- 01 8月, 2016 1 次提交
-
-
由 Aneesh Kumar K.V 提交于
This switches early feature checks to use the non static key variant of the function. In later patches we will be switching cpu_has_feature() and mmu_has_feature() to use static keys and we can use them only after static key/jump label is initialized. Any check for feature before jump label init should be done using this new helper. Signed-off-by: NAneesh Kumar K.V <aneesh.kumar@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 07 3月, 2016 1 次提交
-
-
由 Michael Ellerman 提交于
Move the logic to work out the kernel toc pointer into a header. This is a good cleanup, and also means we can use it elsewhere in future. Reviewed-by: NKamalesh Babulal <kamalesh@linux.vnet.ibm.com> Reviewed-by: NTorsten Duwe <duwe@suse.de> Reviewed-by: NBalbir Singh <bsingharora@gmail.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au> Tested-by: NKamalesh Babulal <kamalesh@linux.vnet.ibm.com>
-
- 28 10月, 2015 1 次提交
-
-
由 Scott Wood 提交于
This limit only makes sense on book3s, and on book3e it can cause problems with kdump if we don't have any memory under 256 MiB. Signed-off-by: NScott Wood <scottwood@freescale.com>
-
- 23 1月, 2015 1 次提交
-
-
由 Gavin Shan 提交于
When calling to early_setup(), we pick "boot_paca" up for the master CPU and initialize that with initialise_paca(). At that point, the SLB shadow buffer isn't populated yet. Updating the SLB shadow buffer should corrupt what we had in physical address 0 where the trap instruction is usually stored. This hasn't been observed to cause any trouble in practice, but is obviously fishy. Fixes: 6f4441ef ("powerpc: Dynamically allocate slb_shadow from memblock") Signed-off-by: NGavin Shan <gwshan@linux.vnet.ibm.com> Signed-off-by: NMichael Ellerman <mpe@ellerman.id.au>
-
- 30 5月, 2014 1 次提交
-
-
由 Alexander Graf 提交于
On LPAR guest systems Linux enables the shadow SLB to indicate to the hypervisor a number of SLB entries that always have to be available. Today we go through this shadow SLB and disable all ESID's valid bits. However, pHyp doesn't like this approach very much and honors us with fancy machine checks. Fortunately the shadow SLB descriptor also has an entry that indicates the number of valid entries following. During the lifetime of a guest we can just swap that value to 0 and don't have to worry about the SLB restoration magic. While we're touching the code, let's also make it more readable (get rid of rldicl), allow it to deal with a dynamic number of bolted SLB entries and only do shadow SLB swizzling on LPAR systems. Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 07 4月, 2014 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
If we take an interrupt such as a trap caused by a BUG_ON before the MMU has been setup, the interrupt handlers try to enable virutal mode and cause a recursive crash, making the original problem very hard to debug. This fixes it by adjusting the "kernel_msr" value in the PACA so that it only has MSR_IR and MSR_DR (translation for instruction and data) set after the MMU has been initialized for the processor. We may still not have a console yet but at least we don't get into a recursive fault (and early debug console or memory dump via JTAG of the kernel buffer *will* give us the proper error). Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 10 1月, 2014 1 次提交
-
-
由 Scott Wood 提交于
There are a few things that make the existing hw tablewalk handlers unsuitable for e6500: - Indirect entries go in TLB1 (though the resulting direct entries go in TLB0). - It has threads, but no "tlbsrx." -- so we need a spinlock and a normal "tlbsx". Because we need this lock, hardware tablewalk is mandatory on e6500 unless we want to add spinlock+tlbsx to the normal bolted TLB miss handler. - TLB1 has no HES (nor next-victim hint) so we need software round robin (TODO: integrate this round robin data with hugetlb/KVM) - The existing tablewalk handlers map half of a page table at a time, because IBM hardware has a fixed 1MiB indirect page size. e6500 has variable size indirect entries, with a minimum of 2MiB. So we can't do the half-page indirect mapping, and even if we could it would be less efficient than mapping the full page. - Like on e5500, the linear mapping is bolted, so we don't need the overhead of supporting nested tlb misses. Note that hardware tablewalk does not work in rev1 of e6500. We do not expect to support e6500 rev1 in mainline Linux. Signed-off-by: NScott Wood <scottwood@freescale.com> Cc: Mihai Caraman <mihai.caraman@freescale.com>
-
- 09 12月, 2013 2 次提交
-
-
由 Jeremy Kerr 提交于
