提交 ffcb9738 编写于 作者: D David S. Miller
......@@ -34,7 +34,6 @@
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include <linux/can/dev.h>
#include <linux/can/platform/cc770.h>
#include "cc770.h"
......
......@@ -43,12 +43,33 @@ config CAN_EMS_PCI
CPC-PCIe and CPC-104P cards from EMS Dr. Thomas Wuensche
(http://www.ems-wuensche.de).
config CAN_PEAK_PCMCIA
tristate "PEAK PCAN-PC Card"
depends on PCMCIA
---help---
This driver is for the PCAN-PC Card PCMCIA adapter (1 or 2 channels)
from PEAK-System (http://www.peak-system.com). To compile this
driver as a module, choose M here: the module will be called
peak_pcmcia.
config CAN_PEAK_PCI
tristate "PEAK PCAN PCI/PCIe Cards"
tristate "PEAK PCAN-PCI/PCIe/miniPCI Cards"
depends on PCI
---help---
This driver is for the PCAN PCI/PCIe cards (1, 2, 3 or 4 channels)
from PEAK Systems (http://www.peak-system.com).
This driver is for the PCAN-PCI/PCIe/miniPCI cards
(1, 2, 3 or 4 channels) from PEAK-System Technik
(http://www.peak-system.com).
config CAN_PEAK_PCIEC
bool "PEAK PCAN-ExpressCard Cards"
depends on CAN_PEAK_PCI
select I2C
select I2C_ALGOBIT
default y
---help---
Say Y here if you want to use a PCAN-ExpressCard from PEAK-System
Technik. This will also automatically select I2C and I2C_ALGO
configuration options.
config CAN_KVASER_PCI
tristate "Kvaser PCIcanx and Kvaser PCIcan PCI Cards"
......
......@@ -9,6 +9,7 @@ obj-$(CONFIG_CAN_SJA1000_OF_PLATFORM) += sja1000_of_platform.o
obj-$(CONFIG_CAN_EMS_PCMCIA) += ems_pcmcia.o
obj-$(CONFIG_CAN_EMS_PCI) += ems_pci.o
obj-$(CONFIG_CAN_KVASER_PCI) += kvaser_pci.o
obj-$(CONFIG_CAN_PEAK_PCMCIA) += peak_pcmcia.o
obj-$(CONFIG_CAN_PEAK_PCI) += peak_pci.o
obj-$(CONFIG_CAN_PLX_PCI) += plx_pci.o
obj-$(CONFIG_CAN_TSCAN1) += tscan1.o
......
/*
* Copyright (C) 2007, 2011 Wolfgang Grandegger <wg@grandegger.com>
* Copyright (C) 2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* Derived from the PCAN project file driver/src/pcan_pci.c:
*
......@@ -13,10 +14,6 @@
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include <linux/kernel.h>
......@@ -26,22 +23,26 @@
#include <linux/delay.h>
#include <linux/pci.h>
#include <linux/io.h>
#include <linux/i2c.h>
#include <linux/i2c-algo-bit.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include "sja1000.h"
MODULE_AUTHOR("Wolfgang Grandegger <wg@grandegger.com>");
MODULE_DESCRIPTION("Socket-CAN driver for PEAK PCAN PCI/PCIe cards");
MODULE_SUPPORTED_DEVICE("PEAK PCAN PCI/PCIe CAN card");
MODULE_DESCRIPTION("Socket-CAN driver for PEAK PCAN PCI family cards");
MODULE_SUPPORTED_DEVICE("PEAK PCAN PCI/PCIe/PCIeC miniPCI CAN cards");
MODULE_LICENSE("GPL v2");
#define DRV_NAME "peak_pci"
struct peak_pciec_card;
struct peak_pci_chan {
void __iomem *cfg_base; /* Common for all channels */
struct net_device *prev_dev; /* Chain of network devices */
u16 icr_mask; /* Interrupt mask for fast ack */
struct peak_pciec_card *pciec_card; /* only for PCIeC LEDs */
};
#define PEAK_PCI_CAN_CLOCK (16000000 / 2)
......@@ -61,16 +62,464 @@ struct peak_pci_chan {
#define PEAK_PCI_VENDOR_ID 0x001C /* The PCI device and vendor IDs */
#define PEAK_PCI_DEVICE_ID 0x0001 /* for PCI/PCIe slot cards */
#define PEAK_PCIEC_DEVICE_ID 0x0002 /* for ExpressCard slot cards */
#define PEAK_PCIE_DEVICE_ID 0x0003 /* for nextgen PCIe slot cards */
#define PEAK_MPCI_DEVICE_ID 0x0008 /* The miniPCI slot cards */
#define PEAK_PCI_CHAN_MAX 4
static const u16 peak_pci_icr_masks[] = {0x02, 0x01, 0x40, 0x80};
static const u16 peak_pci_icr_masks[PEAK_PCI_CHAN_MAX] = {
0x02, 0x01, 0x40, 0x80
};
static DEFINE_PCI_DEVICE_TABLE(peak_pci_tbl) = {
{PEAK_PCI_VENDOR_ID, PEAK_PCI_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PEAK_PCI_VENDOR_ID, PEAK_PCIE_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
{PEAK_PCI_VENDOR_ID, PEAK_MPCI_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
#ifdef CONFIG_CAN_PEAK_PCIEC
{PEAK_PCI_VENDOR_ID, PEAK_PCIEC_DEVICE_ID, PCI_ANY_ID, PCI_ANY_ID,},
#endif
{0,}
};
MODULE_DEVICE_TABLE(pci, peak_pci_tbl);
#ifdef CONFIG_CAN_PEAK_PCIEC
/*
* PCAN-ExpressCard needs I2C bit-banging configuration option.
*/
/* GPIOICR byte access offsets */
#define PITA_GPOUT 0x18 /* GPx output value */
#define PITA_GPIN 0x19 /* GPx input value */
#define PITA_GPOEN 0x1A /* configure GPx as ouput pin */
/* I2C GP bits */
#define PITA_GPIN_SCL 0x01 /* Serial Clock Line */
#define PITA_GPIN_SDA 0x04 /* Serial DAta line */
#define PCA9553_1_SLAVEADDR (0xC4 >> 1)
/* PCA9553 LS0 fields values */
enum {
PCA9553_LOW,
PCA9553_HIGHZ,
PCA9553_PWM0,
PCA9553_PWM1
};
/* LEDs control */
#define PCA9553_ON PCA9553_LOW
#define PCA9553_OFF PCA9553_HIGHZ
#define PCA9553_SLOW PCA9553_PWM0
#define PCA9553_FAST PCA9553_PWM1
#define PCA9553_LED(c) (1 << (c))
#define PCA9553_LED_STATE(s, c) ((s) << ((c) << 1))
#define PCA9553_LED_ON(c) PCA9553_LED_STATE(PCA9553_ON, c)
#define PCA9553_LED_OFF(c) PCA9553_LED_STATE(PCA9553_OFF, c)
#define PCA9553_LED_SLOW(c) PCA9553_LED_STATE(PCA9553_SLOW, c)
#define PCA9553_LED_FAST(c) PCA9553_LED_STATE(PCA9553_FAST, c)
#define PCA9553_LED_MASK(c) PCA9553_LED_STATE(0x03, c)
#define PCA9553_LED_OFF_ALL (PCA9553_LED_OFF(0) | PCA9553_LED_OFF(1))
#define PCA9553_LS0_INIT 0x40 /* initial value (!= from 0x00) */
struct peak_pciec_chan {
struct net_device *netdev;
unsigned long prev_rx_bytes;
unsigned long prev_tx_bytes;
};
struct peak_pciec_card {
void __iomem *cfg_base; /* Common for all channels */
void __iomem *reg_base; /* first channel base address */
u8 led_cache; /* leds state cache */
/* PCIExpressCard i2c data */
struct i2c_algo_bit_data i2c_bit;
struct i2c_adapter led_chip;
struct delayed_work led_work; /* led delayed work */
int chan_count;
struct peak_pciec_chan channel[PEAK_PCI_CHAN_MAX];
};
/* "normal" pci register write callback is overloaded for leds control */
static void peak_pci_write_reg(const struct sja1000_priv *priv,
int port, u8 val);
static inline void pita_set_scl_highz(struct peak_pciec_card *card)
{
u8 gp_outen = readb(card->cfg_base + PITA_GPOEN) & ~PITA_GPIN_SCL;
writeb(gp_outen, card->cfg_base + PITA_GPOEN);
}
static inline void pita_set_sda_highz(struct peak_pciec_card *card)
{
u8 gp_outen = readb(card->cfg_base + PITA_GPOEN) & ~PITA_GPIN_SDA;
writeb(gp_outen, card->cfg_base + PITA_GPOEN);
}
static void peak_pciec_init_pita_gpio(struct peak_pciec_card *card)
{
/* raise SCL & SDA GPIOs to high-Z */
pita_set_scl_highz(card);
pita_set_sda_highz(card);
}
static void pita_setsda(void *data, int state)
{
struct peak_pciec_card *card = (struct peak_pciec_card *)data;
u8 gp_out, gp_outen;
/* set output sda always to 0 */
gp_out = readb(card->cfg_base + PITA_GPOUT) & ~PITA_GPIN_SDA;
writeb(gp_out, card->cfg_base + PITA_GPOUT);
/* control output sda with GPOEN */
gp_outen = readb(card->cfg_base + PITA_GPOEN);
if (state)
gp_outen &= ~PITA_GPIN_SDA;
else
gp_outen |= PITA_GPIN_SDA;
writeb(gp_outen, card->cfg_base + PITA_GPOEN);
}
static void pita_setscl(void *data, int state)
{
struct peak_pciec_card *card = (struct peak_pciec_card *)data;
u8 gp_out, gp_outen;
/* set output scl always to 0 */
gp_out = readb(card->cfg_base + PITA_GPOUT) & ~PITA_GPIN_SCL;
writeb(gp_out, card->cfg_base + PITA_GPOUT);
/* control output scl with GPOEN */
gp_outen = readb(card->cfg_base + PITA_GPOEN);
if (state)
gp_outen &= ~PITA_GPIN_SCL;
else
gp_outen |= PITA_GPIN_SCL;
writeb(gp_outen, card->cfg_base + PITA_GPOEN);
}
static int pita_getsda(void *data)
{
struct peak_pciec_card *card = (struct peak_pciec_card *)data;
/* set tristate */
pita_set_sda_highz(card);
return (readb(card->cfg_base + PITA_GPIN) & PITA_GPIN_SDA) ? 1 : 0;
}
static int pita_getscl(void *data)
{
struct peak_pciec_card *card = (struct peak_pciec_card *)data;
/* set tristate */
pita_set_scl_highz(card);
return (readb(card->cfg_base + PITA_GPIN) & PITA_GPIN_SCL) ? 1 : 0;
}
/*
* write commands to the LED chip though the I2C-bus of the PCAN-PCIeC
*/
static int peak_pciec_write_pca9553(struct peak_pciec_card *card,
u8 offset, u8 data)
{
u8 buffer[2] = {
offset,
data
};
struct i2c_msg msg = {
.addr = PCA9553_1_SLAVEADDR,
.len = 2,
.buf = buffer,
};
int ret;
/* cache led mask */
if ((offset == 5) && (data == card->led_cache))
return 0;
ret = i2c_transfer(&card->led_chip, &msg, 1);
if (ret < 0)
return ret;
if (offset == 5)
card->led_cache = data;
return 0;
}
/*
* delayed work callback used to control the LEDs
*/
static void peak_pciec_led_work(struct work_struct *work)
{
struct peak_pciec_card *card =
container_of(work, struct peak_pciec_card, led_work.work);
struct net_device *netdev;
u8 new_led = card->led_cache;
int i, up_count = 0;
/* first check what is to do */
for (i = 0; i < card->chan_count; i++) {
/* default is: not configured */
new_led &= ~PCA9553_LED_MASK(i);
new_led |= PCA9553_LED_ON(i);
netdev = card->channel[i].netdev;
if (!netdev || !(netdev->flags & IFF_UP))
continue;
up_count++;
/* no activity (but configured) */
new_led &= ~PCA9553_LED_MASK(i);
new_led |= PCA9553_LED_SLOW(i);
/* if bytes counters changed, set fast blinking led */
if (netdev->stats.rx_bytes != card->channel[i].prev_rx_bytes) {
card->channel[i].prev_rx_bytes = netdev->stats.rx_bytes;
new_led &= ~PCA9553_LED_MASK(i);
new_led |= PCA9553_LED_FAST(i);
}
if (netdev->stats.tx_bytes != card->channel[i].prev_tx_bytes) {
card->channel[i].prev_tx_bytes = netdev->stats.tx_bytes;
new_led &= ~PCA9553_LED_MASK(i);
new_led |= PCA9553_LED_FAST(i);
}
}
/* check if LS0 settings changed, only update i2c if so */
peak_pciec_write_pca9553(card, 5, new_led);
/* restart timer (except if no more configured channels) */
if (up_count)
schedule_delayed_work(&card->led_work, HZ);
}
/*
* set LEDs blinking state
*/
static void peak_pciec_set_leds(struct peak_pciec_card *card, u8 led_mask, u8 s)
{
u8 new_led = card->led_cache;
int i;
/* first check what is to do */
for (i = 0; i < card->chan_count; i++)
if (led_mask & PCA9553_LED(i)) {
new_led &= ~PCA9553_LED_MASK(i);
new_led |= PCA9553_LED_STATE(s, i);
}
/* check if LS0 settings changed, only update i2c if so */
peak_pciec_write_pca9553(card, 5, new_led);
}
/*
* start one second delayed work to control LEDs
*/
static void peak_pciec_start_led_work(struct peak_pciec_card *card)
{
if (!delayed_work_pending(&card->led_work))
schedule_delayed_work(&card->led_work, HZ);
}
/*
* stop LEDs delayed work
*/
static void peak_pciec_stop_led_work(struct peak_pciec_card *card)
{
cancel_delayed_work_sync(&card->led_work);
}
/*
* initialize the PCA9553 4-bit I2C-bus LED chip
*/
static int peak_pciec_init_leds(struct peak_pciec_card *card)
{
int err;
/* prescaler for frequency 0: "SLOW" = 1 Hz = "44" */
err = peak_pciec_write_pca9553(card, 1, 44 / 1);
if (err)
return err;
/* duty cycle 0: 50% */
err = peak_pciec_write_pca9553(card, 2, 0x80);
if (err)
return err;
/* prescaler for frequency 1: "FAST" = 5 Hz */
err = peak_pciec_write_pca9553(card, 3, 44 / 5);
if (err)
return err;
/* duty cycle 1: 50% */
err = peak_pciec_write_pca9553(card, 4, 0x80);
if (err)
return err;
/* switch LEDs to initial state */
return peak_pciec_write_pca9553(card, 5, PCA9553_LS0_INIT);
}
/*
* restore LEDs state to off peak_pciec_leds_exit
*/
static void peak_pciec_leds_exit(struct peak_pciec_card *card)
{
/* switch LEDs to off */
peak_pciec_write_pca9553(card, 5, PCA9553_LED_OFF_ALL);
}
/*
* normal write sja1000 register method overloaded to catch when controller
* is started or stopped, to control leds
*/
static void peak_pciec_write_reg(const struct sja1000_priv *priv,
int port, u8 val)
{
struct peak_pci_chan *chan = priv->priv;
struct peak_pciec_card *card = chan->pciec_card;
int c = (priv->reg_base - card->reg_base) / PEAK_PCI_CHAN_SIZE;
/* sja1000 register changes control the leds state */
if (port == REG_MOD)
switch (val) {
case MOD_RM:
/* Reset Mode: set led on */
peak_pciec_set_leds(card, PCA9553_LED(c), PCA9553_ON);
break;
case 0x00:
/* Normal Mode: led slow blinking and start led timer */
peak_pciec_set_leds(card, PCA9553_LED(c), PCA9553_SLOW);
peak_pciec_start_led_work(card);
break;
default:
break;
}
/* call base function */
peak_pci_write_reg(priv, port, val);
}
static struct i2c_algo_bit_data peak_pciec_i2c_bit_ops = {
.setsda = pita_setsda,
.setscl = pita_setscl,
.getsda = pita_getsda,
.getscl = pita_getscl,
.udelay = 10,
.timeout = HZ,
};
static int peak_pciec_probe(struct pci_dev *pdev, struct net_device *dev)
{
struct sja1000_priv *priv = netdev_priv(dev);
struct peak_pci_chan *chan = priv->priv;
struct peak_pciec_card *card;
int err;
/* copy i2c object address from 1st channel */
if (chan->prev_dev) {
struct sja1000_priv *prev_priv = netdev_priv(chan->prev_dev);
struct peak_pci_chan *prev_chan = prev_priv->priv;
card = prev_chan->pciec_card;
if (!card)
return -ENODEV;
/* channel is the first one: do the init part */
} else {
/* create the bit banging I2C adapter structure */
card = kzalloc(sizeof(struct peak_pciec_card), GFP_KERNEL);
if (!card) {
dev_err(&pdev->dev,
"failed allocating memory for i2c chip\n");
return -ENOMEM;
}
card->cfg_base = chan->cfg_base;
card->reg_base = priv->reg_base;
card->led_chip.owner = THIS_MODULE;
card->led_chip.dev.parent = &pdev->dev;
card->led_chip.algo_data = &card->i2c_bit;
strncpy(card->led_chip.name, "peak_i2c",
sizeof(card->led_chip.name));
card->i2c_bit = peak_pciec_i2c_bit_ops;
card->i2c_bit.udelay = 10;
card->i2c_bit.timeout = HZ;
card->i2c_bit.data = card;
peak_pciec_init_pita_gpio(card);
err = i2c_bit_add_bus(&card->led_chip);
if (err) {
dev_err(&pdev->dev, "i2c init failed\n");
goto pciec_init_err_1;
}
err = peak_pciec_init_leds(card);
if (err) {
dev_err(&pdev->dev, "leds hardware init failed\n");
goto pciec_init_err_2;
}
INIT_DELAYED_WORK(&card->led_work, peak_pciec_led_work);
/* PCAN-ExpressCard needs its own callback for leds */
priv->write_reg = peak_pciec_write_reg;
}
chan->pciec_card = card;
card->channel[card->chan_count++].netdev = dev;
return 0;
pciec_init_err_2:
i2c_del_adapter(&card->led_chip);
pciec_init_err_1:
peak_pciec_init_pita_gpio(card);
kfree(card);
return err;
}
static void peak_pciec_remove(struct peak_pciec_card *card)
{
peak_pciec_stop_led_work(card);
peak_pciec_leds_exit(card);
i2c_del_adapter(&card->led_chip);
peak_pciec_init_pita_gpio(card);
kfree(card);
}
#else /* CONFIG_CAN_PEAK_PCIEC */
/*
* Placebo functions when PCAN-ExpressCard support is not selected
*/
static inline int peak_pciec_probe(struct pci_dev *pdev, struct net_device *dev)
{
return -ENODEV;
}
static inline void peak_pciec_remove(struct peak_pciec_card *card)
{
}
#endif /* CONFIG_CAN_PEAK_PCIEC */
static u8 peak_pci_read_reg(const struct sja1000_priv *priv, int port)
{
return readb(priv->reg_base + (port << 2));
......@@ -188,17 +637,31 @@ static int __devinit peak_pci_probe(struct pci_dev *pdev,
SET_NETDEV_DEV(dev, &pdev->dev);
/* Create chain of SJA1000 devices */
chan->prev_dev = pci_get_drvdata(pdev);
pci_set_drvdata(pdev, dev);
/*
* PCAN-ExpressCard needs some additional i2c init.
