提交 e3406081 编写于 作者: T Trond Myklebust

Merge tag 'nfs-rdma-4.8-1' of git://git.linux-nfs.org/projects/anna/nfs-rdma

NFS: NFSoRDMA Client Side Changes

New Features:
- Add kerberos support

Bugfixes and cleanups:
- Remove ALLPHYSICAL memory registration mode
- Fix FMR disconnect recovery
- Reduce memory usage
Signed-off-by: NAnna Schumaker <Anna.Schumaker@Netapp.com>
...@@ -925,7 +925,7 @@ static __be32 nfs4_callback_compound(struct svc_rqst *rqstp, void *argp, void *r ...@@ -925,7 +925,7 @@ static __be32 nfs4_callback_compound(struct svc_rqst *rqstp, void *argp, void *r
if (hdr_arg.minorversion == 0) { if (hdr_arg.minorversion == 0) {
cps.clp = nfs4_find_client_ident(SVC_NET(rqstp), hdr_arg.cb_ident); cps.clp = nfs4_find_client_ident(SVC_NET(rqstp), hdr_arg.cb_ident);
if (!cps.clp || !check_gss_callback_principal(cps.clp, rqstp)) if (!cps.clp || !check_gss_callback_principal(cps.clp, rqstp))
return rpc_drop_reply; goto out_invalidcred;
} }
cps.minorversion = hdr_arg.minorversion; cps.minorversion = hdr_arg.minorversion;
...@@ -953,6 +953,10 @@ static __be32 nfs4_callback_compound(struct svc_rqst *rqstp, void *argp, void *r ...@@ -953,6 +953,10 @@ static __be32 nfs4_callback_compound(struct svc_rqst *rqstp, void *argp, void *r
nfs_put_client(cps.clp); nfs_put_client(cps.clp);
dprintk("%s: done, status = %u\n", __func__, ntohl(status)); dprintk("%s: done, status = %u\n", __func__, ntohl(status));
return rpc_success; return rpc_success;
out_invalidcred:
pr_warn_ratelimited("NFS: NFSv4 callback contains invalid cred\n");
return rpc_autherr_badcred;
} }
/* /*
......
...@@ -107,6 +107,9 @@ struct rpc_auth { ...@@ -107,6 +107,9 @@ struct rpc_auth {
/* per-flavor data */ /* per-flavor data */
}; };
/* rpc_auth au_flags */
#define RPCAUTH_AUTH_DATATOUCH 0x00000002
struct rpc_auth_create_args { struct rpc_auth_create_args {
rpc_authflavor_t pseudoflavor; rpc_authflavor_t pseudoflavor;
const char *target_name; const char *target_name;
......
...@@ -73,6 +73,7 @@ u32 gss_delete_sec_context( ...@@ -73,6 +73,7 @@ u32 gss_delete_sec_context(
rpc_authflavor_t gss_svc_to_pseudoflavor(struct gss_api_mech *, u32 qop, rpc_authflavor_t gss_svc_to_pseudoflavor(struct gss_api_mech *, u32 qop,
u32 service); u32 service);
u32 gss_pseudoflavor_to_service(struct gss_api_mech *, u32 pseudoflavor); u32 gss_pseudoflavor_to_service(struct gss_api_mech *, u32 pseudoflavor);
bool gss_pseudoflavor_to_datatouch(struct gss_api_mech *, u32 pseudoflavor);
char *gss_service_to_auth_domain_name(struct gss_api_mech *, u32 service); char *gss_service_to_auth_domain_name(struct gss_api_mech *, u32 service);
struct pf_desc { struct pf_desc {
...@@ -81,6 +82,7 @@ struct pf_desc { ...@@ -81,6 +82,7 @@ struct pf_desc {
u32 service; u32 service;
char *name; char *name;
char *auth_domain_name; char *auth_domain_name;
bool datatouch;
}; };
/* Different mechanisms (e.g., krb5 or spkm3) may implement gss-api, and /* Different mechanisms (e.g., krb5 or spkm3) may implement gss-api, and
......
...@@ -1017,6 +1017,8 @@ gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt) ...@@ -1017,6 +1017,8 @@ gss_create_new(struct rpc_auth_create_args *args, struct rpc_clnt *clnt)
auth->au_rslack = GSS_VERF_SLACK >> 2; auth->au_rslack = GSS_VERF_SLACK >> 2;
auth->au_ops = &authgss_ops; auth->au_ops = &authgss_ops;
auth->au_flavor = flavor; auth->au_flavor = flavor;
if (gss_pseudoflavor_to_datatouch(gss_auth->mech, flavor))
auth->au_flags |= RPCAUTH_AUTH_DATATOUCH;
atomic_set(&auth->au_count, 1); atomic_set(&auth->au_count, 1);
kref_init(&gss_auth->kref); kref_init(&gss_auth->kref);
......
...@@ -745,12 +745,14 @@ static struct pf_desc gss_kerberos_pfs[] = { ...@@ -745,12 +745,14 @@ static struct pf_desc gss_kerberos_pfs[] = {
.qop = GSS_C_QOP_DEFAULT, .qop = GSS_C_QOP_DEFAULT,
.service = RPC_GSS_SVC_INTEGRITY, .service = RPC_GSS_SVC_INTEGRITY,
.name = "krb5i", .name = "krb5i",
.datatouch = true,
}, },
[2] = { [2] = {
.pseudoflavor = RPC_AUTH_GSS_KRB5P, .pseudoflavor = RPC_AUTH_GSS_KRB5P,
.qop = GSS_C_QOP_DEFAULT, .qop = GSS_C_QOP_DEFAULT,
.service = RPC_GSS_SVC_PRIVACY, .service = RPC_GSS_SVC_PRIVACY,
.name = "krb5p", .name = "krb5p",
.datatouch = true,
}, },
}; };
......
...@@ -361,6 +361,18 @@ gss_pseudoflavor_to_service(struct gss_api_mech *gm, u32 pseudoflavor) ...@@ -361,6 +361,18 @@ gss_pseudoflavor_to_service(struct gss_api_mech *gm, u32 pseudoflavor)
} }
EXPORT_SYMBOL(gss_pseudoflavor_to_service); EXPORT_SYMBOL(gss_pseudoflavor_to_service);
bool
gss_pseudoflavor_to_datatouch(struct gss_api_mech *gm, u32 pseudoflavor)
{
int i;
for (i = 0; i < gm->gm_pf_num; i++) {
if (gm->gm_pfs[i].pseudoflavor == pseudoflavor)
return gm->gm_pfs[i].datatouch;
}
return false;
}
char * char *
gss_service_to_auth_domain_name(struct gss_api_mech *gm, u32 service) gss_service_to_auth_domain_name(struct gss_api_mech *gm, u32 service)
{ {
......
...@@ -1188,11 +1188,17 @@ svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv) ...@@ -1188,11 +1188,17 @@ svc_process_common(struct svc_rqst *rqstp, struct kvec *argv, struct kvec *resv)
*statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp); *statp = procp->pc_func(rqstp, rqstp->rq_argp, rqstp->rq_resp);
/* Encode reply */ /* Encode reply */
if (test_bit(RQ_DROPME, &rqstp->rq_flags)) { if (*statp == rpc_drop_reply ||
test_bit(RQ_DROPME, &rqstp->rq_flags)) {
if (procp->pc_release) if (procp->pc_release)
procp->pc_release(rqstp, NULL, rqstp->rq_resp); procp->pc_release(rqstp, NULL, rqstp->rq_resp);
goto dropit; goto dropit;
} }
if (*statp == rpc_autherr_badcred) {
if (procp->pc_release)
procp->pc_release(rqstp, NULL, rqstp->rq_resp);
goto err_bad_auth;
}
if (*statp == rpc_success && if (*statp == rpc_success &&
(xdr = procp->pc_encode) && (xdr = procp->pc_encode) &&
!xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) { !xdr(rqstp, resv->iov_base+resv->iov_len, rqstp->rq_resp)) {
......
obj-$(CONFIG_SUNRPC_XPRT_RDMA) += rpcrdma.o obj-$(CONFIG_SUNRPC_XPRT_RDMA) += rpcrdma.o
rpcrdma-y := transport.o rpc_rdma.o verbs.o \ rpcrdma-y := transport.o rpc_rdma.o verbs.o \
fmr_ops.o frwr_ops.o physical_ops.o \ fmr_ops.o frwr_ops.o \
svc_rdma.o svc_rdma_backchannel.o svc_rdma_transport.o \ svc_rdma.o svc_rdma_backchannel.o svc_rdma_transport.o \
svc_rdma_marshal.o svc_rdma_sendto.o svc_rdma_recvfrom.o \ svc_rdma_marshal.o svc_rdma_sendto.o svc_rdma_recvfrom.o \
module.o module.o
......
...@@ -19,13 +19,6 @@ ...@@ -19,13 +19,6 @@
* verb (fmr_op_unmap). * verb (fmr_op_unmap).
*/ */
/* Transport recovery
*
* After a transport reconnect, fmr_op_map re-uses the MR already
* allocated for the RPC, but generates a fresh rkey then maps the
* MR again. This process is synchronous.
*/
#include "xprt_rdma.h" #include "xprt_rdma.h"
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG) #if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
...@@ -35,62 +28,132 @@ ...@@ -35,62 +28,132 @@
/* Maximum scatter/gather per FMR */ /* Maximum scatter/gather per FMR */
#define RPCRDMA_MAX_FMR_SGES (64) #define RPCRDMA_MAX_FMR_SGES (64)
static struct workqueue_struct *fmr_recovery_wq; /* Access mode of externally registered pages */
enum {
#define FMR_RECOVERY_WQ_FLAGS (WQ_UNBOUND) RPCRDMA_FMR_ACCESS_FLAGS = IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ,
};
int bool
fmr_alloc_recovery_wq(void) fmr_is_supported(struct rpcrdma_ia *ia)
{ {
fmr_recovery_wq = alloc_workqueue("fmr_recovery", WQ_UNBOUND, 0); if (!ia->ri_device->alloc_fmr) {
return !fmr_recovery_wq ? -ENOMEM : 0; pr_info("rpcrdma: 'fmr' mode is not supported by device %s\n",
ia->ri_device->name);
return false;
}
return true;
} }
void static int
fmr_destroy_recovery_wq(void) fmr_op_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mw *mw)
{ {
struct workqueue_struct *wq; static struct ib_fmr_attr fmr_attr = {
.max_pages = RPCRDMA_MAX_FMR_SGES,
.max_maps = 1,
.page_shift = PAGE_SHIFT
};
if (!fmr_recovery_wq) mw->fmr.fm_physaddrs = kcalloc(RPCRDMA_MAX_FMR_SGES,
return; sizeof(u64), GFP_KERNEL);
if (!mw->fmr.fm_physaddrs)
goto out_free;
wq = fmr_recovery_wq; mw->mw_sg = kcalloc(RPCRDMA_MAX_FMR_SGES,
fmr_recovery_wq = NULL; sizeof(*mw->mw_sg), GFP_KERNEL);
destroy_workqueue(wq); if (!mw->mw_sg)
goto out_free;
sg_init_table(mw->mw_sg, RPCRDMA_MAX_FMR_SGES);
mw->fmr.fm_mr = ib_alloc_fmr(ia->ri_pd, RPCRDMA_FMR_ACCESS_FLAGS,
&fmr_attr);
if (IS_ERR(mw->fmr.fm_mr))
goto out_fmr_err;
return 0;
out_fmr_err:
dprintk("RPC: %s: ib_alloc_fmr returned %ld\n", __func__,
PTR_ERR(mw->fmr.fm_mr));
out_free:
kfree(mw->mw_sg);
kfree(mw->fmr.fm_physaddrs);
return -ENOMEM;
} }
static int static int
__fmr_unmap(struct rpcrdma_mw *mw) __fmr_unmap(struct rpcrdma_mw *mw)
{ {
LIST_HEAD(l); LIST_HEAD(l);
int rc;
list_add(&mw->fmr.fmr->list, &l); list_add(&mw->fmr.fm_mr->list, &l);
return ib_unmap_fmr(&l); rc = ib_unmap_fmr(&l);
list_del_init(&mw->fmr.fm_mr->list);
return rc;
} }
/* Deferred reset of a single FMR. Generate a fresh rkey by
* replacing the MR. There's no recovery if this fails.
*/
static void static void
__fmr_recovery_worker(struct work_struct *work) fmr_op_release_mr(struct rpcrdma_mw *r)
{ {
struct rpcrdma_mw *mw = container_of(work, struct rpcrdma_mw, LIST_HEAD(unmap_list);
mw_work); int rc;
struct rpcrdma_xprt *r_xprt = mw->mw_xprt;
__fmr_unmap(mw); /* Ensure MW is not on any rl_registered list */
rpcrdma_put_mw(r_xprt, mw); if (!list_empty(&r->mw_list))
return; list_del(&r->mw_list);
kfree(r->fmr.fm_physaddrs);
kfree(r->mw_sg);
/* In case this one was left mapped, try to unmap it
* to prevent dealloc_fmr from failing with EBUSY
*/
rc = __fmr_unmap(r);
if (rc)
pr_err("rpcrdma: final ib_unmap_fmr for %p failed %i\n",
r, rc);
rc = ib_dealloc_fmr(r->fmr.fm_mr);
if (rc)
pr_err("rpcrdma: final ib_dealloc_fmr for %p returned %i\n",
r, rc);
kfree(r);
} }
/* A broken MR was discovered in a context that can't sleep. /* Reset of a single FMR.
* Defer recovery to the recovery worker.
