/* PTP Hardware Clock (PHC) driver for the Intel 82576 and 82580 * * Copyright (C) 2011 Richard Cochran * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License along with * this program; if not, see . */ #include #include #include #include #include "igb.h" #define INCVALUE_MASK 0x7fffffff #define ISGN 0x80000000 /* The 82580 timesync updates the system timer every 8ns by 8ns, * and this update value cannot be reprogrammed. * * Neither the 82576 nor the 82580 offer registers wide enough to hold * nanoseconds time values for very long. For the 82580, SYSTIM always * counts nanoseconds, but the upper 24 bits are not availible. The * frequency is adjusted by changing the 32 bit fractional nanoseconds * register, TIMINCA. * * For the 82576, the SYSTIM register time unit is affect by the * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this * field are needed to provide the nominal 16 nanosecond period, * leaving 19 bits for fractional nanoseconds. * * We scale the NIC clock cycle by a large factor so that relatively * small clock corrections can be added or subtracted at each clock * tick. The drawbacks of a large factor are a) that the clock * register overflows more quickly (not such a big deal) and b) that * the increment per tick has to fit into 24 bits. As a result we * need to use a shift of 19 so we can fit a value of 16 into the * TIMINCA register. * * * SYSTIMH SYSTIML * +--------------+ +---+---+------+ * 82576 | 32 | | 8 | 5 | 19 | * +--------------+ +---+---+------+ * \________ 45 bits _______/ fract * * +----------+---+ +--------------+ * 82580 | 24 | 8 | | 32 | * +----------+---+ +--------------+ * reserved \______ 40 bits _____/ * * * The 45 bit 82576 SYSTIM overflows every * 2^45 * 10^-9 / 3600 = 9.77 hours. * * The 40 bit 82580 SYSTIM overflows every * 2^40 * 10^-9 / 60 = 18.3 minutes. */ #define IGB_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 9) #define IGB_PTP_TX_TIMEOUT (HZ * 15) #define INCPERIOD_82576 (1 << E1000_TIMINCA_16NS_SHIFT) #define INCVALUE_82576_MASK ((1 << E1000_TIMINCA_16NS_SHIFT) - 1) #define INCVALUE_82576 (16 << IGB_82576_TSYNC_SHIFT) #define IGB_NBITS_82580 40 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter); /* SYSTIM read access for the 82576 */ static cycle_t igb_ptp_read_82576(const struct cyclecounter *cc) { struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); struct e1000_hw *hw = &igb->hw; u64 val; u32 lo, hi; lo = rd32(E1000_SYSTIML); hi = rd32(E1000_SYSTIMH); val = ((u64) hi) << 32; val |= lo; return val; } /* SYSTIM read access for the 82580 */ static cycle_t igb_ptp_read_82580(const struct cyclecounter *cc) { struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc); struct e1000_hw *hw = &igb->hw; u32 lo, hi; u64 val; /* The timestamp latches on lowest register read. For the 82580 * the lowest register is SYSTIMR instead of SYSTIML. However we only * need to provide nanosecond resolution, so we just ignore it. */ rd32(E1000_SYSTIMR); lo = rd32(E1000_SYSTIML); hi = rd32(E1000_SYSTIMH); val = ((u64) hi) << 32; val |= lo; return val; } /* SYSTIM read access for I210/I211 */ static void igb_ptp_read_i210(struct igb_adapter *adapter, struct timespec *ts) { struct e1000_hw *hw = &adapter->hw; u32 sec, nsec; /* The timestamp latches on lowest register read. For I210/I211, the * lowest register is SYSTIMR. Since we only need to provide nanosecond * resolution, we can ignore it. */ rd32(E1000_SYSTIMR); nsec = rd32(E1000_SYSTIML); sec = rd32(E1000_SYSTIMH); ts->tv_sec = sec; ts->tv_nsec = nsec; } static void igb_ptp_write_i210(struct igb_adapter *adapter, const struct timespec *ts) { struct e1000_hw *hw = &adapter->hw; /* Writing the SYSTIMR register is not necessary as it only provides * sub-nanosecond resolution. */ wr32(E1000_SYSTIML, ts->tv_nsec); wr32(E1000_SYSTIMH, ts->tv_sec); } /** * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp * @adapter: board private structure * @hwtstamps: timestamp structure to update * @systim: unsigned 64bit system time value. * * We need to convert the system time value stored in the RX/TXSTMP registers * into a hwtstamp which can be used by the upper level timestamping functions. * * The 'tmreg_lock' spinlock is used to protect the consistency of