* This must be done *before* register_sja1000dev() but
* *after* devices linkage
*/
if (pdev->device == PEAK_PCIEC_DEVICE_ID) {
err = peak_pciec_probe(pdev, dev);
if (err) {
dev_err(&pdev->dev,
"failed to probe device (err %d)\n",
err);
goto failure_free_dev;
}
}
err = register_sja1000dev(dev);
if (err) {
dev_err(&pdev->dev, "failed to register device\n");
free_sja1000dev(dev);
goto failure_remove_channels;
goto failure_free_dev;
}
/* Create chain of SJA1000 devices */
chan->prev_dev = pci_get_drvdata(pdev);
pci_set_drvdata(pdev, dev);
dev_info(&pdev->dev,
"%s at reg_base=0x%p cfg_base=0x%p irq=%d\n",
dev->name, priv->reg_base, chan->cfg_base, dev->irq);
......@@ -209,10 +672,15 @@ static int __devinit peak_pci_probe(struct pci_dev *pdev,
return 0;
failure_free_dev:
pci_set_drvdata(pdev, chan->prev_dev);
free_sja1000dev(dev);
failure_remove_channels:
/* Disable interrupts */
writew(0x0, cfg_base + PITA_ICR + 2);
chan = NULL;
for (dev = pci_get_drvdata(pdev); dev; dev = chan->prev_dev) {
unregister_sja1000dev(dev);
free_sja1000dev(dev);
......@@ -220,6 +688,10 @@ static int __devinit peak_pci_probe(struct pci_dev *pdev,
chan = priv->priv;
}
/* free any PCIeC resources too */
if (chan && chan->pciec_card)
peak_pciec_remove(chan->pciec_card);
pci_iounmap(pdev, reg_base);
failure_unmap_cfg_base:
......@@ -251,8 +723,13 @@ static void __devexit peak_pci_remove(struct pci_dev *pdev)
unregister_sja1000dev(dev);
free_sja1000dev(dev);
dev = chan->prev_dev;
if (!dev)
if (!dev) {
/* do that only for first channel */
if (chan->pciec_card)
peak_pciec_remove(chan->pciec_card);
break;
}
priv = netdev_priv(dev);
chan = priv->priv;
}
......
/*
* Copyright (C) 2010-2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* CAN driver for PEAK-System PCAN-PC Card
* Derived from the PCAN project file driver/src/pcan_pccard.c
* Copyright (C) 2006-2010 PEAK System-Technik GmbH
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the version 2 of the GNU General Public License
* as published by the Free Software Foundation
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/interrupt.h>
#include <linux/netdevice.h>
#include <linux/delay.h>
#include <linux/timer.h>
#include <linux/io.h>
#include <pcmcia/cistpl.h>
#include <pcmcia/ds.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include "sja1000.h"
MODULE_AUTHOR("Stephane Grosjean <s.grosjean@peak-system.com>");
MODULE_DESCRIPTION("CAN driver for PEAK-System PCAN-PC Cards");
MODULE_LICENSE("GPL v2");
MODULE_SUPPORTED_DEVICE("PEAK PCAN-PC Card");
/* PEAK-System PCMCIA driver name */
#define PCC_NAME "peak_pcmcia"
#define PCC_CHAN_MAX 2
#define PCC_CAN_CLOCK (16000000 / 2)
#define PCC_MANF_ID 0x0377
#define PCC_CARD_ID 0x0001
#define PCC_CHAN_SIZE 0x20
#define PCC_CHAN_OFF(c) ((c) * PCC_CHAN_SIZE)
#define PCC_COMN_OFF (PCC_CHAN_OFF(PCC_CHAN_MAX))
#define PCC_COMN_SIZE 0x40
/* common area registers */
#define PCC_CCR 0x00
#define PCC_CSR 0x02
#define PCC_CPR 0x04
#define PCC_SPI_DIR 0x06
#define PCC_SPI_DOR 0x08
#define PCC_SPI_ADR 0x0a
#define PCC_SPI_IR 0x0c
#define PCC_FW_MAJOR 0x10
#define PCC_FW_MINOR 0x12
/* CCR bits */
#define PCC_CCR_CLK_16 0x00
#define PCC_CCR_CLK_10 0x01
#define PCC_CCR_CLK_21 0x02
#define PCC_CCR_CLK_8 0x03
#define PCC_CCR_CLK_MASK PCC_CCR_CLK_8
#define PCC_CCR_RST_CHAN(c) (0x01 << ((c) + 2))
#define PCC_CCR_RST_ALL (PCC_CCR_RST_CHAN(0) | PCC_CCR_RST_CHAN(1))
#define PCC_CCR_RST_MASK PCC_CCR_RST_ALL
/* led selection bits */
#define PCC_LED(c) (1 << (c))
#define PCC_LED_ALL (PCC_LED(0) | PCC_LED(1))
/* led state value */
#define PCC_LED_ON 0x00
#define PCC_LED_FAST 0x01
#define PCC_LED_SLOW 0x02
#define PCC_LED_OFF 0x03
#define PCC_CCR_LED_CHAN(s, c) ((s) << (((c) + 2) << 1))
#define PCC_CCR_LED_ON_CHAN(c) PCC_CCR_LED_CHAN(PCC_LED_ON, c)
#define PCC_CCR_LED_FAST_CHAN(c) PCC_CCR_LED_CHAN(PCC_LED_FAST, c)
#define PCC_CCR_LED_SLOW_CHAN(c) PCC_CCR_LED_CHAN(PCC_LED_SLOW, c)
#define PCC_CCR_LED_OFF_CHAN(c) PCC_CCR_LED_CHAN(PCC_LED_OFF, c)
#define PCC_CCR_LED_MASK_CHAN(c) PCC_CCR_LED_OFF_CHAN(c)
#define PCC_CCR_LED_OFF_ALL (PCC_CCR_LED_OFF_CHAN(0) | \
PCC_CCR_LED_OFF_CHAN(1))
#define PCC_CCR_LED_MASK PCC_CCR_LED_OFF_ALL
#define PCC_CCR_INIT (PCC_CCR_CLK_16 | PCC_CCR_RST_ALL | PCC_CCR_LED_OFF_ALL)
/* CSR bits */
#define PCC_CSR_SPI_BUSY 0x04
/* time waiting for SPI busy (prevent from infinite loop) */
#define PCC_SPI_MAX_BUSY_WAIT_MS 3
/* max count of reading the SPI status register waiting for a change */
/* (prevent from infinite loop) */
#define PCC_WRITE_MAX_LOOP 1000
/* max nb of int handled by that isr in one shot (prevent from infinite loop) */
#define PCC_ISR_MAX_LOOP 10
/* EEPROM chip instruction set */
/* note: EEPROM Read/Write instructions include A8 bit */
#define PCC_EEP_WRITE(a) (0x02 | (((a) & 0x100) >> 5))
#define PCC_EEP_READ(a) (0x03 | (((a) & 0x100) >> 5))
#define PCC_EEP_WRDI 0x04 /* EEPROM Write Disable */
#define PCC_EEP_RDSR 0x05 /* EEPROM Read Status Register */
#define PCC_EEP_WREN 0x06 /* EEPROM Write Enable */
/* EEPROM Status Register bits */
#define PCC_EEP_SR_WEN 0x02 /* EEPROM SR Write Enable bit */
#define PCC_EEP_SR_WIP 0x01 /* EEPROM SR Write In Progress bit */
/*
* The board configuration is probably following:
* RX1 is connected to ground.
* TX1 is not connected.
* CLKO is not connected.
* Setting the OCR register to 0xDA is a good idea.
* This means normal output mode, push-pull and the correct polarity.
*/
#define PCC_OCR (OCR_TX0_PUSHPULL | OCR_TX1_PUSHPULL)
/*
* In the CDR register, you should set CBP to 1.
* You will probably also want to set the clock divider value to 7
* (meaning direct oscillator output) because the second SJA1000 chip
* is driven by the first one CLKOUT output.
*/
#define PCC_CDR (CDR_CBP | CDR_CLKOUT_MASK)
struct pcan_channel {
struct net_device *netdev;
unsigned long prev_rx_bytes;
unsigned long prev_tx_bytes;
};
/* PCAN-PC Card private structure */
struct pcan_pccard {
struct pcmcia_device *pdev;
int chan_count;
struct pcan_channel channel[PCC_CHAN_MAX];
u8 ccr;
u8 fw_major;
u8 fw_minor;
void __iomem *ioport_addr;
struct timer_list led_timer;
};
static struct pcmcia_device_id pcan_table[] = {
PCMCIA_DEVICE_MANF_CARD(PCC_MANF_ID, PCC_CARD_ID),
PCMCIA_DEVICE_NULL,
};
MODULE_DEVICE_TABLE(pcmcia, pcan_table);
static void pcan_set_leds(struct pcan_pccard *card, u8 mask, u8 state);
/*
* start timer which controls leds state
*/
static void pcan_start_led_timer(struct pcan_pccard *card)
{
if (!timer_pending(&card->led_timer))
mod_timer(&card->led_timer, jiffies + HZ);
}
/*
* stop the timer which controls leds state
*/
static void pcan_stop_led_timer(struct pcan_pccard *card)
{
del_timer_sync(&card->led_timer);
}
/*
* read a sja1000 register
*/
static u8 pcan_read_canreg(const struct sja1000_priv *priv, int port)
{
return ioread8(priv->reg_base + port);
}
/*
* write a sja1000 register
*/
static void pcan_write_canreg(const struct sja1000_priv *priv, int port, u8 v)
{
struct pcan_pccard *card = priv->priv;
int c = (priv->reg_base - card->ioport_addr) / PCC_CHAN_SIZE;
/* sja1000 register changes control the leds state */
if (port == REG_MOD)
switch (v) {
case MOD_RM:
/* Reset Mode: set led on */
pcan_set_leds(card, PCC_LED(c), PCC_LED_ON);
break;
case 0x00:
/* Normal Mode: led slow blinking and start led timer */
pcan_set_leds(card, PCC_LED(c), PCC_LED_SLOW);
pcan_start_led_timer(card);
break;
default:
break;
}
iowrite8(v, priv->reg_base + port);
}
/*
* read a register from the common area
*/
static u8 pcan_read_reg(struct pcan_pccard *card, int port)
{
return ioread8(card->ioport_addr + PCC_COMN_OFF + port);
}
/*
* write a register into the common area
*/
static void pcan_write_reg(struct pcan_pccard *card, int port, u8 v)
{
/* cache ccr value */
if (port == PCC_CCR) {
if (card->ccr == v)
return;
card->ccr = v;
}
iowrite8(v, card->ioport_addr + PCC_COMN_OFF + port);
}
/*
* check whether the card is present by checking its fw version numbers
* against values read at probing time.
*/
static inline int pcan_pccard_present(struct pcan_pccard *card)
{
return ((pcan_read_reg(card, PCC_FW_MAJOR) == card->fw_major) &&
(pcan_read_reg(card, PCC_FW_MINOR) == card->fw_minor));
}
/*
* wait for SPI engine while it is busy
*/
static int pcan_wait_spi_busy(struct pcan_pccard *card)
{
unsigned long timeout = jiffies +
msecs_to_jiffies(PCC_SPI_MAX_BUSY_WAIT_MS) + 1;
/* be sure to read status at least once after sleeping */
while (pcan_read_reg(card, PCC_CSR) & PCC_CSR_SPI_BUSY) {
if (time_after(jiffies, timeout))
return -EBUSY;
schedule();
}
return 0;
}
/*
* write data in device eeprom
*/
static int pcan_write_eeprom(struct pcan_pccard *card, u16 addr, u8 v)
{
u8 status;
int err, i;
/* write instruction enabling write */
pcan_write_reg(card, PCC_SPI_IR, PCC_EEP_WREN);
err = pcan_wait_spi_busy(card);
if (err)
goto we_spi_err;
/* wait until write enabled */
for (i = 0; i < PCC_WRITE_MAX_LOOP; i++) {
/* write instruction reading the status register */
pcan_write_reg(card, PCC_SPI_IR, PCC_EEP_RDSR);
err = pcan_wait_spi_busy(card);
if (err)
goto we_spi_err;
/* get status register value and check write enable bit */
status = pcan_read_reg(card, PCC_SPI_DIR);
if (status & PCC_EEP_SR_WEN)
break;
}
if (i >= PCC_WRITE_MAX_LOOP) {
dev_err(&card->pdev->dev,
"stop waiting to be allowed to write in eeprom\n");
return -EIO;
}
/* set address and data */
pcan_write_reg(card, PCC_SPI_ADR, addr & 0xff);
pcan_write_reg(card, PCC_SPI_DOR, v);
/*
* write instruction with bit[3] set according to address value:
* if addr refers to upper half of the memory array: bit[3] = 1
*/
pcan_write_reg(card, PCC_SPI_IR, PCC_EEP_WRITE(addr));
err = pcan_wait_spi_busy(card);
if (err)
goto we_spi_err;
/* wait while write in progress */
for (i = 0; i < PCC_WRITE_MAX_LOOP; i++) {
/* write instruction reading the status register */
pcan_write_reg(card, PCC_SPI_IR, PCC_EEP_RDSR);
err = pcan_wait_spi_busy(card);
if (err)
goto we_spi_err;
/* get status register value and check write in progress bit */
status = pcan_read_reg(card, PCC_SPI_DIR);
if (!(status & PCC_EEP_SR_WIP))
break;
}
if (i >= PCC_WRITE_MAX_LOOP) {
dev_err(&card->pdev->dev,
"stop waiting for write in eeprom to complete\n");
return -EIO;
}
/* write instruction disabling write */
pcan_write_reg(card, PCC_SPI_IR, PCC_EEP_WRDI);
err = pcan_wait_spi_busy(card);
if (err)
goto we_spi_err;
return 0;
we_spi_err:
dev_err(&card->pdev->dev,
"stop waiting (spi engine always busy) err %d\n", err);
return err;
}
static void pcan_set_leds(struct pcan_pccard *card, u8 led_mask, u8 state)
{
u8 ccr = card->ccr;
int i;
for (i = 0; i < card->chan_count; i++)
if (led_mask & PCC_LED(i)) {
/* clear corresponding led bits in ccr */
ccr &= ~PCC_CCR_LED_MASK_CHAN(i);
/* then set new bits */
ccr |= PCC_CCR_LED_CHAN(state, i);
}
/* real write only if something has changed in ccr */
pcan_write_reg(card, PCC_CCR, ccr);
}
/*
* enable/disable CAN connectors power
*/
static inline void pcan_set_can_power(struct pcan_pccard *card, int onoff)
{
int err;
err = pcan_write_eeprom(card, 0, !!onoff);
if (err)
dev_err(&card->pdev->dev,
"failed setting power %s to can connectors (err %d)\n",
(onoff) ? "on" : "off", err);
}
/*
* set leds state according to channel activity
*/
static void pcan_led_timer(unsigned long arg)
{
struct pcan_pccard *card = (struct pcan_pccard *)arg;
struct net_device *netdev;
int i, up_count = 0;
u8 ccr;
ccr = card->ccr;
for (i = 0; i < card->chan_count; i++) {
/* default is: not configured */
ccr &= ~PCC_CCR_LED_MASK_CHAN(i);
ccr |= PCC_CCR_LED_ON_CHAN(i);
netdev = card->channel[i].netdev;
if (!netdev || !(netdev->flags & IFF_UP))
continue;
up_count++;
/* no activity (but configured) */
ccr &= ~PCC_CCR_LED_MASK_CHAN(i);
ccr |= PCC_CCR_LED_SLOW_CHAN(i);
/* if bytes counters changed, set fast blinking led */
if (netdev->stats.rx_bytes != card->channel[i].prev_rx_bytes) {
card->channel[i].prev_rx_bytes = netdev->stats.rx_bytes;
ccr &= ~PCC_CCR_LED_MASK_CHAN(i);
ccr |= PCC_CCR_LED_FAST_CHAN(i);
}
if (netdev->stats.tx_bytes != card->channel[i].prev_tx_bytes) {
card->channel[i].prev_tx_bytes = netdev->stats.tx_bytes;
ccr &= ~PCC_CCR_LED_MASK_CHAN(i);
ccr |= PCC_CCR_LED_FAST_CHAN(i);
}
}
/* write the new leds state */
pcan_write_reg(card, PCC_CCR, ccr);
/* restart timer (except if no more configured channels) */
if (up_count)
mod_timer(&card->led_timer, jiffies + HZ);
}
/*
* interrupt service routine
*/
static irqreturn_t pcan_isr(int irq, void *dev_id)
{
struct pcan_pccard *card = dev_id;
int irq_handled;
/* prevent from infinite loop */
for (irq_handled = 0; irq_handled < PCC_ISR_MAX_LOOP; irq_handled++) {
/* handle shared interrupt and next loop */
int nothing_to_handle = 1;
int i;
/* check interrupt for each channel */
for (i = 0; i < card->chan_count; i++) {
struct net_device *netdev;
/*
* check whether the card is present before calling
* sja1000_interrupt() to speed up hotplug detection
*/
if (!pcan_pccard_present(card)) {
/* card unplugged during isr */
return IRQ_NONE;
}
/*
* should check whether all or SJA1000_MAX_IRQ
* interrupts have been handled: loop again to be sure.