*/ */
static void static void
__fmr_queue_recovery(struct rpcrdma_mw *mw) fmr_op_recover_mr(struct rpcrdma_mw *mw)
{ {
INIT_WORK(&mw->mw_work, __fmr_recovery_worker); struct rpcrdma_xprt *r_xprt = mw->mw_xprt;
queue_work(fmr_recovery_wq, &mw->mw_work); int rc;
/* ORDER: invalidate first */
rc = __fmr_unmap(mw);
/* ORDER: then DMA unmap */
ib_dma_unmap_sg(r_xprt->rx_ia.ri_device,
mw->mw_sg, mw->mw_nents, mw->mw_dir);
if (rc)
goto out_release;
rpcrdma_put_mw(r_xprt, mw);
r_xprt->rx_stats.mrs_recovered++;
return;
out_release:
pr_err("rpcrdma: FMR reset failed (%d), %p released\n", rc, mw);
r_xprt->rx_stats.mrs_orphaned++;
spin_lock(&r_xprt->rx_buf.rb_mwlock);
list_del(&mw->mw_all);
spin_unlock(&r_xprt->rx_buf.rb_mwlock);
fmr_op_release_mr(mw);
} }
static int static int
...@@ -112,86 +175,21 @@ fmr_op_maxpages(struct rpcrdma_xprt *r_xprt) ...@@ -112,86 +175,21 @@ fmr_op_maxpages(struct rpcrdma_xprt *r_xprt)
RPCRDMA_MAX_HDR_SEGS * RPCRDMA_MAX_FMR_SGES); RPCRDMA_MAX_HDR_SEGS * RPCRDMA_MAX_FMR_SGES);
} }
static int
fmr_op_init(struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
int mr_access_flags = IB_ACCESS_REMOTE_WRITE | IB_ACCESS_REMOTE_READ;
struct ib_fmr_attr fmr_attr = {
.max_pages = RPCRDMA_MAX_FMR_SGES,
.max_maps = 1,
.page_shift = PAGE_SHIFT
};
struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
struct rpcrdma_mw *r;
int i, rc;
spin_lock_init(&buf->rb_mwlock);
INIT_LIST_HEAD(&buf->rb_mws);
INIT_LIST_HEAD(&buf->rb_all);
i = max_t(int, RPCRDMA_MAX_DATA_SEGS / RPCRDMA_MAX_FMR_SGES, 1);
i += 2; /* head + tail */
i *= buf->rb_max_requests; /* one set for each RPC slot */
dprintk("RPC: %s: initalizing %d FMRs\n", __func__, i);
rc = -ENOMEM;
while (i--) {
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (!r)
goto out;
r->fmr.physaddrs = kmalloc(RPCRDMA_MAX_FMR_SGES *
sizeof(u64), GFP_KERNEL);
if (!r->fmr.physaddrs)
goto out_free;
r->fmr.fmr = ib_alloc_fmr(pd, mr_access_flags, &fmr_attr);
if (IS_ERR(r->fmr.fmr))
goto out_fmr_err;
r->mw_xprt = r_xprt;
list_add(&r->mw_list, &buf->rb_mws);
list_add(&r->mw_all, &buf->rb_all);
}
return 0;
out_fmr_err:
rc = PTR_ERR(r->fmr.fmr);
dprintk("RPC: %s: ib_alloc_fmr status %i\n", __func__, rc);
kfree(r->fmr.physaddrs);
out_free:
kfree(r);
out:
return rc;
}
/* Use the ib_map_phys_fmr() verb to register a memory region /* Use the ib_map_phys_fmr() verb to register a memory region
* for remote access via RDMA READ or RDMA WRITE. * for remote access via RDMA READ or RDMA WRITE.
*/ */
static int static int
fmr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, fmr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
int nsegs, bool writing) int nsegs, bool writing, struct rpcrdma_mw **out)
{ {
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
struct ib_device *device = ia->ri_device;
enum dma_data_direction direction = rpcrdma_data_dir(writing);
struct rpcrdma_mr_seg *seg1 = seg; struct rpcrdma_mr_seg *seg1 = seg;
int len, pageoff, i, rc; int len, pageoff, i, rc;
struct rpcrdma_mw *mw; struct rpcrdma_mw *mw;
u64 *dma_pages;
mw = seg1->rl_mw;
seg1->rl_mw = NULL;
if (!mw) {
mw = rpcrdma_get_mw(r_xprt); mw = rpcrdma_get_mw(r_xprt);
if (!mw) if (!mw)
return -ENOMEM; return -ENOBUFS;
} else {
/* this is a retransmit; generate a fresh rkey */
rc = __fmr_unmap(mw);
if (rc)
return rc;
}
pageoff = offset_in_page(seg1->mr_offset); pageoff = offset_in_page(seg1->mr_offset);
seg1->mr_offset -= pageoff; /* start of page */ seg1->mr_offset -= pageoff; /* start of page */
...@@ -200,8 +198,14 @@ fmr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, ...@@ -200,8 +198,14 @@ fmr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
if (nsegs > RPCRDMA_MAX_FMR_SGES) if (nsegs > RPCRDMA_MAX_FMR_SGES)
nsegs = RPCRDMA_MAX_FMR_SGES; nsegs = RPCRDMA_MAX_FMR_SGES;
for (i = 0; i < nsegs;) { for (i = 0; i < nsegs;) {
rpcrdma_map_one(device, seg, direction); if (seg->mr_page)
mw->fmr.physaddrs[i] = seg->mr_dma; sg_set_page(&mw->mw_sg[i],
seg->mr_page,
seg->mr_len,
offset_in_page(seg->mr_offset));
else
sg_set_buf(&mw->mw_sg[i], seg->mr_offset,
seg->mr_len);
len += seg->mr_len; len += seg->mr_len;
++seg; ++seg;
++i; ++i;
...@@ -210,49 +214,54 @@ fmr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, ...@@ -210,49 +214,54 @@ fmr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
break; break;
} }
mw->mw_nents = i;
rc = ib_map_phys_fmr(mw->fmr.fmr, mw->fmr.physaddrs, mw->mw_dir = rpcrdma_data_dir(writing);
i, seg1->mr_dma); if (i == 0)
goto out_dmamap_err;
if (!ib_dma_map_sg(r_xprt->rx_ia.ri_device,
mw->mw_sg, mw->mw_nents, mw->mw_dir))
goto out_dmamap_err;
for (i = 0, dma_pages = mw->fmr.fm_physaddrs; i < mw->mw_nents; i++)
dma_pages[i] = sg_dma_address(&mw->mw_sg[i]);
rc = ib_map_phys_fmr(mw->fmr.fm_mr, dma_pages, mw->mw_nents,
dma_pages[0]);
if (rc) if (rc)
goto out_maperr; goto out_maperr;
seg1->rl_mw = mw; mw->mw_handle = mw->fmr.fm_mr->rkey;
seg1->mr_rkey = mw->fmr.fmr->rkey; mw->mw_length = len;
seg1->mr_base = seg1->mr_dma + pageoff; mw->mw_offset = dma_pages[0] + pageoff;
seg1->mr_nsegs = i;
seg1->mr_len = len;
return i;
out_maperr: *out = mw;
dprintk("RPC: %s: ib_map_phys_fmr %u@0x%llx+%i (%d) status %i\n", return mw->mw_nents;
__func__, len, (unsigned long long)seg1->mr_dma,
pageoff, i, rc);
while (i--)
rpcrdma_unmap_one(device, --seg);
return rc;
}
static void out_dmamap_err:
__fmr_dma_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg) pr_err("rpcrdma: failed to dma map sg %p sg_nents %u\n",
{ mw->mw_sg, mw->mw_nents);
struct ib_device *device = r_xprt->rx_ia.ri_device; rpcrdma_defer_mr_recovery(mw);
int nsegs = seg->mr_nsegs; return -EIO;
while (nsegs--) out_maperr:
rpcrdma_unmap_one(device, seg++); pr_err("rpcrdma: ib_map_phys_fmr %u@0x%llx+%i (%d) status %i\n",
len, (unsigned long long)dma_pages[0],
pageoff, mw->mw_nents, rc);
rpcrdma_defer_mr_recovery(mw);
return -EIO;
} }
/* Invalidate all memory regions that were registered for "req". /* Invalidate all memory regions that were registered for "req".
* *
* Sleeps until it is safe for the host CPU to access the * Sleeps until it is safe for the host CPU to access the
* previously mapped memory regions. * previously mapped memory regions.
*
* Caller ensures that req->rl_registered is not empty.
*/ */
static void static void
fmr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) fmr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
{ {
struct rpcrdma_mr_seg *seg; struct rpcrdma_mw *mw, *tmp;
unsigned int i, nchunks;
struct rpcrdma_mw *mw;
LIST_HEAD(unmap_list); LIST_HEAD(unmap_list);
int rc; int rc;
...@@ -261,90 +270,54 @@ fmr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) ...@@ -261,90 +270,54 @@ fmr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
/* ORDER: Invalidate all of the req's MRs first /* ORDER: Invalidate all of the req's MRs first
* *
* ib_unmap_fmr() is slow, so use a single call instead * ib_unmap_fmr() is slow, so use a single call instead
* of one call per mapped MR. * of one call per mapped FMR.
*/ */
for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { list_for_each_entry(mw, &req->rl_registered, mw_list)
seg = &req->rl_segments[i]; list_add_tail(&mw->fmr.fm_mr->list, &unmap_list);
mw = seg->rl_mw;
list_add(&mw->fmr.fmr->list, &unmap_list);
i += seg->mr_nsegs;
}
rc = ib_unmap_fmr(&unmap_list); rc = ib_unmap_fmr(&unmap_list);
if (rc) if (rc)
pr_warn("%s: ib_unmap_fmr failed (%i)\n", __func__, rc); goto out_reset;
/* ORDER: Now DMA unmap all of the req's MRs, and return /* ORDER: Now DMA unmap all of the req's MRs, and return
* them to the free MW list. * them to the free MW list.
*/ */
for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { list_for_each_entry_safe(mw, tmp, &req->rl_registered, mw_list) {
seg = &req->rl_segments[i]; list_del_init(&mw->mw_list);
list_del_init(&mw->fmr.fm_mr->list);
ib_dma_unmap_sg(r_xprt->rx_ia.ri_device,
mw->mw_sg, mw->mw_nents, mw->mw_dir);
rpcrdma_put_mw(r_xprt, mw);
}
__fmr_dma_unmap(r_xprt, seg); return;
rpcrdma_put_mw(r_xprt, seg->rl_mw);
i += seg->mr_nsegs; out_reset:
seg->mr_nsegs = 0; pr_err("rpcrdma: ib_unmap_fmr failed (%i)\n", rc);
seg->rl_mw = NULL;
}
req->rl_nchunks = 0; list_for_each_entry_safe(mw, tmp, &req->rl_registered, mw_list) {
list_del_init(&mw->fmr.fm_mr->list);
fmr_op_recover_mr(mw);
}
} }
/* Use a slow, safe mechanism to invalidate all memory regions /* Use a slow, safe mechanism to invalidate all memory regions
* that were registered for "req". * that were registered for "req".
*
* In the asynchronous case, DMA unmapping occurs first here
* because the rpcrdma_mr_seg is released immediately after this
* call. It's contents won't be available in __fmr_dma_unmap later.
* FIXME.
*/ */
static void static void
fmr_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, fmr_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
bool sync) bool sync)
{ {
struct rpcrdma_mr_seg *seg;
struct rpcrdma_mw *mw; struct rpcrdma_mw *mw;
unsigned int i;
for (i = 0; req->rl_nchunks; req->rl_nchunks--) { while (!list_empty(&req->rl_registered)) {
seg = &req->rl_segments[i]; mw = list_first_entry(&req->rl_registered,
mw = seg->rl_mw; struct rpcrdma_mw, mw_list);
list_del_init(&mw->mw_list);
if (sync) { if (sync)
/* ORDER */ fmr_op_recover_mr(mw);
__fmr_unmap(mw); else
__fmr_dma_unmap(r_xprt, seg); rpcrdma_defer_mr_recovery(mw);
rpcrdma_put_mw(r_xprt, mw);
} else {
__fmr_dma_unmap(r_xprt, seg);
__fmr_queue_recovery(mw);
}
i += seg->mr_nsegs;
seg->mr_nsegs = 0;
seg->rl_mw = NULL;
}
}
static void
fmr_op_destroy(struct rpcrdma_buffer *buf)
{
struct rpcrdma_mw *r;
int rc;
while (!list_empty(&buf->rb_all)) {
r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
list_del(&r->mw_all);
kfree(r->fmr.physaddrs);
rc = ib_dealloc_fmr(r->fmr.fmr);
if (rc)
dprintk("RPC: %s: ib_dealloc_fmr failed %i\n",
__func__, rc);
kfree(r);
} }
} }
...@@ -352,9 +325,10 @@ const struct rpcrdma_memreg_ops rpcrdma_fmr_memreg_ops = { ...@@ -352,9 +325,10 @@ const struct rpcrdma_memreg_ops rpcrdma_fmr_memreg_ops = {
.ro_map = fmr_op_map, .ro_map = fmr_op_map,
.ro_unmap_sync = fmr_op_unmap_sync, .ro_unmap_sync = fmr_op_unmap_sync,
.ro_unmap_safe = fmr_op_unmap_safe, .ro_unmap_safe = fmr_op_unmap_safe,
.ro_recover_mr = fmr_op_recover_mr,
.ro_open = fmr_op_open, .ro_open = fmr_op_open,
.ro_maxpages = fmr_op_maxpages, .ro_maxpages = fmr_op_maxpages,
.ro_init = fmr_op_init, .ro_init_mr = fmr_op_init_mr,
.ro_destroy = fmr_op_destroy, .ro_release_mr = fmr_op_release_mr,
.ro_displayname = "fmr", .ro_displayname = "fmr",
}; };
...@@ -73,29 +73,71 @@ ...@@ -73,29 +73,71 @@
# define RPCDBG_FACILITY RPCDBG_TRANS # define RPCDBG_FACILITY RPCDBG_TRANS
#endif #endif
static struct workqueue_struct *frwr_recovery_wq; bool
frwr_is_supported(struct rpcrdma_ia *ia)
#define FRWR_RECOVERY_WQ_FLAGS (WQ_UNBOUND | WQ_MEM_RECLAIM) {
struct ib_device_attr *attrs = &ia->ri_device->attrs;
if (!(attrs->device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
goto out_not_supported;
if (attrs->max_fast_reg_page_list_len == 0)
goto out_not_supported;
return true;
out_not_supported:
pr_info("rpcrdma: 'frwr' mode is not supported by device %s\n",
ia->ri_device->name);
return false;
}
int static int
frwr_alloc_recovery_wq(void) frwr_op_init_mr(struct rpcrdma_ia *ia, struct rpcrdma_mw *r)
{ {
frwr_recovery_wq = alloc_workqueue("frwr_recovery", unsigned int depth = ia->ri_max_frmr_depth;
FRWR_RECOVERY_WQ_FLAGS, 0); struct rpcrdma_frmr *f = &r->frmr;
return !frwr_recovery_wq ? -ENOMEM : 0; int rc;
f->fr_mr = ib_alloc_mr(ia->ri_pd, IB_MR_TYPE_MEM_REG, depth);
if (IS_ERR(f->fr_mr))
goto out_mr_err;
r->mw_sg = kcalloc(depth, sizeof(*r->mw_sg), GFP_KERNEL);
if (!r->mw_sg)
goto out_list_err;
sg_init_table(r->mw_sg, depth);
init_completion(&f->fr_linv_done);
return 0;
out_mr_err:
rc = PTR_ERR(f->fr_mr);
dprintk("RPC: %s: ib_alloc_mr status %i\n",
__func__, rc);
return rc;
out_list_err:
rc = -ENOMEM;
dprintk("RPC: %s: sg allocation failure\n",
__func__);
ib_dereg_mr(f->fr_mr);
return rc;
} }
void static void
frwr_destroy_recovery_wq(void) frwr_op_release_mr(struct rpcrdma_mw *r)
{ {
struct workqueue_struct *wq; int rc;
if (!frwr_recovery_wq) /* Ensure MW is not on any rl_registered list */
return; if (!list_empty(&r->mw_list))
list_del(&r->mw_list);
wq = frwr_recovery_wq; rc = ib_dereg_mr(r->frmr.fr_mr);
frwr_recovery_wq = NULL; if (rc)
destroy_workqueue(wq); pr_err("rpcrdma: final ib_dereg_mr for %p returned %i\n",
r, rc);
kfree(r->mw_sg);
kfree(r);
} }
static int static int
...@@ -124,93 +166,37 @@ __frwr_reset_mr(struct rpcrdma_ia *ia, struct rpcrdma_mw *r) ...@@ -124,93 +166,37 @@ __frwr_reset_mr(struct rpcrdma_ia *ia, struct rpcrdma_mw *r)
return 0; return 0;
} }
static void /* Reset of a single FRMR. Generate a fresh rkey by replacing the MR.