Currently, the slb_shadow buffer is our largest symbol: [jk@pablo linux]$ nm --size-sort -r -S obj/vmlinux | head -1 c000000000da0000 0000000000040000 d slb_shadow - we allocate 128 bytes per cpu; so 256k with NR_CPUS=2048. As we have constant initialisers, it's allocated in .text, causing a larger vmlinux image. We may also allocate unecessary slb_shadow buffers (> no. pacas), since we use the build-time NR_CPUS rather than the run-time nr_cpu_ids. We could move this to the bss, but then we still have the NR_CPUS vs nr_cpu_ids potential for overallocation. This change dynamically allocates the slb_shadow array, during initialise_pacas(). At a cost of 104 bytes of text, we save 256k of data: [jk@pablo linux]$ size obj/vmlinux{.orig,} text data bss dec hex filename 9202795 5244676 1169576 15617047 ee4c17 obj/vmlinux.orig 9202899 4982532 1169576 15355007 ea4c7f obj/vmlinux Tested on pseries. Signed-off-by: NJeremy Kerr <jk@ozlabs.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
由 Jeremy Kerr 提交于
The only external user of slb_shadow is the pseries lpar code, and it can access through the paca array instead. Signed-off-by: NJeremy Kerr <jk@ozlabs.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 11 10月, 2013 1 次提交
-
-
由 Vladimir Murzin 提交于
While cross-building for PPC64 I've got bunch of WARNING: arch/powerpc/kernel/built-in.o(.text.unlikely+0x2d2): Section mismatch in reference from the function .free_lppacas() to the variable .init.data:lppaca_size The function .free_lppacas() references the variable __initdata lppaca_size. This is often because .free_lppacas lacks a __initdata annotation or the annotation of lppaca_size is wrong. Fix it by using proper annotation for free_lppacas. Additionally, annotate {allocate,new}_llpcas properly. Signed-off-by: NVladimir Murzin <murzin.v@gmail.com> Acked-by: NMichael Ellerman <michael@ellerman.id.au> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 14 8月, 2013 1 次提交
-
-
由 Anton Blanchard 提交于
The lppaca, slb_shadow and dtl_entry hypervisor structures are big endian, so we have to byte swap them in little endian builds. LE KVM hosts will also need to be fixed but for now add an #error to remind us. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 15 2月, 2013 1 次提交
-
-
由 Geoff Levand 提交于
The powerpc boot_paca symbol is now only used within the early_setup() routine, so move it from its global definition into early_setup(). Signed-off-by: NGeoff Levand <geoff@infradead.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 10 9月, 2012 1 次提交
-
-
由 Michael Ellerman 提交于
It's possible for the cpu_possible_mask to change between the time we initialise the pacas and the time we setup per_cpu areas. Obviously impossible cpus shouldn't ever be running, but stranger things have happened. So be paranoid and initialise data_offset with a poison value in case we don't set it up later. Based on a patch from Anton Blanchard. Signed-off-by: NMichael Ellerman <michael@ellerman.id.au> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 30 4月, 2012 1 次提交
-
-
由 Anton Blanchard 提交于
Remove all the iseries specific fields in the lppaca. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 21 3月, 2012 1 次提交
-
-
由 Stephen Rothwell 提交于
This is no longer selectable, so just remove all the dependent code. Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 01 11月, 2011 1 次提交
-
-
由 Paul Gortmaker 提交于
All these files were including module.h just for the basic EXPORT_SYMBOL infrastructure. We can shift them off to the export.h header which is a way smaller footprint and thus realize some compile time gains. Signed-off-by: NPaul Gortmaker <paul.gortmaker@windriver.com>
-
- 12 7月, 2011 1 次提交
-
-
由 Paul Mackerras 提交于
This replaces the single CPU_FTR_HVMODE_206 bit with two bits, one to indicate that we have a usable hypervisor mode, and another to indicate that the processor conforms to PowerISA version 2.06. We also add another bit to indicate that the processor conforms to ISA version 2.01 and set that for PPC970 and derivatives. Some PPC970 chips (specifically those in Apple machines) have a hypervisor mode in that MSR[HV] is always 1, but the hypervisor mode is not useful in the sense that there is no way to run any code in supervisor mode (HV=0 PR=0). On these processors, the LPES0 and LPES1 bits in HID4 are always 0, and we use that as a way of detecting that hypervisor mode is not useful. Where we have a feature section in assembly code around code that only applies on POWER7 in hypervisor mode, we use a construct like END_FTR_SECTION_IFSET(CPU_FTR_HVMODE | CPU_FTR_ARCH_206) The definition of END_FTR_SECTION_IFSET is such that the code will be enabled (not overwritten with nops) only if all bits in the provided mask are set. Note that the CPU feature check in __tlbie() only needs to check the ARCH_206 bit, not the HVMODE bit, because __tlbie() can only get called if we are running bare-metal, i.e. in hypervisor mode. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NAlexander Graf <agraf@suse.de>