*/
netdev = card->channel[i].netdev;
if (netdev &&
sja1000_interrupt(irq, netdev) == IRQ_HANDLED)
nothing_to_handle = 0;
}
if (nothing_to_handle)
break;
}
return (irq_handled) ? IRQ_HANDLED : IRQ_NONE;
}
/*
* free all resources used by the channels and switch off leds and can power
*/
static void pcan_free_channels(struct pcan_pccard *card)
{
int i;
u8 led_mask = 0;
for (i = 0; i < card->chan_count; i++) {
struct net_device *netdev;
char name[IFNAMSIZ];
led_mask |= PCC_LED(i);
netdev = card->channel[i].netdev;
if (!netdev)
continue;
strncpy(name, netdev->name, IFNAMSIZ);
unregister_sja1000dev(netdev);
free_sja1000dev(netdev);
dev_info(&card->pdev->dev, "%s removed\n", name);
}
/* do it only if device not removed */
if (pcan_pccard_present(card)) {
pcan_set_leds(card, led_mask, PCC_LED_OFF);
pcan_set_can_power(card, 0);
}
}
/*
* check if a CAN controller is present at the specified location
*/
static inline int pcan_channel_present(struct sja1000_priv *priv)
{
/* make sure SJA1000 is in reset mode */
pcan_write_canreg(priv, REG_MOD, 1);
pcan_write_canreg(priv, REG_CDR, CDR_PELICAN);
/* read reset-values */
if (pcan_read_canreg(priv, REG_CDR) == CDR_PELICAN)
return 1;
return 0;
}
static int pcan_add_channels(struct pcan_pccard *card)
{
struct pcmcia_device *pdev = card->pdev;
int i, err = 0;
u8 ccr = PCC_CCR_INIT;
/* init common registers (reset channels and leds off) */
card->ccr = ~ccr;
pcan_write_reg(card, PCC_CCR, ccr);
/* wait 2ms before unresetting channels */
mdelay(2);
ccr &= ~PCC_CCR_RST_ALL;
pcan_write_reg(card, PCC_CCR, ccr);
/* create one network device per channel detected */
for (i = 0; i < ARRAY_SIZE(card->channel); i++) {
struct net_device *netdev;
struct sja1000_priv *priv;
netdev = alloc_sja1000dev(0);
if (!netdev) {
err = -ENOMEM;
break;
}
/* update linkages */
priv = netdev_priv(netdev);
priv->priv = card;
SET_NETDEV_DEV(netdev, &pdev->dev);
priv->irq_flags = IRQF_SHARED;
netdev->irq = pdev->irq;
priv->reg_base = card->ioport_addr + PCC_CHAN_OFF(i);
/* check if channel is present */
if (!pcan_channel_present(priv)) {
dev_err(&pdev->dev, "channel %d not present\n", i);
free_sja1000dev(netdev);
continue;
}
priv->read_reg = pcan_read_canreg;
priv->write_reg = pcan_write_canreg;
priv->can.clock.freq = PCC_CAN_CLOCK;
priv->ocr = PCC_OCR;
priv->cdr = PCC_CDR;
/* Neither a slave device distributes the clock */
if (i > 0)
priv->cdr |= CDR_CLK_OFF;
priv->flags |= SJA1000_CUSTOM_IRQ_HANDLER;
/* register SJA1000 device */
err = register_sja1000dev(netdev);
if (err) {
free_sja1000dev(netdev);
continue;
}
card->channel[i].netdev = netdev;
card->chan_count++;
/* set corresponding led on in the new ccr */
ccr &= ~PCC_CCR_LED_OFF_CHAN(i);
dev_info(&pdev->dev,
"%s on channel %d at 0x%p irq %d\n",
netdev->name, i, priv->reg_base, pdev->irq);
}
/* write new ccr (change leds state) */
pcan_write_reg(card, PCC_CCR, ccr);
return err;
}
static int pcan_conf_check(struct pcmcia_device *pdev, void *priv_data)
{
pdev->resource[0]->flags &= ~IO_DATA_PATH_WIDTH;
pdev->resource[0]->flags |= IO_DATA_PATH_WIDTH_8; /* only */
pdev->io_lines = 10;
/* This reserves IO space but doesn't actually enable it */
return pcmcia_request_io(pdev);
}
/*
* free all resources used by the device
*/
static void pcan_free(struct pcmcia_device *pdev)
{
struct pcan_pccard *card = pdev->priv;
if (!card)
return;
free_irq(pdev->irq, card);
pcan_stop_led_timer(card);
pcan_free_channels(card);
ioport_unmap(card->ioport_addr);
kfree(card);
pdev->priv = NULL;
}
/*
* setup PCMCIA socket and probe for PEAK-System PC-CARD
*/
static int __devinit pcan_probe(struct pcmcia_device *pdev)
{
struct pcan_pccard *card;
int err;
pdev->config_flags |= CONF_ENABLE_IRQ | CONF_AUTO_SET_IO;
err = pcmcia_loop_config(pdev, pcan_conf_check, NULL);
if (err) {
dev_err(&pdev->dev, "pcmcia_loop_config() error %d\n", err);
goto probe_err_1;
}
if (!pdev->irq) {
dev_err(&pdev->dev, "no irq assigned\n");
err = -ENODEV;
goto probe_err_1;
}
err = pcmcia_enable_device(pdev);
if (err) {
dev_err(&pdev->dev, "pcmcia_enable_device failed err=%d\n",
err);
goto probe_err_1;
}
card = kzalloc(sizeof(struct pcan_pccard), GFP_KERNEL);
if (!card) {
dev_err(&pdev->dev, "couldn't allocate card memory\n");
err = -ENOMEM;
goto probe_err_2;
}
card->pdev = pdev;
pdev->priv = card;
/* sja1000 api uses iomem */
card->ioport_addr = ioport_map(pdev->resource[0]->start,
resource_size(pdev->resource[0]));
if (!card->ioport_addr) {
dev_err(&pdev->dev, "couldn't map io port into io memory\n");
err = -ENOMEM;
goto probe_err_3;
}
card->fw_major = pcan_read_reg(card, PCC_FW_MAJOR);
card->fw_minor = pcan_read_reg(card, PCC_FW_MINOR);
/* display board name and firware version */
dev_info(&pdev->dev, "PEAK-System pcmcia card %s fw %d.%d\n",
pdev->prod_id[1] ? pdev->prod_id[1] : "PCAN-PC Card",
card->fw_major, card->fw_minor);
/* detect available channels */
pcan_add_channels(card);
if (!card->chan_count)
goto probe_err_4;
/* init the timer which controls the leds */
init_timer(&card->led_timer);
card->led_timer.function = pcan_led_timer;
card->led_timer.data = (unsigned long)card;
/* request the given irq */
err = request_irq(pdev->irq, &pcan_isr, IRQF_SHARED, PCC_NAME, card);
if (err) {
dev_err(&pdev->dev, "couldn't request irq%d\n", pdev->irq);
goto probe_err_5;
}
/* power on the connectors */
pcan_set_can_power(card, 1);
return 0;
probe_err_5:
/* unregister can devices from network */
pcan_free_channels(card);
probe_err_4:
ioport_unmap(card->ioport_addr);
probe_err_3:
kfree(card);
pdev->priv = NULL;
probe_err_2:
pcmcia_disable_device(pdev);
probe_err_1:
return err;
}
/*
* release claimed resources
*/
static void pcan_remove(struct pcmcia_device *pdev)
{
pcan_free(pdev);
pcmcia_disable_device(pdev);
}
static struct pcmcia_driver pcan_driver = {
.name = PCC_NAME,
.probe = pcan_probe,
.remove = pcan_remove,
.id_table = pcan_table,
};
static int __init pcan_init(void)
{
return pcmcia_register_driver(&pcan_driver);
}
module_init(pcan_init);
static void __exit pcan_exit(void)
{
pcmcia_unregister_driver(&pcan_driver);
}
module_exit(pcan_exit);
......@@ -13,4 +13,10 @@ config CAN_ESD_USB2
This driver supports the CAN-USB/2 interface
from esd electronic system design gmbh (http://www.esd.eu).
config CAN_PEAK_USB
tristate "PEAK PCAN-USB/USB Pro interfaces"
---help---
This driver supports the PCAN-USB and PCAN-USB Pro adapters
from PEAK-System Technik (http://www.peak-system.com).
endmenu
......@@ -4,5 +4,6 @@
obj-$(CONFIG_CAN_EMS_USB) += ems_usb.o
obj-$(CONFIG_CAN_ESD_USB2) += esd_usb2.o
obj-$(CONFIG_CAN_PEAK_USB) += peak_usb/
ccflags-$(CONFIG_CAN_DEBUG_DEVICES) := -DDEBUG
obj-$(CONFIG_CAN_PEAK_USB) += peak_usb.o
peak_usb-y = pcan_usb_core.o pcan_usb.o pcan_usb_pro.o
/*
* CAN driver for PEAK System PCAN-USB adapter
* Derived from the PCAN project file driver/src/pcan_usb.c
*
* Copyright (C) 2003-2010 PEAK System-Technik GmbH
* Copyright (C) 2011-2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* Many thanks to Klaus Hitschler <klaus.hitschler@gmx.de>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/netdevice.h>
#include <linux/usb.h>
#include <linux/module.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include "pcan_usb_core.h"
MODULE_SUPPORTED_DEVICE("PEAK-System PCAN-USB adapter");
/* PCAN-USB Endpoints */
#define PCAN_USB_EP_CMDOUT 1
#define PCAN_USB_EP_CMDIN (PCAN_USB_EP_CMDOUT | USB_DIR_IN)
#define PCAN_USB_EP_MSGOUT 2
#define PCAN_USB_EP_MSGIN (PCAN_USB_EP_MSGOUT | USB_DIR_IN)
/* PCAN-USB command struct */
#define PCAN_USB_CMD_FUNC 0
#define PCAN_USB_CMD_NUM 1
#define PCAN_USB_CMD_ARGS 2
#define PCAN_USB_CMD_ARGS_LEN 14
#define PCAN_USB_CMD_LEN (PCAN_USB_CMD_ARGS + \
PCAN_USB_CMD_ARGS_LEN)
/* PCAN-USB command timeout (ms.) */
#define PCAN_USB_COMMAND_TIMEOUT 1000
/* PCAN-USB startup timeout (ms.) */
#define PCAN_USB_STARTUP_TIMEOUT 10
/* PCAN-USB rx/tx buffers size */
#define PCAN_USB_RX_BUFFER_SIZE 64
#define PCAN_USB_TX_BUFFER_SIZE 64
#define PCAN_USB_MSG_HEADER_LEN 2
/* PCAN-USB adapter internal clock (MHz) */
#define PCAN_USB_CRYSTAL_HZ 16000000
/* PCAN-USB USB message record status/len field */
#define PCAN_USB_STATUSLEN_TIMESTAMP (1 << 7)
#define PCAN_USB_STATUSLEN_INTERNAL (1 << 6)
#define PCAN_USB_STATUSLEN_EXT_ID (1 << 5)
#define PCAN_USB_STATUSLEN_RTR (1 << 4)
#define PCAN_USB_STATUSLEN_DLC (0xf)
/* PCAN-USB error flags */
#define PCAN_USB_ERROR_TXFULL 0x01
#define PCAN_USB_ERROR_RXQOVR 0x02
#define PCAN_USB_ERROR_BUS_LIGHT 0x04
#define PCAN_USB_ERROR_BUS_HEAVY 0x08
#define PCAN_USB_ERROR_BUS_OFF 0x10
#define PCAN_USB_ERROR_RXQEMPTY 0x20
#define PCAN_USB_ERROR_QOVR 0x40
#define PCAN_USB_ERROR_TXQFULL 0x80
/* SJA1000 modes */
#define SJA1000_MODE_NORMAL 0x00
#define SJA1000_MODE_INIT 0x01
/*
* tick duration = 42.666 us =>
* (tick_number * 44739243) >> 20 ~ (tick_number * 42666) / 1000
* accuracy = 10^-7
*/
#define PCAN_USB_TS_DIV_SHIFTER 20
#define PCAN_USB_TS_US_PER_TICK 44739243
/* PCAN-USB messages record types */
#define PCAN_USB_REC_ERROR 1
#define PCAN_USB_REC_ANALOG 2
#define PCAN_USB_REC_BUSLOAD 3
#define PCAN_USB_REC_TS 4
#define PCAN_USB_REC_BUSEVT 5
/* private to PCAN-USB adapter */
struct pcan_usb {
struct peak_usb_device dev;
struct peak_time_ref time_ref;
struct timer_list restart_timer;
};
/* incoming message context for decoding */
struct pcan_usb_msg_context {
u16 ts16;
u8 prev_ts8;
u8 *ptr;
u8 *end;
u8 rec_cnt;
u8 rec_idx;
u8 rec_data_idx;
struct net_device *netdev;
struct pcan_usb *pdev;
};
/*
* send a command
*/
static int pcan_usb_send_cmd(struct peak_usb_device *dev, u8 f, u8 n, u8 *p)
{
int err;
int actual_length;
/* usb device unregistered? */
if (!(dev->state & PCAN_USB_STATE_CONNECTED))
return 0;
dev->cmd_buf[PCAN_USB_CMD_FUNC] = f;
dev->cmd_buf[PCAN_USB_CMD_NUM] = n;
if (p)
memcpy(dev->cmd_buf + PCAN_USB_CMD_ARGS,
p, PCAN_USB_CMD_ARGS_LEN);
err = usb_bulk_msg(dev->udev,
usb_sndbulkpipe(dev->udev, PCAN_USB_EP_CMDOUT),
dev->cmd_buf, PCAN_USB_CMD_LEN, &actual_length,
PCAN_USB_COMMAND_TIMEOUT);
if (err)
netdev_err(dev->netdev,
"sending cmd f=0x%x n=0x%x failure: %d\n",
f, n, err);
return err;
}
/*
* send a command then wait for its response
*/
static int pcan_usb_wait_rsp(struct peak_usb_device *dev, u8 f, u8 n, u8 *p)
{
int err;
int actual_length;
/* usb device unregistered? */
if (!(dev->state & PCAN_USB_STATE_CONNECTED))
return 0;
/* first, send command */
err = pcan_usb_send_cmd(dev, f, n, NULL);
if (err)
return err;
err = usb_bulk_msg(dev->udev,
usb_rcvbulkpipe(dev->udev, PCAN_USB_EP_CMDIN),
dev->cmd_buf, PCAN_USB_CMD_LEN, &actual_length,
PCAN_USB_COMMAND_TIMEOUT);
if (err)
netdev_err(dev->netdev,
"waiting rsp f=0x%x n=0x%x failure: %d\n", f, n, err);
else if (p)
memcpy(p, dev->cmd_buf + PCAN_USB_CMD_ARGS,
PCAN_USB_CMD_ARGS_LEN);
return err;
}
static int pcan_usb_set_sja1000(struct peak_usb_device *dev, u8 mode)
{
u8 args[PCAN_USB_CMD_ARGS_LEN] = {
[1] = mode,
};
return pcan_usb_send_cmd(dev, 9, 2, args);
}
static int pcan_usb_set_bus(struct peak_usb_device *dev, u8 onoff)
{
u8 args[PCAN_USB_CMD_ARGS_LEN] = {
[0] = !!onoff,
};
return pcan_usb_send_cmd(dev, 3, 2, args);
}
static int pcan_usb_set_silent(struct peak_usb_device *dev, u8 onoff)
{
u8 args[PCAN_USB_CMD_ARGS_LEN] = {
[0] = !!onoff,
};
return pcan_usb_send_cmd(dev, 3, 3, args);
}
static int pcan_usb_set_ext_vcc(struct peak_usb_device *dev, u8 onoff)
{
u8 args[PCAN_USB_CMD_ARGS_LEN] = {
[0] = !!onoff,
};
return pcan_usb_send_cmd(dev, 10, 2, args);
}
/*
* set bittiming value to can
*/
static int pcan_usb_set_bittiming(struct peak_usb_device *dev,
struct can_bittiming *bt)
{
u8 args[PCAN_USB_CMD_ARGS_LEN];
u8 btr0, btr1;
btr0 = ((bt->brp - 1) & 0x3f) | (((bt->sjw - 1) & 0x3) << 6);
btr1 = ((bt->prop_seg + bt->phase_seg1 - 1) & 0xf) |
