提交 8e8ec596 编写于 作者: K Kim Phillips 提交者: Herbert Xu

crypto: caam - Add support for the Freescale SEC4/CAAM

The SEC4 supercedes the SEC2.x/3.x as Freescale's
Integrated Security Engine.  Its programming model is
incompatible with all prior versions of the SEC (talitos).

The SEC4 is also known as the Cryptographic Accelerator
and Assurance Module (CAAM); this driver is named caam.

This initial submission does not include support for Data Path
mode operation - AEAD descriptors are submitted via the job
ring interface, while the Queue Interface (QI) is enabled
for use by others.  Only AEAD algorithms are implemented
at this time, for use with IPsec.

Many thanks to the Freescale STC team for their contributions
to this driver.
Signed-off-by: NSteve Cornelius <sec@pobox.com>
Signed-off-by: NKim Phillips <kim.phillips@freescale.com>
Signed-off-by: NHerbert Xu <herbert@gondor.apana.org.au>
上级 60af520c
=====================================================================
SEC 4 Device Tree Binding
Copyright (C) 2008-2011 Freescale Semiconductor Inc.
CONTENTS
-Overview
-SEC 4 Node
-Job Ring Node
-Run Time Integrity Check (RTIC) Node
-Run Time Integrity Check (RTIC) Memory Node
-Secure Non-Volatile Storage (SNVS) Node
-Full Example
NOTE: the SEC 4 is also known as Freescale's Cryptographic Accelerator
Accelerator and Assurance Module (CAAM).
=====================================================================
Overview
DESCRIPTION
SEC 4 h/w can process requests from 2 types of sources.
1. DPAA Queue Interface (HW interface between Queue Manager & SEC 4).
2. Job Rings (HW interface between cores & SEC 4 registers).
High Speed Data Path Configuration:
HW interface between QM & SEC 4 and also BM & SEC 4, on DPAA-enabled parts
such as the P4080. The number of simultaneous dequeues the QI can make is
equal to the number of Descriptor Controller (DECO) engines in a particular
SEC version. E.g., the SEC 4.0 in the P4080 has 5 DECOs and can thus
dequeue from 5 subportals simultaneously.
Job Ring Data Path Configuration:
Each JR is located on a separate 4k page, they may (or may not) be made visible
in the memory partition devoted to a particular core. The P4080 has 4 JRs, so
up to 4 JRs can be configured; and all 4 JRs process requests in parallel.
=====================================================================
P4080 SEC 4 Node
Description
Node defines the base address of the SEC 4 block.
This block specifies the address range of all global
configuration registers for the SEC 4 block. It
also receives interrupts from the Run Time Integrity Check
(RTIC) function within the SEC 4 block.
PROPERTIES
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,p4080-sec4.0","fsl,sec-4.0"
- #address-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing physical addresses in child nodes.
- #size-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing the size of physical addresses in
child nodes.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical
address and length of the SEC4.0 configuration registers.
registers
- ranges
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
range of the SEC 4.0 register space (-SNVS not included). A
triplet that includes the child address, parent address, &
length.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
Note: All other standard properties (see the ePAPR) are allowed
but are optional.
EXAMPLE
crypto@300000 {
compatible = "fsl,p4080-sec4.0", "fsl,sec4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
};
=====================================================================
P4080 Job Ring (JR) Node
Child of the crypto node defines data processing interface to SEC 4
across the peripheral bus for purposes of processing
cryptographic descriptors. The specified address
range can be made visible to one (or more) cores.
The interrupt defined for this node is controlled within
the address range of this node.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,p4080-sec4.0-job-ring","fsl,sec4.0-job-ring"
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: Specifies a two JR parameters: an offset from
the parent physical address and the length the JR registers.
- fsl,liodn
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the LIODN to be used in conjunction with
the ppid-to-liodn table that specifies the PPID to LIODN mapping.
Needed if the PAMU is used. Value is a 12 bit value
where value is a LIODN ID for this JR. This property is
normally set by boot firmware.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
EXAMPLE
jr@1000 {
compatible = "fsl,p4080-sec4.0-job-ring",
"fsl,sec4.0-job-ring";
reg = <0x1000 0x1000>;
fsl,liodn = <0x081>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
=====================================================================
P4080 Run Time Integrity Check (RTIC) Node
Child node of the crypto node. Defines a register space that
contains up to 5 sets of addresses and their lengths (sizes) that
will be checked at run time. After an initial hash result is
calculated, these addresses are checked by HW to monitor any
change. If any memory is modified, a Security Violation is
triggered (see SNVS definition).
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,p4080-sec4.0-rtic","fsl,sec4.0-rtic".
- #address-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing physical addresses in child nodes. Must
have a value of 1.
- #size-cells
Usage: required
Value type: <u32>
Definition: A standard property. Defines the number of cells
for representing the size of physical addresses in
child nodes. Must have a value of 1.
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies a two parameters:
an offset from the parent physical address and the length
the SEC4 registers.
- ranges
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical address
range of the SEC 4 register space (-SNVS not included). A
triplet that includes the child address, parent address, &
length.
EXAMPLE
rtic@6000 {
compatible = "fsl,p4080-sec4.0-rtic",
"fsl,sec4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
};
=====================================================================
P4080 Run Time Integrity Check (RTIC) Memory Node
A child node that defines individual RTIC memory regions that are used to
perform run-time integrity check of memory areas that should not modified.
The node defines a register that contains the memory address &
length (combined) and a second register that contains the hash result
in big endian format.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,p4080-sec4.0-rtic-memory","fsl,sec4.0-rtic-memory".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies two parameters:
an offset from the parent physical address and the length:
1. The location of the RTIC memory address & length registers.
2. The location RTIC hash result.
- fsl,rtic-region
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the HW address (36 bit address) for this region
followed by the length of the HW partition to be checked;
the address is represented as a 64 bit quantity followed
by a 32 bit length.
- fsl,liodn
Usage: optional-but-recommended
Value type: <prop-encoded-array>
Definition:
Specifies the LIODN to be used in conjunction with
the ppid-to-liodn table that specifies the PPID to LIODN
mapping. Needed if the PAMU is used. Value is a 12 bit value
where value is a LIODN ID for this RTIC memory region. This
property is normally set by boot firmware.
EXAMPLE
rtic-a@0 {
compatible = "fsl,p4080-sec4.0-rtic-memory",
"fsl,sec4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
fsl,liodn = <0x03c>;
fsl,rtic-region = <0x12345678 0x12345678 0x12345678>;
};
=====================================================================
P4080 Secure Non-Volatile Storage (SNVS) Node
Node defines address range and the associated
interrupt for the SNVS function. This function
monitors security state information & reports
security violations.