-
- 19 5月, 2011 1 次提交
-
-
由 Milton Miller 提交于
Now that we never set a cpu above nr_cpu_ids possible we can limit our initial paca allocation to nr_cpu_ids. We can then clamp the number of cpus in platforms/iseries/setup.c. Signed-off-by: NMilton Miller <miltonm@bga.com> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 20 4月, 2011 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
When running in Hypervisor mode (arch 2.06 or later), we store the PACA in HSPRG0 instead of SPRG1. The architecture specifies that SPRGs may be lost during a "nap" power management operation (though they aren't currently on POWER7) and this enables use of SPRG1 by KVM guests. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 05 4月, 2011 1 次提交
-
-
由 Ryan Grimm 提交于
Without this, "holes" in the CPU numbering can cause us to free too many PACAs Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 10 3月, 2011 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
The combination of commit 8154c5d2 and 93c22703 Broke boot on iSeries. The problem is that iSeries very early boot code, which generates the device-tree and runs before our normal early initializations does need access the lppaca's very early, before the PACA array is initialized, and in fact even before the boot PACA has been initialized (it contains all 0's at this stage). However, the first patch above makes that code use the new llpaca_of(cpu) accessor, which itself is changed by the second patch to use the PACA array. We fix that by reverting iSeries to directly dereferencing the array. In addition, we fix all iterators in the iSeries code to always skip CPU whose number is above 63 which is the maximum size of that array and the maximum number of supported CPUs on these machines. Additionally, we make sure the boot_paca is properly initialized in our early startup code. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 14 10月, 2010 1 次提交
-
-
由 Kumar Gala 提交于
arch/powerpc/kernel/paca.c: In function 'allocate_lppacas': arch/powerpc/kernel/paca.c:111:1: error: parameter name omitted arch/powerpc/kernel/paca.c:111:1: error: parameter name omitted Signed-off-by: NKumar Gala <galak@kernel.crashing.org>
-
- 02 9月, 2010 1 次提交
-
-
由 Paul Mackerras 提交于
This arranges for the lppaca structs for most cpus to be dynamically allocated in the same manner as the paca structs. If we don't include support for legacy iSeries, only the first lppaca is statically allocated; the rest are dynamically allocated. If we include legacy iSeries support, then we statically allocate the first 64 lppaca structs, since the iSeries hypervisor requires that the lppaca structs be present in the data section of the kernel image, but legacy iSeries supports at most 64 cpus. With CONFIG_NR_CPUS, the kernel image size for a typical pSeries config went from: text data bss dec hex filename 9524478 4734564 8469944 22728986 15ad11a ../test-1024/vmlinux to: text data bss dec hex filename 9524482 3751508 8469944 21745934 14bd10e ../test-1024/vmlinux a reduction of 983052 bytes overall. Signed-off-by: NPaul Mackerras <paulus@samba.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 05 8月, 2010 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
The RMA (RMO is a misnomer) is a concept specific to ppc64 (in fact server ppc64 though I hijack it on embedded ppc64 for similar purposes) and represents the area of memory that can be accessed in real mode (aka with MMU off), or on embedded, from the exception vectors (which is bolted in the TLB) which pretty much boils down to the same thing. We take that out of the generic MEMBLOCK data structure and move it into arch/powerpc where it belongs, renaming it to "RMA" while at it. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 31 7月, 2010 1 次提交
-
-
由 Matt Evans 提交于
With dynamic PACAs, the kexecing CPU's PACA won't lie within the kernel static data and there is a chance that something may stomp it when preparing to kexec. This patch switches this final CPU to a static PACA just before we pull the switch. Signed-off-by: NMatt Evans <matt@ozlabs.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 14 7月, 2010 1 次提交
-
-
由 Yinghai Lu 提交于
via following scripts FILES=$(find * -type f | grep -vE 'oprofile|[^K]config') sed -i \ -e 's/lmb/memblock/g' \ -e 's/LMB/MEMBLOCK/g' \ $FILES for N in $(find . -name lmb.[ch]); do M=$(echo $N | sed 's/lmb/memblock/g') mv $N $M done and remove some wrong change like lmbench and dlmb etc. also move memblock.c from lib/ to mm/ Suggested-by: NIngo Molnar <mingo@elte.hu> Acked-by: N"H. Peter Anvin" <hpa@zytor.com> Acked-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Acked-by: NLinus Torvalds <torvalds@linux-foundation.org> Signed-off-by: NYinghai Lu <yinghai@kernel.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 21 5月, 2010 1 次提交