(((bt->phase_seg2 - 1) & 0x7) << 4);
if (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
btr1 |= 0x80;
netdev_info(dev->netdev, "setting BTR0=0x%02x BTR1=0x%02x\n",
btr0, btr1);
args[0] = btr1;
args[1] = btr0;
return pcan_usb_send_cmd(dev, 1, 2, args);
}
/*
* init/reset can
*/
static int pcan_usb_write_mode(struct peak_usb_device *dev, u8 onoff)
{
int err;
err = pcan_usb_set_bus(dev, onoff);
if (err)
return err;
if (!onoff) {
err = pcan_usb_set_sja1000(dev, SJA1000_MODE_INIT);
} else {
/* the PCAN-USB needs time to init */
set_current_state(TASK_INTERRUPTIBLE);
schedule_timeout(msecs_to_jiffies(PCAN_USB_STARTUP_TIMEOUT));
}
return err;
}
/*
* handle end of waiting for the device to reset
*/
static void pcan_usb_restart(unsigned long arg)
{
/* notify candev and netdev */
peak_usb_restart_complete((struct peak_usb_device *)arg);
}
/*
* handle the submission of the restart urb
*/
static void pcan_usb_restart_pending(struct urb *urb)
{
struct pcan_usb *pdev = urb->context;
/* the PCAN-USB needs time to restart */
mod_timer(&pdev->restart_timer,
jiffies + msecs_to_jiffies(PCAN_USB_STARTUP_TIMEOUT));
/* can delete usb resources */
peak_usb_async_complete(urb);
}
/*
* handle asynchronous restart
*/
static int pcan_usb_restart_async(struct peak_usb_device *dev, struct urb *urb,
u8 *buf)
{
struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev);
if (timer_pending(&pdev->restart_timer))
return -EBUSY;
/* set bus on */
buf[PCAN_USB_CMD_FUNC] = 3;
buf[PCAN_USB_CMD_NUM] = 2;
buf[PCAN_USB_CMD_ARGS] = 1;
usb_fill_bulk_urb(urb, dev->udev,
usb_sndbulkpipe(dev->udev, PCAN_USB_EP_CMDOUT),
buf, PCAN_USB_CMD_LEN,
pcan_usb_restart_pending, pdev);
return usb_submit_urb(urb, GFP_ATOMIC);
}
/*
* read serial number from device
*/
static int pcan_usb_get_serial(struct peak_usb_device *dev, u32 *serial_number)
{
u8 args[PCAN_USB_CMD_ARGS_LEN];
int err;
err = pcan_usb_wait_rsp(dev, 6, 1, args);
if (err) {
netdev_err(dev->netdev, "getting serial failure: %d\n", err);
} else if (serial_number) {
u32 tmp32;
memcpy(&tmp32, args, 4);
*serial_number = le32_to_cpu(tmp32);
}
return err;
}
/*
* read device id from device
*/
static int pcan_usb_get_device_id(struct peak_usb_device *dev, u32 *device_id)
{
u8 args[PCAN_USB_CMD_ARGS_LEN];
int err;
err = pcan_usb_wait_rsp(dev, 4, 1, args);
if (err)
netdev_err(dev->netdev, "getting device id failure: %d\n", err);
else if (device_id)
*device_id = args[0];
return err;
}
/*
* update current time ref with received timestamp
*/
static int pcan_usb_update_ts(struct pcan_usb_msg_context *mc)
{
u16 tmp16;
if ((mc->ptr+2) > mc->end)
return -EINVAL;
memcpy(&tmp16, mc->ptr, 2);
mc->ts16 = le16_to_cpu(tmp16);
if (mc->rec_idx > 0)
peak_usb_update_ts_now(&mc->pdev->time_ref, mc->ts16);
else
peak_usb_set_ts_now(&mc->pdev->time_ref, mc->ts16);
return 0;
}
/*
* decode received timestamp
*/
static int pcan_usb_decode_ts(struct pcan_usb_msg_context *mc, u8 first_packet)
{
/* only 1st packet supplies a word timestamp */
if (first_packet) {
u16 tmp16;
if ((mc->ptr + 2) > mc->end)
return -EINVAL;
memcpy(&tmp16, mc->ptr, 2);
mc->ptr += 2;
mc->ts16 = le16_to_cpu(tmp16);
mc->prev_ts8 = mc->ts16 & 0x00ff;
} else {
u8 ts8;
if ((mc->ptr + 1) > mc->end)
return -EINVAL;
ts8 = *mc->ptr++;
if (ts8 < mc->prev_ts8)
mc->ts16 += 0x100;
mc->ts16 &= 0xff00;
mc->ts16 |= ts8;
mc->prev_ts8 = ts8;
}
return 0;
}
static int pcan_usb_decode_error(struct pcan_usb_msg_context *mc, u8 n,
u8 status_len)
{
struct sk_buff *skb;
struct can_frame *cf;
struct timeval tv;
enum can_state new_state;
/* ignore this error until 1st ts received */
if (n == PCAN_USB_ERROR_QOVR)
if (!mc->pdev->time_ref.tick_count)
return 0;
new_state = mc->pdev->dev.can.state;
switch (mc->pdev->dev.can.state) {
case CAN_STATE_ERROR_ACTIVE:
if (n & PCAN_USB_ERROR_BUS_LIGHT) {
new_state = CAN_STATE_ERROR_WARNING;
break;
}
case CAN_STATE_ERROR_WARNING:
if (n & PCAN_USB_ERROR_BUS_HEAVY) {
new_state = CAN_STATE_ERROR_PASSIVE;
break;
}
if (n & PCAN_USB_ERROR_BUS_OFF) {
new_state = CAN_STATE_BUS_OFF;
break;
}
if (n & (PCAN_USB_ERROR_RXQOVR | PCAN_USB_ERROR_QOVR)) {
/*
* trick to bypass next comparison and process other
* errors
*/
new_state = CAN_STATE_MAX;
break;
}
if ((n & PCAN_USB_ERROR_BUS_LIGHT) == 0) {
/* no error (back to active state) */
mc->pdev->dev.can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
}
break;
case CAN_STATE_ERROR_PASSIVE:
if (n & PCAN_USB_ERROR_BUS_OFF) {
new_state = CAN_STATE_BUS_OFF;
break;
}
if (n & PCAN_USB_ERROR_BUS_LIGHT) {
new_state = CAN_STATE_ERROR_WARNING;
break;
}
if (n & (PCAN_USB_ERROR_RXQOVR | PCAN_USB_ERROR_QOVR)) {
/*
* trick to bypass next comparison and process other
* errors
*/
new_state = CAN_STATE_MAX;
break;
}
if ((n & PCAN_USB_ERROR_BUS_HEAVY) == 0) {
/* no error (back to active state) */
mc->pdev->dev.can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
}
break;
default:
/* do nothing waiting for restart */
return 0;
}
/* donot post any error if current state didn't change */
if (mc->pdev->dev.can.state == new_state)
return 0;
/* allocate an skb to store the error frame */
skb = alloc_can_err_skb(mc->netdev, &cf);
if (!skb)
return -ENOMEM;
switch (new_state) {
case CAN_STATE_BUS_OFF:
cf->can_id |= CAN_ERR_BUSOFF;
can_bus_off(mc->netdev);
break;
case CAN_STATE_ERROR_PASSIVE:
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE |
CAN_ERR_CRTL_RX_PASSIVE;
mc->pdev->dev.can.can_stats.error_passive++;
break;
case CAN_STATE_ERROR_WARNING:
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_TX_WARNING |
CAN_ERR_CRTL_RX_WARNING;
mc->pdev->dev.can.can_stats.error_warning++;
break;
default:
/* CAN_STATE_MAX (trick to handle other errors) */
cf->can_id |= CAN_ERR_CRTL;
cf->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
mc->netdev->stats.rx_over_errors++;
mc->netdev->stats.rx_errors++;
new_state = mc->pdev->dev.can.state;
break;
}
mc->pdev->dev.can.state = new_state;
if (status_len & PCAN_USB_STATUSLEN_TIMESTAMP) {
peak_usb_get_ts_tv(&mc->pdev->time_ref, mc->ts16, &tv);
skb->tstamp = timeval_to_ktime(tv);
}
netif_rx(skb);
mc->netdev->stats.rx_packets++;
mc->netdev->stats.rx_bytes += cf->can_dlc;
return 0;
}
/*
* decode non-data usb message
*/
static int pcan_usb_decode_status(struct pcan_usb_msg_context *mc,
u8 status_len)
{
u8 rec_len = status_len & PCAN_USB_STATUSLEN_DLC;
u8 f, n;
int err;
/* check whether function and number can be read */
if ((mc->ptr + 2) > mc->end)
return -EINVAL;
f = mc->ptr[PCAN_USB_CMD_FUNC];
n = mc->ptr[PCAN_USB_CMD_NUM];
mc->ptr += PCAN_USB_CMD_ARGS;
if (status_len & PCAN_USB_STATUSLEN_TIMESTAMP) {
int err = pcan_usb_decode_ts(mc, !mc->rec_idx);
if (err)
return err;
}
switch (f) {
case PCAN_USB_REC_ERROR:
err = pcan_usb_decode_error(mc, n, status_len);
if (err)
return err;
break;
case PCAN_USB_REC_ANALOG:
/* analog values (ignored) */
rec_len = 2;
break;
case PCAN_USB_REC_BUSLOAD:
/* bus load (ignored) */
rec_len = 1;
break;
case PCAN_USB_REC_TS:
/* only timestamp */
if (pcan_usb_update_ts(mc))
return -EINVAL;
break;
case PCAN_USB_REC_BUSEVT:
/* error frame/bus event */
if (n & PCAN_USB_ERROR_TXQFULL)
netdev_dbg(mc->netdev, "device Tx queue full)\n");
break;
default:
netdev_err(mc->netdev, "unexpected function %u\n", f);
break;
}
if ((mc->ptr + rec_len) > mc->end)
return -EINVAL;
mc->ptr += rec_len;
return 0;
}
/*
* decode data usb message
*/
static int pcan_usb_decode_data(struct pcan_usb_msg_context *mc, u8 status_len)
{
u8 rec_len = status_len & PCAN_USB_STATUSLEN_DLC;
struct sk_buff *skb;
struct can_frame *cf;
struct timeval tv;
skb = alloc_can_skb(mc->netdev, &cf);
if (!skb)
return -ENOMEM;
if (status_len & PCAN_USB_STATUSLEN_EXT_ID) {
u32 tmp32;
if ((mc->ptr + 4) > mc->end)
goto decode_failed;
memcpy(&tmp32, mc->ptr, 4);
mc->ptr += 4;
cf->can_id = le32_to_cpu(tmp32 >> 3) | CAN_EFF_FLAG;
} else {
u16 tmp16;
if ((mc->ptr + 2) > mc->end)
goto decode_failed;
memcpy(&tmp16, mc->ptr, 2);
mc->ptr += 2;
cf->can_id = le16_to_cpu(tmp16 >> 5);
}
cf->can_dlc = get_can_dlc(rec_len);
/* first data packet timestamp is a word */
if (pcan_usb_decode_ts(mc, !mc->rec_data_idx))
goto decode_failed;
/* read data */
memset(cf->data, 0x0, sizeof(cf->data));
if (status_len & PCAN_USB_STATUSLEN_RTR) {
cf->can_id |= CAN_RTR_FLAG;
} else {
if ((mc->ptr + rec_len) > mc->end)
goto decode_failed;
memcpy(cf->data, mc->ptr, rec_len);
mc->ptr += rec_len;
}
/* convert timestamp into kernel time */
peak_usb_get_ts_tv(&mc->pdev->time_ref, mc->ts16, &tv);
skb->tstamp = timeval_to_ktime(tv);
/* push the skb */
netif_rx(skb);
/* update statistics */
mc->netdev->stats.rx_packets++;
mc->netdev->stats.rx_bytes += cf->can_dlc;
return 0;
decode_failed:
dev_kfree_skb(skb);
return -EINVAL;
}
/*
* process incoming message
*/
static int pcan_usb_decode_msg(struct peak_usb_device *dev, u8 *ibuf, u32 lbuf)
{
struct pcan_usb_msg_context mc = {
.rec_cnt = ibuf[1],
.ptr = ibuf + PCAN_USB_MSG_HEADER_LEN,
.end = ibuf + lbuf,
.netdev = dev->netdev,
.pdev = container_of(dev, struct pcan_usb, dev),
};
int err;
for (err = 0; mc.rec_idx < mc.rec_cnt && !err; mc.rec_idx++) {
u8 sl = *mc.ptr++;
/* handle status and error frames here */
if (sl & PCAN_USB_STATUSLEN_INTERNAL) {
err = pcan_usb_decode_status(&mc, sl);
/* handle normal can frames here */
} else {
err = pcan_usb_decode_data(&mc, sl);
mc.rec_data_idx++;
}
}
return err;
}
/*
* process any incoming buffer
*/
static int pcan_usb_decode_buf(struct peak_usb_device *dev, struct urb *urb)
{
int err = 0;
if (urb->actual_length > PCAN_USB_MSG_HEADER_LEN) {
err = pcan_usb_decode_msg(dev, urb->transfer_buffer,
urb->actual_length);
} else if (urb->actual_length > 0) {
netdev_err(dev->netdev, "usb message length error (%u)\n",
urb->actual_length);
err = -EINVAL;
}
return err;
}
/*
* process outgoing packet
*/
static int pcan_usb_encode_msg(struct peak_usb_device *dev, struct sk_buff *skb,
u8 *obuf, size_t *size)
{
struct net_device *netdev = dev->netdev;
struct net_device_stats *stats = &netdev->stats;
struct can_frame *cf = (struct can_frame *)skb->data;
u8 *pc;
obuf[0] = 2;
obuf[1] = 1;
pc = obuf + PCAN_USB_MSG_HEADER_LEN;
/* status/len byte */
*pc = cf->can_dlc;
if (cf->can_id & CAN_RTR_FLAG)
*pc |= PCAN_USB_STATUSLEN_RTR;
/* can id */
if (cf->can_id & CAN_EFF_FLAG) {
__le32 tmp32 = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
tmp32 <<= 3;
*pc |= PCAN_USB_STATUSLEN_EXT_ID;
memcpy(++pc, &tmp32, 4);
pc += 4;
} else {
__le16 tmp16 = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
tmp16 <<= 5;
memcpy(++pc, &tmp16, 2);
pc += 2;
}
/* can data */
if (!(cf->can_id & CAN_RTR_FLAG)) {
memcpy(pc, cf->data, cf->can_dlc);
pc += cf->can_dlc;
}
obuf[(*size)-1] = (u8)(stats->tx_packets & 0xff);
return 0;
}
/*
* start interface
*/
static int pcan_usb_start(struct peak_usb_device *dev)
{
struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev);
/* number of bits used in timestamps read from adapter struct */
peak_usb_init_time_ref(&pdev->time_ref, &pcan_usb);
/* if revision greater than 3, can put silent mode on/off */
if (dev->device_rev > 3) {
int err;
err = pcan_usb_set_silent(dev,
dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY);
if (err)
return err;
}
return pcan_usb_set_ext_vcc(dev, 0);
}
static int pcan_usb_init(struct peak_usb_device *dev)
{
struct pcan_usb *pdev = container_of(dev, struct pcan_usb, dev);
u32 serial_number;
int err;
/* initialize a timer needed to wait for hardware restart */
init_timer(&pdev->restart_timer);
pdev->restart_timer.function = pcan_usb_restart;
pdev->restart_timer.data = (unsigned long)dev;
/*
* explicit use of dev_xxx() instead of netdev_xxx() here:
* information displayed are related to the device itself, not
* to the canx netdevice.
