev->subsystem_device == 0x5000) { /* PLD is located at CE3=0x03000000 */ data = boot_loader_read_mem32(pao, dsp_index, 0x03000008); if ((data & 0xF) != 0x5) return HPI6205_ERROR_DSP_PLD; data = boot_loader_read_mem32(pao, dsp_index, 0x0300000C); if ((data & 0xF) != 0xA) return HPI6205_ERROR_DSP_PLD; } } else if (dsp_index == 1) { /* DSP 1 is a C6713 */ if (pao->pci.pci_dev->subsystem_device == 0x8700) { /* PLD is located at CE1=0x90000000 */ data = boot_loader_read_mem32(pao, dsp_index, 0x90000010); if ((data & 0xFF) != 0xAA) return HPI6205_ERROR_DSP_PLD; /* 8713 - LED on */ boot_loader_write_mem32(pao, dsp_index, 0x90000000, 0x02); } } return 0; } /** Transfer data to or from DSP nOperation = H620_H620_HIF_SEND_DATA or H620_HIF_GET_DATA */ static short hpi6205_transfer_data(struct hpi_adapter_obj *pao, u8 *p_data, u32 data_size, int operation) { struct hpi_hw_obj *phw = pao->priv; u32 data_transferred = 0; u16 err = 0; #ifndef HPI6205_NO_HSR_POLL u32 time_out; #endif u32 temp2; struct bus_master_interface *interface = phw->p_interface_buffer; if (!p_data) return HPI_ERROR_INVALID_DATA_POINTER; data_size &= ~3L; /* round data_size down to nearest 4 bytes */ /* make sure state is IDLE */ if (!wait_dsp_ack(phw, H620_HIF_IDLE, HPI6205_TIMEOUT)) return HPI_ERROR_DSP_HARDWARE; while (data_transferred < data_size) { u32 this_copy = data_size - data_transferred; if (this_copy > HPI6205_SIZEOF_DATA) this_copy = HPI6205_SIZEOF_DATA; if (operation == H620_HIF_SEND_DATA) memcpy((void *)&interface->u.b_data[0], &p_data[data_transferred], this_copy); interface->transfer_size_in_bytes = this_copy; #ifdef HPI6205_NO_HSR_POLL /* DSP must change this back to nOperation */ interface->dsp_ack = H620_HIF_IDLE; #endif send_dsp_command(phw, operation); #ifdef HPI6205_NO_HSR_POLL temp2 = wait_dsp_ack(phw, operation, HPI6205_TIMEOUT); HPI_DEBUG_LOG(DEBUG, "spun %d times for data xfer of %d\n", HPI6205_TIMEOUT - temp2, this_copy); if (!temp2) { /* timed out */ HPI_DEBUG_LOG(ERROR, "Timed out waiting for " "state %d got %d\n", operation, interface->dsp_ack); break; } #else /* spin waiting on the result */ time_out = HPI6205_TIMEOUT; temp2 = 0; while ((temp2 == 0) && time_out--) { /* give 16k bus mastering transfer time to happen */ /*(16k / 132Mbytes/s = 122usec) */ hpios_delay_micro_seconds(20); temp2 = ioread32(phw->prHSR); temp2 &= C6205_HSR_INTSRC; } HPI_DEBUG_LOG(DEBUG, "spun %d times for data xfer of %d\n", HPI6205_TIMEOUT - time_out, this_copy); if (temp2 == C6205_HSR_INTSRC) { HPI_DEBUG_LOG(VERBOSE, "Interrupt from HIF OK\n"); /* if(interface->dwDspAck != nOperation) { HPI_DEBUG_LOG(DEBUG("interface->dwDspAck=%d, expected %d \n", interface->dwDspAck,nOperation); } */ } /* need to handle this differently... */ else { HPI_DEBUG_LOG(ERROR, "Interrupt from HIF BAD\n"); err = HPI_ERROR_DSP_HARDWARE; } /* reset the interrupt from the DSP */ iowrite32(C6205_HSR_INTSRC, phw->prHSR); #endif if (operation == H620_HIF_GET_DATA) memcpy(&p_data[data_transferred], (void *)&interface->u.b_data[0], this_copy); data_transferred += this_copy; } if (interface->dsp_ack != operation) HPI_DEBUG_LOG(DEBUG, "interface->dsp_ack=%d, expected %d\n", interface->dsp_ack, operation); /* err=HPI_ERROR_DSP_HARDWARE; */ send_dsp_command(phw, H620_HIF_IDLE); return err; } /* wait for up to timeout_us microseconds for the DSP to signal state by DMA into dwDspAck */ static int wait_dsp_ack(struct hpi_hw_obj *phw, int state, int timeout_us) { struct bus_master_interface *interface = phw->p_interface_buffer; int t = timeout_us / 4; rmb(); /* ensure interface->dsp_ack is up to date */ while ((interface->dsp_ack != state) && --t) { hpios_delay_micro_seconds(4); rmb(); /* DSP changes dsp_ack by DMA */ } /*HPI_DEBUG_LOG(VERBOSE, "Spun %d for %d\n", timeout_us/4-t, state); */ return t * 4; } /* set the busmaster interface to cmd, then interrupt the DSP */ static void send_dsp_command(struct hpi_hw_obj *phw, int cmd) { struct bus_master_interface *interface = phw->p_interface_buffer; u32 r; interface->host_cmd = cmd; wmb(); /* DSP gets state by DMA, make sure it is written to memory */ /* before we interrupt the DSP */ r = ioread32(phw->prHDCR); r |= (u32)C6205_HDCR_DSPINT; iowrite32(r, phw->prHDCR); r &= ~(u32)C6205_HDCR_DSPINT; iowrite32(r, phw->prHDCR); } static unsigned int message_count; static u16 message_response_sequence(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { #ifndef HPI6205_NO_HSR_POLL u32 temp2; #endif u32 time_out, time_out2; struct hpi_hw_obj *phw = pao->priv; struct bus_master_interface *interface = phw->p_interface_buffer; u16 err = 0; message_count++; if (phm->size > sizeof(interface->u)) { phr->error = HPI_ERROR_MESSAGE_BUFFER_TOO_SMALL; phr->specific_error = sizeof(interface->u); phr->size = sizeof(struct hpi_response_header); HPI_DEBUG_LOG(ERROR, "message len %d too big for buffer %ld \n", phm->size, sizeof(interface->u)); return 0; } /* Assume buffer of type struct bus_master_interface is allocated "noncacheable" */ if (!wait_dsp_ack(phw, H620_HIF_IDLE, HPI6205_TIMEOUT)) { HPI_DEBUG_LOG(DEBUG, "timeout waiting for idle\n"); return HPI6205_ERROR_MSG_RESP_IDLE_TIMEOUT; } memcpy(&interface->u.message_buffer, phm, phm->size); /* signal we want a response */ send_dsp_command(phw, H620_HIF_GET_RESP); time_out2 = wait_dsp_ack(phw, H620_HIF_GET_RESP, HPI6205_TIMEOUT); if (!time_out2) { HPI_DEBUG_LOG(ERROR, "(%u) Timed out waiting for " "GET_RESP state [%x]\n", message_count, interface->dsp_ack); } else { HPI_DEBUG_LOG(VERBOSE, "(%u) transition to GET_RESP after %u\n", message_count, HPI6205_TIMEOUT - time_out2); } /* spin waiting on HIF interrupt flag (end of msg process) */ time_out = HPI6205_TIMEOUT; #ifndef HPI6205_NO_HSR_POLL temp2 = 0; while ((temp2 == 0) && --time_out) { temp2 = ioread32(phw->prHSR); temp2 &= C6205_HSR_INTSRC; hpios_delay_micro_seconds(1); } if (temp2 == C6205_HSR_INTSRC) { rmb(); /* ensure we see latest value for dsp_ack */ if ((interface->dsp_ack != H620_HIF_GET_RESP)) { HPI_DEBUG_LOG(DEBUG, "(%u)interface->dsp_ack(0x%x) != " "H620_HIF_GET_RESP, t=%u\n", message_count, interface->dsp_ack, HPI6205_TIMEOUT - time_out); } else { HPI_DEBUG_LOG(VERBOSE, "(%u)int with GET_RESP after %u\n", message_count, HPI6205_TIMEOUT - time_out); } } else { /* can we do anything else in response to the error ? */ HPI_DEBUG_LOG(ERROR, "Interrupt from HIF module BAD (function %x)\n", phm->function); } /* reset the interrupt from the DSP */ iowrite32(C6205_HSR_INTSRC, phw->prHSR); #endif /* read the result */ if (time_out) { if (interface->u.response_buffer.size <= phr->size) memcpy(phr, &interface->u.response_buffer, interface->u.response_buffer.size); else { HPI_DEBUG_LOG(ERROR, "response len %d too big for buffer %d\n", interface->u.response_buffer.size, phr->size); memcpy(phr, &interface->u.response_buffer, sizeof(struct hpi_response_header)); phr->error = HPI_ERROR_RESPONSE_BUFFER_TOO_SMALL; phr->specific_error = interface->u.response_buffer.size; phr->size = sizeof(struct hpi_response_header); } } /* set interface back to idle */ send_dsp_command(phw, H620_HIF_IDLE); if (!time_out || !time_out2) { HPI_DEBUG_LOG(DEBUG, "something timed out!\n"); return HPI6205_ERROR_MSG_RESP_TIMEOUT; } /* special case for adapter close - */ /* wait for the DSP to indicate it is idle */ if (phm->function == HPI_ADAPTER_CLOSE) { if (!wait_dsp_ack(phw, H620_HIF_IDLE, HPI6205_TIMEOUT)) { HPI_DEBUG_LOG(DEBUG, "Timeout waiting for idle " "(on adapter_close)\n"); return HPI6205_ERROR_MSG_RESP_IDLE_TIMEOUT; } } err = hpi_validate_response(phm, phr); return err; } static void hw_message(struct hpi_adapter_obj *pao, struct hpi_message *phm, struct hpi_response *phr) { u16 err = 0; hpios_dsplock_lock(pao); err = message_response_sequence(pao, phm, phr); /* maybe an error response */ if (err) { /* something failed in the HPI/DSP interface */ if (err >= HPI_ERROR_BACKEND_BASE) { phr->error = HPI_ERROR_DSP_COMMUNICATION; phr->specific_error = err; } else { phr->error = err; } pao->dsp_crashed++; /* just the header of the response is valid */ phr->size = sizeof(struct hpi_response_header); goto err; } else pao->dsp_crashed = 0; if (phr->error != 0) /* something failed in the DSP */ goto err; switch (phm->function) { case HPI_OSTREAM_WRITE: case HPI_ISTREAM_ANC_WRITE: err = hpi6205_transfer_data(pao, phm->u.d.u.data.pb_data, phm->u.d.u.data.data_size, H620_HIF_SEND_DATA); break; case HPI_ISTREAM_READ: case HPI_OSTREAM_ANC_READ: err = hpi6205_transfer_data(pao, phm->u.d.u.data.pb_data, phm->u.d.u.data.data_size, H620_HIF_GET_DATA); break; case HPI_CONTROL_SET_STATE: if (phm->object == HPI_OBJ_CONTROLEX && phm->u.cx.attribute == HPI_COBRANET_SET_DATA) err = hpi6205_transfer_data(pao, phm->u.cx.u.cobranet_bigdata.pb_data, phm->u.cx.u.cobranet_bigdata.byte_count, H620_HIF_SEND_DATA); break; case HPI_CONTROL_GET_STATE: if (phm->object == HPI_OBJ_CONTROLEX && phm->u.cx.attribute == HPI_COBRANET_GET_DATA) err = hpi6205_transfer_data(pao, phm->u.cx.u.cobranet_bigdata.pb_data, phr->u.cx.u.cobranet_data.byte_count, H620_HIF_GET_DATA); break; } phr->error = err; err: hpios_dsplock_unlock(pao); return; }