- compatible
Usage: required
Value type: <string>
Definition: Must include "fsl,p4080-sec4.0-mon", "fsl,sec4.0-mon".
- reg
Usage: required
Value type: <prop-encoded-array>
Definition: A standard property. Specifies the physical
address and length of the SEC4 configuration
registers.
- interrupts
Usage: required
Value type: <prop_encoded-array>
Definition: Specifies the interrupts generated by this
device. The value of the interrupts property
consists of one interrupt specifier. The format
of the specifier is defined by the binding document
describing the node's interrupt parent.
- interrupt-parent
Usage: (required if interrupt property is defined)
Value type: <phandle>
Definition: A single <phandle> value that points
to the interrupt parent to which the child domain
is being mapped.
EXAMPLE
sec_mon@314000 {
compatible = "fsl,p4080-sec4.0-mon", "fsl,sec4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
=====================================================================
FULL EXAMPLE
crypto: crypto@300000 {
compatible = "fsl,p4080-sec4.0", "fsl,sec4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
sec_jr0: jr@1000 {
compatible = "fsl,p4080-sec4.0-job-ring",
"fsl,sec4.0-job-ring";
reg = <0x1000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
sec_jr1: jr@2000 {
compatible = "fsl,p4080-sec4.0-job-ring",
"fsl,sec4.0-job-ring";
reg = <0x2000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <89 2>;
};
sec_jr2: jr@3000 {
compatible = "fsl,p4080-sec4.0-job-ring",
"fsl,sec4.0-job-ring";
reg = <0x3000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <90 2>;
};
sec_jr3: jr@4000 {
compatible = "fsl,p4080-sec4.0-job-ring",
"fsl,sec4.0-job-ring";
reg = <0x4000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <91 2>;
};
rtic@6000 {
compatible = "fsl,p4080-sec4.0-rtic",
"fsl,sec4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
rtic_a: rtic-a@0 {
compatible = "fsl,p4080-sec4.0-rtic-memory",
"fsl,sec4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
};
rtic_b: rtic-b@20 {
compatible = "fsl,p4080-sec4.0-rtic-memory",
"fsl,sec4.0-rtic-memory";
reg = <0x20 0x20 0x200 0x80>;
};
rtic_c: rtic-c@40 {
compatible = "fsl,p4080-sec4.0-rtic-memory",
"fsl,sec4.0-rtic-memory";
reg = <0x40 0x20 0x300 0x80>;
};
rtic_d: rtic-d@60 {
compatible = "fsl,p4080-sec4.0-rtic-memory",
"fsl,sec4.0-rtic-memory";
reg = <0x60 0x20 0x500 0x80>;
};
};
};
sec_mon: sec_mon@314000 {
compatible = "fsl,p4080-sec4.0-mon", "fsl,sec4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
=====================================================================
/*
* P4080DS Device Tree Source
*
* Copyright 2009 Freescale Semiconductor Inc.
* Copyright 2009-2011 Freescale Semiconductor Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
......@@ -33,6 +33,17 @@
dma1 = &dma1;
sdhc = &sdhc;
crypto = &crypto;
sec_jr0 = &sec_jr0;
sec_jr1 = &sec_jr1;
sec_jr2 = &sec_jr2;
sec_jr3 = &sec_jr3;
rtic_a = &rtic_a;
rtic_b = &rtic_b;
rtic_c = &rtic_c;
rtic_d = &rtic_d;
sec_mon = &sec_mon;
rio0 = &rapidio0;
};
......@@ -410,6 +421,88 @@
dr_mode = "host";
phy_type = "ulpi";
};
crypto: crypto@300000 {
compatible = "fsl,p4080-sec4.0", "fsl,sec4.0";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x300000 0x10000>;
ranges = <0 0x300000 0x10000>;
interrupt-parent = <&mpic>;
interrupts = <92 2>;
sec_jr0: jr@1000 {
compatible = "fsl,p4080-sec4.0-job-ring",
"fsl,sec4.0-job-ring";
reg = <0x1000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <88 2>;
};
sec_jr1: jr@2000 {
compatible = "fsl,p4080-sec4.0-job-ring",
"fsl,sec4.0-job-ring";
reg = <0x2000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <89 2>;
};
sec_jr2: jr@3000 {
compatible = "fsl,p4080-sec4.0-job-ring",
"fsl,sec4.0-job-ring";
reg = <0x3000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <90 2>;
};
sec_jr3: jr@4000 {
compatible = "fsl,p4080-sec4.0-job-ring",
"fsl,sec4.0-job-ring";
reg = <0x4000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <91 2>;
};
rtic@6000 {
compatible = "fsl,p4080-sec4.0-rtic",
"fsl,sec4.0-rtic";
#address-cells = <1>;
#size-cells = <1>;
reg = <0x6000 0x100>;
ranges = <0x0 0x6100 0xe00>;
rtic_a: rtic-a@0 {
compatible = "fsl,p4080-sec4.0-rtic-memory",
"fsl,sec4.0-rtic-memory";
reg = <0x00 0x20 0x100 0x80>;
};
rtic_b: rtic-b@20 {
compatible = "fsl,p4080-sec4.0-rtic-memory",
"fsl,sec4.0-rtic-memory";
reg = <0x20 0x20 0x200 0x80>;
};
rtic_c: rtic-c@40 {
compatible = "fsl,p4080-sec4.0-rtic-memory",
"fsl,sec4.0-rtic-memory";
reg = <0x40 0x20 0x300 0x80>;
};
rtic_d: rtic-d@60 {
compatible = "fsl,p4080-sec4.0-rtic-memory",
"fsl,sec4.0-rtic-memory";
reg = <0x60 0x20 0x500 0x80>;
};
};
};
sec_mon: sec_mon@314000 {
compatible = "fsl,p4080-sec4.0-mon", "fsl,sec4.0-mon";
reg = <0x314000 0x1000>;
interrupt-parent = <&mpic>;
interrupts = <93 2>;
};
};
rapidio0: rapidio@ffe0c0000 {
......
......@@ -200,6 +200,8 @@ config CRYPTO_DEV_HIFN_795X_RNG
Select this option if you want to enable the random number generator
on the HIFN 795x crypto adapters.
source drivers/crypto/caam/Kconfig
config CRYPTO_DEV_TALITOS
tristate "Talitos Freescale Security Engine (SEC)"
select CRYPTO_ALGAPI
......