-
-
由 Michael Neuling 提交于
In kexec_prepare_cpus, the primary CPU IPIs the secondary CPUs to kexec_smp_down(). kexec_smp_down() calls kexec_smp_wait() which sets the hw_cpu_id() to -1. The primary does this while leaving IRQs on which means the primary can take a timer interrupt which can lead to the IPIing one of the secondary CPUs (say, for a scheduler re-balance) but since the secondary CPU now has a hw_cpu_id = -1, we IPI CPU -1... Kaboom! We are hitting this case regularly on POWER7 machines. There is also a second race, where the primary will tear down the MMU mappings before knowing the secondaries have entered real mode. Also, the secondaries are clearing out any pending IPIs before guaranteeing that no more will be received. This changes kexec_prepare_cpus() so that we turn off IRQs in the primary CPU much earlier. It adds a paca flag to say that the secondaries have entered the kexec_smp_down() IPI and turned off IRQs, rather than overloading hw_cpu_id with -1. This new paca flag is again used to in indicate when the secondaries has entered real mode. It also ensures that all CPUs have their IRQs off before we clear out any pending IPI requests (in kexec_cpu_down()) to ensure there are no trailing IPIs left unacknowledged. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 09 3月, 2010 1 次提交
-
-
由 Michael Ellerman 提交于
On 64-bit kernels we currently have a 512 byte struct paca_struct for each cpu (usually just called "the paca"). Currently they are statically allocated, which means a kernel built for a large number of cpus will waste a lot of space if it's booted on a machine with few cpus. We can avoid that by only allocating the number of pacas we need at boot. However this is complicated by the fact that we need to access the paca before we know how many cpus there are in the system. The solution is to dynamically allocate enough space for NR_CPUS pacas, but then later in boot when we know how many cpus we have, we free any unused pacas. Signed-off-by: NMichael Ellerman <michael@ellerman.id.au> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 20 8月, 2009 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
This adds various fields in the PACA that are for use specifically by Book3E processors, such as exception save areas, current pgd pointer, special exceptions kernel stacks etc... Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 09 6月, 2009 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
This patch has no effect other than re-ordering PACA fields on current server CPUs. It however is a pre-requisite for future support of BookE 64-bit processors. Various parts of the PACA struct are now moved under some ifdef's, either the new CONFIG_PPC_BOOK3S or CONFIG_PPC_STD_MMU_64, whatever seems more appropriate. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.craashing.org> Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
-
- 05 11月, 2008 1 次提交
-
-
由 Brian King 提交于
A new field has been added to the VPA as a method for the client OS to communicate to firmware the number of page-ins it is performing when running collaborative memory overcommit. The hypervisor will use this information to better determine if a partition is experiencing memory pressure and needs more memory allocated to it. Signed-off-by: NBrian King <brking@linux.vnet.ibm.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 16 9月, 2008 2 次提交
-
-
由 Paul Mackerras 提交于
This implements CONFIG_RELOCATABLE for 64-bit by making the kernel as a position-independent executable (PIE) when it is set. This involves processing the dynamic relocations in the image in the early stages of booting, even if the kernel is being run at the address it is linked at, since the linker does not necessarily fill in words in the image for which there are dynamic relocations. (In fact the linker does fill in such words for 64-bit executables, though not for 32-bit executables, so in principle we could avoid calling relocate() entirely when we're running a 64-bit kernel at the linked address.) The dynamic relocations are processed by a new function relocate(addr), where the addr parameter is the virtual address where the image will be run. In fact we call it twice; once before calling prom_init, and again when starting the main kernel. This means that reloc_offset() returns 0 in prom_init (since it has been relocated to the address it is running at), which necessitated a few adjustments. This also changes __va and __pa to use an equivalent definition that is simpler. With the relocatable kernel, PAGE_OFFSET and MEMORY_START are constants (for 64-bit) whereas PHYSICAL_START is a variable (and KERNELBASE ideally should be too, but isn't yet). With this, relocatable kernels still copy themselves down to physical address 0 and run there. Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