__frwr_reset_and_unmap(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw)
{
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
struct rpcrdma_frmr *f = &mw->frmr;
int rc;
rc = __frwr_reset_mr(ia, mw);
ib_dma_unmap_sg(ia->ri_device, f->fr_sg, f->fr_nents, f->fr_dir);
if (rc)
return;
rpcrdma_put_mw(r_xprt, mw);
}
/* Deferred reset of a single FRMR. Generate a fresh rkey by
* replacing the MR.
* *
* There's no recovery if this fails. The FRMR is abandoned, but * There's no recovery if this fails. The FRMR is abandoned, but
* remains in rb_all. It will be cleaned up when the transport is * remains in rb_all. It will be cleaned up when the transport is
* destroyed. * destroyed.
*/ */
static void static void
__frwr_recovery_worker(struct work_struct *work) frwr_op_recover_mr(struct rpcrdma_mw *mw)
{ {
struct rpcrdma_mw *r = container_of(work, struct rpcrdma_mw, struct rpcrdma_xprt *r_xprt = mw->mw_xprt;
mw_work); struct rpcrdma_ia *ia = &r_xprt->rx_ia;
__frwr_reset_and_unmap(r->mw_xprt, r);
return;
}
/* A broken MR was discovered in a context that can't sleep.
* Defer recovery to the recovery worker.
*/
static void
__frwr_queue_recovery(struct rpcrdma_mw *r)
{
INIT_WORK(&r->mw_work, __frwr_recovery_worker);
queue_work(frwr_recovery_wq, &r->mw_work);
}
static int
__frwr_init(struct rpcrdma_mw *r, struct ib_pd *pd, struct ib_device *device,
unsigned int depth)
{
struct rpcrdma_frmr *f = &r->frmr;
int rc; int rc;
f->fr_mr = ib_alloc_mr(pd, IB_MR_TYPE_MEM_REG, depth); rc = __frwr_reset_mr(ia, mw);
if (IS_ERR(f->fr_mr)) ib_dma_unmap_sg(ia->ri_device, mw->mw_sg, mw->mw_nents, mw->mw_dir);
goto out_mr_err; if (rc)
goto out_release;
f->fr_sg = kcalloc(depth, sizeof(*f->fr_sg), GFP_KERNEL);
if (!f->fr_sg)
goto out_list_err;
sg_init_table(f->fr_sg, depth);
init_completion(&f->fr_linv_done);
return 0;
out_mr_err: rpcrdma_put_mw(r_xprt, mw);
rc = PTR_ERR(f->fr_mr); r_xprt->rx_stats.mrs_recovered++;
dprintk("RPC: %s: ib_alloc_mr status %i\n", return;
__func__, rc);
return rc;
out_list_err: out_release:
rc = -ENOMEM; pr_err("rpcrdma: FRMR reset failed %d, %p release\n", rc, mw);
dprintk("RPC: %s: sg allocation failure\n", r_xprt->rx_stats.mrs_orphaned++;
__func__);
ib_dereg_mr(f->fr_mr);
return rc;
}
static void spin_lock(&r_xprt->rx_buf.rb_mwlock);
__frwr_release(struct rpcrdma_mw *r) list_del(&mw->mw_all);
{ spin_unlock(&r_xprt->rx_buf.rb_mwlock);
int rc;
rc = ib_dereg_mr(r->frmr.fr_mr); frwr_op_release_mr(mw);
if (rc)
dprintk("RPC: %s: ib_dereg_mr status %i\n",
__func__, rc);
kfree(r->frmr.fr_sg);
} }
static int static int
...@@ -346,57 +332,14 @@ frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc) ...@@ -346,57 +332,14 @@ frwr_wc_localinv_wake(struct ib_cq *cq, struct ib_wc *wc)
complete_all(&frmr->fr_linv_done); complete_all(&frmr->fr_linv_done);
} }
static int /* Post a REG_MR Work Request to register a memory region
frwr_op_init(struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
struct ib_device *device = r_xprt->rx_ia.ri_device;
unsigned int depth = r_xprt->rx_ia.ri_max_frmr_depth;
struct ib_pd *pd = r_xprt->rx_ia.ri_pd;
int i;
spin_lock_init(&buf->rb_mwlock);
INIT_LIST_HEAD(&buf->rb_mws);
INIT_LIST_HEAD(&buf->rb_all);
i = max_t(int, RPCRDMA_MAX_DATA_SEGS / depth, 1);
i += 2; /* head + tail */
i *= buf->rb_max_requests; /* one set for each RPC slot */
dprintk("RPC: %s: initalizing %d FRMRs\n", __func__, i);
while (i--) {
struct rpcrdma_mw *r;
int rc;
r = kzalloc(sizeof(*r), GFP_KERNEL);
if (!r)
return -ENOMEM;
rc = __frwr_init(r, pd, device, depth);
if (rc) {
kfree(r);
return rc;
}
r->mw_xprt = r_xprt;
list_add(&r->mw_list, &buf->rb_mws);
list_add(&r->mw_all, &buf->rb_all);
}
return 0;
}
/* Post a FAST_REG Work Request to register a memory region
* for remote access via RDMA READ or RDMA WRITE. * for remote access via RDMA READ or RDMA WRITE.
*/ */
static int static int
frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
int nsegs, bool writing) int nsegs, bool writing, struct rpcrdma_mw **out)
{ {
struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_ia *ia = &r_xprt->rx_ia;
struct ib_device *device = ia->ri_device;
enum dma_data_direction direction = rpcrdma_data_dir(writing);
struct rpcrdma_mr_seg *seg1 = seg;
struct rpcrdma_mw *mw; struct rpcrdma_mw *mw;
struct rpcrdma_frmr *frmr; struct rpcrdma_frmr *frmr;
struct ib_mr *mr; struct ib_mr *mr;
...@@ -405,14 +348,13 @@ frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, ...@@ -405,14 +348,13 @@ frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
int rc, i, n, dma_nents; int rc, i, n, dma_nents;
u8 key; u8 key;
mw = seg1->rl_mw; mw = NULL;
seg1->rl_mw = NULL;
do { do {
if (mw) if (mw)
__frwr_queue_recovery(mw); rpcrdma_defer_mr_recovery(mw);
mw = rpcrdma_get_mw(r_xprt); mw = rpcrdma_get_mw(r_xprt);
if (!mw) if (!mw)
return -ENOMEM; return -ENOBUFS;
} while (mw->frmr.fr_state != FRMR_IS_INVALID); } while (mw->frmr.fr_state != FRMR_IS_INVALID);
frmr = &mw->frmr; frmr = &mw->frmr;
frmr->fr_state = FRMR_IS_VALID; frmr->fr_state = FRMR_IS_VALID;
...@@ -421,15 +363,14 @@ frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, ...@@ -421,15 +363,14 @@ frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
if (nsegs > ia->ri_max_frmr_depth) if (nsegs > ia->ri_max_frmr_depth)
nsegs = ia->ri_max_frmr_depth; nsegs = ia->ri_max_frmr_depth;
for (i = 0; i < nsegs;) { for (i = 0; i < nsegs;) {
if (seg->mr_page) if (seg->mr_page)
sg_set_page(&frmr->fr_sg[i], sg_set_page(&mw->mw_sg[i],
seg->mr_page, seg->mr_page,
seg->mr_len, seg->mr_len,
offset_in_page(seg->mr_offset)); offset_in_page(seg->mr_offset));
else else
sg_set_buf(&frmr->fr_sg[i], seg->mr_offset, sg_set_buf(&mw->mw_sg[i], seg->mr_offset,
seg->mr_len); seg->mr_len);
++seg; ++seg;
...@@ -440,26 +381,22 @@ frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, ...@@ -440,26 +381,22 @@ frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len)) offset_in_page((seg-1)->mr_offset + (seg-1)->mr_len))
break; break;
} }
frmr->fr_nents = i; mw->mw_nents = i;
frmr->fr_dir = direction; mw->mw_dir = rpcrdma_data_dir(writing);
if (i == 0)
dma_nents = ib_dma_map_sg(device, frmr->fr_sg, frmr->fr_nents, direction); goto out_dmamap_err;
if (!dma_nents) {
pr_err("RPC: %s: failed to dma map sg %p sg_nents %u\n",
__func__, frmr->fr_sg, frmr->fr_nents);
return -ENOMEM;
}
n = ib_map_mr_sg(mr, frmr->fr_sg, frmr->fr_nents, NULL, PAGE_SIZE); dma_nents = ib_dma_map_sg(ia->ri_device,
if (unlikely(n != frmr->fr_nents)) { mw->mw_sg, mw->mw_nents, mw->mw_dir);
pr_err("RPC: %s: failed to map mr %p (%u/%u)\n", if (!dma_nents)
__func__, frmr->fr_mr, n, frmr->fr_nents); goto out_dmamap_err;
rc = n < 0 ? n : -EINVAL;
goto out_senderr; n = ib_map_mr_sg(mr, mw->mw_sg, mw->mw_nents, NULL, PAGE_SIZE);
} if (unlikely(n != mw->mw_nents))
goto out_mapmr_err;
dprintk("RPC: %s: Using frmr %p to map %u segments (%u bytes)\n", dprintk("RPC: %s: Using frmr %p to map %u segments (%u bytes)\n",
__func__, mw, frmr->fr_nents, mr->length); __func__, mw, mw->mw_nents, mr->length);
key = (u8)(mr->rkey & 0x000000FF); key = (u8)(mr->rkey & 0x000000FF);
ib_update_fast_reg_key(mr, ++key); ib_update_fast_reg_key(mr, ++key);
...@@ -481,24 +418,34 @@ frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg, ...@@ -481,24 +418,34 @@ frwr_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
if (rc) if (rc)
goto out_senderr; goto out_senderr;
seg1->rl_mw = mw; mw->mw_handle = mr->rkey;
seg1->mr_rkey = mr->rkey; mw->mw_length = mr->length;
seg1->mr_base = mr->iova; mw->mw_offset = mr->iova;
seg1->mr_nsegs = frmr->fr_nents;
seg1->mr_len = mr->length; *out = mw;
return mw->mw_nents;
out_dmamap_err:
pr_err("rpcrdma: failed to dma map sg %p sg_nents %u\n",
mw->mw_sg, mw->mw_nents);
rpcrdma_defer_mr_recovery(mw);
return -EIO;
return frmr->fr_nents; out_mapmr_err:
pr_err("rpcrdma: failed to map mr %p (%u/%u)\n",
frmr->fr_mr, n, mw->mw_nents);
rpcrdma_defer_mr_recovery(mw);
return -EIO;
out_senderr: out_senderr:
dprintk("RPC: %s: ib_post_send status %i\n", __func__, rc); pr_err("rpcrdma: FRMR registration ib_post_send returned %i\n", rc);
__frwr_queue_recovery(mw); rpcrdma_defer_mr_recovery(mw);
return rc; return -ENOTCONN;
} }
static struct ib_send_wr * static struct ib_send_wr *
__frwr_prepare_linv_wr(struct rpcrdma_mr_seg *seg) __frwr_prepare_linv_wr(struct rpcrdma_mw *mw)
{ {
struct rpcrdma_mw *mw = seg->rl_mw;
struct rpcrdma_frmr *f = &mw->frmr; struct rpcrdma_frmr *f = &mw->frmr;
struct ib_send_wr *invalidate_wr; struct ib_send_wr *invalidate_wr;
...@@ -518,16 +465,16 @@ __frwr_prepare_linv_wr(struct rpcrdma_mr_seg *seg) ...@@ -518,16 +465,16 @@ __frwr_prepare_linv_wr(struct rpcrdma_mr_seg *seg)
* *
* Sleeps until it is safe for the host CPU to access the * Sleeps until it is safe for the host CPU to access the
* previously mapped memory regions. * previously mapped memory regions.
*
* Caller ensures that req->rl_registered is not empty.
*/ */
static void static void
frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
{ {
struct ib_send_wr *invalidate_wrs, *pos, *prev, *bad_wr; struct ib_send_wr *invalidate_wrs, *pos, *prev, *bad_wr;
struct rpcrdma_ia *ia = &r_xprt->rx_ia; struct rpcrdma_ia *ia = &r_xprt->rx_ia;
struct rpcrdma_mr_seg *seg; struct rpcrdma_mw *mw, *tmp;
unsigned int i, nchunks;
struct rpcrdma_frmr *f; struct rpcrdma_frmr *f;
struct rpcrdma_mw *mw;
int rc; int rc;
dprintk("RPC: %s: req %p\n", __func__, req); dprintk("RPC: %s: req %p\n", __func__, req);
...@@ -537,22 +484,18 @@ frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) ...@@ -537,22 +484,18 @@ frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
* Chain the LOCAL_INV Work Requests and post them with * Chain the LOCAL_INV Work Requests and post them with
* a single ib_post_send() call. * a single ib_post_send() call.
*/ */
f = NULL;
invalidate_wrs = pos = prev = NULL; invalidate_wrs = pos = prev = NULL;
seg = NULL; list_for_each_entry(mw, &req->rl_registered, mw_list) {
for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { pos = __frwr_prepare_linv_wr(mw);
seg = &req->rl_segments[i];
pos = __frwr_prepare_linv_wr(seg);
if (!invalidate_wrs) if (!invalidate_wrs)
invalidate_wrs = pos; invalidate_wrs = pos;
else else
prev->next = pos; prev->next = pos;
prev = pos; prev = pos;
f = &mw->frmr;
i += seg->mr_nsegs;
} }
f = &seg->rl_mw->frmr;
/* Strong send queue ordering guarantees that when the /* Strong send queue ordering guarantees that when the
* last WR in the chain completes, all WRs in the chain * last WR in the chain completes, all WRs in the chain
...@@ -577,39 +520,27 @@ frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req) ...@@ -577,39 +520,27 @@ frwr_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
* them to the free MW list. * them to the free MW list.
*/ */
unmap: unmap:
for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { list_for_each_entry_safe(mw, tmp, &req->rl_registered, mw_list) {
seg = &req->rl_segments[i]; list_del_init(&mw->mw_list);
mw = seg->rl_mw; ib_dma_unmap_sg(ia->ri_device,
seg->rl_mw = NULL; mw->mw_sg, mw->mw_nents, mw->mw_dir);
ib_dma_unmap_sg(ia->ri_device, f->fr_sg, f->fr_nents,
f->fr_dir);
rpcrdma_put_mw(r_xprt, mw); rpcrdma_put_mw(r_xprt, mw);
i += seg->mr_nsegs;
seg->mr_nsegs = 0;
} }
req->rl_nchunks = 0;
return; return;
reset_mrs: reset_mrs:
pr_warn("%s: ib_post_send failed %i\n", __func__, rc); pr_err("rpcrdma: FRMR invalidate ib_post_send returned %i\n", rc);
rdma_disconnect(ia->ri_id);
/* Find and reset the MRs in the LOCAL_INV WRs that did not /* Find and reset the MRs in the LOCAL_INV WRs that did not
* get posted. This is synchronous, and slow. * get posted. This is synchronous, and slow.