*/
err = pcan_usb_get_serial(dev, &serial_number);
if (err) {
dev_err(dev->netdev->dev.parent,
"unable to read %s serial number (err %d)\n",
pcan_usb.name, err);
return err;
}
dev_info(dev->netdev->dev.parent,
"PEAK-System %s adapter hwrev %u serial %08X (%u channel)\n",
pcan_usb.name, dev->device_rev, serial_number,
pcan_usb.ctrl_count);
return 0;
}
/*
* probe function for new PCAN-USB usb interface
*/
static int pcan_usb_probe(struct usb_interface *intf)
{
struct usb_host_interface *if_desc;
int i;
if_desc = intf->altsetting;
/* check interface endpoint addresses */
for (i = 0; i < if_desc->desc.bNumEndpoints; i++) {
struct usb_endpoint_descriptor *ep = &if_desc->endpoint[i].desc;
switch (ep->bEndpointAddress) {
case PCAN_USB_EP_CMDOUT:
case PCAN_USB_EP_CMDIN:
case PCAN_USB_EP_MSGOUT:
case PCAN_USB_EP_MSGIN:
break;
default:
return -ENODEV;
}
}
return 0;
}
/*
* describe the PCAN-USB adapter
*/
struct peak_usb_adapter pcan_usb = {
.name = "PCAN-USB",
.device_id = PCAN_USB_PRODUCT_ID,
.ctrl_count = 1,
.clock = {
.freq = PCAN_USB_CRYSTAL_HZ / 2 ,
},
.bittiming_const = {
.name = "pcan_usb",
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 64,
.brp_inc = 1,
},
/* size of device private data */
.sizeof_dev_private = sizeof(struct pcan_usb),
/* timestamps usage */
.ts_used_bits = 16,
.ts_period = 24575, /* calibration period in ts. */
.us_per_ts_scale = PCAN_USB_TS_US_PER_TICK, /* us=(ts*scale) */
.us_per_ts_shift = PCAN_USB_TS_DIV_SHIFTER, /* >> shift */
/* give here messages in/out endpoints */
.ep_msg_in = PCAN_USB_EP_MSGIN,
.ep_msg_out = {PCAN_USB_EP_MSGOUT},
/* size of rx/tx usb buffers */
.rx_buffer_size = PCAN_USB_RX_BUFFER_SIZE,
.tx_buffer_size = PCAN_USB_TX_BUFFER_SIZE,
/* device callbacks */
.intf_probe = pcan_usb_probe,
.dev_init = pcan_usb_init,
.dev_set_bus = pcan_usb_write_mode,
.dev_set_bittiming = pcan_usb_set_bittiming,
.dev_get_device_id = pcan_usb_get_device_id,
.dev_decode_buf = pcan_usb_decode_buf,
.dev_encode_msg = pcan_usb_encode_msg,
.dev_start = pcan_usb_start,
.dev_restart_async = pcan_usb_restart_async,
};
/*
* CAN driver for PEAK System USB adapters
* Derived from the PCAN project file driver/src/pcan_usb_core.c
*
* Copyright (C) 2003-2010 PEAK System-Technik GmbH
* Copyright (C) 2010-2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* Many thanks to Klaus Hitschler <klaus.hitschler@gmx.de>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/usb.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include "pcan_usb_core.h"
MODULE_AUTHOR("Stephane Grosjean <s.grosjean@peak-system.com>");
MODULE_DESCRIPTION("CAN driver for PEAK-System USB adapters");
MODULE_LICENSE("GPL v2");
/* Table of devices that work with this driver */
static struct usb_device_id peak_usb_table[] = {
{USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USB_PRODUCT_ID)},
{USB_DEVICE(PCAN_USB_VENDOR_ID, PCAN_USBPRO_PRODUCT_ID)},
{} /* Terminating entry */
};
MODULE_DEVICE_TABLE(usb, peak_usb_table);
/* List of supported PCAN-USB adapters (NULL terminated list) */
static struct peak_usb_adapter *peak_usb_adapters_list[] = {
&pcan_usb,
&pcan_usb_pro,
NULL,
};
/*
* dump memory
*/
#define DUMP_WIDTH 16
void dump_mem(char *prompt, void *p, int l)
{
pr_info("%s dumping %s (%d bytes):\n",
PCAN_USB_DRIVER_NAME, prompt ? prompt : "memory", l);
print_hex_dump(KERN_INFO, PCAN_USB_DRIVER_NAME " ", DUMP_PREFIX_NONE,
DUMP_WIDTH, 1, p, l, false);
}
/*
* initialize a time_ref object with usb adapter own settings
*/
void peak_usb_init_time_ref(struct peak_time_ref *time_ref,
struct peak_usb_adapter *adapter)
{
if (time_ref) {
memset(time_ref, 0, sizeof(struct peak_time_ref));
time_ref->adapter = adapter;
}
}
static void peak_usb_add_us(struct timeval *tv, u32 delta_us)
{
/* number of s. to add to final time */
u32 delta_s = delta_us / 1000000;
delta_us -= delta_s * 1000000;
tv->tv_usec += delta_us;
if (tv->tv_usec >= 1000000) {
tv->tv_usec -= 1000000;
delta_s++;
}
tv->tv_sec += delta_s;
}
/*
* sometimes, another now may be more recent than current one...
*/
void peak_usb_update_ts_now(struct peak_time_ref *time_ref, u32 ts_now)
{
time_ref->ts_dev_2 = ts_now;
/* should wait at least two passes before computing */
if (time_ref->tv_host.tv_sec > 0) {
u32 delta_ts = time_ref->ts_dev_2 - time_ref->ts_dev_1;
if (time_ref->ts_dev_2 < time_ref->ts_dev_1)
delta_ts &= (1 << time_ref->adapter->ts_used_bits) - 1;
time_ref->ts_total += delta_ts;
}
}
/*
* register device timestamp as now
*/
void peak_usb_set_ts_now(struct peak_time_ref *time_ref, u32 ts_now)
{
if (time_ref->tv_host_0.tv_sec == 0) {
/* use monotonic clock to correctly compute further deltas */
time_ref->tv_host_0 = ktime_to_timeval(ktime_get());
time_ref->tv_host.tv_sec = 0;
} else {
/*
* delta_us should not be >= 2^32 => delta_s should be < 4294
* handle 32-bits wrapping here: if count of s. reaches 4200,
* reset counters and change time base
*/
if (time_ref->tv_host.tv_sec != 0) {
u32 delta_s = time_ref->tv_host.tv_sec
- time_ref->tv_host_0.tv_sec;
if (delta_s > 4200) {
time_ref->tv_host_0 = time_ref->tv_host;
time_ref->ts_total = 0;
}
}
time_ref->tv_host = ktime_to_timeval(ktime_get());
time_ref->tick_count++;
}
time_ref->ts_dev_1 = time_ref->ts_dev_2;
peak_usb_update_ts_now(time_ref, ts_now);
}
/*
* compute timeval according to current ts and time_ref data
*/
void peak_usb_get_ts_tv(struct peak_time_ref *time_ref, u32 ts,
struct timeval *tv)
{
/* protect from getting timeval before setting now */
if (time_ref->tv_host.tv_sec > 0) {
u64 delta_us;
delta_us = ts - time_ref->ts_dev_2;
if (ts < time_ref->ts_dev_2)
delta_us &= (1 << time_ref->adapter->ts_used_bits) - 1;
delta_us += time_ref->ts_total;
delta_us *= time_ref->adapter->us_per_ts_scale;
delta_us >>= time_ref->adapter->us_per_ts_shift;
*tv = time_ref->tv_host_0;
peak_usb_add_us(tv, (u32)delta_us);
} else {
*tv = ktime_to_timeval(ktime_get());
}
}
/*
* callback for bulk Rx urb
*/
static void peak_usb_read_bulk_callback(struct urb *urb)
{
struct peak_usb_device *dev = urb->context;
struct net_device *netdev;
int err;
netdev = dev->netdev;
if (!netif_device_present(netdev))
return;
/* check reception status */
switch (urb->status) {
case 0:
/* success */
break;
case -EILSEQ:
case -ENOENT:
case -ECONNRESET:
case -ESHUTDOWN:
return;
default:
if (net_ratelimit())
netdev_err(netdev,
"Rx urb aborted (%d)\n", urb->status);
goto resubmit_urb;
}
/* protect from any incoming empty msgs */
if ((urb->actual_length > 0) && (dev->adapter->dev_decode_buf)) {
/* handle these kinds of msgs only if _start callback called */
if (dev->state & PCAN_USB_STATE_STARTED) {
err = dev->adapter->dev_decode_buf(dev, urb);
if (err)
dump_mem("received usb message",
urb->transfer_buffer,
urb->transfer_buffer_length);
}
}
resubmit_urb:
usb_fill_bulk_urb(urb, dev->udev,
usb_rcvbulkpipe(dev->udev, dev->ep_msg_in),
urb->transfer_buffer, dev->adapter->rx_buffer_size,
peak_usb_read_bulk_callback, dev);
usb_anchor_urb(urb, &dev->rx_submitted);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (!err)
return;
usb_unanchor_urb(urb);
if (err == -ENODEV)
netif_device_detach(netdev);
else
netdev_err(netdev, "failed resubmitting read bulk urb: %d\n",
err);
}
/*
* callback for bulk Tx urb
*/
static void peak_usb_write_bulk_callback(struct urb *urb)
{
struct peak_tx_urb_context *context = urb->context;
struct peak_usb_device *dev;
struct net_device *netdev;
BUG_ON(!context);
dev = context->dev;
netdev = dev->netdev;
atomic_dec(&dev->active_tx_urbs);
if (!netif_device_present(netdev))
return;
/* check tx status */
switch (urb->status) {
case 0:
/* transmission complete */
netdev->stats.tx_packets++;
netdev->stats.tx_bytes += context->dlc;
/* prevent tx timeout */
netdev->trans_start = jiffies;
break;
default:
if (net_ratelimit())
netdev_err(netdev, "Tx urb aborted (%d)\n",
urb->status);
case -EPROTO:
case -ENOENT:
case -ECONNRESET:
case -ESHUTDOWN:
break;
}
/* should always release echo skb and corresponding context */
can_get_echo_skb(netdev, context->echo_index);
context->echo_index = PCAN_USB_MAX_TX_URBS;
/* do wakeup tx queue in case of success only */
if (!urb->status)
netif_wake_queue(netdev);
}
/*
* called by netdev to send one skb on the CAN interface.
*/
static netdev_tx_t peak_usb_ndo_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct peak_usb_device *dev = netdev_priv(netdev);
struct peak_tx_urb_context *context = NULL;
struct net_device_stats *stats = &netdev->stats;
struct can_frame *cf = (struct can_frame *)skb->data;
struct urb *urb;
u8 *obuf;
int i, err;
size_t size = dev->adapter->tx_buffer_size;
if (can_dropped_invalid_skb(netdev, skb))
return NETDEV_TX_OK;
for (i = 0; i < PCAN_USB_MAX_TX_URBS; i++)
if (dev->tx_contexts[i].echo_index == PCAN_USB_MAX_TX_URBS) {
context = dev->tx_contexts + i;
break;
}
if (!context) {
/* should not occur except during restart */
return NETDEV_TX_BUSY;
}
urb = context->urb;
obuf = urb->transfer_buffer;
err = dev->adapter->dev_encode_msg(dev, skb, obuf, &size);
if (err) {
if (net_ratelimit())
netdev_err(netdev, "packet dropped\n");
dev_kfree_skb(skb);
stats->tx_dropped++;
return NETDEV_TX_OK;
}
context->echo_index = i;
context->dlc = cf->can_dlc;
usb_anchor_urb(urb, &dev->tx_submitted);
can_put_echo_skb(skb, netdev, context->echo_index);
atomic_inc(&dev->active_tx_urbs);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err) {
can_free_echo_skb(netdev, context->echo_index);
usb_unanchor_urb(urb);
/* this context is not used in fact */
context->echo_index = PCAN_USB_MAX_TX_URBS;
atomic_dec(&dev->active_tx_urbs);
switch (err) {
case -ENODEV:
netif_device_detach(netdev);
break;
default:
netdev_warn(netdev, "tx urb submitting failed err=%d\n",
err);
case -ENOENT:
/* cable unplugged */
stats->tx_dropped++;
}
} else {
netdev->trans_start = jiffies;
/* slow down tx path */
if (atomic_read(&dev->active_tx_urbs) >= PCAN_USB_MAX_TX_URBS)
netif_stop_queue(netdev);
}
return NETDEV_TX_OK;
}
/*
* start the CAN interface.
* Rx and Tx urbs are allocated here. Rx urbs are submitted here.
*/
static int peak_usb_start(struct peak_usb_device *dev)
{
struct net_device *netdev = dev->netdev;
int err, i;
for (i = 0; i < PCAN_USB_MAX_RX_URBS; i++) {
struct urb *urb;
u8 *buf;
/* create a URB, and a buffer for it, to receive usb messages */
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
netdev_err(netdev, "No memory left for URBs\n");
err = -ENOMEM;
break;
}
buf = kmalloc(dev->adapter->rx_buffer_size, GFP_KERNEL);
if (!buf) {
netdev_err(netdev, "No memory left for USB buffer\n");
usb_free_urb(urb);
err = -ENOMEM;
break;
}
usb_fill_bulk_urb(urb, dev->udev,
usb_rcvbulkpipe(dev->udev, dev->ep_msg_in),
buf, dev->adapter->rx_buffer_size,
peak_usb_read_bulk_callback, dev);
/* ask last usb_free_urb() to also kfree() transfer_buffer */
urb->transfer_flags |= URB_FREE_BUFFER;
usb_anchor_urb(urb, &dev->rx_submitted);
err = usb_submit_urb(urb, GFP_KERNEL);
if (err) {
if (err == -ENODEV)
netif_device_detach(dev->netdev);
usb_unanchor_urb(urb);
kfree(buf);
usb_free_urb(urb);
break;
}
/* drop reference, USB core will take care of freeing it */
usb_free_urb(urb);
}
/* did we submit any URBs? Warn if we was not able to submit all urbs */
if (i < PCAN_USB_MAX_RX_URBS) {
if (i == 0) {
netdev_err(netdev, "couldn't setup any rx URB\n");
return err;
}
netdev_warn(netdev, "rx performance may be slow\n");
}
/* pre-alloc tx buffers and corresponding urbs */
for (i = 0; i < PCAN_USB_MAX_TX_URBS; i++) {
struct peak_tx_urb_context *context;
struct urb *urb;
u8 *buf;
/* create a URB and a buffer for it, to transmit usb messages */
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
netdev_err(netdev, "No memory left for URBs\n");
err = -ENOMEM;
break;
}
buf = kmalloc(dev->adapter->tx_buffer_size, GFP_KERNEL);
if (!buf) {
netdev_err(netdev, "No memory left for USB buffer\n");
usb_free_urb(urb);
err = -ENOMEM;
break;
}
context = dev->tx_contexts + i;
context->dev = dev;
context->urb = urb;
usb_fill_bulk_urb(urb, dev->udev,
usb_sndbulkpipe(dev->udev, dev->ep_msg_out),
buf, dev->adapter->tx_buffer_size,
peak_usb_write_bulk_callback, context);
/* ask last usb_free_urb() to also kfree() transfer_buffer */
urb->transfer_flags |= URB_FREE_BUFFER;
}
/* warn if we were not able to allocate enough tx contexts */
if (i < PCAN_USB_MAX_TX_URBS) {
if (i == 0) {
netdev_err(netdev, "couldn't setup any tx URB\n");
return err;
}
netdev_warn(netdev, "tx performance may be slow\n");
}
if (dev->adapter->dev_start) {
err = dev->adapter->dev_start(dev);
if (err)
goto failed;
}
dev->state |= PCAN_USB_STATE_STARTED;
/* can set bus on now */
if (dev->adapter->dev_set_bus) {
err = dev->adapter->dev_set_bus(dev, 1);
if (err)
goto failed;
}
dev->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
failed:
if (err == -ENODEV)
netif_device_detach(dev->netdev);
netdev_warn(netdev, "couldn't submit control: %d\n", err);
return err;
}
/*
* called by netdev to open the corresponding CAN interface.
*/
static int peak_usb_ndo_open(struct net_device *netdev)
{
struct peak_usb_device *dev = netdev_priv(netdev);
int err;
/* common open */
err = open_candev(netdev);
if (err)
return err;
/* finally start device */
err = peak_usb_start(dev);
if (err) {
netdev_err(netdev, "couldn't start device: %d\n", err);
close_candev(netdev);
return err;
}
dev->open_time = jiffies;
netif_start_queue(netdev);
return 0;
}
/*
* unlink in-flight Rx and Tx urbs and free their memory.
*/
static void peak_usb_unlink_all_urbs(struct peak_usb_device *dev)
{
int i;
/* free all Rx (submitted) urbs */
usb_kill_anchored_urbs(&dev->rx_submitted);
/* free unsubmitted Tx urbs first */
for (i = 0; i < PCAN_USB_MAX_TX_URBS; i++) {
struct urb *urb = dev->tx_contexts[i].urb;
if (!urb ||
dev->tx_contexts[i].echo_index != PCAN_USB_MAX_TX_URBS) {
/*
* this urb is already released or always submitted,
* let usb core free by itself
*/
continue;
}
usb_free_urb(urb);
dev->tx_contexts[i].urb = NULL;
}
/* then free all submitted Tx urbs */
usb_kill_anchored_urbs(&dev->tx_submitted);
atomic_set(&dev->active_tx_urbs, 0);
}
/*
* called by netdev to close the corresponding CAN interface.
*/
static int peak_usb_ndo_stop(struct net_device *netdev)
{
struct peak_usb_device *dev = netdev_priv(netdev);
dev->state &= ~PCAN_USB_STATE_STARTED;
netif_stop_queue(netdev);
/* unlink all pending urbs and free used memory */
peak_usb_unlink_all_urbs(dev);
if (dev->adapter->dev_stop)
dev->adapter->dev_stop(dev);
close_candev(netdev);
dev->open_time = 0;
dev->can.state = CAN_STATE_STOPPED;
/* can set bus off now */
if (dev->adapter->dev_set_bus) {
int err = dev->adapter->dev_set_bus(dev, 0);
if (err)
return err;
}
return 0;
}
/*
* handle end of waiting for the device to reset
*/
void peak_usb_restart_complete(struct peak_usb_device *dev)
{
/* finally MUST update can state */
dev->can.state = CAN_STATE_ERROR_ACTIVE;
/* netdev queue can be awaken now */
netif_wake_queue(dev->netdev);
}
void peak_usb_async_complete(struct urb *urb)
{
kfree(urb->transfer_buffer);
usb_free_urb(urb);
}
/*
* device (auto-)restart mechanism runs in a timer context =>
* MUST handle restart with asynchronous usb transfers
*/
static int peak_usb_restart(struct peak_usb_device *dev)
{
struct urb *urb;
int err;
u8 *buf;
/*
* if device doesn't define any asynchronous restart handler, simply
* wake the netdev queue up
*/
if (!dev->adapter->dev_restart_async) {
peak_usb_restart_complete(dev);
return 0;
}
/* first allocate a urb to handle the asynchronous steps */
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
netdev_err(dev->netdev, "no memory left for urb\n");
return -ENOMEM;
}
/* also allocate enough space for the commands to send */
buf = kmalloc(PCAN_USB_MAX_CMD_LEN, GFP_ATOMIC);
if (!buf) {
netdev_err(dev->netdev, "no memory left for async cmd\n");
usb_free_urb(urb);
return -ENOMEM;
}
/* call the device specific handler for the restart */
err = dev->adapter->dev_restart_async(dev, urb, buf);
if (!err)
return 0;
kfree(buf);
usb_free_urb(urb);
return err;
}
/*
* candev callback used to change CAN mode.
* Warning: this is called from a timer context!