the * system time value. This is needed because reading the 64 bit time * value involves reading two (or three) 32 bit registers. The first * read latches the value. Ditto for writing. * * In addition, here have extended the system time with an overflow * counter in software. **/ static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter, struct skb_shared_hwtstamps *hwtstamps, u64 systim) { unsigned long flags; u64 ns; switch (adapter->hw.mac.type) { case e1000_82576: case e1000_82580: case e1000_i354: case e1000_i350: spin_lock_irqsave(&adapter->tmreg_lock, flags); ns = timecounter_cyc2time(&adapter->tc, systim); spin_unlock_irqrestore(&adapter->tmreg_lock, flags); memset(hwtstamps, 0, sizeof(*hwtstamps)); hwtstamps->hwtstamp = ns_to_ktime(ns); break; case e1000_i210: case e1000_i211: memset(hwtstamps, 0, sizeof(*hwtstamps)); /* Upper 32 bits contain s, lower 32 bits contain ns. */ hwtstamps->hwtstamp = ktime_set(systim >> 32, systim & 0xFFFFFFFF); break; default: break; } } /* PTP clock operations */ static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb) { struct igb_adapter *igb = container_of(ptp, struct igb_adapter, ptp_caps); struct e1000_hw *hw = &igb->hw; int neg_adj = 0; u64 rate; u32 incvalue; if (ppb < 0) { neg_adj = 1; ppb = -ppb; } rate = ppb; rate <<= 14; rate = div_u64(rate, 1953125); incvalue = 16 << IGB_82576_TSYNC_SHIFT; if (neg_adj) incvalue -= rate; else incvalue += rate; wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK)); return 0; } static int igb_ptp_adjfreq_82580(struct ptp_clock_info *ptp, s32 ppb) { struct igb_adapter *igb = container_of(ptp, struct igb_adapter, ptp_caps); struct e1000_hw *hw = &igb->hw; int neg_adj = 0; u64 rate; u32 inca; if (ppb < 0) { neg_adj = 1; ppb = -ppb; } rate = ppb; rate <<= 26; rate = div_u64(rate, 1953125); inca = rate & INCVALUE_MASK; if (neg_adj) inca |= ISGN; wr32(E1000_TIMINCA, inca); return 0; } static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta) { struct igb_adapter *igb = container_of(ptp, struct igb_adapter, ptp_caps); unsigned long flags; spin_lock_irqsave(&igb->tmreg_lock, flags); timecounter_adjtime(&igb->tc, delta); spin_unlock_irqrestore(&igb->tmreg_lock, flags); return 0; } static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta) { struct igb_adapter *igb = container_of(ptp, struct igb_adapter, ptp_caps); unsigned long flags; struct timespec now, then = ns_to_timespec(delta); spin_lock_irqsave(&igb->tmreg_lock, flags); igb_ptp_read_i210(igb, &now); now = timespec_add(now, then); igb_ptp_write_i210(igb, (const struct timespec *)&now); spin_unlock_irqrestore(&igb->tmreg_lock, flags); return 0; } static int igb_ptp_gettime_82576(struct ptp_clock_info *ptp, struct timespec *ts) { struct igb_adapter *igb = container_of(ptp, struct igb_adapter, ptp_caps); unsigned long flags; u64 ns; u32 remainder; spin_lock_irqsave(&igb->tmreg_lock, flags); ns = timecounter_read(&igb->tc); spin_unlock_irqrestore(&igb->tmreg_lock, flags); ts->tv_sec = div_u64_rem(ns, 1000000000, &remainder); ts->tv_nsec = remainder; return 0; } static int igb_ptp_gettime_i210(struct ptp_clock_info *ptp, struct timespec *ts) { struct igb_adapter *igb = container_of(ptp, struct igb_adapter, ptp_caps); unsigned long flags; spin_lock_irqsave(&igb->tmreg_lock, flags); igb_ptp_read_i210(igb, ts); spin_unlock_irqrestore(&igb->tmreg_lock, flags); return 0; } static int igb_ptp_settime_82576(struct ptp_clock_info *ptp, const struct timespec *ts) { struct igb_adapter *igb = container_of(ptp, struct igb_adapter, ptp_caps); unsigned long flags; u64 ns; ns = ts->tv_sec * 1000000000ULL; ns += ts->tv_nsec; spin_lock_irqsave(&igb->tmreg_lock, flags); timecounter_init(&igb->tc, &igb->cc, ns); spin_unlock_irqrestore(&igb->tmreg_lock, flags); return 0; } static int igb_ptp_settime_i210(struct ptp_clock_info *ptp, const struct timespec *ts) { struct igb_adapter *igb = container_of(ptp, struct igb_adapter, ptp_caps); unsigned long flags; spin_lock_irqsave(&igb->tmreg_lock, flags); igb_ptp_write_i210(igb, ts); spin_unlock_irqrestore(&igb->tmreg_lock, flags); return 0; } static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { struct igb_adapter *igb = container_of(ptp, struct igb_adapter, ptp_caps); struct e1000_hw *hw = &igb->hw; unsigned long flags; u32 tsim; switch (rq->type) { case PTP_CLK_REQ_PPS: spin_lock_irqsave(&igb->tmreg_lock, flags); tsim = rd32(E1000_TSIM); if (on) tsim |= TSINTR_SYS_WRAP; else tsim &= ~TSINTR_SYS_WRAP; wr32(E1000_TSIM, tsim); spin_unlock_irqrestore(&igb->tmreg_lock, flags); return 0; default: break; } return -EOPNOTSUPP; } static int igb_ptp_feature_enable(struct ptp_clock_info *ptp, struct ptp_clock_request *rq, int on) { return -EOPNOTSUPP; } /** * igb_ptp_tx_work * @work: pointer to work struct * * This work function polls the TSYNCTXCTL valid bit to determine when a * timestamp has been taken for the current stored skb. **/ static void igb_ptp_tx_work(struct work_struct *work) { struct igb_adapter *adapter = container_of(work, struct igb_adapter, ptp_tx_work); struct e1000_hw *hw = &adapter->hw; u32 tsynctxctl; if (!adapter->ptp_tx_skb) return; if (time_is_before_jiffies(adapter->ptp_tx_start + IGB_PTP_TX_TIMEOUT)) { dev_kfree_skb_any(adapter->ptp_tx_skb); adapter->ptp_tx_skb = NULL; clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); adapter->tx_hwtstamp_timeouts++; dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n"); return; } tsynctxctl = rd32(E1000_TSYNCTXCTL); if (tsynctxctl & E1000_TSYNCTXCTL_VALID) igb_ptp_tx_hwtstamp(adapter); else /* reschedule to check later */ schedule_work(&adapter->ptp_tx_work); } static void igb_ptp_overflow_check(struct work_struct *work) { struct igb_adapter *igb = container_of(work, struct igb_adapter, ptp_overflow_work.work); struct timespec ts; igb->ptp_caps.gettime(&igb->ptp_caps, &ts); pr_debug("igb overflow check at %ld.%09lu\n", ts.tv_sec, ts.tv_nsec); schedule_delayed_work(&igb->ptp_overflow_work, IGB_SYSTIM_OVERFLOW_PERIOD); } /** * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched * @adapter: private network adapter structure * * This watchdog task is scheduled to detect error case where hardware has * dropped an Rx packet that was timestamped when the ring is full. The * particular error is rare but leaves the device in a state unable to timestamp * any future packets. **/ void igb_ptp_rx_hang(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL); unsigned long rx_event; if (hw->mac.type != e1000_82576) return; /* If we don't have a valid timestamp in the registers, just update the * timeout counter and exit */ if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) { adapter->last_rx_ptp_check = jiffies; return; } /* Determine the most recent watchdog or rx_timestamp event */ rx_event = adapter->last_rx_ptp_check; if (time_after(adapter->last_rx_timestamp, rx_event)) rx_event = adapter->last_rx_timestamp; /* Only need to read the high RXSTMP register to clear the lock */ if (time_is_before_jiffies(rx_event + 5 * HZ)) { rd32(E1000_RXSTMPH); adapter->last_rx_ptp_check = jiffies; adapter->rx_hwtstamp_cleared++; dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n"); } } /** * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp * @adapter: Board private structure. * * If we were asked to do hardware stamping and such a time stamp is * available, then it must have been for this skb here because we only * allow only one such packet into the queue. **/ static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct skb_shared_hwtstamps shhwtstamps; u64 regval; regval = rd32(E1000_TXSTMPL); regval |= (u64)rd32(E1000_TXSTMPH) << 32; igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval); skb_tstamp_tx(adapter->ptp_tx_skb, &shhwtstamps); dev_kfree_skb_any(adapter->ptp_tx_skb); adapter->ptp_tx_skb = NULL; clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); } /** * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp * @q_vector: Pointer to interrupt specific structure * @va: Pointer to address containing Rx buffer * @skb: Buffer containing timestamp and packet * * This function is meant to retrieve a timestamp from the first buffer of an * incoming frame. The value is stored in little endian format starting on * byte 8. **/ void igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, unsigned char *va, struct sk_buff *skb) { __le64 *regval = (__le64 *)va; /* The timestamp is recorded in little endian format. * DWORD: 0 1 2 3 * Field: Reserved Reserved SYSTIML SYSTIMH */ igb_ptp_systim_to_hwtstamp(q_vector->adapter, skb_hwtstamps(skb), le64_to_cpu(regval[1])); } /** * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register * @q_vector: Pointer to interrupt specific structure * @skb: Buffer containing timestamp and packet * * This function is meant to retrieve a timestamp from the internal registers * of the adapter and store it in the skb. **/ void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb) { struct igb_adapter *adapter = q_vector->adapter; struct e1000_hw *hw = &adapter->hw; u64 regval; /* If this bit is set, then the RX registers contain the time stamp. No * other packet will be time stamped until we read these registers, so * read the registers to make them available again. Because only one * packet can be time stamped at a time, we know that the register * values must belong to this one here and therefore we don't need to * compare any of the additional attributes stored for it. * * If nothing went wrong, then it should have a shared tx_flags that we * can turn into a skb_shared_hwtstamps. */ if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID)) return; regval = rd32(E1000_RXSTMPL); regval |= (u64)rd32(E1000_RXSTMPH) << 32; igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval); /* Update the last_rx_timestamp timer in order to enable watchdog check * for error case of latched timestamp on a dropped packet. */ adapter->last_rx_timestamp = jiffies; } /** * igb_ptp_get_ts_config - get hardware time stamping config * @netdev: * @ifreq: * * Get the hwtstamp_config settings to return to the user. Rather than attempt * to deconstruct the settings from the registers, just return a shadow copy * of the last known settings. **/ int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr) { struct igb_adapter *adapter = netdev_priv(netdev); struct hwtstamp_config *config = &adapter->tstamp_config; return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ? -EFAULT : 0; } /** * igb_ptp_set_timestamp_mode - setup hardware for timestamping * @adapter: networking device structure * @config: hwtstamp configuration * * Outgoing time stamping can be enabled and disabled. Play nice and * disable it when requested, although it shouldn't case any overhead * when no packet needs it. At most one packet in the queue may be * marked for time stamping, otherwise it would be impossible to tell * for sure to which packet the hardware time stamp belongs. * * Incoming time stamping has to be configured via the hardware * filters. Not all combinations are supported, in particular event * type has to be specified. Matching the kind of event packet is * not supported, with the exception of "all V2 events regardless of * level 2 or 4". */ static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter, struct hwtstamp_config *config) { struct e1000_hw *hw = &adapter->hw; u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED; u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; u32 tsync_rx_cfg = 0; bool is_l4 = false; bool is_l2 = false; u32 regval; /* reserved for future extensions */ if (config->flags) return -EINVAL; switch (config->tx_type) { case HWTSTAMP_TX_OFF: tsync_tx_ctl = 0; case HWTSTAMP_TX_ON: break; default: return -ERANGE; } switch (config->rx_filter) { case HWTSTAMP_FILTER_NONE: tsync_rx_ctl = 0; break; case HWTSTAMP_FILTER_PTP_V1_L4_SYNC: tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE; is_l4 = true; break; case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ: tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1; tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE; is_l4 = true; break; case HWTSTAMP_FILTER_PTP_V2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L2_EVENT: case HWTSTAMP_FILTER_PTP_V2_L4_EVENT: case HWTSTAMP_FILTER_PTP_V2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L2_SYNC: case HWTSTAMP_FILTER_PTP_V2_L4_SYNC: case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ: case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ: tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2; config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT; is_l2 = true; is_l4 = true; break; case HWTSTAMP_FILTER_PTP_V1_L4_EVENT: case HWTSTAMP_FILTER_ALL: /* 82576 cannot timestamp