......@@ -6,6 +6,7 @@ n2_crypto-y := n2_core.o n2_asm.o
obj-$(CONFIG_CRYPTO_DEV_HIFN_795X) += hifn_795x.o
obj-$(CONFIG_CRYPTO_DEV_MV_CESA) += mv_cesa.o
obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM) += caam/
obj-$(CONFIG_CRYPTO_DEV_IXP4XX) += ixp4xx_crypto.o
obj-$(CONFIG_CRYPTO_DEV_PPC4XX) += amcc/
obj-$(CONFIG_CRYPTO_DEV_OMAP_SHAM) += omap-sham.o
......
config CRYPTO_DEV_FSL_CAAM
tristate "Freescale CAAM-Multicore driver backend"
depends on FSL_SOC
help
Enables the driver module for Freescale's Cryptographic Accelerator
and Assurance Module (CAAM), also known as the SEC version 4 (SEC4).
This module adds a job ring operation interface, and configures h/w
to operate as a DPAA component automatically, depending
on h/w feature availability.
To compile this driver as a module, choose M here: the module
will be called caam.
config CRYPTO_DEV_FSL_CAAM_RINGSIZE
int "Job Ring size"
depends on CRYPTO_DEV_FSL_CAAM
range 2 9
default "9"
help
Select size of Job Rings as a power of 2, within the
range 2-9 (ring size 4-512).
Examples:
2 => 4
3 => 8
4 => 16
5 => 32
6 => 64
7 => 128
8 => 256
9 => 512
config CRYPTO_DEV_FSL_CAAM_INTC
bool "Job Ring interrupt coalescing"
depends on CRYPTO_DEV_FSL_CAAM
default y
help
Enable the Job Ring's interrupt coalescing feature.
config CRYPTO_DEV_FSL_CAAM_INTC_COUNT_THLD
int "Job Ring interrupt coalescing count threshold"
depends on CRYPTO_DEV_FSL_CAAM_INTC
range 1 255
default 255
help
Select number of descriptor completions to queue before
raising an interrupt, in the range 1-255. Note that a selection
of 1 functionally defeats the coalescing feature, and a selection
equal or greater than the job ring size will force timeouts.
config CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD
int "Job Ring interrupt coalescing timer threshold"
depends on CRYPTO_DEV_FSL_CAAM_INTC
range 1 65535
default 2048
help
Select number of bus clocks/64 to timeout in the case that one or
more descriptor completions are queued without reaching the count
threshold. Range is 1-65535.
config CRYPTO_DEV_FSL_CAAM_CRYPTO_API
tristate "Register algorithm implementations with the Crypto API"
depends on CRYPTO_DEV_FSL_CAAM
default y
select CRYPTO_ALGAPI
select CRYPTO_AUTHENC
help
Selecting this will offload crypto for users of the
scatterlist crypto API (such as the linux native IPSec
stack) to the SEC4 via job ring.
To compile this as a module, choose M here: the module
will be called caamalg.
#
# Makefile for the CAAM backend and dependent components
#
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM) += caam.o
obj-$(CONFIG_CRYPTO_DEV_FSL_CAAM_CRYPTO_API) += caamalg.o
caam-objs := ctrl.o jr.o error.o
此差异已折叠。
/*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#ifndef CAAM_COMPAT_H
#define CAAM_COMPAT_H
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/device.h>
#include <linux/interrupt.h>
#include <linux/crypto.h>
#include <linux/hw_random.h>
#include <linux/of_platform.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/spinlock.h>
#include <linux/rtnetlink.h>
#include <linux/in.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/debugfs.h>
#include <linux/circ_buf.h>
#include <net/xfrm.h>
#include <crypto/algapi.h>
#include <crypto/aes.h>
#include <crypto/des.h>
#include <crypto/sha.h>
#include <crypto/aead.h>
#include <crypto/authenc.h>
#include <crypto/scatterwalk.h>
#endif /* !defined(CAAM_COMPAT_H) */
/*
* CAAM control-plane driver backend
* Controller-level driver, kernel property detection, initialization
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "jr.h"
static int caam_remove(struct platform_device *pdev)
{
struct device *ctrldev;
struct caam_drv_private *ctrlpriv;
struct caam_drv_private_jr *jrpriv;
struct caam_full __iomem *topregs;
int ring, ret = 0;
ctrldev = &pdev->dev;
ctrlpriv = dev_get_drvdata(ctrldev);
topregs = (struct caam_full __iomem *)ctrlpriv->ctrl;
/* shut down JobRs */
for (ring = 0; ring < ctrlpriv->total_jobrs; ring++) {
ret |= caam_jr_shutdown(ctrlpriv->jrdev[ring]);
jrpriv = dev_get_drvdata(ctrlpriv->jrdev[ring]);
irq_dispose_mapping(jrpriv->irq);
}
/* Shut down debug views */
#ifdef CONFIG_DEBUG_FS
debugfs_remove_recursive(ctrlpriv->dfs_root);
#endif
/* Unmap controller region */
iounmap(&topregs->ctrl);
kfree(ctrlpriv->jrdev);
kfree(ctrlpriv);
return ret;
}
/* Probe routine for CAAM top (controller) level */
static int caam_probe(struct platform_device *pdev,
const struct of_device_id *devmatch)
{
int d, ring, rspec;
struct device *dev;
struct device_node *nprop, *np;
struct caam_ctrl __iomem *ctrl;
struct caam_full __iomem *topregs;
struct caam_drv_private *ctrlpriv;
struct caam_perfmon *perfmon;
struct caam_deco **deco;
u32 deconum;
ctrlpriv = kzalloc(sizeof(struct caam_drv_private), GFP_KERNEL);
if (!ctrlpriv)
return -ENOMEM;
dev = &pdev->dev;
dev_set_drvdata(dev, ctrlpriv);
ctrlpriv->pdev = pdev;
nprop = pdev->dev.of_node;
/* Get configuration properties from device tree */
/* First, get register page */
ctrl = of_iomap(nprop, 0);
if (ctrl == NULL) {
dev_err(dev, "caam: of_iomap() failed\n");
return -ENOMEM;
}
ctrlpriv->ctrl = (struct caam_ctrl __force *)ctrl;
/* topregs used to derive pointers to CAAM sub-blocks only */
topregs = (struct caam_full __iomem *)ctrl;
/* Get the IRQ of the controller (for security violations only) */
ctrlpriv->secvio_irq = of_irq_to_resource(nprop, 0, NULL);
/*
* Enable DECO watchdogs and, if this is a PHYS_ADDR_T_64BIT kernel,
* 36-bit pointers in master configuration register
*/
setbits32(&topregs->ctrl.mcr, MCFGR_WDENABLE |
(sizeof(dma_addr_t) == sizeof(u64) ? MCFGR_LONG_PTR : 0));
if (sizeof(dma_addr_t) == sizeof(u64))
dma_set_mask(dev, DMA_BIT_MASK(36));
/* Find out how many DECOs are present */
deconum = (rd_reg64(&topregs->ctrl.perfmon.cha_num) &
CHA_NUM_DECONUM_MASK) >> CHA_NUM_DECONUM_SHIFT;
ctrlpriv->deco = kmalloc(deconum * sizeof(struct caam_deco *),
GFP_KERNEL);
deco = (struct caam_deco __force **)&topregs->deco;
for (d = 0; d < deconum; d++)
ctrlpriv->deco[d] = deco[d];
/*
* Detect and enable JobRs
* First, find out how many ring spec'ed, allocate references
* for all, then go probe each one.