由 Paul Mackerras 提交于
This changes the way that the exception prologs transfer control to the handlers in 64-bit kernels with the aim of making it possible to have the prologs separate from the main body of the kernel. Now, instead of computing the address of the handler by taking the top 32 bits of the paca address (to get the 0xc0000000........ part) and ORing in something in the bottom 16 bits, we get the base address of the kernel by doing a load from the paca and add an offset. This also replaces an mfmsr and an ori to compute the MSR value for the handler with a load from the paca. That makes it unnecessary to have a separate version of EXCEPTION_PROLOG_PSERIES that forces 64-bit mode. We can no longer use a direct branches in the exception prolog code, which means that the SLB miss handlers can't branch directly to .slb_miss_realmode any more. Instead we have to compute the address and do an indirect branch. This is conditional on CONFIG_RELOCATABLE; for non-relocatable kernels we use a direct branch as before. (A later change will allow CONFIG_RELOCATABLE to be set on 64-bit powerpc.) Since the secondary CPUs on pSeries start execution in the first 0x100 bytes of real memory and then have to get to wherever the kernel is, we can't use a direct branch to get there. Instead this changes __secondary_hold_spinloop from a flag to a function pointer. When it is set to a non-NULL value, the secondary CPUs jump to the function pointed to by that value. Finally this eliminates one code difference between 32-bit and 64-bit by making __secondary_hold be the text address of the secondary CPU spinloop rather than a function descriptor for it. Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 24 4月, 2008 1 次提交
-
-
由 Tony Breeds 提交于
This adds the required functionality to fill in all pacas at runtime. With NR_CPUS=1024 text data bss dec hex filename 137 1704032 0 1704169 1a00e9 arch/powerpc/kernel/paca.o :Before 121 1179744 524288 1704153 1a00d9 arch/powerpc/kernel/paca.o :After Also remove unneeded #includes from arch/powerpc/kernel/paca.c Signed-off-by: NTony Breeds <tony@bakeyournoodle.com> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 17 4月, 2008 1 次提交
-
-
由 Benjamin Herrenschmidt 提交于
Currently, we initialize the "current" pointer in the PACA (which is used by the "current" macro in the kernel) before calling setup_system(). That means that early_setup() is called with current still "NULL" which is -not- a good idea. It happens to work so far but breaks with lockdep when early code calls printk. This changes it so that all PACAs are statically initialized with __current pointing to the init task. For non-0 CPUs, this is fixed up before use. Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 15 4月, 2008 1 次提交
-
-
由 Stephen Rothwell 提交于
Now that we have the alpaca, the reg_save_ptr is no longer needed in the paca. Eradicate all global uses of it and make it static in the iSeries lpardata.c Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 08 8月, 2006 1 次提交
-
-
由 Michael Neuling 提交于
This adds a shadow buffer for the SLBs and regsiters it with PHYP. Only the bolted SLB entries (top 3) are shadowed. The SLB shadow buffer tells the hypervisor what the kernel needs to have in the SLB for the kernel to be able to function. The hypervisor can use this information to speed up partition context switches. Signed-off-by: NMichael Neuling <mikey@neuling.org> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 01 7月, 2006 1 次提交
-
-
由 Jörn Engel 提交于
Signed-off-by: NJörn Engel <joern@wohnheim.fh-wedel.de> Signed-off-by: NAdrian Bunk <bunk@stusta.de>
-
- 28 6月, 2006 1 次提交
-
-
由 Stephen Rothwell 提交于
No more StudlyCaps. Remove from a couple of places it is no longer needed. Use C style comments. Signed-off-by: NStephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-
- 27 3月, 2006 1 次提交
-
-
由 Anton Blanchard 提交于
We currently have a hack to flip the boot cpu and its secondary thread to logical cpuid 0 and 1. This means the logical - physical mapping will differ depending on which cpu is boot cpu. This is most apparent on kexec, where we might kexec on any cpu and therefore change the mapping from boot to boot. The patch below does a first pass early on to work out the logical cpuid of the boot thread. We then fix up some paca structures to match. Ive also removed the boot_cpuid_phys variable for ppc64, to be consistent we use get_hard_smp_processor_id(boot_cpuid) everywhere. Signed-off-by: NAnton Blanchard <anton@samba.org> Signed-off-by: NPaul Mackerras <paulus@samba.org>
-