all packets, which it needs to do to * support both V1 Sync and Delay_Req messages */ if (hw->mac.type != e1000_82576) { tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; config->rx_filter = HWTSTAMP_FILTER_ALL; break; } /* fall through */ default: config->rx_filter = HWTSTAMP_FILTER_NONE; return -ERANGE; } if (hw->mac.type == e1000_82575) { if (tsync_rx_ctl | tsync_tx_ctl) return -EINVAL; return 0; } /* Per-packet timestamping only works if all packets are * timestamped, so enable timestamping in all packets as * long as one Rx filter was configured. */ if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) { tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED; tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL; config->rx_filter = HWTSTAMP_FILTER_ALL; is_l2 = true; is_l4 = true; if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { regval = rd32(E1000_RXPBS); regval |= E1000_RXPBS_CFG_TS_EN; wr32(E1000_RXPBS, regval); } } /* enable/disable TX */ regval = rd32(E1000_TSYNCTXCTL); regval &= ~E1000_TSYNCTXCTL_ENABLED; regval |= tsync_tx_ctl; wr32(E1000_TSYNCTXCTL, regval); /* enable/disable RX */ regval = rd32(E1000_TSYNCRXCTL); regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK); regval |= tsync_rx_ctl; wr32(E1000_TSYNCRXCTL, regval); /* define which PTP packets are time stamped */ wr32(E1000_TSYNCRXCFG, tsync_rx_cfg); /* define ethertype filter for timestamped packets */ if (is_l2) wr32(E1000_ETQF(3), (E1000_ETQF_FILTER_ENABLE | /* enable filter */ E1000_ETQF_1588 | /* enable timestamping */ ETH_P_1588)); /* 1588 eth protocol type */ else wr32(E1000_ETQF(3), 0); /* L4 Queue Filter[3]: filter by destination port and protocol */ if (is_l4) { u32 ftqf = (IPPROTO_UDP /* UDP */ | E1000_FTQF_VF_BP /* VF not compared */ | E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */ | E1000_FTQF_MASK); /* mask all inputs */ ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */ wr32(E1000_IMIR(3), htons(PTP_EV_PORT)); wr32(E1000_IMIREXT(3), (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP)); if (hw->mac.type == e1000_82576) { /* enable source port check */ wr32(E1000_SPQF(3), htons(PTP_EV_PORT)); ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP; } wr32(E1000_FTQF(3), ftqf); } else { wr32(E1000_FTQF(3), E1000_FTQF_MASK); } wrfl(); /* clear TX/RX time stamp registers, just to be sure */ regval = rd32(E1000_TXSTMPL); regval = rd32(E1000_TXSTMPH); regval = rd32(E1000_RXSTMPL); regval = rd32(E1000_RXSTMPH); return 0; } /** * igb_ptp_set_ts_config - set hardware time stamping config * @netdev: * @ifreq: * **/ int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr) { struct igb_adapter *adapter = netdev_priv(netdev); struct hwtstamp_config config; int err; if (copy_from_user(&config, ifr->ifr_data, sizeof(config))) return -EFAULT; err = igb_ptp_set_timestamp_mode(adapter, &config); if (err) return err; /* save these settings for future reference */ memcpy(&adapter->tstamp_config, &config, sizeof(adapter->tstamp_config)); return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ? -EFAULT : 0; } void igb_ptp_init(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; switch (hw->mac.type) { case e1000_82576: snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); adapter->ptp_caps.owner = THIS_MODULE; adapter->ptp_caps.max_adj = 999999881; adapter->ptp_caps.n_ext_ts = 0; adapter->ptp_caps.pps = 0; adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576; adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; adapter->ptp_caps.gettime = igb_ptp_gettime_82576; adapter->ptp_caps.settime = igb_ptp_settime_82576; adapter->ptp_caps.enable = igb_ptp_feature_enable; adapter->cc.read = igb_ptp_read_82576; adapter->cc.mask = CYCLECOUNTER_MASK(64); adapter->cc.mult = 1; adapter->cc.shift = IGB_82576_TSYNC_SHIFT; /* Dial the nominal frequency. */ wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); break; case e1000_82580: case e1000_i354: case e1000_i350: snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); adapter->ptp_caps.owner = THIS_MODULE; adapter->ptp_caps.max_adj = 62499999; adapter->ptp_caps.n_ext_ts = 0; adapter->ptp_caps.pps = 0; adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576; adapter->ptp_caps.gettime = igb_ptp_gettime_82576; adapter->ptp_caps.settime = igb_ptp_settime_82576; adapter->ptp_caps.enable = igb_ptp_feature_enable; adapter->cc.read = igb_ptp_read_82580; adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580); adapter->cc.mult = 1; adapter->cc.shift = 0; /* Enable the timer functions by clearing bit 31. */ wr32(E1000_TSAUXC, 0x0); break; case e1000_i210: case e1000_i211: snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr); adapter->ptp_caps.owner = THIS_MODULE; adapter->ptp_caps.max_adj = 62499999; adapter->ptp_caps.n_ext_ts = 0; adapter->ptp_caps.pps = 1; adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82580; adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210; adapter->ptp_caps.gettime = igb_ptp_gettime_i210; adapter->ptp_caps.settime = igb_ptp_settime_i210; adapter->ptp_caps.enable = igb_ptp_feature_enable_i210; /* Enable the timer functions by clearing bit 31. */ wr32(E1000_TSAUXC, 0x0); break; default: adapter->ptp_clock = NULL; return; } wrfl(); spin_lock_init(&adapter->tmreg_lock); INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work); /* Initialize the clock and overflow work for devices that need it. */ if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { struct timespec ts = ktime_to_timespec(ktime_get_real()); igb_ptp_settime_i210(&adapter->ptp_caps, &ts); } else { timecounter_init(&adapter->tc, &adapter->cc, ktime_to_ns(ktime_get_real())); INIT_DELAYED_WORK(&adapter->ptp_overflow_work, igb_ptp_overflow_check); schedule_delayed_work(&adapter->ptp_overflow_work, IGB_SYSTIM_OVERFLOW_PERIOD); } /* Initialize the time sync interrupts for devices that support it. */ if (hw->mac.type >= e1000_82580) { wr32(E1000_TSIM, TSYNC_INTERRUPTS); wr32(E1000_IMS, E1000_IMS_TS); } adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE; adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF; adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps, &adapter->pdev->dev); if (IS_ERR(adapter->ptp_clock)) { adapter->ptp_clock = NULL; dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n"); } else { dev_info(&adapter->pdev->dev, "added PHC on %s\n", adapter->netdev->name); adapter->flags |= IGB_FLAG_PTP; } } /** * igb_ptp_stop - Disable PTP device and stop the overflow check. * @adapter: Board private structure. * * This function stops the PTP support and cancels the delayed work. **/ void igb_ptp_stop(struct igb_adapter *adapter) { switch (adapter->hw.mac.type) { case e1000_82576: case e1000_82580: case e1000_i354: case e1000_i350: cancel_delayed_work_sync(&adapter->ptp_overflow_work); break; case e1000_i210: case e1000_i211: /* No delayed work to cancel. */ break; default: return; } cancel_work_sync(&adapter->ptp_tx_work); if (adapter->ptp_tx_skb) { dev_kfree_skb_any(adapter->ptp_tx_skb); adapter->ptp_tx_skb = NULL; clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state); } if (adapter->ptp_clock) { ptp_clock_unregister(adapter->ptp_clock); dev_info(&adapter->pdev->dev, "removed PHC on %s\n", adapter->netdev->name); adapter->flags &= ~IGB_FLAG_PTP; } } /** * igb_ptp_reset - Re-enable the adapter for PTP following a reset. * @adapter: Board private structure. * * This function handles the reset work required to re-enable the PTP device. **/ void igb_ptp_reset(struct igb_adapter *adapter) { struct e1000_hw *hw = &adapter->hw; unsigned long flags; if (!(adapter->flags & IGB_FLAG_PTP)) return; /* reset the tstamp_config */ igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config); spin_lock_irqsave(&adapter->tmreg_lock, flags); switch (adapter->hw.mac.type) { case e1000_82576: /* Dial the nominal frequency. */ wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576); break; case e1000_82580: case e1000_i354: case e1000_i350: case e1000_i210: case e1000_i211: wr32(E1000_TSAUXC, 0x0); wr32(E1000_TSIM, TSYNC_INTERRUPTS); wr32(E1000_IMS, E1000_IMS_TS); break; default: /* No work to do. */ goto out; } /* Re-initialize the timer. */ if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) { struct timespec ts = ktime_to_timespec(ktime_get_real()); igb_ptp_write_i210(adapter, &ts); } else { timecounter_init(&adapter->tc, &adapter->cc, ktime_to_ns(ktime_get_real())); } out: spin_unlock_irqrestore(&adapter->tmreg_lock, flags); }