*/
rspec = 0;
for_each_compatible_node(np, NULL, "fsl,sec4.0-job-ring")
rspec++;
ctrlpriv->jrdev = kzalloc(sizeof(struct device *) * rspec, GFP_KERNEL);
if (ctrlpriv->jrdev == NULL) {
iounmap(&topregs->ctrl);
return -ENOMEM;
}
ring = 0;
ctrlpriv->total_jobrs = 0;
for_each_compatible_node(np, NULL, "fsl,sec4.0-job-ring") {
caam_jr_probe(pdev, np, ring);
ctrlpriv->total_jobrs++;
ring++;
}
/* Check to see if QI present. If so, enable */
ctrlpriv->qi_present = !!(rd_reg64(&topregs->ctrl.perfmon.comp_parms) &
CTPR_QI_MASK);
if (ctrlpriv->qi_present) {
ctrlpriv->qi = (struct caam_queue_if __force *)&topregs->qi;
/* This is all that's required to physically enable QI */
wr_reg32(&topregs->qi.qi_control_lo, QICTL_DQEN);
}
/* If no QI and no rings specified, quit and go home */
if ((!ctrlpriv->qi_present) && (!ctrlpriv->total_jobrs)) {
dev_err(dev, "no queues configured, terminating\n");
caam_remove(pdev);
return -ENOMEM;
}
/* NOTE: RTIC detection ought to go here, around Si time */
/* Initialize queue allocator lock */
spin_lock_init(&ctrlpriv->jr_alloc_lock);
/* Report "alive" for developer to see */
dev_info(dev, "device ID = 0x%016llx\n",
rd_reg64(&topregs->ctrl.perfmon.caam_id));
dev_info(dev, "job rings = %d, qi = %d\n",
ctrlpriv->total_jobrs, ctrlpriv->qi_present);
#ifdef CONFIG_DEBUG_FS
/*
* FIXME: needs better naming distinction, as some amalgamation of
* "caam" and nprop->full_name. The OF name isn't distinctive,
* but does separate instances
*/
perfmon = (struct caam_perfmon __force *)&ctrl->perfmon;
ctrlpriv->dfs_root = debugfs_create_dir("caam", NULL);
ctrlpriv->ctl = debugfs_create_dir("ctl", ctrlpriv->dfs_root);
/* Controller-level - performance monitor counters */
ctrlpriv->ctl_rq_dequeued =
debugfs_create_u64("rq_dequeued",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->req_dequeued);
ctrlpriv->ctl_ob_enc_req =
debugfs_create_u64("ob_rq_encrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_req);
ctrlpriv->ctl_ib_dec_req =
debugfs_create_u64("ib_rq_decrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_req);
ctrlpriv->ctl_ob_enc_bytes =
debugfs_create_u64("ob_bytes_encrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_bytes);
ctrlpriv->ctl_ob_prot_bytes =
debugfs_create_u64("ob_bytes_protected",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_prot_bytes);
ctrlpriv->ctl_ib_dec_bytes =
debugfs_create_u64("ib_bytes_decrypted",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_bytes);
ctrlpriv->ctl_ib_valid_bytes =
debugfs_create_u64("ib_bytes_validated",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_valid_bytes);
/* Controller level - global status values */
ctrlpriv->ctl_faultaddr =
debugfs_create_u64("fault_addr",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultaddr);
ctrlpriv->ctl_faultdetail =
debugfs_create_u32("fault_detail",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultdetail);
ctrlpriv->ctl_faultstatus =
debugfs_create_u32("fault_status",
S_IFCHR | S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->status);
/* Internal covering keys (useful in non-secure mode only) */
ctrlpriv->ctl_kek_wrap.data = &ctrlpriv->ctrl->kek[0];
ctrlpriv->ctl_kek_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_kek = debugfs_create_blob("kek",
S_IFCHR | S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_kek_wrap);
ctrlpriv->ctl_tkek_wrap.data = &ctrlpriv->ctrl->tkek[0];
ctrlpriv->ctl_tkek_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_tkek = debugfs_create_blob("tkek",
S_IFCHR | S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_tkek_wrap);
ctrlpriv->ctl_tdsk_wrap.data = &ctrlpriv->ctrl->tdsk[0];
ctrlpriv->ctl_tdsk_wrap.size = KEK_KEY_SIZE * sizeof(u32);
ctrlpriv->ctl_tdsk = debugfs_create_blob("tdsk",
S_IFCHR | S_IRUSR |
S_IRGRP | S_IROTH,
ctrlpriv->ctl,
&ctrlpriv->ctl_tdsk_wrap);
#endif
return 0;
}
static struct of_device_id caam_match[] = {
{
.compatible = "fsl,sec4.0",
},
{},
};
MODULE_DEVICE_TABLE(of, caam_match);
static struct of_platform_driver caam_driver = {
.driver = {
.name = "caam",
.owner = THIS_MODULE,
.of_match_table = caam_match,
},
.probe = caam_probe,
.remove = __devexit_p(caam_remove),
};
static int __init caam_base_init(void)
{
return of_register_platform_driver(&caam_driver);
}
static void __exit caam_base_exit(void)
{
return of_unregister_platform_driver(&caam_driver);
}
module_init(caam_base_init);
module_exit(caam_base_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("FSL CAAM request backend");
MODULE_AUTHOR("Freescale Semiconductor - NMG/STC");
此差异已折叠。
/*
* caam descriptor construction helper functions
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include "desc.h"
#define IMMEDIATE (1 << 23)
#define CAAM_CMD_SZ sizeof(u32)
#define CAAM_PTR_SZ sizeof(dma_addr_t)
#ifdef DEBUG
#define PRINT_POS do { printk(KERN_DEBUG "%02d: %s\n", desc_len(desc),\
&__func__[sizeof("append")]); } while (0)
#else
#define PRINT_POS
#endif
#define DISABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_DISABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