*/ */
for (i = 0, nchunks = req->rl_nchunks; nchunks; nchunks--) { list_for_each_entry(mw, &req->rl_registered, mw_list) {
seg = &req->rl_segments[i];
mw = seg->rl_mw;
f = &mw->frmr; f = &mw->frmr;
if (mw->frmr.fr_mr->rkey == bad_wr->ex.invalidate_rkey) { if (mw->frmr.fr_mr->rkey == bad_wr->ex.invalidate_rkey) {
__frwr_reset_mr(ia, mw); __frwr_reset_mr(ia, mw);
bad_wr = bad_wr->next; bad_wr = bad_wr->next;
} }
i += seg->mr_nsegs;
} }
goto unmap; goto unmap;
} }
...@@ -621,38 +552,17 @@ static void ...@@ -621,38 +552,17 @@ static void
frwr_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, frwr_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
bool sync) bool sync)
{ {
struct rpcrdma_mr_seg *seg;
struct rpcrdma_mw *mw; struct rpcrdma_mw *mw;
unsigned int i;
for (i = 0; req->rl_nchunks; req->rl_nchunks--) { while (!list_empty(&req->rl_registered)) {
seg = &req->rl_segments[i]; mw = list_first_entry(&req->rl_registered,
mw = seg->rl_mw; struct rpcrdma_mw, mw_list);
list_del_init(&mw->mw_list);
if (sync) if (sync)
__frwr_reset_and_unmap(r_xprt, mw); frwr_op_recover_mr(mw);
else else
__frwr_queue_recovery(mw); rpcrdma_defer_mr_recovery(mw);
i += seg->mr_nsegs;
seg->mr_nsegs = 0;
seg->rl_mw = NULL;
}
}
static void
frwr_op_destroy(struct rpcrdma_buffer *buf)
{
struct rpcrdma_mw *r;
/* Ensure stale MWs for "buf" are no longer in flight */
flush_workqueue(frwr_recovery_wq);
while (!list_empty(&buf->rb_all)) {
r = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
list_del(&r->mw_all);
__frwr_release(r);
kfree(r);
} }
} }
...@@ -660,9 +570,10 @@ const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = { ...@@ -660,9 +570,10 @@ const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops = {
.ro_map = frwr_op_map, .ro_map = frwr_op_map,
.ro_unmap_sync = frwr_op_unmap_sync, .ro_unmap_sync = frwr_op_unmap_sync,
.ro_unmap_safe = frwr_op_unmap_safe, .ro_unmap_safe = frwr_op_unmap_safe,
.ro_recover_mr = frwr_op_recover_mr,
.ro_open = frwr_op_open, .ro_open = frwr_op_open,
.ro_maxpages = frwr_op_maxpages, .ro_maxpages = frwr_op_maxpages,
.ro_init = frwr_op_init, .ro_init_mr = frwr_op_init_mr,
.ro_destroy = frwr_op_destroy, .ro_release_mr = frwr_op_release_mr,
.ro_displayname = "frwr", .ro_displayname = "frwr",
}; };
/*
* Copyright (c) 2015 Oracle. All rights reserved.
* Copyright (c) 2003-2007 Network Appliance, Inc. All rights reserved.
*/
/* No-op chunk preparation. All client memory is pre-registered.
* Sometimes referred to as ALLPHYSICAL mode.
*
* Physical registration is simple because all client memory is
* pre-registered and never deregistered. This mode is good for
* adapter bring up, but is considered not safe: the server is
* trusted not to abuse its access to client memory not involved
* in RDMA I/O.
*/
#include "xprt_rdma.h"
#if IS_ENABLED(CONFIG_SUNRPC_DEBUG)
# define RPCDBG_FACILITY RPCDBG_TRANS
#endif
static int
physical_op_open(struct rpcrdma_ia *ia, struct rpcrdma_ep *ep,
struct rpcrdma_create_data_internal *cdata)
{
struct ib_mr *mr;
/* Obtain an rkey to use for RPC data payloads.
*/
mr = ib_get_dma_mr(ia->ri_pd,
IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ);
if (IS_ERR(mr)) {
pr_err("%s: ib_get_dma_mr for failed with %lX\n",
__func__, PTR_ERR(mr));
return -ENOMEM;
}
ia->ri_dma_mr = mr;
rpcrdma_set_max_header_sizes(ia, cdata, min_t(unsigned int,
RPCRDMA_MAX_DATA_SEGS,
RPCRDMA_MAX_HDR_SEGS));
return 0;
}
/* PHYSICAL memory registration conveys one page per chunk segment.
*/
static size_t
physical_op_maxpages(struct rpcrdma_xprt *r_xprt)
{
return min_t(unsigned int, RPCRDMA_MAX_DATA_SEGS,
RPCRDMA_MAX_HDR_SEGS);
}
static int
physical_op_init(struct rpcrdma_xprt *r_xprt)
{
return 0;
}
/* The client's physical memory is already exposed for
* remote access via RDMA READ or RDMA WRITE.
*/
static int
physical_op_map(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mr_seg *seg,
int nsegs, bool writing)
{
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
rpcrdma_map_one(ia->ri_device, seg, rpcrdma_data_dir(writing));
seg->mr_rkey = ia->ri_dma_mr->rkey;
seg->mr_base = seg->mr_dma;
return 1;
}
/* DMA unmap all memory regions that were mapped for "req".
*/
static void
physical_op_unmap_sync(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req)
{
struct ib_device *device = r_xprt->rx_ia.ri_device;
unsigned int i;
for (i = 0; req->rl_nchunks; --req->rl_nchunks)
rpcrdma_unmap_one(device, &req->rl_segments[i++]);
}
/* Use a slow, safe mechanism to invalidate all memory regions
* that were registered for "req".
*
* For physical memory registration, there is no good way to
* fence a single MR that has been advertised to the server. The
* client has already handed the server an R_key that cannot be
* invalidated and is shared by all MRs on this connection.
* Tearing down the PD might be the only safe choice, but it's
* not clear that a freshly acquired DMA R_key would be different
* than the one used by the PD that was just destroyed.
* FIXME.
*/
static void
physical_op_unmap_safe(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
bool sync)
{
physical_op_unmap_sync(r_xprt, req);
}
static void
physical_op_destroy(struct rpcrdma_buffer *buf)
{
}
const struct rpcrdma_memreg_ops rpcrdma_physical_memreg_ops = {
.ro_map = physical_op_map,
.ro_unmap_sync = physical_op_unmap_sync,
.ro_unmap_safe = physical_op_unmap_safe,
.ro_open = physical_op_open,
.ro_maxpages = physical_op_maxpages,
.ro_init = physical_op_init,
.ro_destroy = physical_op_destroy,
.ro_displayname = "physical",
};
...@@ -196,8 +196,7 @@ rpcrdma_tail_pullup(struct xdr_buf *buf) ...@@ -196,8 +196,7 @@ rpcrdma_tail_pullup(struct xdr_buf *buf)
* MR when they can. * MR when they can.
*/ */
static int static int
rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, int n)
int n, int nsegs)
{ {
size_t page_offset; size_t page_offset;
u32 remaining; u32 remaining;
...@@ -206,7 +205,7 @@ rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, ...@@ -206,7 +205,7 @@ rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
base = vec->iov_base; base = vec->iov_base;
page_offset = offset_in_page(base); page_offset = offset_in_page(base);
remaining = vec->iov_len; remaining = vec->iov_len;
while (remaining && n < nsegs) { while (remaining && n < RPCRDMA_MAX_SEGS) {
seg[n].mr_page = NULL; seg[n].mr_page = NULL;
seg[n].mr_offset = base; seg[n].mr_offset = base;
seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining); seg[n].mr_len = min_t(u32, PAGE_SIZE - page_offset, remaining);
...@@ -230,34 +229,34 @@ rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg, ...@@ -230,34 +229,34 @@ rpcrdma_convert_kvec(struct kvec *vec, struct rpcrdma_mr_seg *seg,
static int static int
rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos, rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg, int nsegs) enum rpcrdma_chunktype type, struct rpcrdma_mr_seg *seg)
{ {
int len, n = 0, p; int len, n, p, page_base;
int page_base;
struct page **ppages; struct page **ppages;
n = 0;
if (pos == 0) { if (pos == 0) {
n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n, nsegs); n = rpcrdma_convert_kvec(&xdrbuf->head[0], seg, n);
if (n == nsegs) if (n == RPCRDMA_MAX_SEGS)
return -EIO; goto out_overflow;
} }
len = xdrbuf->page_len; len = xdrbuf->page_len;
ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT); ppages = xdrbuf->pages + (xdrbuf->page_base >> PAGE_SHIFT);
page_base = xdrbuf->page_base & ~PAGE_MASK; page_base = xdrbuf->page_base & ~PAGE_MASK;
p = 0; p = 0;
while (len && n < nsegs) { while (len && n < RPCRDMA_MAX_SEGS) {
if (!ppages[p]) { if (!ppages[p]) {
/* alloc the pagelist for receiving buffer */ /* alloc the pagelist for receiving buffer */
ppages[p] = alloc_page(GFP_ATOMIC); ppages[p] = alloc_page(GFP_ATOMIC);
if (!ppages[p]) if (!ppages[p])
return -ENOMEM; return -EAGAIN;
} }
seg[n].mr_page = ppages[p]; seg[n].mr_page = ppages[p];
seg[n].mr_offset = (void *)(unsigned long) page_base; seg[n].mr_offset = (void *)(unsigned long) page_base;
seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len); seg[n].mr_len = min_t(u32, PAGE_SIZE - page_base, len);
if (seg[n].mr_len > PAGE_SIZE) if (seg[n].mr_len > PAGE_SIZE)
return -EIO; goto out_overflow;
len -= seg[n].mr_len; len -= seg[n].mr_len;
++n; ++n;
++p; ++p;
...@@ -265,8 +264,8 @@ rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos, ...@@ -265,8 +264,8 @@ rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
} }
/* Message overflows the seg array */ /* Message overflows the seg array */
if (len && n == nsegs) if (len && n == RPCRDMA_MAX_SEGS)
return -EIO; goto out_overflow;
/* When encoding the read list, the tail is always sent inline */ /* When encoding the read list, the tail is always sent inline */
if (type == rpcrdma_readch) if (type == rpcrdma_readch)
...@@ -277,20 +276,24 @@ rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos, ...@@ -277,20 +276,24 @@ rpcrdma_convert_iovs(struct xdr_buf *xdrbuf, unsigned int pos,
* xdr pad bytes, saving the server an RDMA operation. */ * xdr pad bytes, saving the server an RDMA operation. */
if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize) if (xdrbuf->tail[0].iov_len < 4 && xprt_rdma_pad_optimize)
return n; return n;
n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n, nsegs); n = rpcrdma_convert_kvec(&xdrbuf->tail[0], seg, n);
if (n == nsegs) if (n == RPCRDMA_MAX_SEGS)
return -EIO; goto out_overflow;
} }
return n; return n;
out_overflow:
pr_err("rpcrdma: segment array overflow\n");
return -EIO;
} }
static inline __be32 * static inline __be32 *
xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mr_seg *seg) xdr_encode_rdma_segment(__be32 *iptr, struct rpcrdma_mw *mw)
{ {
*iptr++ = cpu_to_be32(seg->mr_rkey); *iptr++ = cpu_to_be32(mw->mw_handle);
*iptr++ = cpu_to_be32(seg->mr_len); *iptr++ = cpu_to_be32(mw->mw_length);
return xdr_encode_hyper(iptr, seg->mr_base); return xdr_encode_hyper(iptr, mw->mw_offset);
} }
/* XDR-encode the Read list. Supports encoding a list of read /* XDR-encode the Read list. Supports encoding a list of read
...@@ -310,7 +313,8 @@ rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, ...@@ -310,7 +313,8 @@ rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req, struct rpc_rqst *rqst, struct rpcrdma_req *req, struct rpc_rqst *rqst,
__be32 *iptr, enum rpcrdma_chunktype rtype) __be32 *iptr, enum rpcrdma_chunktype rtype)
{ {
struct rpcrdma_mr_seg *seg = req->rl_nextseg; struct rpcrdma_mr_seg *seg;
struct rpcrdma_mw *mw;
unsigned int pos; unsigned int pos;
int n, nsegs; int n, nsegs;
...@@ -322,15 +326,17 @@ rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, ...@@ -322,15 +326,17 @@ rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
pos = rqst->rq_snd_buf.head[0].iov_len; pos = rqst->rq_snd_buf.head[0].iov_len;
if (rtype == rpcrdma_areadch) if (rtype == rpcrdma_areadch)
pos = 0; pos = 0;
nsegs = rpcrdma_convert_iovs(&rqst->rq_snd_buf, pos, rtype, seg, seg = req->rl_segments;
RPCRDMA_MAX_SEGS - req->rl_nchunks); nsegs = rpcrdma_convert_iovs(&rqst->rq_snd_buf, pos, rtype, seg);
if (nsegs < 0) if (nsegs < 0)
return ERR_PTR(nsegs); return ERR_PTR(nsegs);
do { do {
n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, false); n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
if (n <= 0) false, &mw);
if (n < 0)
return ERR_PTR(n); return ERR_PTR(n);
list_add(&mw->mw_list, &req->rl_registered);
*iptr++ = xdr_one; /* item present */ *iptr++ = xdr_one; /* item present */
...@@ -338,20 +344,17 @@ rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt, ...@@ -338,20 +344,17 @@ rpcrdma_encode_read_list(struct rpcrdma_xprt *r_xprt,
* have the same "position". * have the same "position".