*/
static int peak_usb_set_mode(struct net_device *netdev, enum can_mode mode)
{
struct peak_usb_device *dev = netdev_priv(netdev);
int err = 0;
if (!dev->open_time)
return -EINVAL;
switch (mode) {
case CAN_MODE_START:
err = peak_usb_restart(dev);
if (err)
netdev_err(netdev, "couldn't start device (err %d)\n",
err);
break;
default:
return -EOPNOTSUPP;
}
return err;
}
/*
* candev callback used to set device bitrate.
*/
static int peak_usb_set_bittiming(struct net_device *netdev)
{
struct peak_usb_device *dev = netdev_priv(netdev);
struct can_bittiming *bt = &dev->can.bittiming;
if (dev->adapter->dev_set_bittiming) {
int err = dev->adapter->dev_set_bittiming(dev, bt);
if (err)
netdev_info(netdev, "couldn't set bitrate (err %d)\n",
err);
return err;
}
return 0;
}
static const struct net_device_ops peak_usb_netdev_ops = {
.ndo_open = peak_usb_ndo_open,
.ndo_stop = peak_usb_ndo_stop,
.ndo_start_xmit = peak_usb_ndo_start_xmit,
};
/*
* create one device which is attached to CAN controller #ctrl_idx of the
* usb adapter.
*/
static int peak_usb_create_dev(struct peak_usb_adapter *peak_usb_adapter,
struct usb_interface *intf, int ctrl_idx)
{
struct usb_device *usb_dev = interface_to_usbdev(intf);
int sizeof_candev = peak_usb_adapter->sizeof_dev_private;
struct peak_usb_device *dev;
struct net_device *netdev;
int i, err;
u16 tmp16;
if (sizeof_candev < sizeof(struct peak_usb_device))
sizeof_candev = sizeof(struct peak_usb_device);
netdev = alloc_candev(sizeof_candev, PCAN_USB_MAX_TX_URBS);
if (!netdev) {
dev_err(&intf->dev, "%s: couldn't alloc candev\n",
PCAN_USB_DRIVER_NAME);
return -ENOMEM;
}
dev = netdev_priv(netdev);
/* allocate a buffer large enough to send commands */
dev->cmd_buf = kmalloc(PCAN_USB_MAX_CMD_LEN, GFP_KERNEL);
if (!dev->cmd_buf) {
dev_err(&intf->dev, "%s: couldn't alloc cmd buffer\n",
PCAN_USB_DRIVER_NAME);
err = -ENOMEM;
goto lbl_set_intf_data;
}
dev->udev = usb_dev;
dev->netdev = netdev;
dev->adapter = peak_usb_adapter;
dev->ctrl_idx = ctrl_idx;
dev->state = PCAN_USB_STATE_CONNECTED;
dev->ep_msg_in = peak_usb_adapter->ep_msg_in;
dev->ep_msg_out = peak_usb_adapter->ep_msg_out[ctrl_idx];
dev->can.clock = peak_usb_adapter->clock;
dev->can.bittiming_const = &peak_usb_adapter->bittiming_const;
dev->can.do_set_bittiming = peak_usb_set_bittiming;
dev->can.do_set_mode = peak_usb_set_mode;
dev->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
CAN_CTRLMODE_LISTENONLY;
netdev->netdev_ops = &peak_usb_netdev_ops;
netdev->flags |= IFF_ECHO; /* we support local echo */
init_usb_anchor(&dev->rx_submitted);
init_usb_anchor(&dev->tx_submitted);
atomic_set(&dev->active_tx_urbs, 0);
for (i = 0; i < PCAN_USB_MAX_TX_URBS; i++)
dev->tx_contexts[i].echo_index = PCAN_USB_MAX_TX_URBS;
dev->prev_siblings = usb_get_intfdata(intf);
usb_set_intfdata(intf, dev);
SET_NETDEV_DEV(netdev, &intf->dev);
err = register_candev(netdev);
if (err) {
dev_err(&intf->dev, "couldn't register CAN device: %d\n", err);
goto lbl_free_cmd_buf;
}
if (dev->prev_siblings)
(dev->prev_siblings)->next_siblings = dev;
/* keep hw revision into the netdevice */
tmp16 = le16_to_cpu(usb_dev->descriptor.bcdDevice);
dev->device_rev = tmp16 >> 8;
if (dev->adapter->dev_init) {
err = dev->adapter->dev_init(dev);
if (err)
goto lbl_free_cmd_buf;
}
/* set bus off */
if (dev->adapter->dev_set_bus) {
err = dev->adapter->dev_set_bus(dev, 0);
if (err)
goto lbl_free_cmd_buf;
}
/* get device number early */
if (dev->adapter->dev_get_device_id)
dev->adapter->dev_get_device_id(dev, &dev->device_number);
netdev_info(netdev, "attached to %s channel %u (device %u)\n",
peak_usb_adapter->name, ctrl_idx, dev->device_number);
return 0;
lbl_free_cmd_buf:
kfree(dev->cmd_buf);
lbl_set_intf_data:
usb_set_intfdata(intf, dev->prev_siblings);
free_candev(netdev);
return err;
}
/*
* called by the usb core when the device is unplugged from the system
*/
static void peak_usb_disconnect(struct usb_interface *intf)
{
struct peak_usb_device *dev;
/* unregister as many netdev devices as siblings */
for (dev = usb_get_intfdata(intf); dev; dev = dev->prev_siblings) {
struct net_device *netdev = dev->netdev;
char name[IFNAMSIZ];
dev->state &= ~PCAN_USB_STATE_CONNECTED;
strncpy(name, netdev->name, IFNAMSIZ);
unregister_netdev(netdev);
free_candev(netdev);
kfree(dev->cmd_buf);
dev->next_siblings = NULL;
if (dev->adapter->dev_free)
dev->adapter->dev_free(dev);
dev_info(&intf->dev, "%s removed\n", name);
}
usb_set_intfdata(intf, NULL);
}
/*
* probe function for new PEAK-System devices
*/
static int peak_usb_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct usb_device *usb_dev = interface_to_usbdev(intf);
struct peak_usb_adapter *peak_usb_adapter, **pp;
int i, err = -ENOMEM;
usb_dev = interface_to_usbdev(intf);
/* get corresponding PCAN-USB adapter */
for (pp = peak_usb_adapters_list; *pp; pp++)
if ((*pp)->device_id == usb_dev->descriptor.idProduct)
break;
peak_usb_adapter = *pp;
if (!peak_usb_adapter) {
/* should never come except device_id bad usage in this file */
pr_err("%s: didn't find device id. 0x%x in devices list\n",
PCAN_USB_DRIVER_NAME, usb_dev->descriptor.idProduct);
return -ENODEV;
}
/* got corresponding adapter: check if it handles current interface */
if (peak_usb_adapter->intf_probe) {
err = peak_usb_adapter->intf_probe(intf);
if (err)
return err;
}
for (i = 0; i < peak_usb_adapter->ctrl_count; i++) {
err = peak_usb_create_dev(peak_usb_adapter, intf, i);
if (err) {
/* deregister already created devices */
peak_usb_disconnect(intf);
break;
}
}
return err;
}
/* usb specific object needed to register this driver with the usb subsystem */
static struct usb_driver peak_usb_driver = {
.name = PCAN_USB_DRIVER_NAME,
.disconnect = peak_usb_disconnect,
.probe = peak_usb_probe,
.id_table = peak_usb_table,
};
static int __init peak_usb_init(void)
{
int err;
/* register this driver with the USB subsystem */
err = usb_register(&peak_usb_driver);
if (err)
pr_err("%s: usb_register failed (err %d)\n",
PCAN_USB_DRIVER_NAME, err);
return err;
}
static int peak_usb_do_device_exit(struct device *d, void *arg)
{
struct usb_interface *intf = to_usb_interface(d);
struct peak_usb_device *dev;
/* stop as many netdev devices as siblings */
for (dev = usb_get_intfdata(intf); dev; dev = dev->prev_siblings) {
struct net_device *netdev = dev->netdev;
if (netif_device_present(netdev))
if (dev->adapter->dev_exit)
dev->adapter->dev_exit(dev);
}
return 0;
}
static void __exit peak_usb_exit(void)
{
int err;
/* last chance do send any synchronous commands here */
err = driver_for_each_device(&peak_usb_driver.drvwrap.driver, NULL,
NULL, peak_usb_do_device_exit);
if (err)
pr_err("%s: failed to stop all can devices (err %d)\n",
PCAN_USB_DRIVER_NAME, err);
/* deregister this driver with the USB subsystem */
usb_deregister(&peak_usb_driver);
pr_info("%s: PCAN-USB interfaces driver unloaded\n",
PCAN_USB_DRIVER_NAME);
}
module_init(peak_usb_init);
module_exit(peak_usb_exit);
/*
* CAN driver for PEAK System USB adapters
* Derived from the PCAN project file driver/src/pcan_usb_core.c
*
* Copyright (C) 2003-2010 PEAK System-Technik GmbH
* Copyright (C) 2010-2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* Many thanks to Klaus Hitschler <klaus.hitschler@gmx.de>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#ifndef PCAN_USB_CORE_H
#define PCAN_USB_CORE_H
/* PEAK-System vendor id. */
#define PCAN_USB_VENDOR_ID 0x0c72
/* supported device ids. */
#define PCAN_USB_PRODUCT_ID 0x000c
#define PCAN_USBPRO_PRODUCT_ID 0x000d
#define PCAN_USB_DRIVER_NAME "peak_usb"
/* number of urbs that are submitted for rx/tx per channel */
#define PCAN_USB_MAX_RX_URBS 4
#define PCAN_USB_MAX_TX_URBS 10
/* usb adapters maximum channels per usb interface */
#define PCAN_USB_MAX_CHANNEL 2
/* maximum length of the usb commands sent to/received from the devices */
#define PCAN_USB_MAX_CMD_LEN 32
struct peak_usb_device;
/* PEAK-System USB adapter descriptor */
struct peak_usb_adapter {
char *name;
u32 device_id;
struct can_clock clock;
struct can_bittiming_const bittiming_const;
unsigned int ctrl_count;
int (*intf_probe)(struct usb_interface *intf);
int (*dev_init)(struct peak_usb_device *dev);
void (*dev_exit)(struct peak_usb_device *dev);
void (*dev_free)(struct peak_usb_device *dev);
int (*dev_open)(struct peak_usb_device *dev);
int (*dev_close)(struct peak_usb_device *dev);
int (*dev_set_bittiming)(struct peak_usb_device *dev,
struct can_bittiming *bt);
int (*dev_set_bus)(struct peak_usb_device *dev, u8 onoff);
int (*dev_get_device_id)(struct peak_usb_device *dev, u32 *device_id);
int (*dev_decode_buf)(struct peak_usb_device *dev, struct urb *urb);
int (*dev_encode_msg)(struct peak_usb_device *dev, struct sk_buff *skb,
u8 *obuf, size_t *size);
int (*dev_start)(struct peak_usb_device *dev);
int (*dev_stop)(struct peak_usb_device *dev);
int (*dev_restart_async)(struct peak_usb_device *dev, struct urb *urb,
u8 *buf);
u8 ep_msg_in;
u8 ep_msg_out[PCAN_USB_MAX_CHANNEL];
u8 ts_used_bits;
u32 ts_period;
u8 us_per_ts_shift;
u32 us_per_ts_scale;
int rx_buffer_size;
int tx_buffer_size;
int sizeof_dev_private;
};
extern struct peak_usb_adapter pcan_usb;
extern struct peak_usb_adapter pcan_usb_pro;
struct peak_time_ref {
struct timeval tv_host_0, tv_host;
u32 ts_dev_1, ts_dev_2;
u64 ts_total;
u32 tick_count;
struct peak_usb_adapter *adapter;
};
struct peak_tx_urb_context {
struct peak_usb_device *dev;
u32 echo_index;
u8 dlc;
struct urb *urb;
};
#define PCAN_USB_STATE_CONNECTED 0x00000001
#define PCAN_USB_STATE_STARTED 0x00000002
/* PEAK-System USB device */
struct peak_usb_device {
struct can_priv can;
struct peak_usb_adapter *adapter;
unsigned int ctrl_idx;
int open_time;
u32 state;
struct sk_buff *echo_skb[PCAN_USB_MAX_TX_URBS];
struct usb_device *udev;
struct net_device *netdev;
atomic_t active_tx_urbs;
struct usb_anchor tx_submitted;
struct peak_tx_urb_context tx_contexts[PCAN_USB_MAX_TX_URBS];
u8 *cmd_buf;
struct usb_anchor rx_submitted;
u32 device_number;
u8 device_rev;
u8 ep_msg_in;
u8 ep_msg_out;
u16 bus_load;
struct peak_usb_device *prev_siblings;
struct peak_usb_device *next_siblings;
};
void dump_mem(char *prompt, void *p, int l);
/* common timestamp management */
void peak_usb_init_time_ref(struct peak_time_ref *time_ref,
struct peak_usb_adapter *adapter);
void peak_usb_update_ts_now(struct peak_time_ref *time_ref, u32 ts_now);
void peak_usb_set_ts_now(struct peak_time_ref *time_ref, u32 ts_now);
void peak_usb_get_ts_tv(struct peak_time_ref *time_ref, u32 ts,
struct timeval *tv);
void peak_usb_async_complete(struct urb *urb);
void peak_usb_restart_complete(struct peak_usb_device *dev);
#endif
/*
* CAN driver for PEAK System PCAN-USB Pro adapter
* Derived from the PCAN project file driver/src/pcan_usbpro.c
*
* Copyright (C) 2003-2011 PEAK System-Technik GmbH
* Copyright (C) 2011-2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#include <linux/netdevice.h>
#include <linux/usb.h>
#include <linux/module.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
#include "pcan_usb_core.h"
#include "pcan_usb_pro.h"
MODULE_SUPPORTED_DEVICE("PEAK-System PCAN-USB Pro adapter");
/* PCAN-USB Pro Endpoints */
#define PCAN_USBPRO_EP_CMDOUT 1
#define PCAN_USBPRO_EP_CMDIN (PCAN_USBPRO_EP_CMDOUT | USB_DIR_IN)
#define PCAN_USBPRO_EP_MSGOUT_0 2
#define PCAN_USBPRO_EP_MSGIN (PCAN_USBPRO_EP_MSGOUT_0 | USB_DIR_IN)
#define PCAN_USBPRO_EP_MSGOUT_1 3
#define PCAN_USBPRO_EP_UNUSED (PCAN_USBPRO_EP_MSGOUT_1 | USB_DIR_IN)
#define PCAN_USBPRO_CHANNEL_COUNT 2
/* PCAN-USB Pro adapter internal clock (MHz) */
#define PCAN_USBPRO_CRYSTAL_HZ 56000000
/* PCAN-USB Pro command timeout (ms.) */
#define PCAN_USBPRO_COMMAND_TIMEOUT 1000
/* PCAN-USB Pro rx/tx buffers size */
#define PCAN_USBPRO_RX_BUFFER_SIZE 1024
#define PCAN_USBPRO_TX_BUFFER_SIZE 64
#define PCAN_USBPRO_MSG_HEADER_LEN 4
/* some commands responses need to be re-submitted */
#define PCAN_USBPRO_RSP_SUBMIT_MAX 2
#define PCAN_USBPRO_RTR 0x01
#define PCAN_USBPRO_EXT 0x02
#define PCAN_USBPRO_CMD_BUFFER_SIZE 512
/* handle device specific info used by the netdevices */
struct pcan_usb_pro_interface {
struct peak_usb_device *dev[PCAN_USBPRO_CHANNEL_COUNT];
struct peak_time_ref time_ref;
int cm_ignore_count;
int dev_opened_count;
};
/* device information */
struct pcan_usb_pro_device {
struct peak_usb_device dev;
struct pcan_usb_pro_interface *usb_if;
u32 cached_ccbt;
};
/* internal structure used to handle messages sent to bulk urb */
struct pcan_usb_pro_msg {
u8 *rec_ptr;
int rec_buffer_size;
int rec_buffer_len;
union {
u16 *rec_cnt_rd;
u32 *rec_cnt;
u8 *rec_buffer;
} u;
};
/* records sizes table indexed on message id. (8-bits value) */
static u16 pcan_usb_pro_sizeof_rec[256] = {
[PCAN_USBPRO_SETBTR] = sizeof(struct pcan_usb_pro_btr),
[PCAN_USBPRO_SETBUSACT] = sizeof(struct pcan_usb_pro_busact),
[PCAN_USBPRO_SETSILENT] = sizeof(struct pcan_usb_pro_silent),
[PCAN_USBPRO_SETFILTR] = sizeof(struct pcan_usb_pro_filter),
[PCAN_USBPRO_SETTS] = sizeof(struct pcan_usb_pro_setts),
[PCAN_USBPRO_GETDEVID] = sizeof(struct pcan_usb_pro_devid),
[PCAN_USBPRO_SETLED] = sizeof(struct pcan_usb_pro_setled),
[PCAN_USBPRO_RXMSG8] = sizeof(struct pcan_usb_pro_rxmsg),
[PCAN_USBPRO_RXMSG4] = sizeof(struct pcan_usb_pro_rxmsg) - 4,
[PCAN_USBPRO_RXMSG0] = sizeof(struct pcan_usb_pro_rxmsg) - 8,
[PCAN_USBPRO_RXRTR] = sizeof(struct pcan_usb_pro_rxmsg) - 8,
[PCAN_USBPRO_RXSTATUS] = sizeof(struct pcan_usb_pro_rxstatus),
[PCAN_USBPRO_RXTS] = sizeof(struct pcan_usb_pro_rxts),
[PCAN_USBPRO_TXMSG8] = sizeof(struct pcan_usb_pro_txmsg),
[PCAN_USBPRO_TXMSG4] = sizeof(struct pcan_usb_pro_txmsg) - 4,
[PCAN_USBPRO_TXMSG0] = sizeof(struct pcan_usb_pro_txmsg) - 8,
};
/*
* initialize PCAN-USB Pro message data structure
*/
static u8 *pcan_msg_init(struct pcan_usb_pro_msg *pm, void *buffer_addr,
int buffer_size)
{
if (buffer_size < PCAN_USBPRO_MSG_HEADER_LEN)
return NULL;
pm->u.rec_buffer = (u8 *)buffer_addr;
pm->rec_buffer_size = pm->rec_buffer_len = buffer_size;
pm->rec_ptr = pm->u.rec_buffer + PCAN_USBPRO_MSG_HEADER_LEN;
return pm->rec_ptr;
}
static u8 *pcan_msg_init_empty(struct pcan_usb_pro_msg *pm,
void *buffer_addr, int buffer_size)
{
u8 *pr = pcan_msg_init(pm, buffer_addr, buffer_size);
if (pr) {
pm->rec_buffer_len = PCAN_USBPRO_MSG_HEADER_LEN;
*pm->u.rec_cnt = 0;
}
return pr;
}
/*
* add one record to a message being built
*/
static int pcan_msg_add_rec(struct pcan_usb_pro_msg *pm, u8 id, ...)