#define ENABLE_AUTO_INFO_FIFO (IMMEDIATE | LDST_CLASS_DECO | \
LDST_SRCDST_WORD_DECOCTRL | \
(LDOFF_ENABLE_AUTO_NFIFO << LDST_OFFSET_SHIFT))
static inline int desc_len(u32 *desc)
{
return *desc & HDR_DESCLEN_MASK;
}
static inline int desc_bytes(void *desc)
{
return desc_len(desc) * CAAM_CMD_SZ;
}
static inline u32 *desc_end(u32 *desc)
{
return desc + desc_len(desc);
}
static inline void *sh_desc_pdb(u32 *desc)
{
return desc + 1;
}
static inline void init_desc(u32 *desc, u32 options)
{
*desc = options | HDR_ONE | 1;
}
static inline void init_sh_desc(u32 *desc, u32 options)
{
PRINT_POS;
init_desc(desc, CMD_SHARED_DESC_HDR | options);
}
static inline void init_sh_desc_pdb(u32 *desc, u32 options, size_t pdb_bytes)
{
u32 pdb_len = pdb_bytes / CAAM_CMD_SZ + 1;
init_sh_desc(desc, ((pdb_len << HDR_START_IDX_SHIFT) + pdb_len) |
options);
}
static inline void init_job_desc(u32 *desc, u32 options)
{
init_desc(desc, CMD_DESC_HDR | options);
}
static inline void append_ptr(u32 *desc, dma_addr_t ptr)
{
dma_addr_t *offset = (dma_addr_t *)desc_end(desc);
*offset = ptr;
(*desc) += CAAM_PTR_SZ / CAAM_CMD_SZ;
}
static inline void init_job_desc_shared(u32 *desc, dma_addr_t ptr, int len,
u32 options)
{
PRINT_POS;
init_job_desc(desc, HDR_SHARED | options |
(len << HDR_START_IDX_SHIFT));
append_ptr(desc, ptr);
}
static inline void append_data(u32 *desc, void *data, int len)
{
u32 *offset = desc_end(desc);
if (len) /* avoid sparse warning: memcpy with byte count of 0 */
memcpy(offset, data, len);
(*desc) += (len + CAAM_CMD_SZ - 1) / CAAM_CMD_SZ;
}
static inline void append_cmd(u32 *desc, u32 command)
{
u32 *cmd = desc_end(desc);
*cmd = command;
(*desc)++;
}
static inline void append_cmd_ptr(u32 *desc, dma_addr_t ptr, int len,
u32 command)
{
append_cmd(desc, command | len);
append_ptr(desc, ptr);
}
static inline void append_cmd_data(u32 *desc, void *data, int len,
u32 command)
{
append_cmd(desc, command | IMMEDIATE | len);
append_data(desc, data, len);
}
static inline u32 *append_jump(u32 *desc, u32 options)
{
u32 *cmd = desc_end(desc);
PRINT_POS;
append_cmd(desc, CMD_JUMP | options);
return cmd;
}
static inline void set_jump_tgt_here(u32 *desc, u32 *jump_cmd)
{
*jump_cmd = *jump_cmd | (desc_len(desc) - (jump_cmd - desc));
}
#define APPEND_CMD(cmd, op) \
static inline void append_##cmd(u32 *desc, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | options); \
}
APPEND_CMD(operation, OPERATION)
APPEND_CMD(move, MOVE)
#define APPEND_CMD_LEN(cmd, op) \
static inline void append_##cmd(u32 *desc, unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | len | options); \
}
APPEND_CMD_LEN(seq_store, SEQ_STORE)
APPEND_CMD_LEN(seq_fifo_load, SEQ_FIFO_LOAD)
APPEND_CMD_LEN(seq_fifo_store, SEQ_FIFO_STORE)
#define APPEND_CMD_PTR(cmd, op) \
static inline void append_##cmd(u32 *desc, dma_addr_t ptr, unsigned int len, \
u32 options) \
{ \
PRINT_POS; \
append_cmd_ptr(desc, ptr, len, CMD_##op | options); \
}
APPEND_CMD_PTR(key, KEY)
APPEND_CMD_PTR(seq_in_ptr, SEQ_IN_PTR)
APPEND_CMD_PTR(seq_out_ptr, SEQ_OUT_PTR)
APPEND_CMD_PTR(load, LOAD)
APPEND_CMD_PTR(store, STORE)
APPEND_CMD_PTR(fifo_load, FIFO_LOAD)
APPEND_CMD_PTR(fifo_store, FIFO_STORE)
#define APPEND_CMD_PTR_TO_IMM(cmd, op) \
static inline void append_##cmd##_as_imm(u32 *desc, void *data, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd_data(desc, data, len, CMD_##op | options); \
}
APPEND_CMD_PTR_TO_IMM(load, LOAD);
APPEND_CMD_PTR_TO_IMM(fifo_load, FIFO_LOAD);
/*
* 2nd variant for commands whose specified immediate length differs
* from length of immediate data provided, e.g., split keys
*/
#define APPEND_CMD_PTR_TO_IMM2(cmd, op) \
static inline void append_##cmd##_as_imm(u32 *desc, void *data, \
unsigned int data_len, \
unsigned int len, u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | len | options); \
append_data(desc, data, data_len); \
}
APPEND_CMD_PTR_TO_IMM2(key, KEY);
#define APPEND_CMD_RAW_IMM(cmd, op, type) \
static inline void append_##cmd##_imm_##type(u32 *desc, type immediate, \
u32 options) \
{ \
PRINT_POS; \
append_cmd(desc, CMD_##op | IMMEDIATE | options | sizeof(type)); \
append_cmd(desc, immediate); \
}
APPEND_CMD_RAW_IMM(load, LOAD, u32);
/*
* CAAM Error Reporting
*
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*/
#include "compat.h"
#include "regs.h"
#include "intern.h"
#include "desc.h"
#include "jr.h"
#include "error.h"
#define SPRINTFCAT(str, format, param, max_alloc) \
{ \
char *tmp; \
\
tmp = kmalloc(sizeof(format) + max_alloc, GFP_ATOMIC); \
sprintf(tmp, format, param); \
strcat(str, tmp); \
kfree(tmp); \
}
static void report_jump_idx(u32 status, char *outstr)
{
u8 idx = (status & JRSTA_DECOERR_INDEX_MASK) >>
JRSTA_DECOERR_INDEX_SHIFT;
if (status & JRSTA_DECOERR_JUMP)
strcat(outstr, "jump tgt desc idx ");
else
strcat(outstr, "desc idx ");
SPRINTFCAT(outstr, "%d: ", idx, sizeof("255"));
}
static void report_ccb_status(u32 status, char *outstr)
{
char *cha_id_list[] = {
"",
"AES",
"DES, 3DES",
"ARC4",
"MD5, SHA-1, SH-224, SHA-256, SHA-384, SHA-512",
"RNG",
"SNOW f8",
"Kasumi f8, f9",
"All Public Key Algorithms",