*/ */
*iptr++ = cpu_to_be32(pos); *iptr++ = cpu_to_be32(pos);
iptr = xdr_encode_rdma_segment(iptr, seg); iptr = xdr_encode_rdma_segment(iptr, mw);
dprintk("RPC: %5u %s: read segment pos %u " dprintk("RPC: %5u %s: pos %u %u@0x%016llx:0x%08x (%s)\n",
"%d@0x%016llx:0x%08x (%s)\n",
rqst->rq_task->tk_pid, __func__, pos, rqst->rq_task->tk_pid, __func__, pos,
seg->mr_len, (unsigned long long)seg->mr_base, mw->mw_length, (unsigned long long)mw->mw_offset,
seg->mr_rkey, n < nsegs ? "more" : "last"); mw->mw_handle, n < nsegs ? "more" : "last");
r_xprt->rx_stats.read_chunk_count++; r_xprt->rx_stats.read_chunk_count++;
req->rl_nchunks++;
seg += n; seg += n;
nsegs -= n; nsegs -= n;
} while (nsegs); } while (nsegs);
req->rl_nextseg = seg;
/* Finish Read list */ /* Finish Read list */
*iptr++ = xdr_zero; /* Next item not present */ *iptr++ = xdr_zero; /* Next item not present */
...@@ -375,7 +378,8 @@ rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, ...@@ -375,7 +378,8 @@ rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
struct rpc_rqst *rqst, __be32 *iptr, struct rpc_rqst *rqst, __be32 *iptr,
enum rpcrdma_chunktype wtype) enum rpcrdma_chunktype wtype)
{ {
struct rpcrdma_mr_seg *seg = req->rl_nextseg; struct rpcrdma_mr_seg *seg;
struct rpcrdma_mw *mw;
int n, nsegs, nchunks; int n, nsegs, nchunks;
__be32 *segcount; __be32 *segcount;
...@@ -384,10 +388,10 @@ rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, ...@@ -384,10 +388,10 @@ rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
return iptr; return iptr;
} }
seg = req->rl_segments;
nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf, nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf,
rqst->rq_rcv_buf.head[0].iov_len, rqst->rq_rcv_buf.head[0].iov_len,
wtype, seg, wtype, seg);
RPCRDMA_MAX_SEGS - req->rl_nchunks);
if (nsegs < 0) if (nsegs < 0)
return ERR_PTR(nsegs); return ERR_PTR(nsegs);
...@@ -396,26 +400,25 @@ rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req, ...@@ -396,26 +400,25 @@ rpcrdma_encode_write_list(struct rpcrdma_xprt *r_xprt, struct rpcrdma_req *req,
nchunks = 0; nchunks = 0;
do { do {
n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, true); n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
if (n <= 0) true, &mw);
if (n < 0)
return ERR_PTR(n); return ERR_PTR(n);
list_add(&mw->mw_list, &req->rl_registered);
iptr = xdr_encode_rdma_segment(iptr, seg); iptr = xdr_encode_rdma_segment(iptr, mw);
dprintk("RPC: %5u %s: write segment " dprintk("RPC: %5u %s: %u@0x016%llx:0x%08x (%s)\n",
"%d@0x016%llx:0x%08x (%s)\n",
rqst->rq_task->tk_pid, __func__, rqst->rq_task->tk_pid, __func__,
seg->mr_len, (unsigned long long)seg->mr_base, mw->mw_length, (unsigned long long)mw->mw_offset,
seg->mr_rkey, n < nsegs ? "more" : "last"); mw->mw_handle, n < nsegs ? "more" : "last");
r_xprt->rx_stats.write_chunk_count++; r_xprt->rx_stats.write_chunk_count++;
r_xprt->rx_stats.total_rdma_request += seg->mr_len; r_xprt->rx_stats.total_rdma_request += seg->mr_len;
req->rl_nchunks++;
nchunks++; nchunks++;
seg += n; seg += n;
nsegs -= n; nsegs -= n;
} while (nsegs); } while (nsegs);
req->rl_nextseg = seg;
/* Update count of segments in this Write chunk */ /* Update count of segments in this Write chunk */
*segcount = cpu_to_be32(nchunks); *segcount = cpu_to_be32(nchunks);
...@@ -442,7 +445,8 @@ rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, ...@@ -442,7 +445,8 @@ rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
struct rpcrdma_req *req, struct rpc_rqst *rqst, struct rpcrdma_req *req, struct rpc_rqst *rqst,
__be32 *iptr, enum rpcrdma_chunktype wtype) __be32 *iptr, enum rpcrdma_chunktype wtype)
{ {
struct rpcrdma_mr_seg *seg = req->rl_nextseg; struct rpcrdma_mr_seg *seg;
struct rpcrdma_mw *mw;
int n, nsegs, nchunks; int n, nsegs, nchunks;
__be32 *segcount; __be32 *segcount;
...@@ -451,8 +455,8 @@ rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, ...@@ -451,8 +455,8 @@ rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
return iptr; return iptr;
} }
nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf, 0, wtype, seg, seg = req->rl_segments;
RPCRDMA_MAX_SEGS - req->rl_nchunks); nsegs = rpcrdma_convert_iovs(&rqst->rq_rcv_buf, 0, wtype, seg);
if (nsegs < 0) if (nsegs < 0)
return ERR_PTR(nsegs); return ERR_PTR(nsegs);
...@@ -461,26 +465,25 @@ rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt, ...@@ -461,26 +465,25 @@ rpcrdma_encode_reply_chunk(struct rpcrdma_xprt *r_xprt,
nchunks = 0; nchunks = 0;
do { do {
n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs, true); n = r_xprt->rx_ia.ri_ops->ro_map(r_xprt, seg, nsegs,
if (n <= 0) true, &mw);
if (n < 0)
return ERR_PTR(n); return ERR_PTR(n);
list_add(&mw->mw_list, &req->rl_registered);
iptr = xdr_encode_rdma_segment(iptr, seg); iptr = xdr_encode_rdma_segment(iptr, mw);
dprintk("RPC: %5u %s: reply segment " dprintk("RPC: %5u %s: %u@0x%016llx:0x%08x (%s)\n",
"%d@0x%016llx:0x%08x (%s)\n",
rqst->rq_task->tk_pid, __func__, rqst->rq_task->tk_pid, __func__,
seg->mr_len, (unsigned long long)seg->mr_base, mw->mw_length, (unsigned long long)mw->mw_offset,
seg->mr_rkey, n < nsegs ? "more" : "last"); mw->mw_handle, n < nsegs ? "more" : "last");
r_xprt->rx_stats.reply_chunk_count++; r_xprt->rx_stats.reply_chunk_count++;
r_xprt->rx_stats.total_rdma_request += seg->mr_len; r_xprt->rx_stats.total_rdma_request += seg->mr_len;
req->rl_nchunks++;
nchunks++; nchunks++;
seg += n; seg += n;
nsegs -= n; nsegs -= n;
} while (nsegs); } while (nsegs);
req->rl_nextseg = seg;
/* Update count of segments in the Reply chunk */ /* Update count of segments in the Reply chunk */
*segcount = cpu_to_be32(nchunks); *segcount = cpu_to_be32(nchunks);
...@@ -567,6 +570,7 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst) ...@@ -567,6 +570,7 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst)
struct rpcrdma_req *req = rpcr_to_rdmar(rqst); struct rpcrdma_req *req = rpcr_to_rdmar(rqst);
enum rpcrdma_chunktype rtype, wtype; enum rpcrdma_chunktype rtype, wtype;
struct rpcrdma_msg *headerp; struct rpcrdma_msg *headerp;
bool ddp_allowed;
ssize_t hdrlen; ssize_t hdrlen;
size_t rpclen; size_t rpclen;
__be32 *iptr; __be32 *iptr;
...@@ -583,6 +587,13 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst) ...@@ -583,6 +587,13 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst)
headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests); headerp->rm_credit = cpu_to_be32(r_xprt->rx_buf.rb_max_requests);
headerp->rm_type = rdma_msg; headerp->rm_type = rdma_msg;
/* When the ULP employs a GSS flavor that guarantees integrity
* or privacy, direct data placement of individual data items
* is not allowed.
*/
ddp_allowed = !(rqst->rq_cred->cr_auth->au_flags &
RPCAUTH_AUTH_DATATOUCH);
/* /*
* Chunks needed for results? * Chunks needed for results?
* *
...@@ -594,7 +605,7 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst) ...@@ -594,7 +605,7 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst)
*/ */
if (rpcrdma_results_inline(r_xprt, rqst)) if (rpcrdma_results_inline(r_xprt, rqst))
wtype = rpcrdma_noch; wtype = rpcrdma_noch;
else if (rqst->rq_rcv_buf.flags & XDRBUF_READ) else if (ddp_allowed && rqst->rq_rcv_buf.flags & XDRBUF_READ)
wtype = rpcrdma_writech; wtype = rpcrdma_writech;
else else
wtype = rpcrdma_replych; wtype = rpcrdma_replych;
...@@ -617,7 +628,7 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst) ...@@ -617,7 +628,7 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst)
rtype = rpcrdma_noch; rtype = rpcrdma_noch;
rpcrdma_inline_pullup(rqst); rpcrdma_inline_pullup(rqst);
rpclen = rqst->rq_svec[0].iov_len; rpclen = rqst->rq_svec[0].iov_len;
} else if (rqst->rq_snd_buf.flags & XDRBUF_WRITE) { } else if (ddp_allowed && rqst->rq_snd_buf.flags & XDRBUF_WRITE) {
rtype = rpcrdma_readch; rtype = rpcrdma_readch;
rpclen = rqst->rq_svec[0].iov_len; rpclen = rqst->rq_svec[0].iov_len;
rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf); rpclen += rpcrdma_tail_pullup(&rqst->rq_snd_buf);
...@@ -650,8 +661,6 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst) ...@@ -650,8 +661,6 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst)
* send a Call message with a Position Zero Read chunk and a * send a Call message with a Position Zero Read chunk and a
* regular Read chunk at the same time. * regular Read chunk at the same time.
*/ */
req->rl_nchunks = 0;
req->rl_nextseg = req->rl_segments;
iptr = headerp->rm_body.rm_chunks; iptr = headerp->rm_body.rm_chunks;
iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype); iptr = rpcrdma_encode_read_list(r_xprt, req, rqst, iptr, rtype);
if (IS_ERR(iptr)) if (IS_ERR(iptr))
...@@ -690,10 +699,7 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst) ...@@ -690,10 +699,7 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst)
out_overflow: out_overflow:
pr_err("rpcrdma: send overflow: hdrlen %zd rpclen %zu %s/%s\n", pr_err("rpcrdma: send overflow: hdrlen %zd rpclen %zu %s/%s\n",
hdrlen, rpclen, transfertypes[rtype], transfertypes[wtype]); hdrlen, rpclen, transfertypes[rtype], transfertypes[wtype]);
/* Terminate this RPC. Chunks registered above will be iptr = ERR_PTR(-EIO);
* released by xprt_release -> xprt_rmda_free .
*/
return -EIO;
out_unmap: out_unmap:
r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false); r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false);
...@@ -705,15 +711,13 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst) ...@@ -705,15 +711,13 @@ rpcrdma_marshal_req(struct rpc_rqst *rqst)
* RDMA'd by server. See map at rpcrdma_create_chunks()! :-) * RDMA'd by server. See map at rpcrdma_create_chunks()! :-)
*/ */
static int static int
rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __be32 **iptrp) rpcrdma_count_chunks(struct rpcrdma_rep *rep, int wrchunk, __be32 **iptrp)
{ {
unsigned int i, total_len; unsigned int i, total_len;
struct rpcrdma_write_chunk *cur_wchunk; struct rpcrdma_write_chunk *cur_wchunk;
char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf); char *base = (char *)rdmab_to_msg(rep->rr_rdmabuf);
i = be32_to_cpu(**iptrp); i = be32_to_cpu(**iptrp);
if (i > max)
return -1;
cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1); cur_wchunk = (struct rpcrdma_write_chunk *) (*iptrp + 1);
total_len = 0; total_len = 0;
while (i--) { while (i--) {
...@@ -744,45 +748,66 @@ rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __b ...@@ -744,45 +748,66 @@ rpcrdma_count_chunks(struct rpcrdma_rep *rep, unsigned int max, int wrchunk, __b
return total_len; return total_len;
} }
/* /**
* Scatter inline received data back into provided iov's. * rpcrdma_inline_fixup - Scatter inline received data into rqst's iovecs
* @rqst: controlling RPC request
* @srcp: points to RPC message payload in receive buffer
* @copy_len: remaining length of receive buffer content
* @pad: Write chunk pad bytes needed (zero for pure inline)
*
* The upper layer has set the maximum number of bytes it can
* receive in each component of rq_rcv_buf. These values are set in
* the head.iov_len, page_len, tail.iov_len, and buflen fields.
*
* Unlike the TCP equivalent (xdr_partial_copy_from_skb), in
* many cases this function simply updates iov_base pointers in
* rq_rcv_buf to point directly to the received reply data, to
* avoid copying reply data.
*
* Returns the count of bytes which had to be memcopied.
*/ */
static void static unsigned long
rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
{ {
int i, npages, curlen, olen; unsigned long fixup_copy_count;
int i, npages, curlen;
char *destp; char *destp;
struct page **ppages; struct page **ppages;
int page_base; int page_base;
/* The head iovec is redirected to the RPC reply message
* in the receive buffer, to avoid a memcopy.
*/
rqst->rq_rcv_buf.head[0].iov_base = srcp;
rqst->rq_private_buf.head[0].iov_base = srcp;
/* The contents of the receive buffer that follow
* head.iov_len bytes are copied into the page list.
*/
curlen = rqst->rq_rcv_buf.head[0].iov_len; curlen = rqst->rq_rcv_buf.head[0].iov_len;
if (curlen > copy_len) { /* write chunk header fixup */ if (curlen > copy_len)
curlen = copy_len; curlen = copy_len;
rqst->rq_rcv_buf.head[0].iov_len = curlen;
}
dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n", dprintk("RPC: %s: srcp 0x%p len %d hdrlen %d\n",
__func__, srcp, copy_len, curlen); __func__, srcp, copy_len, curlen);
/* Shift pointer for first receive segment only */
rqst->rq_rcv_buf.head[0].iov_base = srcp;
srcp += curlen; srcp += curlen;
copy_len -= curlen; copy_len -= curlen;
olen = copy_len;
i = 0;
rpcx_to_rdmax(rqst->rq_xprt)->rx_stats.fixup_copy_count += olen;
page_base = rqst->rq_rcv_buf.page_base; page_base = rqst->rq_rcv_buf.page_base;
ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT); ppages = rqst->rq_rcv_buf.pages + (page_base >> PAGE_SHIFT);
page_base &= ~PAGE_MASK; page_base &= ~PAGE_MASK;
fixup_copy_count = 0;
if (copy_len && rqst->rq_rcv_buf.page_len) { if (copy_len && rqst->rq_rcv_buf.page_len) {
npages = PAGE_ALIGN(page_base + int pagelist_len;
rqst->rq_rcv_buf.page_len) >> PAGE_SHIFT;
for (; i < npages; i++) { pagelist_len = rqst->rq_rcv_buf.page_len;
if (pagelist_len > copy_len)
pagelist_len = copy_len;
npages = PAGE_ALIGN(page_base + pagelist_len) >> PAGE_SHIFT;
for (i = 0; i < npages; i++) {
curlen = PAGE_SIZE - page_base; curlen = PAGE_SIZE - page_base;
if (curlen > copy_len) if (curlen > pagelist_len)
curlen = copy_len; curlen = pagelist_len;
dprintk("RPC: %s: page %d" dprintk("RPC: %s: page %d"
" srcp 0x%p len %d curlen %d\n", " srcp 0x%p len %d curlen %d\n",
__func__, i, srcp, copy_len, curlen); __func__, i, srcp, copy_len, curlen);
...@@ -792,39 +817,32 @@ rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad) ...@@ -792,39 +817,32 @@ rpcrdma_inline_fixup(struct rpc_rqst *rqst, char *srcp, int copy_len, int pad)
kunmap_atomic(destp); kunmap_atomic(destp);
srcp += curlen; srcp += curlen;
copy_len -= curlen; copy_len -= curlen;
if (copy_len == 0) fixup_copy_count += curlen;
pagelist_len -= curlen;
if (!pagelist_len)
break; break;
page_base = 0; page_base = 0;
} }
}
if (copy_len && rqst->rq_rcv_buf.tail[0].iov_len) { /* Implicit padding for the last segment in a Write
curlen = copy_len; * chunk is inserted inline at the front of the tail
if (curlen > rqst->rq_rcv_buf.tail[0].iov_len) * iovec. The upper layer ignores the content of
curlen = rqst->rq_rcv_buf.tail[0].iov_len; * the pad. Simply ensure inline content in the tail
if (rqst->rq_rcv_buf.tail[0].iov_base != srcp) * that follows the Write chunk is properly aligned.
memmove(rqst->rq_rcv_buf.tail[0].iov_base, srcp, curlen); */
dprintk("RPC: %s: tail srcp 0x%p len %d curlen %d\n", if (pad)
__func__, srcp, copy_len, curlen); srcp -= pad;
rqst->rq_rcv_buf.tail[0].iov_len = curlen;
copy_len -= curlen; ++i;
} else
rqst->rq_rcv_buf.tail[0].iov_len = 0;
if (pad) {
/* implicit padding on terminal chunk */
unsigned char *p = rqst->rq_rcv_buf.tail[0].iov_base;
while (pad--)
p[rqst->rq_rcv_buf.tail[0].iov_len++] = 0;
} }
if (copy_len) /* The tail iovec is redirected to the remaining data
dprintk("RPC: %s: %d bytes in" * in the receive buffer, to avoid a memcopy.
