#include #include #include "kerncompat.h" #include "radix-tree.h" #include "ctree.h" #include "disk-io.h" #include "print-tree.h" static int find_free_extent(struct ctree_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins); static int finish_current_insert(struct ctree_root *extent_root); static int run_pending(struct ctree_root *extent_root); /* * pending extents are blocks that we're trying to allocate in the extent * map while trying to grow the map because of other allocations. To avoid * recursing, they are tagged in the radix tree and cleaned up after * other allocations are done. The pending tag is also used in the same * manner for deletes. */ #define CTREE_EXTENT_PENDING_DEL 0 static int inc_block_ref(struct ctree_root *root, u64 blocknr) { struct ctree_path path; int ret; struct btrfs_key key; struct leaf *l; struct extent_item *item; struct btrfs_key ins; find_free_extent(root->extent_root, 0, 0, (u64)-1, &ins); init_path(&path); key.objectid = blocknr; key.flags = 0; key.offset = 1; ret = search_slot(root->extent_root, &key, &path, 0, 1); if (ret != 0) BUG(); BUG_ON(ret != 0); l = &path.nodes[0]->leaf; item = (struct extent_item *)(l->data + btrfs_item_offset(l->items + path.slots[0])); item->refs++; BUG_ON(list_empty(&path.nodes[0]->dirty)); release_path(root->extent_root, &path); finish_current_insert(root->extent_root); run_pending(root->extent_root); return 0; } static int lookup_block_ref(struct ctree_root *root, u64 blocknr, u32 *refs) { struct ctree_path path; int ret; struct btrfs_key key; struct leaf *l; struct extent_item *item; init_path(&path); key.objectid = blocknr; key.flags = 0; key.offset = 1; ret = search_slot(root->extent_root, &key, &path, 0, 0); if (ret != 0) BUG(); l = &path.nodes[0]->leaf; item = (struct extent_item *)(l->data + btrfs_item_offset(l->items + path.slots[0])); *refs = item->refs; release_path(root->extent_root, &path); return 0; } int btrfs_inc_ref(struct ctree_root *root, struct tree_buffer *buf) { u64 blocknr; int i; if (root == root->extent_root) return 0; if (btrfs_is_leaf(&buf->node)) return 0; for (i = 0; i < btrfs_header_nritems(&buf->node.header); i++) { blocknr = buf->node.blockptrs[i]; inc_block_ref(root, blocknr); } return 0; } int btrfs_finish_extent_commit(struct ctree_root *root) { struct ctree_root *extent_root = root->extent_root; unsigned long gang[8]; int ret; int i; while(1) { ret = radix_tree_gang_lookup(&extent_root->pinned_radix, (void **)gang, 0, ARRAY_SIZE(gang)); if (!ret) break; for (i = 0; i < ret; i++) { radix_tree_delete(&extent_root->pinned_radix, gang[i]); } } extent_root->last_insert.objectid = 0; extent_root->last_insert.offset = 0; return 0; } static int finish_current_insert(struct ctree_root *extent_root) { struct btrfs_key ins; struct extent_item extent_item; int i; int ret; extent_item.refs = 1; extent_item.owner = btrfs_header_parentid(&extent_root->node->node.header); ins.offset = 1; ins.flags = 0; for (i = 0; i < extent_root->current_insert.flags; i++) { ins.objectid = extent_root->current_insert.objectid + i; ret = insert_item(extent_root, &ins, &extent_item, sizeof(extent_item)); BUG_ON(ret); } extent_root->current_insert.offset = 0; return 0; } /* * remove an extent from the root, returns 0 on success */ int __free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks) { struct ctree_path path; struct btrfs_key key; struct ctree_root *extent_root = root->extent_root; int ret; struct btrfs_item *item; struct extent_item *ei; struct btrfs_key ins; key.objectid = blocknr; key.flags = 0; key.offset = num_blocks; find_free_extent(root, 0, 0, (u64)-1, &ins); init_path(&path); ret = search_slot(extent_root, &key, &path, -1, 1); if (ret) { printf("failed to find %Lu\n", key.objectid); print_tree(extent_root, extent_root->node); printf("failed to find %Lu\n", key.objectid); BUG(); } item = path.nodes[0]->leaf.items + path.slots[0]; ei = (struct extent_item *)(path.nodes[0]->leaf.data + btrfs_item_offset(item)); BUG_ON(ei->refs == 0); ei->refs--; if (ei->refs == 0) { if (root == extent_root) { int err; radix_tree_preload(GFP_KERNEL); err = radix_tree_insert(&extent_root->pinned_radix, blocknr, (void *)blocknr); BUG_ON(err); radix_tree_preload_end(); } ret = del_item(extent_root, &path); if (root != extent_root && extent_root->last_insert.objectid < blocknr) extent_root->last_insert.objectid = blocknr; if (ret) BUG(); } release_path(extent_root, &path); finish_current_insert(extent_root); return ret; } /* * find all the blocks marked as pending in the radix tree and remove * them from the extent map */ static int del_pending_extents(struct ctree_root *extent_root) { int ret; struct tree_buffer *gang[4]; int i; while(1) { ret = radix_tree_gang_lookup_tag(&extent_root->cache_radix, (void **)gang, 0, ARRAY_SIZE(gang), CTREE_EXTENT_PENDING_DEL); if (!ret) break; for (i = 0; i < ret; i++) { ret = __free_extent(extent_root, gang[i]->blocknr, 1); radix_tree_tag_clear(&extent_root->cache_radix, gang[i]->blocknr, CTREE_EXTENT_PENDING_DEL); tree_block_release(extent_root, gang[i]); } } return 0; } static int run_pending(struct ctree_root *extent_root) { while(radix_tree_tagged(&extent_root->cache_radix, CTREE_EXTENT_PENDING_DEL)) del_pending_extents(extent_root); return 0; } /* * remove an extent from the root, returns 0 on success */ int free_extent(struct ctree_root *root, u64 blocknr, u64 num_blocks) { struct btrfs_key key; struct ctree_root *extent_root = root->extent_root; struct tree_buffer *t; int pending_ret; int ret; if (root == extent_root) { t = find_tree_block(root, blocknr); radix_tree_tag_set(&root->cache_radix, blocknr, CTREE_EXTENT_PENDING_DEL); return 0; } key.objectid = blocknr; key.flags = 0; key.offset = num_blocks; ret = __free_extent(root, blocknr, num_blocks); pending_ret = run_pending(root->extent_root); return ret ? ret : pending_ret; } /* * walks the btree of allocated extents and find a hole of a given size. * The key ins is changed to record the hole: * ins->objectid == block start * ins->flags = 0 * ins->offset == number of blocks * Any available blocks before search_start are skipped. */ static int find_free_extent(struct ctree_root *orig_root, u64 num_blocks, u64 search_start, u64 search_end, struct btrfs_key *ins) { struct ctree_path path; struct btrfs_key key; int ret; u64 hole_size = 0; int slot = 0; u64 last_block; u64 test_block; int start_found; struct leaf *l; struct ctree_root * root = orig_root->extent_root; int total_needed = num_blocks; total_needed += (btrfs_header_level(&root->node->node.header) + 1) * 3; if (root->last_insert.objectid > search_start) search_start = root->last_insert.objectid; check_failed: init_path(&path); ins->objectid = search_start; ins->offset = 0; ins->flags = 0; start_found = 0; ret = search_slot(root, ins, &path, 0, 0); if (ret < 0) goto error; if (path.slots[0] > 0) path.slots[0]--; while (1) { l = &path.nodes[0]->leaf; slot = path.slots[0]; if (slot >= btrfs_header_nritems(&l->header)) { ret = next_leaf(root, &path); if (ret == 0) continue; if (ret < 0) goto error; if (!start_found) { ins->objectid = search_start; ins->offset = (u64)-1; start_found = 1; goto check_pending; } ins->objectid = last_block > search_start ? last_block : search_start; ins->offset = (u64)-1; goto check_pending; } btrfs_disk_key_to_cpu(&key, &l->items[slot].key); if (key.objectid >= search_start) { if (start_found) { if (last_block < search_start) last_block = search_start; hole_size = key.objectid - last_block; if (hole_size > total_needed) { ins->objectid = last_block; ins->offset = hole_size; goto check_pending; } } } start_found = 1; last_block = key.objectid + key.offset; path.slots[0]++; } // FIXME -ENOSPC check_pending: /* we have to make sure we didn't find an extent that has already * been allocated by the map tree or the original allocation */ release_path(root, &path); BUG_ON(ins->objectid < search_start); for (test_block = ins->objectid; test_block < ins->objectid + total_needed; test_block++) { if (radix_tree_lookup(&root->pinned_radix, test_block)) { search_start = test_block + 1; goto check_failed; } } BUG_ON(root->current_insert.offset); root->current_insert.offset = total_needed - num_blocks; root->current_insert.objectid = ins->objectid + num_blocks; root->current_insert.flags = 0; root->last_insert.objectid = ins->objectid; ins->offset = num_blocks; return 0; error: release_path(root, &path); return ret; } /* * finds a free extent and does all the dirty work required for allocation * returns the key for the extent through ins, and a tree buffer for * the first block of the extent through buf. * * returns 0 if everything worked, non-zero otherwise. */ int alloc_extent(struct ctree_root *root, u64 num_blocks, u64 search_start, u64 search_end, u64 owner, struct btrfs_key *ins) { int ret; int pending_ret; struct ctree_root *extent_root = root->extent_root; struct extent_item extent_item; extent_item.refs = 1; extent_item.owner = owner; if (root == extent_root) { BUG_ON(extent_root->current_insert.offset == 0); BUG_ON(num_blocks != 1); BUG_ON(extent_root->current_insert.flags == extent_root->current_insert.offset); ins->offset = 1; ins->objectid = extent_root->current_insert.objectid + extent_root->current_insert.flags++; return 0; } ret = find_free_extent(root, num_blocks, search_start, search_end, ins); if (ret) return ret; ret = insert_item(extent_root, ins, &extent_item, sizeof(extent_item)); finish_current_insert(extent_root); pending_ret = run_pending(extent_root); if (ret) return ret; if (pending_ret) return pending_ret; return 0; } /* * helper function to allocate a block for a given tree * returns the tree buffer or NULL. */ struct tree_buffer *alloc_free_block(struct ctree_root *root) { struct btrfs_key ins; int ret; struct tree_buffer *buf; ret = alloc_extent(root, 1, 0, (unsigned long)-1, btrfs_header_parentid(&root->node->node.header), &ins); if (ret) { BUG(); return NULL; } buf = find_tree_block(root, ins.objectid); dirty_tree_block(root, buf); return buf; } int walk_down_tree(struct ctree_root *root, struct ctree_path *path, int *level) { struct tree_buffer *next; struct tree_buffer *cur; u64 blocknr; int ret; u32 refs; ret = lookup_block_ref(root, path->nodes[*level]->blocknr, &refs); BUG_ON(ret); if (refs > 1) goto out; while(*level > 0) { cur = path->nodes[*level]; if (path->slots[*level] >= btrfs_header_nritems(&cur->node.header)) break; blocknr = cur->node.blockptrs[path->slots[*level]]; ret = lookup_block_ref(root, blocknr, &refs); if (refs != 1 || *level == 1) { path->slots[*level]++; ret = free_extent(root, blocknr, 1); BUG_ON(ret); continue; } BUG_ON(ret); next = read_tree_block(root, blocknr); if (path->nodes[*level-1]) tree_block_release(root, path->nodes[*level-1]); path->nodes[*level-1] = next; *level = btrfs_header_level(&next->node.header); path->slots[*level] = 0; } out: ret = free_extent(root, path->nodes[*level]->blocknr, 1); tree_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level += 1; BUG_ON(ret); return 0; } int walk_up_tree(struct ctree_root *root, struct ctree_path *path, int *level) { int i; int slot; int ret; for(i = *level; i < MAX_LEVEL - 1 && path->nodes[i]; i++) { slot = path->slots[i]; if (slot < btrfs_header_nritems(&path->nodes[i]->node.header)- 1) { path->slots[i]++; *level = i; return 0; } else { ret = free_extent(root, path->nodes[*level]->blocknr, 1); tree_block_release(root, path->nodes[*level]); path->nodes[*level] = NULL; *level = i + 1; BUG_ON(ret); } } return 1; } int btrfs_drop_snapshot(struct ctree_root *root, struct tree_buffer *snap) { int ret; int level; struct ctree_path path; int i; int orig_level; init_path(&path); level = btrfs_header_level(&snap->node.header); orig_level = level; path.nodes[level] = snap; path.slots[level] = 0; while(1) { ret = walk_down_tree(root, &path, &level); if (ret > 0) break; ret = walk_up_tree(root, &path, &level); if (ret > 0) break; } for (i = 0; i <= orig_level; i++) { if (path.nodes[i]) { tree_block_release(root, path.nodes[i]); } } return 0; }