{
int len, i;
u8 *pc;
va_list ap;
va_start(ap, id);
pc = pm->rec_ptr + 1;
i = 0;
switch (id) {
case PCAN_USBPRO_TXMSG8:
i += 4;
case PCAN_USBPRO_TXMSG4:
i += 4;
case PCAN_USBPRO_TXMSG0:
*pc++ = va_arg(ap, int);
*pc++ = va_arg(ap, int);
*pc++ = va_arg(ap, int);
*(u32 *)pc = cpu_to_le32(va_arg(ap, u32));
pc += 4;
memcpy(pc, va_arg(ap, int *), i);
pc += i;
break;
case PCAN_USBPRO_SETBTR:
case PCAN_USBPRO_GETDEVID:
*pc++ = va_arg(ap, int);
pc += 2;
*(u32 *)pc = cpu_to_le32(va_arg(ap, u32));
pc += 4;
break;
case PCAN_USBPRO_SETFILTR:
case PCAN_USBPRO_SETBUSACT:
case PCAN_USBPRO_SETSILENT:
*pc++ = va_arg(ap, int);
*(u16 *)pc = cpu_to_le16(va_arg(ap, int));
pc += 2;
break;
case PCAN_USBPRO_SETLED:
*pc++ = va_arg(ap, int);
*(u16 *)pc = cpu_to_le16(va_arg(ap, int));
pc += 2;
*(u32 *)pc = cpu_to_le32(va_arg(ap, u32));
pc += 4;
break;
case PCAN_USBPRO_SETTS:
pc++;
*(u16 *)pc = cpu_to_le16(va_arg(ap, int));
pc += 2;
break;
default:
pr_err("%s: %s(): unknown data type %02Xh (%d)\n",
PCAN_USB_DRIVER_NAME, __func__, id, id);
pc--;
break;
}
len = pc - pm->rec_ptr;
if (len > 0) {
*pm->u.rec_cnt = cpu_to_le32(*pm->u.rec_cnt+1);
*pm->rec_ptr = id;
pm->rec_ptr = pc;
pm->rec_buffer_len += len;
}
va_end(ap);
return len;
}
/*
* send PCAN-USB Pro command synchronously
*/
static int pcan_usb_pro_send_cmd(struct peak_usb_device *dev,
struct pcan_usb_pro_msg *pum)
{
int actual_length;
int err;
/* usb device unregistered? */
if (!(dev->state & PCAN_USB_STATE_CONNECTED))
return 0;
err = usb_bulk_msg(dev->udev,
usb_sndbulkpipe(dev->udev, PCAN_USBPRO_EP_CMDOUT),
pum->u.rec_buffer, pum->rec_buffer_len,
&actual_length, PCAN_USBPRO_COMMAND_TIMEOUT);
if (err)
netdev_err(dev->netdev, "sending command failure: %d\n", err);
return err;
}
/*
* wait for PCAN-USB Pro command response
*/
static int pcan_usb_pro_wait_rsp(struct peak_usb_device *dev,
struct pcan_usb_pro_msg *pum)
{
u8 req_data_type, req_channel;
int actual_length;
int i, err = 0;
/* usb device unregistered? */
if (!(dev->state & PCAN_USB_STATE_CONNECTED))
return 0;
req_data_type = pum->u.rec_buffer[4];
req_channel = pum->u.rec_buffer[5];
*pum->u.rec_cnt = 0;
for (i = 0; !err && i < PCAN_USBPRO_RSP_SUBMIT_MAX; i++) {
struct pcan_usb_pro_msg rsp;
union pcan_usb_pro_rec *pr;
u32 r, rec_cnt;
u16 rec_len;
u8 *pc;
err = usb_bulk_msg(dev->udev,
usb_rcvbulkpipe(dev->udev, PCAN_USBPRO_EP_CMDIN),
pum->u.rec_buffer, pum->rec_buffer_len,
&actual_length, PCAN_USBPRO_COMMAND_TIMEOUT);
if (err) {
netdev_err(dev->netdev, "waiting rsp error %d\n", err);
break;
}
if (actual_length == 0)
continue;
err = -EBADMSG;
if (actual_length < PCAN_USBPRO_MSG_HEADER_LEN) {
netdev_err(dev->netdev,
"got abnormal too small rsp (len=%d)\n",
actual_length);
break;
}
pc = pcan_msg_init(&rsp, pum->u.rec_buffer,
actual_length);
rec_cnt = le32_to_cpu(*rsp.u.rec_cnt);
/* loop on records stored into message */
for (r = 0; r < rec_cnt; r++) {
pr = (union pcan_usb_pro_rec *)pc;
rec_len = pcan_usb_pro_sizeof_rec[pr->data_type];
if (!rec_len) {
netdev_err(dev->netdev,
"got unprocessed record in msg\n");
dump_mem("rcvd rsp msg", pum->u.rec_buffer,
actual_length);
break;
}
/* check if response corresponds to request */
if (pr->data_type != req_data_type)
netdev_err(dev->netdev,
"got unwanted rsp %xh: ignored\n",
pr->data_type);
/* check if channel in response corresponds too */
else if ((req_channel != 0xff) && \
(pr->bus_act.channel != req_channel))
netdev_err(dev->netdev,
"got rsp %xh but on chan%u: ignored\n",
req_data_type, pr->bus_act.channel);
/* got the response */
else
return 0;
/* otherwise, go on with next record in message */
pc += rec_len;
}
}
return (i >= PCAN_USBPRO_RSP_SUBMIT_MAX) ? -ERANGE : err;
}
static int pcan_usb_pro_send_req(struct peak_usb_device *dev, int req_id,
int req_value, void *req_addr, int req_size)
{
int err;
u8 req_type;
unsigned int p;
/* usb device unregistered? */
if (!(dev->state & PCAN_USB_STATE_CONNECTED))
return 0;
memset(req_addr, '\0', req_size);
req_type = USB_TYPE_VENDOR | USB_RECIP_OTHER;
switch (req_id) {
case PCAN_USBPRO_REQ_FCT:
p = usb_sndctrlpipe(dev->udev, 0);
break;
default:
p = usb_rcvctrlpipe(dev->udev, 0);
req_type |= USB_DIR_IN;
break;
}
err = usb_control_msg(dev->udev, p, req_id, req_type, req_value, 0,
req_addr, req_size, 2 * USB_CTRL_GET_TIMEOUT);
if (err < 0) {
netdev_info(dev->netdev,
"unable to request usb[type=%d value=%d] err=%d\n",
req_id, req_value, err);
return err;
}
return 0;
}
static int pcan_usb_pro_set_ts(struct peak_usb_device *dev, u16 onoff)
{
struct pcan_usb_pro_msg um;
pcan_msg_init_empty(&um, dev->cmd_buf, PCAN_USB_MAX_CMD_LEN);
pcan_msg_add_rec(&um, PCAN_USBPRO_SETTS, onoff);
return pcan_usb_pro_send_cmd(dev, &um);
}
static int pcan_usb_pro_set_bitrate(struct peak_usb_device *dev, u32 ccbt)
{
struct pcan_usb_pro_device *pdev =
container_of(dev, struct pcan_usb_pro_device, dev);
struct pcan_usb_pro_msg um;
pcan_msg_init_empty(&um, dev->cmd_buf, PCAN_USB_MAX_CMD_LEN);
pcan_msg_add_rec(&um, PCAN_USBPRO_SETBTR, dev->ctrl_idx, ccbt);
/* cache the CCBT value to reuse it before next buson */
pdev->cached_ccbt = ccbt;
return pcan_usb_pro_send_cmd(dev, &um);
}
static int pcan_usb_pro_set_bus(struct peak_usb_device *dev, u8 onoff)
{
struct pcan_usb_pro_msg um;
/* if bus=on, be sure the bitrate being set before! */
if (onoff) {
struct pcan_usb_pro_device *pdev =
container_of(dev, struct pcan_usb_pro_device, dev);
pcan_usb_pro_set_bitrate(dev, pdev->cached_ccbt);
}
pcan_msg_init_empty(&um, dev->cmd_buf, PCAN_USB_MAX_CMD_LEN);
pcan_msg_add_rec(&um, PCAN_USBPRO_SETBUSACT, dev->ctrl_idx, onoff);
return pcan_usb_pro_send_cmd(dev, &um);
}
static int pcan_usb_pro_set_silent(struct peak_usb_device *dev, u8 onoff)
{
struct pcan_usb_pro_msg um;
pcan_msg_init_empty(&um, dev->cmd_buf, PCAN_USB_MAX_CMD_LEN);
pcan_msg_add_rec(&um, PCAN_USBPRO_SETSILENT, dev->ctrl_idx, onoff);
return pcan_usb_pro_send_cmd(dev, &um);
}
static int pcan_usb_pro_set_filter(struct peak_usb_device *dev, u16 filter_mode)
{
struct pcan_usb_pro_msg um;
pcan_msg_init_empty(&um, dev->cmd_buf, PCAN_USB_MAX_CMD_LEN);
pcan_msg_add_rec(&um, PCAN_USBPRO_SETFILTR, dev->ctrl_idx, filter_mode);
return pcan_usb_pro_send_cmd(dev, &um);
}
static int pcan_usb_pro_set_led(struct peak_usb_device *dev, u8 mode,
u32 timeout)
{
struct pcan_usb_pro_msg um;
pcan_msg_init_empty(&um, dev->cmd_buf, PCAN_USB_MAX_CMD_LEN);
pcan_msg_add_rec(&um, PCAN_USBPRO_SETLED, dev->ctrl_idx, mode, timeout);
return pcan_usb_pro_send_cmd(dev, &um);
}
static int pcan_usb_pro_get_device_id(struct peak_usb_device *dev,
u32 *device_id)
{
struct pcan_usb_pro_devid *pdn;
struct pcan_usb_pro_msg um;
int err;
u8 *pc;
pc = pcan_msg_init_empty(&um, dev->cmd_buf, PCAN_USB_MAX_CMD_LEN);
pcan_msg_add_rec(&um, PCAN_USBPRO_GETDEVID, dev->ctrl_idx);
err = pcan_usb_pro_send_cmd(dev, &um);
if (err)
return err;
err = pcan_usb_pro_wait_rsp(dev, &um);
if (err)
return err;
pdn = (struct pcan_usb_pro_devid *)pc;
if (device_id)
*device_id = le32_to_cpu(pdn->serial_num);
return err;
}
static int pcan_usb_pro_set_bittiming(struct peak_usb_device *dev,
struct can_bittiming *bt)
{
u32 ccbt;
ccbt = (dev->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES) ? 0x00800000 : 0;
ccbt |= (bt->sjw - 1) << 24;
ccbt |= (bt->phase_seg2 - 1) << 20;
ccbt |= (bt->prop_seg + bt->phase_seg1 - 1) << 16; /* = tseg1 */
ccbt |= bt->brp - 1;
netdev_info(dev->netdev, "setting ccbt=0x%08x\n", ccbt);
return pcan_usb_pro_set_bitrate(dev, ccbt);
}
static void pcan_usb_pro_restart_complete(struct urb *urb)
{
/* can delete usb resources */
peak_usb_async_complete(urb);
/* notify candev and netdev */
peak_usb_restart_complete(urb->context);
}
/*
* handle restart but in asynchronously way
*/
static int pcan_usb_pro_restart_async(struct peak_usb_device *dev,
struct urb *urb, u8 *buf)
{
struct pcan_usb_pro_msg um;
pcan_msg_init_empty(&um, buf, PCAN_USB_MAX_CMD_LEN);
pcan_msg_add_rec(&um, PCAN_USBPRO_SETBUSACT, dev->ctrl_idx, 1);
usb_fill_bulk_urb(urb, dev->udev,
usb_sndbulkpipe(dev->udev, PCAN_USBPRO_EP_CMDOUT),
buf, PCAN_USB_MAX_CMD_LEN,
pcan_usb_pro_restart_complete, dev);
return usb_submit_urb(urb, GFP_ATOMIC);
}
static void pcan_usb_pro_drv_loaded(struct peak_usb_device *dev, int loaded)
{
u8 buffer[16];
buffer[0] = 0;
buffer[1] = !!loaded;
pcan_usb_pro_send_req(dev, PCAN_USBPRO_REQ_FCT,
PCAN_USBPRO_FCT_DRVLD, buffer, sizeof(buffer));
}
static inline
struct pcan_usb_pro_interface *pcan_usb_pro_dev_if(struct peak_usb_device *dev)
{
struct pcan_usb_pro_device *pdev =
container_of(dev, struct pcan_usb_pro_device, dev);
return pdev->usb_if;
}
static int pcan_usb_pro_handle_canmsg(struct pcan_usb_pro_interface *usb_if,
struct pcan_usb_pro_rxmsg *rx)
{
const unsigned int ctrl_idx = (rx->len >> 4) & 0x0f;
struct peak_usb_device *dev = usb_if->dev[ctrl_idx];
struct net_device *netdev = dev->netdev;
struct can_frame *can_frame;
struct sk_buff *skb;
struct timeval tv;
skb = alloc_can_skb(netdev, &can_frame);
if (!skb)
return -ENOMEM;
can_frame->can_id = le32_to_cpu(rx->id);
can_frame->can_dlc = rx->len & 0x0f;
if (rx->flags & PCAN_USBPRO_EXT)
can_frame->can_id |= CAN_EFF_FLAG;
if (rx->flags & PCAN_USBPRO_RTR)
can_frame->can_id |= CAN_RTR_FLAG;
else
memcpy(can_frame->data, rx->data, can_frame->can_dlc);
peak_usb_get_ts_tv(&usb_if->time_ref, le32_to_cpu(rx->ts32), &tv);
skb->tstamp = timeval_to_ktime(tv);
netif_rx(skb);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += can_frame->can_dlc;
return 0;
}
static int pcan_usb_pro_handle_error(struct pcan_usb_pro_interface *usb_if,
struct pcan_usb_pro_rxstatus *er)
{
const u32 raw_status = le32_to_cpu(er->status);
const unsigned int ctrl_idx = (er->channel >> 4) & 0x0f;
struct peak_usb_device *dev = usb_if->dev[ctrl_idx];
struct net_device *netdev = dev->netdev;
struct can_frame *can_frame;
enum can_state new_state = CAN_STATE_ERROR_ACTIVE;
u8 err_mask = 0;
struct sk_buff *skb;
struct timeval tv;
/* nothing should be sent while in BUS_OFF state */
if (dev->can.state == CAN_STATE_BUS_OFF)
return 0;
if (!raw_status) {
/* no error bit (back to active state) */
dev->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
}
if (raw_status & (PCAN_USBPRO_STATUS_OVERRUN |
PCAN_USBPRO_STATUS_QOVERRUN)) {
/* trick to bypass next comparison and process other errors */
new_state = CAN_STATE_MAX;
}
if (raw_status & PCAN_USBPRO_STATUS_BUS) {
new_state = CAN_STATE_BUS_OFF;
} else if (raw_status & PCAN_USBPRO_STATUS_ERROR) {
u32 rx_err_cnt = (le32_to_cpu(er->err_frm) & 0x00ff0000) >> 16;
u32 tx_err_cnt = (le32_to_cpu(er->err_frm) & 0xff000000) >> 24;
if (rx_err_cnt > 127)
err_mask |= CAN_ERR_CRTL_RX_PASSIVE;
else if (rx_err_cnt > 96)
err_mask |= CAN_ERR_CRTL_RX_WARNING;
if (tx_err_cnt > 127)
err_mask |= CAN_ERR_CRTL_TX_PASSIVE;
else if (tx_err_cnt > 96)
err_mask |= CAN_ERR_CRTL_TX_WARNING;
if (err_mask & (CAN_ERR_CRTL_RX_WARNING |
CAN_ERR_CRTL_TX_WARNING))
new_state = CAN_STATE_ERROR_WARNING;
else if (err_mask & (CAN_ERR_CRTL_RX_PASSIVE |
CAN_ERR_CRTL_TX_PASSIVE))
new_state = CAN_STATE_ERROR_PASSIVE;
}
/* donot post any error if current state didn't change */
if (dev->can.state == new_state)
return 0;
/* allocate an skb to store the error frame */
skb = alloc_can_err_skb(netdev, &can_frame);
if (!skb)
return -ENOMEM;
switch (new_state) {
case CAN_STATE_BUS_OFF:
can_frame->can_id |= CAN_ERR_BUSOFF;
can_bus_off(netdev);
break;
case CAN_STATE_ERROR_PASSIVE:
can_frame->can_id |= CAN_ERR_CRTL;
can_frame->data[1] |= err_mask;
dev->can.can_stats.error_passive++;
break;
case CAN_STATE_ERROR_WARNING:
can_frame->can_id |= CAN_ERR_CRTL;
can_frame->data[1] |= err_mask;
dev->can.can_stats.error_warning++;
break;
case CAN_STATE_ERROR_ACTIVE:
break;
default:
/* CAN_STATE_MAX (trick to handle other errors) */
if (raw_status & PCAN_USBPRO_STATUS_OVERRUN) {
can_frame->can_id |= CAN_ERR_PROT;
can_frame->data[2] |= CAN_ERR_PROT_OVERLOAD;
netdev->stats.rx_over_errors++;
netdev->stats.rx_errors++;
}
if (raw_status & PCAN_USBPRO_STATUS_QOVERRUN) {
can_frame->can_id |= CAN_ERR_CRTL;
can_frame->data[1] |= CAN_ERR_CRTL_RX_OVERFLOW;
netdev->stats.rx_over_errors++;
netdev->stats.rx_errors++;
}