" %d extra segments (%d lost)\n", */
__func__, olen, i, copy_len); if (copy_len || pad) {
rqst->rq_rcv_buf.tail[0].iov_base = srcp;
rqst->rq_private_buf.tail[0].iov_base = srcp;
}
/* TBD avoid a warning from call_decode() */ return fixup_copy_count;
rqst->rq_private_buf = rqst->rq_rcv_buf;
} }
void void
...@@ -960,14 +978,13 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep) ...@@ -960,14 +978,13 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep)
(headerp->rm_body.rm_chunks[1] == xdr_zero && (headerp->rm_body.rm_chunks[1] == xdr_zero &&
headerp->rm_body.rm_chunks[2] != xdr_zero) || headerp->rm_body.rm_chunks[2] != xdr_zero) ||
(headerp->rm_body.rm_chunks[1] != xdr_zero && (headerp->rm_body.rm_chunks[1] != xdr_zero &&
req->rl_nchunks == 0)) list_empty(&req->rl_registered)))
goto badheader; goto badheader;
if (headerp->rm_body.rm_chunks[1] != xdr_zero) { if (headerp->rm_body.rm_chunks[1] != xdr_zero) {
/* count any expected write chunks in read reply */ /* count any expected write chunks in read reply */
/* start at write chunk array count */ /* start at write chunk array count */
iptr = &headerp->rm_body.rm_chunks[2]; iptr = &headerp->rm_body.rm_chunks[2];
rdmalen = rpcrdma_count_chunks(rep, rdmalen = rpcrdma_count_chunks(rep, 1, &iptr);
req->rl_nchunks, 1, &iptr);
/* check for validity, and no reply chunk after */ /* check for validity, and no reply chunk after */
if (rdmalen < 0 || *iptr++ != xdr_zero) if (rdmalen < 0 || *iptr++ != xdr_zero)
goto badheader; goto badheader;
...@@ -988,8 +1005,10 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep) ...@@ -988,8 +1005,10 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep)
rep->rr_len -= RPCRDMA_HDRLEN_MIN; rep->rr_len -= RPCRDMA_HDRLEN_MIN;
status = rep->rr_len; status = rep->rr_len;
} }
/* Fix up the rpc results for upper layer */
rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len, rdmalen); r_xprt->rx_stats.fixup_copy_count +=
rpcrdma_inline_fixup(rqst, (char *)iptr, rep->rr_len,
rdmalen);
break; break;
case rdma_nomsg: case rdma_nomsg:
...@@ -997,11 +1016,11 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep) ...@@ -997,11 +1016,11 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep)
if (headerp->rm_body.rm_chunks[0] != xdr_zero || if (headerp->rm_body.rm_chunks[0] != xdr_zero ||
headerp->rm_body.rm_chunks[1] != xdr_zero || headerp->rm_body.rm_chunks[1] != xdr_zero ||
headerp->rm_body.rm_chunks[2] != xdr_one || headerp->rm_body.rm_chunks[2] != xdr_one ||
req->rl_nchunks == 0) list_empty(&req->rl_registered))
goto badheader; goto badheader;
iptr = (__be32 *)((unsigned char *)headerp + iptr = (__be32 *)((unsigned char *)headerp +
RPCRDMA_HDRLEN_MIN); RPCRDMA_HDRLEN_MIN);
rdmalen = rpcrdma_count_chunks(rep, req->rl_nchunks, 0, &iptr); rdmalen = rpcrdma_count_chunks(rep, 0, &iptr);
if (rdmalen < 0) if (rdmalen < 0)
goto badheader; goto badheader;
r_xprt->rx_stats.total_rdma_reply += rdmalen; r_xprt->rx_stats.total_rdma_reply += rdmalen;
...@@ -1014,14 +1033,9 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep) ...@@ -1014,14 +1033,9 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep)
badheader: badheader:
default: default:
dprintk("%s: invalid rpcrdma reply header (type %d):" dprintk("RPC: %5u %s: invalid rpcrdma reply (type %u)\n",
" chunks[012] == %d %d %d" rqst->rq_task->tk_pid, __func__,
" expected chunks <= %d\n", be32_to_cpu(headerp->rm_type));
__func__, be32_to_cpu(headerp->rm_type),
headerp->rm_body.rm_chunks[0],
headerp->rm_body.rm_chunks[1],
headerp->rm_body.rm_chunks[2],
req->rl_nchunks);
status = -EIO; status = -EIO;
r_xprt->rx_stats.bad_reply_count++; r_xprt->rx_stats.bad_reply_count++;
break; break;
...@@ -1035,7 +1049,7 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep) ...@@ -1035,7 +1049,7 @@ rpcrdma_reply_handler(struct rpcrdma_rep *rep)
* control: waking the next RPC waits until this RPC has * control: waking the next RPC waits until this RPC has
* relinquished all its Send Queue entries. * relinquished all its Send Queue entries.
*/ */
if (req->rl_nchunks) if (!list_empty(&req->rl_registered))
r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req); r_xprt->rx_ia.ri_ops->ro_unmap_sync(r_xprt, req);
spin_lock_bh(&xprt->transport_lock); spin_lock_bh(&xprt->transport_lock);
......
...@@ -558,7 +558,6 @@ xprt_rdma_allocate(struct rpc_task *task, size_t size) ...@@ -558,7 +558,6 @@ xprt_rdma_allocate(struct rpc_task *task, size_t size)
out_fail: out_fail:
rpcrdma_buffer_put(req); rpcrdma_buffer_put(req);
r_xprt->rx_stats.failed_marshal_count++;
return NULL; return NULL;
} }
...@@ -590,8 +589,19 @@ xprt_rdma_free(void *buffer) ...@@ -590,8 +589,19 @@ xprt_rdma_free(void *buffer)
rpcrdma_buffer_put(req); rpcrdma_buffer_put(req);
} }
/* /**
* xprt_rdma_send_request - marshal and send an RPC request
* @task: RPC task with an RPC message in rq_snd_buf
*
* Return values:
* 0: The request has been sent
* ENOTCONN: Caller needs to invoke connect logic then call again
* ENOBUFS: Call again later to send the request
* EIO: A permanent error occurred. The request was not sent,
* and don't try it again
*
* send_request invokes the meat of RPC RDMA. It must do the following: * send_request invokes the meat of RPC RDMA. It must do the following:
*
* 1. Marshal the RPC request into an RPC RDMA request, which means * 1. Marshal the RPC request into an RPC RDMA request, which means
* putting a header in front of data, and creating IOVs for RDMA * putting a header in front of data, and creating IOVs for RDMA
* from those in the request. * from those in the request.
...@@ -600,7 +610,6 @@ xprt_rdma_free(void *buffer) ...@@ -600,7 +610,6 @@ xprt_rdma_free(void *buffer)
* the request (rpcrdma_ep_post). * the request (rpcrdma_ep_post).
* 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP). * 4. No partial sends are possible in the RPC-RDMA protocol (as in UDP).
*/ */
static int static int
xprt_rdma_send_request(struct rpc_task *task) xprt_rdma_send_request(struct rpc_task *task)
{ {
...@@ -610,6 +619,9 @@ xprt_rdma_send_request(struct rpc_task *task) ...@@ -610,6 +619,9 @@ xprt_rdma_send_request(struct rpc_task *task)
struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt); struct rpcrdma_xprt *r_xprt = rpcx_to_rdmax(xprt);
int rc = 0; int rc = 0;
/* On retransmit, remove any previously registered chunks */
r_xprt->rx_ia.ri_ops->ro_unmap_safe(r_xprt, req, false);
rc = rpcrdma_marshal_req(rqst); rc = rpcrdma_marshal_req(rqst);
if (rc < 0) if (rc < 0)
goto failed_marshal; goto failed_marshal;
...@@ -630,11 +642,12 @@ xprt_rdma_send_request(struct rpc_task *task) ...@@ -630,11 +642,12 @@ xprt_rdma_send_request(struct rpc_task *task)
return 0; return 0;
failed_marshal: failed_marshal:
r_xprt->rx_stats.failed_marshal_count++;
dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n", dprintk("RPC: %s: rpcrdma_marshal_req failed, status %i\n",
__func__, rc); __func__, rc);
if (rc == -EIO) if (rc == -EIO)
return -EIO; r_xprt->rx_stats.failed_marshal_count++;
if (rc != -ENOTCONN)
return rc;
drop_connection: drop_connection:
xprt_disconnect_done(xprt); xprt_disconnect_done(xprt);
return -ENOTCONN; /* implies disconnect */ return -ENOTCONN; /* implies disconnect */
...@@ -660,7 +673,7 @@ void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) ...@@ -660,7 +673,7 @@ void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
xprt->stat.bad_xids, xprt->stat.bad_xids,
xprt->stat.req_u, xprt->stat.req_u,
xprt->stat.bklog_u); xprt->stat.bklog_u);
seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu\n", seq_printf(seq, "%lu %lu %lu %llu %llu %llu %llu %lu %lu %lu %lu ",
r_xprt->rx_stats.read_chunk_count, r_xprt->rx_stats.read_chunk_count,
r_xprt->rx_stats.write_chunk_count, r_xprt->rx_stats.write_chunk_count,
r_xprt->rx_stats.reply_chunk_count, r_xprt->rx_stats.reply_chunk_count,
...@@ -672,6 +685,10 @@ void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq) ...@@ -672,6 +685,10 @@ void xprt_rdma_print_stats(struct rpc_xprt *xprt, struct seq_file *seq)
r_xprt->rx_stats.failed_marshal_count, r_xprt->rx_stats.failed_marshal_count,
r_xprt->rx_stats.bad_reply_count, r_xprt->rx_stats.bad_reply_count,
r_xprt->rx_stats.nomsg_call_count); r_xprt->rx_stats.nomsg_call_count);
seq_printf(seq, "%lu %lu %lu\n",
r_xprt->rx_stats.mrs_recovered,
r_xprt->rx_stats.mrs_orphaned,
r_xprt->rx_stats.mrs_allocated);
} }
static int static int
...@@ -741,7 +758,6 @@ void xprt_rdma_cleanup(void) ...@@ -741,7 +758,6 @@ void xprt_rdma_cleanup(void)
__func__, rc); __func__, rc);
rpcrdma_destroy_wq(); rpcrdma_destroy_wq();
frwr_destroy_recovery_wq();
rc = xprt_unregister_transport(&xprt_rdma_bc); rc = xprt_unregister_transport(&xprt_rdma_bc);
if (rc) if (rc)
...@@ -753,20 +769,13 @@ int xprt_rdma_init(void) ...@@ -753,20 +769,13 @@ int xprt_rdma_init(void)
{ {
int rc; int rc;
rc = frwr_alloc_recovery_wq();
if (rc)
return rc;
rc = rpcrdma_alloc_wq(); rc = rpcrdma_alloc_wq();
if (rc) { if (rc)
frwr_destroy_recovery_wq();
return rc; return rc;
}
rc = xprt_register_transport(&xprt_rdma); rc = xprt_register_transport(&xprt_rdma);
if (rc) { if (rc) {
rpcrdma_destroy_wq(); rpcrdma_destroy_wq();
frwr_destroy_recovery_wq();
return rc; return rc;
} }
...@@ -774,7 +783,6 @@ int xprt_rdma_init(void) ...@@ -774,7 +783,6 @@ int xprt_rdma_init(void)
if (rc) { if (rc) {
xprt_unregister_transport(&xprt_rdma); xprt_unregister_transport(&xprt_rdma);
rpcrdma_destroy_wq(); rpcrdma_destroy_wq();
frwr_destroy_recovery_wq();
return rc; return rc;
} }
......