"CRC",
"SNOW f9",
};
char *err_id_list[] = {
"None. No error.",
"Mode error.",
"Data size error.",
"Key size error.",
"PKHA A memory size error.",
"PKHA B memory size error.",
"Data arrived out of sequence error.",
"PKHA divide-by-zero error.",
"PKHA modulus even error.",
"DES key parity error.",
"ICV check failed.",
"Hardware error.",
"Unsupported CCM AAD size.",
"Class 1 CHA is not reset",
"Invalid CHA combination was selected",
"Invalid CHA selected.",
};
u8 cha_id = (status & JRSTA_CCBERR_CHAID_MASK) >>
JRSTA_CCBERR_CHAID_SHIFT;
u8 err_id = status & JRSTA_CCBERR_ERRID_MASK;
report_jump_idx(status, outstr);
if (cha_id < sizeof(cha_id_list)) {
SPRINTFCAT(outstr, "%s: ", cha_id_list[cha_id],
strlen(cha_id_list[cha_id]));
} else {
SPRINTFCAT(outstr, "unidentified cha_id value 0x%02x: ",
cha_id, sizeof("ff"));
}
if (err_id < sizeof(err_id_list)) {
SPRINTFCAT(outstr, "%s", err_id_list[err_id],
strlen(err_id_list[err_id]));
} else {
SPRINTFCAT(outstr, "unidentified err_id value 0x%02x",
err_id, sizeof("ff"));
}
}
static void report_jump_status(u32 status, char *outstr)
{
SPRINTFCAT(outstr, "%s() not implemented", __func__, sizeof(__func__));
}
static void report_deco_status(u32 status, char *outstr)
{
const struct {
u8 value;
char *error_text;
} desc_error_list[] = {
{ 0x00, "None. No error." },
{ 0x01, "SGT Length Error. The descriptor is trying to read "
"more data than is contained in the SGT table." },
{ 0x02, "Reserved." },
{ 0x03, "Job Ring Control Error. There is a bad value in the "
"Job Ring Control register." },
{ 0x04, "Invalid Descriptor Command. The Descriptor Command "
"field is invalid." },
{ 0x05, "Reserved." },
{ 0x06, "Invalid KEY Command" },
{ 0x07, "Invalid LOAD Command" },
{ 0x08, "Invalid STORE Command" },
{ 0x09, "Invalid OPERATION Command" },
{ 0x0A, "Invalid FIFO LOAD Command" },
{ 0x0B, "Invalid FIFO STORE Command" },
{ 0x0C, "Invalid MOVE Command" },
{ 0x0D, "Invalid JUMP Command. A nonlocal JUMP Command is "
"invalid because the target is not a Job Header "
"Command, or the jump is from a Trusted Descriptor to "
"a Job Descriptor, or because the target Descriptor "
"contains a Shared Descriptor." },
{ 0x0E, "Invalid MATH Command" },
{ 0x0F, "Invalid SIGNATURE Command" },
{ 0x10, "Invalid Sequence Command. A SEQ IN PTR OR SEQ OUT PTR "
"Command is invalid or a SEQ KEY, SEQ LOAD, SEQ FIFO "
"LOAD, or SEQ FIFO STORE decremented the input or "
"output sequence length below 0. This error may result "
"if a built-in PROTOCOL Command has encountered a "
"malformed PDU." },
{ 0x11, "Skip data type invalid. The type must be 0xE or 0xF."},
{ 0x12, "Shared Descriptor Header Error" },
{ 0x13, "Header Error. Invalid length or parity, or certain "
"other problems." },
{ 0x14, "Burster Error. Burster has gotten to an illegal "
"state" },
{ 0x15, "Context Register Length Error. The descriptor is "
"trying to read or write past the end of the Context "
"Register. A SEQ LOAD or SEQ STORE with the VLF bit "
"set was executed with too large a length in the "
"variable length register (VSOL for SEQ STORE or VSIL "
"for SEQ LOAD)." },
{ 0x16, "DMA Error" },
{ 0x17, "Reserved." },
{ 0x1A, "Job failed due to JR reset" },
{ 0x1B, "Job failed due to Fail Mode" },
{ 0x1C, "DECO Watchdog timer timeout error" },
{ 0x1D, "DECO tried to copy a key from another DECO but the "
"other DECO's Key Registers were locked" },
{ 0x1E, "DECO attempted to copy data from a DECO that had an "
"unmasked Descriptor error" },
{ 0x1F, "LIODN error. DECO was trying to share from itself or "
"from another DECO but the two Non-SEQ LIODN values "
"didn't match or the 'shared from' DECO's Descriptor "
"required that the SEQ LIODNs be the same and they "
"aren't." },
{ 0x20, "DECO has completed a reset initiated via the DRR "
"register" },
{ 0x21, "Nonce error. When using EKT (CCM) key encryption "
"option in the FIFO STORE Command, the Nonce counter "
"reached its maximum value and this encryption mode "
"can no longer be used." },
{ 0x22, "Meta data is too large (> 511 bytes) for TLS decap "
"(input frame; block ciphers) and IPsec decap (output "
"frame, when doing the next header byte update) and "
"DCRC (output frame)." },
{ 0x80, "DNR (do not run) error" },
{ 0x81, "undefined protocol command" },
{ 0x82, "invalid setting in PDB" },
{ 0x83, "Anti-replay LATE error" },
{ 0x84, "Anti-replay REPLAY error" },
{ 0x85, "Sequence number overflow" },
{ 0x86, "Sigver invalid signature" },
{ 0x87, "DSA Sign Illegal test descriptor" },
{ 0x88, "Protocol Format Error - A protocol has seen an error "
"in the format of data received. When running RSA, "
"this means that formatting with random padding was "
"used, and did not follow the form: 0x00, 0x02, 8-to-N "
"bytes of non-zero pad, 0x00, F data." },
{ 0x89, "Protocol Size Error - A protocol has seen an error in "
"size. When running RSA, pdb size N < (size of F) when "
"no formatting is used; or pdb size N < (F + 11) when "
"formatting is used." },
{ 0xC1, "Blob Command error: Undefined mode" },