new_state = CAN_STATE_ERROR_ACTIVE;
break;
}
dev->can.state = new_state;
peak_usb_get_ts_tv(&usb_if->time_ref, le32_to_cpu(er->ts32), &tv);
skb->tstamp = timeval_to_ktime(tv);
netif_rx(skb);
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += can_frame->can_dlc;
return 0;
}
static void pcan_usb_pro_handle_ts(struct pcan_usb_pro_interface *usb_if,
struct pcan_usb_pro_rxts *ts)
{
/* should wait until clock is stabilized */
if (usb_if->cm_ignore_count > 0)
usb_if->cm_ignore_count--;
else
peak_usb_set_ts_now(&usb_if->time_ref,
le32_to_cpu(ts->ts64[1]));
}
/*
* callback for bulk IN urb
*/
static int pcan_usb_pro_decode_buf(struct peak_usb_device *dev, struct urb *urb)
{
struct pcan_usb_pro_interface *usb_if = pcan_usb_pro_dev_if(dev);
struct net_device *netdev = dev->netdev;
struct pcan_usb_pro_msg usb_msg;
u8 *rec_ptr, *msg_end;
u16 rec_cnt;
int err = 0;
rec_ptr = pcan_msg_init(&usb_msg, urb->transfer_buffer,
urb->actual_length);
if (!rec_ptr) {
netdev_err(netdev, "bad msg hdr len %d\n", urb->actual_length);
return -EINVAL;
}
/* loop reading all the records from the incoming message */
msg_end = urb->transfer_buffer + urb->actual_length;
rec_cnt = le16_to_cpu(*usb_msg.u.rec_cnt_rd);
for (; rec_cnt > 0; rec_cnt--) {
union pcan_usb_pro_rec *pr = (union pcan_usb_pro_rec *)rec_ptr;
u16 sizeof_rec = pcan_usb_pro_sizeof_rec[pr->data_type];
if (!sizeof_rec) {
netdev_err(netdev,
"got unsupported rec in usb msg:\n");
err = -ENOTSUPP;
break;
}
/* check if the record goes out of current packet */
if (rec_ptr + sizeof_rec > msg_end) {
netdev_err(netdev,
"got frag rec: should inc usb rx buf size\n");
err = -EBADMSG;
break;
}
switch (pr->data_type) {
case PCAN_USBPRO_RXMSG8:
case PCAN_USBPRO_RXMSG4:
case PCAN_USBPRO_RXMSG0:
case PCAN_USBPRO_RXRTR:
err = pcan_usb_pro_handle_canmsg(usb_if, &pr->rx_msg);
if (err < 0)
goto fail;
break;
case PCAN_USBPRO_RXSTATUS:
err = pcan_usb_pro_handle_error(usb_if, &pr->rx_status);
if (err < 0)
goto fail;
break;
case PCAN_USBPRO_RXTS:
pcan_usb_pro_handle_ts(usb_if, &pr->rx_ts);
break;
default:
netdev_err(netdev,
"unhandled rec type 0x%02x (%d): ignored\n",
pr->data_type, pr->data_type);
break;
}
rec_ptr += sizeof_rec;
}
fail:
if (err)
dump_mem("received msg",
urb->transfer_buffer, urb->actual_length);
return err;
}
static int pcan_usb_pro_encode_msg(struct peak_usb_device *dev,
struct sk_buff *skb, u8 *obuf, size_t *size)
{
struct can_frame *cf = (struct can_frame *)skb->data;
u8 data_type, len, flags;
struct pcan_usb_pro_msg usb_msg;
pcan_msg_init_empty(&usb_msg, obuf, *size);
if ((cf->can_id & CAN_RTR_FLAG) || (cf->can_dlc == 0))
data_type = PCAN_USBPRO_TXMSG0;
else if (cf->can_dlc <= 4)
data_type = PCAN_USBPRO_TXMSG4;
else
data_type = PCAN_USBPRO_TXMSG8;
len = (dev->ctrl_idx << 4) | (cf->can_dlc & 0x0f);
flags = 0;
if (cf->can_id & CAN_EFF_FLAG)
flags |= 0x02;
if (cf->can_id & CAN_RTR_FLAG)
flags |= 0x01;
pcan_msg_add_rec(&usb_msg, data_type, 0, flags, len, cf->can_id,
cf->data);
*size = usb_msg.rec_buffer_len;
return 0;
}
static int pcan_usb_pro_start(struct peak_usb_device *dev)
{
struct pcan_usb_pro_device *pdev =
container_of(dev, struct pcan_usb_pro_device, dev);
int err;
err = pcan_usb_pro_set_silent(dev,
dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY);
if (err)
return err;
/* filter mode: 0-> All OFF; 1->bypass */
err = pcan_usb_pro_set_filter(dev, 1);
if (err)
return err;
/* opening first device: */
if (pdev->usb_if->dev_opened_count == 0) {
/* reset time_ref */
peak_usb_init_time_ref(&pdev->usb_if->time_ref, &pcan_usb_pro);
/* ask device to send ts messages */
err = pcan_usb_pro_set_ts(dev, 1);
}
pdev->usb_if->dev_opened_count++;
return err;
}
/*
* stop interface
* (last chance before set bus off)
*/
static int pcan_usb_pro_stop(struct peak_usb_device *dev)
{
struct pcan_usb_pro_device *pdev =
container_of(dev, struct pcan_usb_pro_device, dev);
/* turn off ts msgs for that interface if no other dev opened */
if (pdev->usb_if->dev_opened_count == 1)
pcan_usb_pro_set_ts(dev, 0);
pdev->usb_if->dev_opened_count--;
return 0;
}
/*
* called when probing to initialize a device object.
*/
static int pcan_usb_pro_init(struct peak_usb_device *dev)
{
struct pcan_usb_pro_interface *usb_if;
struct pcan_usb_pro_device *pdev =
container_of(dev, struct pcan_usb_pro_device, dev);
/* do this for 1st channel only */
if (!dev->prev_siblings) {
struct pcan_usb_pro_fwinfo fi;
struct pcan_usb_pro_blinfo bi;
int err;
/* allocate netdevices common structure attached to first one */
usb_if = kzalloc(sizeof(struct pcan_usb_pro_interface),
GFP_KERNEL);
if (!usb_if)
return -ENOMEM;
/* number of ts msgs to ignore before taking one into account */
usb_if->cm_ignore_count = 5;
/*
* explicit use of dev_xxx() instead of netdev_xxx() here:
* information displayed are related to the device itself, not
* to the canx netdevices.
*/
err = pcan_usb_pro_send_req(dev, PCAN_USBPRO_REQ_INFO,
PCAN_USBPRO_INFO_FW,
&fi, sizeof(fi));
if (err) {
dev_err(dev->netdev->dev.parent,
"unable to read %s firmware info (err %d)\n",
pcan_usb_pro.name, err);
return err;
}
err = pcan_usb_pro_send_req(dev, PCAN_USBPRO_REQ_INFO,
PCAN_USBPRO_INFO_BL,
&bi, sizeof(bi));
if (err) {
dev_err(dev->netdev->dev.parent,
"unable to read %s bootloader info (err %d)\n",
pcan_usb_pro.name, err);
return err;
}
dev_info(dev->netdev->dev.parent,
"PEAK-System %s hwrev %u serial %08X.%08X (%u channels)\n",
pcan_usb_pro.name,
bi.hw_rev, bi.serial_num_hi, bi.serial_num_lo,
pcan_usb_pro.ctrl_count);
/* tell the device the can driver is running */
pcan_usb_pro_drv_loaded(dev, 1);
} else {
usb_if = pcan_usb_pro_dev_if(dev->prev_siblings);
}
pdev->usb_if = usb_if;
usb_if->dev[dev->ctrl_idx] = dev;
/* set LED in default state (end of init phase) */
pcan_usb_pro_set_led(dev, 0, 1);
return 0;
}
static void pcan_usb_pro_exit(struct peak_usb_device *dev)
{
struct pcan_usb_pro_device *pdev =
container_of(dev, struct pcan_usb_pro_device, dev);
/*
* when rmmod called before unplug and if down, should reset things
* before leaving
*/
if (dev->can.state != CAN_STATE_STOPPED) {
/* set bus off on the corresponding channel */
pcan_usb_pro_set_bus(dev, 0);
}
/* if channel #0 (only) */
if (dev->ctrl_idx == 0) {
/* turn off calibration message if any device were opened */
if (pdev->usb_if->dev_opened_count > 0)
pcan_usb_pro_set_ts(dev, 0);
/* tell the PCAN-USB Pro device the driver is being unloaded */
pcan_usb_pro_drv_loaded(dev, 0);
}
}
/*
* called when PCAN-USB Pro adapter is unplugged
*/
static void pcan_usb_pro_free(struct peak_usb_device *dev)
{
/* last device: can free pcan_usb_pro_interface object now */
if (!dev->prev_siblings && !dev->next_siblings)
kfree(pcan_usb_pro_dev_if(dev));
}
/*
* probe function for new PCAN-USB Pro usb interface
*/
static int pcan_usb_pro_probe(struct usb_interface *intf)
{
struct usb_host_interface *if_desc;
int i;
if_desc = intf->altsetting;
/* check interface endpoint addresses */
for (i = 0; i < if_desc->desc.bNumEndpoints; i++) {
struct usb_endpoint_descriptor *ep = &if_desc->endpoint[i].desc;
/*
* below is the list of valid ep addreses. Any other ep address
* is considered as not-CAN interface address => no dev created
*/
switch (ep->bEndpointAddress) {
case PCAN_USBPRO_EP_CMDOUT:
case PCAN_USBPRO_EP_CMDIN:
case PCAN_USBPRO_EP_MSGOUT_0:
case PCAN_USBPRO_EP_MSGOUT_1:
case PCAN_USBPRO_EP_MSGIN:
case PCAN_USBPRO_EP_UNUSED:
break;
default:
return -ENODEV;
}
}
return 0;
}
/*
* describe the PCAN-USB Pro adapter
*/
struct peak_usb_adapter pcan_usb_pro = {
.name = "PCAN-USB Pro",
.device_id = PCAN_USBPRO_PRODUCT_ID,
.ctrl_count = PCAN_USBPRO_CHANNEL_COUNT,
.clock = {
.freq = PCAN_USBPRO_CRYSTAL_HZ,
},
.bittiming_const = {
.name = "pcan_usb_pro",
.tseg1_min = 1,
.tseg1_max = 16,
.tseg2_min = 1,
.tseg2_max = 8,
.sjw_max = 4,
.brp_min = 1,
.brp_max = 1024,
.brp_inc = 1,
},
/* size of device private data */
.sizeof_dev_private = sizeof(struct pcan_usb_pro_device),
/* timestamps usage */
.ts_used_bits = 32,
.ts_period = 1000000, /* calibration period in ts. */
.us_per_ts_scale = 1, /* us = (ts * scale) >> shift */
.us_per_ts_shift = 0,
/* give here messages in/out endpoints */
.ep_msg_in = PCAN_USBPRO_EP_MSGIN,
.ep_msg_out = {PCAN_USBPRO_EP_MSGOUT_0, PCAN_USBPRO_EP_MSGOUT_1},
/* size of rx/tx usb buffers */
.rx_buffer_size = PCAN_USBPRO_RX_BUFFER_SIZE,
.tx_buffer_size = PCAN_USBPRO_TX_BUFFER_SIZE,
/* device callbacks */
.intf_probe = pcan_usb_pro_probe,
.dev_init = pcan_usb_pro_init,
.dev_exit = pcan_usb_pro_exit,
.dev_free = pcan_usb_pro_free,
.dev_set_bus = pcan_usb_pro_set_bus,
.dev_set_bittiming = pcan_usb_pro_set_bittiming,
.dev_get_device_id = pcan_usb_pro_get_device_id,
.dev_decode_buf = pcan_usb_pro_decode_buf,
.dev_encode_msg = pcan_usb_pro_encode_msg,
.dev_start = pcan_usb_pro_start,
.dev_stop = pcan_usb_pro_stop,
.dev_restart_async = pcan_usb_pro_restart_async,
};
/*
* CAN driver for PEAK System PCAN-USB Pro adapter
* Derived from the PCAN project file driver/src/pcan_usbpro_fw.h
*
* Copyright (C) 2003-2011 PEAK System-Technik GmbH
* Copyright (C) 2011-2012 Stephane Grosjean <s.grosjean@peak-system.com>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*/
#ifndef PCAN_USB_PRO_H
#define PCAN_USB_PRO_H
/*
* USB Vendor request data types
*/
#define PCAN_USBPRO_REQ_INFO 0
#define PCAN_USBPRO_REQ_FCT 2
/* Vendor Request value for XXX_INFO */
#define PCAN_USBPRO_INFO_BL 0
#define PCAN_USBPRO_INFO_FW 1
/* Vendor Request value for XXX_FCT */
#define PCAN_USBPRO_FCT_DRVLD 5 /* tell device driver is loaded */
/* PCAN_USBPRO_INFO_BL vendor request record type */
struct __packed pcan_usb_pro_blinfo {
u32 ctrl_type;
u8 version[4];
u8 day;
u8 month;
u8 year;
u8 dummy;
u32 serial_num_hi;
u32 serial_num_lo;
u32 hw_type;
u32 hw_rev;
};
/* PCAN_USBPRO_INFO_FW vendor request record type */
struct __packed pcan_usb_pro_fwinfo {
u32 ctrl_type;
u8 version[4];
u8 day;
u8 month;
u8 year;
u8 dummy;
u32 fw_type;
};
/*
* USB Command record types
*/
#define PCAN_USBPRO_SETBTR 0x02
#define PCAN_USBPRO_SETBUSACT 0x04
#define PCAN_USBPRO_SETSILENT 0x05
#define PCAN_USBPRO_SETFILTR 0x0a
#define PCAN_USBPRO_SETTS 0x10
#define PCAN_USBPRO_GETDEVID 0x12
#define PCAN_USBPRO_SETLED 0x1C
#define PCAN_USBPRO_RXMSG8 0x80
#define PCAN_USBPRO_RXMSG4 0x81
#define PCAN_USBPRO_RXMSG0 0x82
#define PCAN_USBPRO_RXRTR 0x83
#define PCAN_USBPRO_RXSTATUS 0x84
#define PCAN_USBPRO_RXTS 0x85
#define PCAN_USBPRO_TXMSG8 0x41
#define PCAN_USBPRO_TXMSG4 0x42
#define PCAN_USBPRO_TXMSG0 0x43
/* record structures */
struct __packed pcan_usb_pro_btr {
u8 data_type;
u8 channel;
u16 dummy;
u32 CCBT;
};
struct __packed pcan_usb_pro_busact {
u8 data_type;
u8 channel;
u16 onoff;
};
struct __packed pcan_usb_pro_silent {
u8 data_type;
u8 channel;
u16 onoff;
};
struct __packed pcan_usb_pro_filter {
u8 data_type;
u8 dummy;
u16 filter_mode;
};
struct __packed pcan_usb_pro_setts {
u8 data_type;
u8 dummy;
u16 mode;
};
struct __packed pcan_usb_pro_devid {
u8 data_type;
u8 channel;
u16 dummy;
u32 serial_num;
};
struct __packed pcan_usb_pro_setled {
u8 data_type;
u8 channel;
u16 mode;
u32 timeout;
};
struct __packed pcan_usb_pro_rxmsg {
u8 data_type;
u8 client;
u8 flags;
u8 len;
u32 ts32;
u32 id;
u8 data[8];
};
#define PCAN_USBPRO_STATUS_ERROR 0x0001
#define PCAN_USBPRO_STATUS_BUS 0x0002
#define PCAN_USBPRO_STATUS_OVERRUN 0x0004
#define PCAN_USBPRO_STATUS_QOVERRUN 0x0008
struct __packed pcan_usb_pro_rxstatus {
u8 data_type;
u8 channel;
u16 status;
u32 ts32;
u32 err_frm;
};
struct __packed pcan_usb_pro_rxts {
u8 data_type;
u8 dummy[3];
u32 ts64[2];
};
struct __packed pcan_usb_pro_txmsg {
u8 data_type;
u8 client;
u8 flags;
u8 len;
u32 id;
u8 data[8];
};
union pcan_usb_pro_rec {
u8 data_type;
struct pcan_usb_pro_btr btr;
struct pcan_usb_pro_busact bus_act;
struct pcan_usb_pro_silent silent_mode;
struct pcan_usb_pro_filter filter_mode;
struct pcan_usb_pro_setts ts;
struct pcan_usb_pro_devid dev_id;
struct pcan_usb_pro_setled set_led;
struct pcan_usb_pro_rxmsg rx_msg;
struct pcan_usb_pro_rxstatus rx_status;
struct pcan_usb_pro_rxts rx_ts;
struct pcan_usb_pro_txmsg tx_msg;
};
#endif
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册