...@@ -379,8 +379,6 @@ rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg) ...@@ -379,8 +379,6 @@ rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg)
struct rpcrdma_ia *ia = &xprt->rx_ia; struct rpcrdma_ia *ia = &xprt->rx_ia;
int rc; int rc;
ia->ri_dma_mr = NULL;
ia->ri_id = rpcrdma_create_id(xprt, ia, addr); ia->ri_id = rpcrdma_create_id(xprt, ia, addr);
if (IS_ERR(ia->ri_id)) { if (IS_ERR(ia->ri_id)) {
rc = PTR_ERR(ia->ri_id); rc = PTR_ERR(ia->ri_id);
...@@ -391,47 +389,29 @@ rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg) ...@@ -391,47 +389,29 @@ rpcrdma_ia_open(struct rpcrdma_xprt *xprt, struct sockaddr *addr, int memreg)
ia->ri_pd = ib_alloc_pd(ia->ri_device); ia->ri_pd = ib_alloc_pd(ia->ri_device);
if (IS_ERR(ia->ri_pd)) { if (IS_ERR(ia->ri_pd)) {
rc = PTR_ERR(ia->ri_pd); rc = PTR_ERR(ia->ri_pd);
dprintk("RPC: %s: ib_alloc_pd() failed %i\n", pr_err("rpcrdma: ib_alloc_pd() returned %d\n", rc);
__func__, rc);
goto out2; goto out2;
} }
if (memreg == RPCRDMA_FRMR) {
if (!(ia->ri_device->attrs.device_cap_flags &
IB_DEVICE_MEM_MGT_EXTENSIONS) ||
(ia->ri_device->attrs.max_fast_reg_page_list_len == 0)) {
dprintk("RPC: %s: FRMR registration "
"not supported by HCA\n", __func__);
memreg = RPCRDMA_MTHCAFMR;
}
}
if (memreg == RPCRDMA_MTHCAFMR) {
if (!ia->ri_device->alloc_fmr) {
dprintk("RPC: %s: MTHCAFMR registration "
"not supported by HCA\n", __func__);
rc = -EINVAL;
goto out3;
}
}
switch (memreg) { switch (memreg) {
case RPCRDMA_FRMR: case RPCRDMA_FRMR:
if (frwr_is_supported(ia)) {
ia->ri_ops = &rpcrdma_frwr_memreg_ops; ia->ri_ops = &rpcrdma_frwr_memreg_ops;
break; break;
case RPCRDMA_ALLPHYSICAL: }
ia->ri_ops = &rpcrdma_physical_memreg_ops; /*FALLTHROUGH*/
break;
case RPCRDMA_MTHCAFMR: case RPCRDMA_MTHCAFMR:
if (fmr_is_supported(ia)) {
ia->ri_ops = &rpcrdma_fmr_memreg_ops; ia->ri_ops = &rpcrdma_fmr_memreg_ops;
break; break;
}
/*FALLTHROUGH*/
default: default:
printk(KERN_ERR "RPC: Unsupported memory " pr_err("rpcrdma: Unsupported memory registration mode: %d\n",
"registration mode: %d\n", memreg); memreg);
rc = -ENOMEM; rc = -EINVAL;
goto out3; goto out3;
} }
dprintk("RPC: %s: memory registration strategy is '%s'\n",
__func__, ia->ri_ops->ro_displayname);
return 0; return 0;
...@@ -585,8 +565,6 @@ rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, ...@@ -585,8 +565,6 @@ rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
out2: out2:
ib_free_cq(sendcq); ib_free_cq(sendcq);
out1: out1:
if (ia->ri_dma_mr)
ib_dereg_mr(ia->ri_dma_mr);
return rc; return rc;
} }
...@@ -600,8 +578,6 @@ rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia, ...@@ -600,8 +578,6 @@ rpcrdma_ep_create(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia,
void void
rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
{ {
int rc;
dprintk("RPC: %s: entering, connected is %d\n", dprintk("RPC: %s: entering, connected is %d\n",
__func__, ep->rep_connected); __func__, ep->rep_connected);
...@@ -615,12 +591,6 @@ rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) ...@@ -615,12 +591,6 @@ rpcrdma_ep_destroy(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
ib_free_cq(ep->rep_attr.recv_cq); ib_free_cq(ep->rep_attr.recv_cq);
ib_free_cq(ep->rep_attr.send_cq); ib_free_cq(ep->rep_attr.send_cq);
if (ia->ri_dma_mr) {
rc = ib_dereg_mr(ia->ri_dma_mr);
dprintk("RPC: %s: ib_dereg_mr returned %i\n",
__func__, rc);
}
} }
/* /*
...@@ -777,6 +747,90 @@ rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia) ...@@ -777,6 +747,90 @@ rpcrdma_ep_disconnect(struct rpcrdma_ep *ep, struct rpcrdma_ia *ia)
ib_drain_qp(ia->ri_id->qp); ib_drain_qp(ia->ri_id->qp);
} }
static void
rpcrdma_mr_recovery_worker(struct work_struct *work)
{
struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
rb_recovery_worker.work);
struct rpcrdma_mw *mw;
spin_lock(&buf->rb_recovery_lock);
while (!list_empty(&buf->rb_stale_mrs)) {
mw = list_first_entry(&buf->rb_stale_mrs,
struct rpcrdma_mw, mw_list);
list_del_init(&mw->mw_list);
spin_unlock(&buf->rb_recovery_lock);
dprintk("RPC: %s: recovering MR %p\n", __func__, mw);
mw->mw_xprt->rx_ia.ri_ops->ro_recover_mr(mw);
spin_lock(&buf->rb_recovery_lock);
};
spin_unlock(&buf->rb_recovery_lock);
}
void
rpcrdma_defer_mr_recovery(struct rpcrdma_mw *mw)
{
struct rpcrdma_xprt *r_xprt = mw->mw_xprt;
struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
spin_lock(&buf->rb_recovery_lock);
list_add(&mw->mw_list, &buf->rb_stale_mrs);
spin_unlock(&buf->rb_recovery_lock);
schedule_delayed_work(&buf->rb_recovery_worker, 0);
}
static void
rpcrdma_create_mrs(struct rpcrdma_xprt *r_xprt)
{
struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
unsigned int count;
LIST_HEAD(free);
LIST_HEAD(all);
for (count = 0; count < 32; count++) {
struct rpcrdma_mw *mw;
int rc;
mw = kzalloc(sizeof(*mw), GFP_KERNEL);
if (!mw)
break;
rc = ia->ri_ops->ro_init_mr(ia, mw);
if (rc) {
kfree(mw);
break;
}
mw->mw_xprt = r_xprt;
list_add(&mw->mw_list, &free);
list_add(&mw->mw_all, &all);
}
spin_lock(&buf->rb_mwlock);
list_splice(&free, &buf->rb_mws);
list_splice(&all, &buf->rb_all);
r_xprt->rx_stats.mrs_allocated += count;
spin_unlock(&buf->rb_mwlock);
dprintk("RPC: %s: created %u MRs\n", __func__, count);
}
static void
rpcrdma_mr_refresh_worker(struct work_struct *work)
{
struct rpcrdma_buffer *buf = container_of(work, struct rpcrdma_buffer,
rb_refresh_worker.work);
struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
rx_buf);
rpcrdma_create_mrs(r_xprt);
}
struct rpcrdma_req * struct rpcrdma_req *
rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) rpcrdma_create_req(struct rpcrdma_xprt *r_xprt)
{ {
...@@ -793,6 +847,7 @@ rpcrdma_create_req(struct rpcrdma_xprt *r_xprt) ...@@ -793,6 +847,7 @@ rpcrdma_create_req(struct rpcrdma_xprt *r_xprt)
spin_unlock(&buffer->rb_reqslock); spin_unlock(&buffer->rb_reqslock);
req->rl_cqe.done = rpcrdma_wc_send; req->rl_cqe.done = rpcrdma_wc_send;
req->rl_buffer = &r_xprt->rx_buf; req->rl_buffer = &r_xprt->rx_buf;
INIT_LIST_HEAD(&req->rl_registered);
return req; return req;
} }
...@@ -832,17 +887,23 @@ int ...@@ -832,17 +887,23 @@ int
rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
{ {
struct rpcrdma_buffer *buf = &r_xprt->rx_buf; struct rpcrdma_buffer *buf = &r_xprt->rx_buf;
struct rpcrdma_ia *ia = &r_xprt->rx_ia;
int i, rc; int i, rc;
buf->rb_max_requests = r_xprt->rx_data.max_requests; buf->rb_max_requests = r_xprt->rx_data.max_requests;
buf->rb_bc_srv_max_requests = 0; buf->rb_bc_srv_max_requests = 0;
spin_lock_init(&buf->rb_lock);
atomic_set(&buf->rb_credits, 1); atomic_set(&buf->rb_credits, 1);
spin_lock_init(&buf->rb_mwlock);
spin_lock_init(&buf->rb_lock);
spin_lock_init(&buf->rb_recovery_lock);
INIT_LIST_HEAD(&buf->rb_mws);
INIT_LIST_HEAD(&buf->rb_all);
INIT_LIST_HEAD(&buf->rb_stale_mrs);
INIT_DELAYED_WORK(&buf->rb_refresh_worker,
rpcrdma_mr_refresh_worker);
INIT_DELAYED_WORK(&buf->rb_recovery_worker,
rpcrdma_mr_recovery_worker);
rc = ia->ri_ops->ro_init(r_xprt); rpcrdma_create_mrs(r_xprt);
if (rc)
goto out;
INIT_LIST_HEAD(&buf->rb_send_bufs); INIT_LIST_HEAD(&buf->rb_send_bufs);
INIT_LIST_HEAD(&buf->rb_allreqs); INIT_LIST_HEAD(&buf->rb_allreqs);
...@@ -862,7 +923,7 @@ rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt) ...@@ -862,7 +923,7 @@ rpcrdma_buffer_create(struct rpcrdma_xprt *r_xprt)
} }
INIT_LIST_HEAD(&buf->rb_recv_bufs); INIT_LIST_HEAD(&buf->rb_recv_bufs);
for (i = 0; i < buf->rb_max_requests + 2; i++) { for (i = 0; i < buf->rb_max_requests; i++) {
struct rpcrdma_rep *rep; struct rpcrdma_rep *rep;
rep = rpcrdma_create_rep(r_xprt); rep = rpcrdma_create_rep(r_xprt);
...@@ -918,11 +979,39 @@ rpcrdma_destroy_req(struct rpcrdma_ia *ia, struct rpcrdma_req *req) ...@@ -918,11 +979,39 @@ rpcrdma_destroy_req(struct rpcrdma_ia *ia, struct rpcrdma_req *req)
kfree(req); kfree(req);
} }
static void
rpcrdma_destroy_mrs(struct rpcrdma_buffer *buf)
{
struct rpcrdma_xprt *r_xprt = container_of(buf, struct rpcrdma_xprt,
rx_buf);
struct rpcrdma_ia *ia = rdmab_to_ia(buf);
struct rpcrdma_mw *mw;
unsigned int count;
count = 0;
spin_lock(&buf->rb_mwlock);
while (!list_empty(&buf->rb_all)) {
mw = list_entry(buf->rb_all.next, struct rpcrdma_mw, mw_all);
list_del(&mw->mw_all);
spin_unlock(&buf->rb_mwlock);
ia->ri_ops->ro_release_mr(mw);
count++;
spin_lock(&buf->rb_mwlock);
}
spin_unlock(&buf->rb_mwlock);
r_xprt->rx_stats.mrs_allocated = 0;
dprintk("RPC: %s: released %u MRs\n", __func__, count);
}
void void
rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
{ {
struct rpcrdma_ia *ia = rdmab_to_ia(buf); struct rpcrdma_ia *ia = rdmab_to_ia(buf);
cancel_delayed_work_sync(&buf->rb_recovery_worker);
while (!list_empty(&buf->rb_recv_bufs)) { while (!list_empty(&buf->rb_recv_bufs)) {
struct rpcrdma_rep *rep; struct rpcrdma_rep *rep;
...@@ -944,7 +1033,7 @@ rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf) ...@@ -944,7 +1033,7 @@ rpcrdma_buffer_destroy(struct rpcrdma_buffer *buf)
} }
spin_unlock(&buf->rb_reqslock); spin_unlock(&buf->rb_reqslock);
ia->ri_ops->ro_destroy(buf); rpcrdma_destroy_mrs(buf);
} }
struct rpcrdma_mw * struct rpcrdma_mw *
...@@ -962,8 +1051,17 @@ rpcrdma_get_mw(struct rpcrdma_xprt *r_xprt) ...@@ -962,8 +1051,17 @@ rpcrdma_get_mw(struct rpcrdma_xprt *r_xprt)
spin_unlock(&buf->rb_mwlock); spin_unlock(&buf->rb_mwlock);
if (!mw) if (!mw)
pr_err("RPC: %s: no MWs available\n", __func__); goto out_nomws;
return mw; return mw;
out_nomws:
dprintk("RPC: %s: no MWs available\n", __func__);
schedule_delayed_work(&buf->rb_refresh_worker, 0);
/* Allow the reply handler and refresh worker to run */
cond_resched();
return NULL;
} }
void void
...@@ -978,8 +1076,6 @@ rpcrdma_put_mw(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw) ...@@ -978,8 +1076,6 @@ rpcrdma_put_mw(struct rpcrdma_xprt *r_xprt, struct rpcrdma_mw *mw)
/* /*
* Get a set of request/reply buffers. * Get a set of request/reply buffers.
*
* Reply buffer (if available) is attached to send buffer upon return.
*/ */
struct rpcrdma_req * struct rpcrdma_req *
rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
...@@ -998,13 +1094,13 @@ rpcrdma_buffer_get(struct rpcrdma_buffer *buffers) ...@@ -998,13 +1094,13 @@ rpcrdma_buffer_get(struct rpcrdma_buffer *buffers)
out_reqbuf: out_reqbuf:
spin_unlock(&buffers->rb_lock); spin_unlock(&buffers->rb_lock);
pr_warn("RPC: %s: out of request buffers\n", __func__); pr_warn("rpcrdma: out of request buffers (%p)\n", buffers);
return NULL; return NULL;
out_repbuf: out_repbuf:
list_add(&req->rl_free, &buffers->rb_send_bufs);
spin_unlock(&buffers->rb_lock); spin_unlock(&buffers->rb_lock);
pr_warn("RPC: %s: out of reply buffers\n", __func__); pr_warn("rpcrdma: out of reply buffers (%p)\n", buffers);
req->rl_reply = NULL; return NULL;
return req;
} }
/* /*
...@@ -1060,14 +1156,6 @@ rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep) ...@@ -1060,14 +1156,6 @@ rpcrdma_recv_buffer_put(struct rpcrdma_rep *rep)
* Wrappers for internal-use kmalloc memory registration, used by buffer code. * Wrappers for internal-use kmalloc memory registration, used by buffer code.
*/ */
void
rpcrdma_mapping_error(struct rpcrdma_mr_seg *seg)
{
dprintk("RPC: map_one: offset %p iova %llx len %zu\n",
seg->mr_offset,
(unsigned long long)seg->mr_dma, seg->mr_dmalen);
}
/** /**
* rpcrdma_alloc_regbuf - kmalloc and register memory for SEND/RECV buffers * rpcrdma_alloc_regbuf - kmalloc and register memory for SEND/RECV buffers
* @ia: controlling rpcrdma_ia * @ia: controlling rpcrdma_ia
...@@ -1150,7 +1238,7 @@ rpcrdma_ep_post(struct rpcrdma_ia *ia, ...@@ -1150,7 +1238,7 @@ rpcrdma_ep_post(struct rpcrdma_ia *ia,
if (rep) { if (rep) {
rc = rpcrdma_ep_post_recv(ia, ep, rep); rc = rpcrdma_ep_post_recv(ia, ep, rep);
if (rc) if (rc)
goto out; return rc;
req->rl_reply = NULL; req->rl_reply = NULL;
} }
...@@ -1175,10 +1263,12 @@ rpcrdma_ep_post(struct rpcrdma_ia *ia, ...@@ -1175,10 +1263,12 @@ rpcrdma_ep_post(struct rpcrdma_ia *ia,
rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail); rc = ib_post_send(ia->ri_id->qp, &send_wr, &send_wr_fail);
if (rc) if (rc)
dprintk("RPC: %s: ib_post_send returned %i\n", __func__, goto out_postsend_err;
rc); return 0;
out:
return rc; out_postsend_err:
pr_err("rpcrdma: RDMA Send ib_post_send returned %i\n", rc);
return -ENOTCONN;
} }
/* /*
...@@ -1203,11 +1293,13 @@ rpcrdma_ep_post_recv(struct rpcrdma_ia *ia, ...@@ -1203,11 +1293,13 @@ rpcrdma_ep_post_recv(struct rpcrdma_ia *ia,
DMA_BIDIRECTIONAL); DMA_BIDIRECTIONAL);
rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail); rc = ib_post_recv(ia->ri_id->qp, &recv_wr, &recv_wr_fail);
if (rc) if (rc)
dprintk("RPC: %s: ib_post_recv returned %i\n", __func__, goto out_postrecv;
rc); return 0;
return rc;
out_postrecv:
pr_err("rpcrdma: ib_post_recv returned %i\n", rc);
return -ENOTCONN;
} }
/** /**
......