{ 0xC2, "Blob Command error: Secure Memory Blob mode error" },
{ 0xC4, "Blob Command error: Black Blob key or input size "
"error" },
{ 0xC5, "Blob Command error: Invalid key destination" },
{ 0xC8, "Blob Command error: Trusted/Secure mode error" },
{ 0xF0, "IPsec TTL or hop limit field either came in as 0, "
"or was decremented to 0" },
{ 0xF1, "3GPP HFN matches or exceeds the Threshold" },
};
u8 desc_error = status & JRSTA_DECOERR_ERROR_MASK;
int i;
report_jump_idx(status, outstr);
for (i = 0; i < sizeof(desc_error_list); i++)
if (desc_error_list[i].value == desc_error)
break;
if (i != sizeof(desc_error_list) && desc_error_list[i].error_text) {
SPRINTFCAT(outstr, "%s", desc_error_list[i].error_text,
strlen(desc_error_list[i].error_text));
} else {
SPRINTFCAT(outstr, "unidentified error value 0x%02x",
desc_error, sizeof("ff"));
}
}
static void report_jr_status(u32 status, char *outstr)
{
SPRINTFCAT(outstr, "%s() not implemented", __func__, sizeof(__func__));
}
static void report_cond_code_status(u32 status, char *outstr)
{
SPRINTFCAT(outstr, "%s() not implemented", __func__, sizeof(__func__));
}
char *caam_jr_strstatus(char *outstr, u32 status)
{
struct stat_src {
void (*report_ssed)(u32 status, char *outstr);
char *error;
} status_src[] = {
{ NULL, "No error" },
{ NULL, NULL },
{ report_ccb_status, "CCB" },
{ report_jump_status, "Jump" },
{ report_deco_status, "DECO" },
{ NULL, NULL },
{ report_jr_status, "Job Ring" },
{ report_cond_code_status, "Condition Code" },
};
u32 ssrc = status >> JRSTA_SSRC_SHIFT;
sprintf(outstr, "%s: ", status_src[ssrc].error);
if (status_src[ssrc].report_ssed)
status_src[ssrc].report_ssed(status, outstr);
return outstr;
}
EXPORT_SYMBOL(caam_jr_strstatus);
/*
* CAAM Error Reporting code header
*
* Copyright 2009-2011 Freescale Semiconductor, Inc.
*/
#ifndef CAAM_ERROR_H
#define CAAM_ERROR_H
extern char *caam_jr_strstatus(char *outstr, u32 status);
#endif /* CAAM_ERROR_H */
/*
* CAAM/SEC 4.x driver backend
* Private/internal definitions between modules
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*
*/
#ifndef INTERN_H
#define INTERN_H
#define JOBR_UNASSIGNED 0
#define JOBR_ASSIGNED 1
/* Currently comes from Kconfig param as a ^2 (driver-required) */
#define JOBR_DEPTH (1 << CONFIG_CRYPTO_DEV_FSL_CAAM_RINGSIZE)
/* Kconfig params for interrupt coalescing if selected (else zero) */
#ifdef CONFIG_CRYPTO_DEV_FSL_CAAM_INTC
#define JOBR_INTC JRCFG_ICEN
#define JOBR_INTC_TIME_THLD CONFIG_CRYPTO_DEV_FSL_CAAM_INTC_TIME_THLD
#define JOBR_INTC_COUNT_THLD CONFIG_CRYPTO_DEV_FSL_CAAM_INTC_COUNT_THLD
#else
#define JOBR_INTC 0
#define JOBR_INTC_TIME_THLD 0
#define JOBR_INTC_COUNT_THLD 0
#endif
/*
* Storage for tracking each in-process entry moving across a ring
* Each entry on an output ring needs one of these
*/
struct caam_jrentry_info {
void (*callbk)(struct device *dev, u32 *desc, u32 status, void *arg);
void *cbkarg; /* Argument per ring entry */
u32 *desc_addr_virt; /* Stored virt addr for postprocessing */
dma_addr_t desc_addr_dma; /* Stored bus addr for done matching */
u32 desc_size; /* Stored size for postprocessing, header derived */
};
/* Private sub-storage for a single JobR */
struct caam_drv_private_jr {
struct device *parentdev; /* points back to controller dev */
int ridx;
struct caam_job_ring __iomem *rregs; /* JobR's register space */
struct tasklet_struct irqtask[NR_CPUS];
int irq; /* One per queue */
int assign; /* busy/free */
/* Job ring info */
int ringsize; /* Size of rings (assume input = output) */
struct caam_jrentry_info *entinfo; /* Alloc'ed 1 per ring entry */
spinlock_t inplock ____cacheline_aligned; /* Input ring index lock */
int inp_ring_write_index; /* Input index "tail" */
int head; /* entinfo (s/w ring) head index */
dma_addr_t *inpring; /* Base of input ring, alloc DMA-safe */
spinlock_t outlock ____cacheline_aligned; /* Output ring index lock */
int out_ring_read_index; /* Output index "tail" */
int tail; /* entinfo (s/w ring) tail index */
struct jr_outentry *outring; /* Base of output ring, DMA-safe */
};
/*
* Driver-private storage for a single CAAM block instance
*/
struct caam_drv_private {
struct device *dev;
struct device **jrdev; /* Alloc'ed array per sub-device */
spinlock_t jr_alloc_lock;
struct platform_device *pdev;
/* Physical-presence section */
struct caam_ctrl *ctrl; /* controller region */
struct caam_deco **deco; /* DECO/CCB views */
struct caam_assurance *ac;
struct caam_queue_if *qi; /* QI control region */
/*
* Detected geometry block. Filled in from device tree if powerpc,
* or from register-based version detection code
*/
u8 total_jobrs; /* Total Job Rings in device */
u8 qi_present; /* Nonzero if QI present in device */
int secvio_irq; /* Security violation interrupt number */
/* which jr allocated to scatterlist crypto */
atomic_t tfm_count ____cacheline_aligned;
int num_jrs_for_algapi;
struct device **algapi_jr;
/* list of registered crypto algorithms (mk generic context handle?) */
struct list_head alg_list;
/*
* debugfs entries for developer view into driver/device
* variables at runtime.
