diff --git a/Documentation/networking/multiqueue.txt b/Documentation/networking/multiqueue.txt index 00b60cce22248697085a8194193ff85813c403ff..ea5a42e8f79f780ff14549b820423156f0fd5cd2 100644 --- a/Documentation/networking/multiqueue.txt +++ b/Documentation/networking/multiqueue.txt @@ -58,9 +58,13 @@ software, so it's a straight round-robin qdisc. It uses the same syntax and classification priomap that sch_prio uses, so it should be intuitive to configure for people who've used sch_prio. -The PRIO qdisc naturally plugs into a multiqueue device. If PRIO has been -built with NET_SCH_PRIO_MQ, then upon load, it will make sure the number of -bands requested is equal to the number of queues on the hardware. If they +In order to utilitize the multiqueue features of the qdiscs, the network +device layer needs to enable multiple queue support. This can be done by +selecting NETDEVICES_MULTIQUEUE under Drivers. + +The PRIO qdisc naturally plugs into a multiqueue device. If +NETDEVICES_MULTIQUEUE is selected, then on qdisc load, the number of +bands requested is compared to the number of queues on the hardware. If they are equal, it sets a one-to-one mapping up between the queues and bands. If they're not equal, it will not load the qdisc. This is the same behavior for RR. Once the association is made, any skb that is classified will have