...@@ -68,7 +68,6 @@ struct rpcrdma_ia { ...@@ -68,7 +68,6 @@ struct rpcrdma_ia {
struct ib_device *ri_device; struct ib_device *ri_device;
struct rdma_cm_id *ri_id; struct rdma_cm_id *ri_id;
struct ib_pd *ri_pd; struct ib_pd *ri_pd;
struct ib_mr *ri_dma_mr;
struct completion ri_done; struct completion ri_done;
int ri_async_rc; int ri_async_rc;
unsigned int ri_max_frmr_depth; unsigned int ri_max_frmr_depth;
...@@ -172,23 +171,14 @@ rdmab_to_msg(struct rpcrdma_regbuf *rb) ...@@ -172,23 +171,14 @@ rdmab_to_msg(struct rpcrdma_regbuf *rb)
* o recv buffer (posted to provider) * o recv buffer (posted to provider)
* o ib_sge (also donated to provider) * o ib_sge (also donated to provider)
* o status of reply (length, success or not) * o status of reply (length, success or not)
* o bookkeeping state to get run by tasklet (list, etc) * o bookkeeping state to get run by reply handler (list, etc)
* *
* These are allocated during initialization, per-transport instance; * These are allocated during initialization, per-transport instance.
* however, the tasklet execution list itself is global, as it should
* always be pretty short.
* *
* N of these are associated with a transport instance, and stored in * N of these are associated with a transport instance, and stored in
* struct rpcrdma_buffer. N is the max number of outstanding requests. * struct rpcrdma_buffer. N is the max number of outstanding requests.
*/ */
#define RPCRDMA_MAX_DATA_SEGS ((1 * 1024 * 1024) / PAGE_SIZE)
/* data segments + head/tail for Call + head/tail for Reply */
#define RPCRDMA_MAX_SEGS (RPCRDMA_MAX_DATA_SEGS + 4)
struct rpcrdma_buffer;
struct rpcrdma_rep { struct rpcrdma_rep {
struct ib_cqe rr_cqe; struct ib_cqe rr_cqe;
unsigned int rr_len; unsigned int rr_len;
...@@ -221,9 +211,6 @@ enum rpcrdma_frmr_state { ...@@ -221,9 +211,6 @@ enum rpcrdma_frmr_state {
}; };
struct rpcrdma_frmr { struct rpcrdma_frmr {
struct scatterlist *fr_sg;
int fr_nents;
enum dma_data_direction fr_dir;
struct ib_mr *fr_mr; struct ib_mr *fr_mr;
struct ib_cqe fr_cqe; struct ib_cqe fr_cqe;
enum rpcrdma_frmr_state fr_state; enum rpcrdma_frmr_state fr_state;
...@@ -235,18 +222,23 @@ struct rpcrdma_frmr { ...@@ -235,18 +222,23 @@ struct rpcrdma_frmr {
}; };
struct rpcrdma_fmr { struct rpcrdma_fmr {
struct ib_fmr *fmr; struct ib_fmr *fm_mr;
u64 *physaddrs; u64 *fm_physaddrs;
}; };
struct rpcrdma_mw { struct rpcrdma_mw {
struct list_head mw_list;
struct scatterlist *mw_sg;
int mw_nents;
enum dma_data_direction mw_dir;
union { union {
struct rpcrdma_fmr fmr; struct rpcrdma_fmr fmr;
struct rpcrdma_frmr frmr; struct rpcrdma_frmr frmr;
}; };
struct work_struct mw_work;
struct rpcrdma_xprt *mw_xprt; struct rpcrdma_xprt *mw_xprt;
struct list_head mw_list; u32 mw_handle;
u32 mw_length;
u64 mw_offset;
struct list_head mw_all; struct list_head mw_all;
}; };
...@@ -266,33 +258,30 @@ struct rpcrdma_mw { ...@@ -266,33 +258,30 @@ struct rpcrdma_mw {
* of iovs for send operations. The reason is that the iovs passed to * of iovs for send operations. The reason is that the iovs passed to
* ib_post_{send,recv} must not be modified until the work request * ib_post_{send,recv} must not be modified until the work request
* completes. * completes.
*
* NOTES:
* o RPCRDMA_MAX_SEGS is the max number of addressible chunk elements we
* marshal. The number needed varies depending on the iov lists that
* are passed to us, the memory registration mode we are in, and if
* physical addressing is used, the layout.
*/ */
/* Maximum number of page-sized "segments" per chunk list to be
* registered or invalidated. Must handle a Reply chunk:
*/
enum {
RPCRDMA_MAX_IOV_SEGS = 3,
RPCRDMA_MAX_DATA_SEGS = ((1 * 1024 * 1024) / PAGE_SIZE) + 1,
RPCRDMA_MAX_SEGS = RPCRDMA_MAX_DATA_SEGS +
RPCRDMA_MAX_IOV_SEGS,
};
struct rpcrdma_mr_seg { /* chunk descriptors */ struct rpcrdma_mr_seg { /* chunk descriptors */
struct rpcrdma_mw *rl_mw; /* registered MR */
u64 mr_base; /* registration result */
u32 mr_rkey; /* registration result */
u32 mr_len; /* length of chunk or segment */ u32 mr_len; /* length of chunk or segment */
int mr_nsegs; /* number of segments in chunk or 0 */
enum dma_data_direction mr_dir; /* segment mapping direction */
dma_addr_t mr_dma; /* segment mapping address */
size_t mr_dmalen; /* segment mapping length */
struct page *mr_page; /* owning page, if any */ struct page *mr_page; /* owning page, if any */
char *mr_offset; /* kva if no page, else offset */ char *mr_offset; /* kva if no page, else offset */
}; };
#define RPCRDMA_MAX_IOVS (2) #define RPCRDMA_MAX_IOVS (2)
struct rpcrdma_buffer;
struct rpcrdma_req { struct rpcrdma_req {
struct list_head rl_free; struct list_head rl_free;
unsigned int rl_niovs; unsigned int rl_niovs;
unsigned int rl_nchunks;
unsigned int rl_connect_cookie; unsigned int rl_connect_cookie;
struct rpc_task *rl_task; struct rpc_task *rl_task;
struct rpcrdma_buffer *rl_buffer; struct rpcrdma_buffer *rl_buffer;
...@@ -300,12 +289,13 @@ struct rpcrdma_req { ...@@ -300,12 +289,13 @@ struct rpcrdma_req {
struct ib_sge rl_send_iov[RPCRDMA_MAX_IOVS]; struct ib_sge rl_send_iov[RPCRDMA_MAX_IOVS];
struct rpcrdma_regbuf *rl_rdmabuf; struct rpcrdma_regbuf *rl_rdmabuf;
struct rpcrdma_regbuf *rl_sendbuf; struct rpcrdma_regbuf *rl_sendbuf;
struct rpcrdma_mr_seg rl_segments[RPCRDMA_MAX_SEGS];
struct rpcrdma_mr_seg *rl_nextseg;
struct ib_cqe rl_cqe; struct ib_cqe rl_cqe;
struct list_head rl_all; struct list_head rl_all;
bool rl_backchannel; bool rl_backchannel;
struct list_head rl_registered; /* registered segments */
struct rpcrdma_mr_seg rl_segments[RPCRDMA_MAX_SEGS];
}; };
static inline struct rpcrdma_req * static inline struct rpcrdma_req *
...@@ -341,6 +331,11 @@ struct rpcrdma_buffer { ...@@ -341,6 +331,11 @@ struct rpcrdma_buffer {
struct list_head rb_allreqs; struct list_head rb_allreqs;
u32 rb_bc_max_requests; u32 rb_bc_max_requests;
spinlock_t rb_recovery_lock; /* protect rb_stale_mrs */
struct list_head rb_stale_mrs;
struct delayed_work rb_recovery_worker;
struct delayed_work rb_refresh_worker;
}; };
#define rdmab_to_ia(b) (&container_of((b), struct rpcrdma_xprt, rx_buf)->rx_ia) #define rdmab_to_ia(b) (&container_of((b), struct rpcrdma_xprt, rx_buf)->rx_ia)
...@@ -387,6 +382,9 @@ struct rpcrdma_stats { ...@@ -387,6 +382,9 @@ struct rpcrdma_stats {
unsigned long bad_reply_count; unsigned long bad_reply_count;
unsigned long nomsg_call_count; unsigned long nomsg_call_count;
unsigned long bcall_count; unsigned long bcall_count;
unsigned long mrs_recovered;
unsigned long mrs_orphaned;
unsigned long mrs_allocated;
}; };
/* /*
...@@ -395,23 +393,25 @@ struct rpcrdma_stats { ...@@ -395,23 +393,25 @@ struct rpcrdma_stats {
struct rpcrdma_xprt; struct rpcrdma_xprt;
struct rpcrdma_memreg_ops { struct rpcrdma_memreg_ops {
int (*ro_map)(struct rpcrdma_xprt *, int (*ro_map)(struct rpcrdma_xprt *,
struct rpcrdma_mr_seg *, int, bool); struct rpcrdma_mr_seg *, int, bool,
struct rpcrdma_mw **);
void (*ro_unmap_sync)(struct rpcrdma_xprt *, void (*ro_unmap_sync)(struct rpcrdma_xprt *,
struct rpcrdma_req *); struct rpcrdma_req *);
void (*ro_unmap_safe)(struct rpcrdma_xprt *, void (*ro_unmap_safe)(struct rpcrdma_xprt *,
struct rpcrdma_req *, bool); struct rpcrdma_req *, bool);
void (*ro_recover_mr)(struct rpcrdma_mw *);
int (*ro_open)(struct rpcrdma_ia *, int (*ro_open)(struct rpcrdma_ia *,
struct rpcrdma_ep *, struct rpcrdma_ep *,
struct rpcrdma_create_data_internal *); struct rpcrdma_create_data_internal *);
size_t (*ro_maxpages)(struct rpcrdma_xprt *); size_t (*ro_maxpages)(struct rpcrdma_xprt *);
int (*ro_init)(struct rpcrdma_xprt *); int (*ro_init_mr)(struct rpcrdma_ia *,
void (*ro_destroy)(struct rpcrdma_buffer *); struct rpcrdma_mw *);
void (*ro_release_mr)(struct rpcrdma_mw *);
const char *ro_displayname; const char *ro_displayname;
}; };
extern const struct rpcrdma_memreg_ops rpcrdma_fmr_memreg_ops; extern const struct rpcrdma_memreg_ops rpcrdma_fmr_memreg_ops;
extern const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops; extern const struct rpcrdma_memreg_ops rpcrdma_frwr_memreg_ops;
extern const struct rpcrdma_memreg_ops rpcrdma_physical_memreg_ops;
/* /*
* RPCRDMA transport -- encapsulates the structures above for * RPCRDMA transport -- encapsulates the structures above for
...@@ -446,6 +446,8 @@ extern int xprt_rdma_pad_optimize; ...@@ -446,6 +446,8 @@ extern int xprt_rdma_pad_optimize;
*/ */
int rpcrdma_ia_open(struct rpcrdma_xprt *, struct sockaddr *, int); int rpcrdma_ia_open(struct rpcrdma_xprt *, struct sockaddr *, int);
void rpcrdma_ia_close(struct rpcrdma_ia *); void rpcrdma_ia_close(struct rpcrdma_ia *);
bool frwr_is_supported(struct rpcrdma_ia *);
bool fmr_is_supported(struct rpcrdma_ia *);
/* /*
* Endpoint calls - xprtrdma/verbs.c * Endpoint calls - xprtrdma/verbs.c
...@@ -477,6 +479,8 @@ void rpcrdma_buffer_put(struct rpcrdma_req *); ...@@ -477,6 +479,8 @@ void rpcrdma_buffer_put(struct rpcrdma_req *);
void rpcrdma_recv_buffer_get(struct rpcrdma_req *); void rpcrdma_recv_buffer_get(struct rpcrdma_req *);
void rpcrdma_recv_buffer_put(struct rpcrdma_rep *); void rpcrdma_recv_buffer_put(struct rpcrdma_rep *);
void rpcrdma_defer_mr_recovery(struct rpcrdma_mw *);
struct rpcrdma_regbuf *rpcrdma_alloc_regbuf(struct rpcrdma_ia *, struct rpcrdma_regbuf *rpcrdma_alloc_regbuf(struct rpcrdma_ia *,
size_t, gfp_t); size_t, gfp_t);
void rpcrdma_free_regbuf(struct rpcrdma_ia *, void rpcrdma_free_regbuf(struct rpcrdma_ia *,
...@@ -484,9 +488,6 @@ void rpcrdma_free_regbuf(struct rpcrdma_ia *, ...@@ -484,9 +488,6 @@ void rpcrdma_free_regbuf(struct rpcrdma_ia *,
int rpcrdma_ep_post_extra_recv(struct rpcrdma_xprt *, unsigned int); int rpcrdma_ep_post_extra_recv(struct rpcrdma_xprt *, unsigned int);
int frwr_alloc_recovery_wq(void);
void frwr_destroy_recovery_wq(void);
int rpcrdma_alloc_wq(void); int rpcrdma_alloc_wq(void);
void rpcrdma_destroy_wq(void); void rpcrdma_destroy_wq(void);
...@@ -494,45 +495,12 @@ void rpcrdma_destroy_wq(void); ...@@ -494,45 +495,12 @@ void rpcrdma_destroy_wq(void);
* Wrappers for chunk registration, shared by read/write chunk code. * Wrappers for chunk registration, shared by read/write chunk code.
*/ */
void rpcrdma_mapping_error(struct rpcrdma_mr_seg *);
static inline enum dma_data_direction static inline enum dma_data_direction
rpcrdma_data_dir(bool writing) rpcrdma_data_dir(bool writing)
{ {
return writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE; return writing ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
} }
static inline void
rpcrdma_map_one(struct ib_device *device, struct rpcrdma_mr_seg *seg,
enum dma_data_direction direction)
{
seg->mr_dir = direction;
seg->mr_dmalen = seg->mr_len;
if (seg->mr_page)
seg->mr_dma = ib_dma_map_page(device,
seg->mr_page, offset_in_page(seg->mr_offset),
seg->mr_dmalen, seg->mr_dir);
else
seg->mr_dma = ib_dma_map_single(device,
seg->mr_offset,
seg->mr_dmalen, seg->mr_dir);
if (ib_dma_mapping_error(device, seg->mr_dma))
rpcrdma_mapping_error(seg);
}
static inline void
rpcrdma_unmap_one(struct ib_device *device, struct rpcrdma_mr_seg *seg)
{
if (seg->mr_page)
ib_dma_unmap_page(device,
seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
else
ib_dma_unmap_single(device,
seg->mr_dma, seg->mr_dmalen, seg->mr_dir);
}
/* /*
* RPC/RDMA connection management calls - xprtrdma/rpc_rdma.c * RPC/RDMA connection management calls - xprtrdma/rpc_rdma.c
*/ */
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册
反馈
建议
客服 返回
顶部