*/
#ifdef CONFIG_DEBUG_FS
struct dentry *dfs_root;
struct dentry *ctl; /* controller dir */
struct dentry *ctl_rq_dequeued, *ctl_ob_enc_req, *ctl_ib_dec_req;
struct dentry *ctl_ob_enc_bytes, *ctl_ob_prot_bytes;
struct dentry *ctl_ib_dec_bytes, *ctl_ib_valid_bytes;
struct dentry *ctl_faultaddr, *ctl_faultdetail, *ctl_faultstatus;
struct debugfs_blob_wrapper ctl_kek_wrap, ctl_tkek_wrap, ctl_tdsk_wrap;
struct dentry *ctl_kek, *ctl_tkek, *ctl_tdsk;
#endif
};
void caam_jr_algapi_init(struct device *dev);
void caam_jr_algapi_remove(struct device *dev);
#endif /* INTERN_H */
/*
* CAAM/SEC 4.x transport/backend driver
* JobR backend functionality
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#include "compat.h"
#include "regs.h"
#include "jr.h"
#include "desc.h"
#include "intern.h"
/* Main per-ring interrupt handler */
static irqreturn_t caam_jr_interrupt(int irq, void *st_dev)
{
struct device *dev = st_dev;
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
u32 irqstate;
/*
* Check the output ring for ready responses, kick
* tasklet if jobs done.
*/
irqstate = rd_reg32(&jrp->rregs->jrintstatus);
if (!irqstate)
return IRQ_NONE;
/*
* If JobR error, we got more development work to do
* Flag a bug now, but we really need to shut down and
* restart the queue (and fix code).
*/
if (irqstate & JRINT_JR_ERROR) {
dev_err(dev, "job ring error: irqstate: %08x\n", irqstate);
BUG();
}
/* mask valid interrupts */
setbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
/* Have valid interrupt at this point, just ACK and trigger */
wr_reg32(&jrp->rregs->jrintstatus, irqstate);
preempt_disable();
tasklet_schedule(&jrp->irqtask[smp_processor_id()]);
preempt_enable();
return IRQ_HANDLED;
}
/* Deferred service handler, run as interrupt-fired tasklet */
static void caam_jr_dequeue(unsigned long devarg)
{
int hw_idx, sw_idx, i, head, tail;
struct device *dev = (struct device *)devarg;
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
void (*usercall)(struct device *dev, u32 *desc, u32 status, void *arg);
u32 *userdesc, userstatus;
void *userarg;
unsigned long flags;
spin_lock_irqsave(&jrp->outlock, flags);
head = ACCESS_ONCE(jrp->head);
sw_idx = tail = jrp->tail;
while (CIRC_CNT(head, tail, JOBR_DEPTH) >= 1 &&
rd_reg32(&jrp->rregs->outring_used)) {
hw_idx = jrp->out_ring_read_index;
for (i = 0; CIRC_CNT(head, tail + i, JOBR_DEPTH) >= 1; i++) {
sw_idx = (tail + i) & (JOBR_DEPTH - 1);
smp_read_barrier_depends();
if (jrp->outring[hw_idx].desc ==
jrp->entinfo[sw_idx].desc_addr_dma)
break; /* found */
}
/* we should never fail to find a matching descriptor */
BUG_ON(CIRC_CNT(head, tail + i, JOBR_DEPTH) <= 0);
/* Unmap just-run descriptor so we can post-process */
dma_unmap_single(dev, jrp->outring[hw_idx].desc,
jrp->entinfo[sw_idx].desc_size,
DMA_TO_DEVICE);
/* mark completed, avoid matching on a recycled desc addr */
jrp->entinfo[sw_idx].desc_addr_dma = 0;
/* Stash callback params for use outside of lock */
usercall = jrp->entinfo[sw_idx].callbk;
userarg = jrp->entinfo[sw_idx].cbkarg;
userdesc = jrp->entinfo[sw_idx].desc_addr_virt;
userstatus = jrp->outring[hw_idx].jrstatus;
smp_mb();
jrp->out_ring_read_index = (jrp->out_ring_read_index + 1) &
(JOBR_DEPTH - 1);
/*
* if this job completed out-of-order, do not increment
* the tail. Otherwise, increment tail by 1 plus the
* number of subsequent jobs already completed out-of-order
*/
if (sw_idx == tail) {
do {
tail = (tail + 1) & (JOBR_DEPTH - 1);
smp_read_barrier_depends();
} while (CIRC_CNT(head, tail, JOBR_DEPTH) >= 1 &&
jrp->entinfo[tail].desc_addr_dma == 0);
jrp->tail = tail;
}
/* set done */
wr_reg32(&jrp->rregs->outring_rmvd, 1);
spin_unlock_irqrestore(&jrp->outlock, flags);
/* Finally, execute user's callback */
usercall(dev, userdesc, userstatus, userarg);
spin_lock_irqsave(&jrp->outlock, flags);
head = ACCESS_ONCE(jrp->head);
sw_idx = tail = jrp->tail;
}
spin_unlock_irqrestore(&jrp->outlock, flags);
/* reenable / unmask IRQs */
clrbits32(&jrp->rregs->rconfig_lo, JRCFG_IMSK);
}
/**
* caam_jr_register() - Alloc a ring for someone to use as needed. Returns
* an ordinal of the rings allocated, else returns -ENODEV if no rings
* are available.
* @ctrldev: points to the controller level dev (parent) that
* owns rings available for use.
* @dev: points to where a pointer to the newly allocated queue's
* dev can be written to if successful.
**/
int caam_jr_register(struct device *ctrldev, struct device **rdev)
{
struct caam_drv_private *ctrlpriv = dev_get_drvdata(ctrldev);
struct caam_drv_private_jr *jrpriv = NULL;
unsigned long flags;
int ring;
/* Lock, if free ring - assign, unlock */
spin_lock_irqsave(&ctrlpriv->jr_alloc_lock, flags);
for (ring = 0; ring < ctrlpriv->total_jobrs; ring++) {
jrpriv = dev_get_drvdata(ctrlpriv->jrdev[ring]);
if (jrpriv->assign == JOBR_UNASSIGNED) {
jrpriv->assign = JOBR_ASSIGNED;
*rdev = ctrlpriv->jrdev[ring];
spin_unlock_irqrestore(&ctrlpriv->jr_alloc_lock, flags);
return ring;
}
}
/* If assigned, write dev where caller needs it */
spin_unlock_irqrestore(&ctrlpriv->jr_alloc_lock, flags);
*rdev = NULL;
return -ENODEV;
}
EXPORT_SYMBOL(caam_jr_register);
/**
* caam_jr_deregister() - Deregister an API and release the queue.
* Returns 0 if OK, -EBUSY if queue still contains pending entries
* or unprocessed results at the time of the call
* @dev - points to the dev that identifies the queue to
* be released.
**/
int caam_jr_deregister(struct device *rdev)
{
struct caam_drv_private_jr *jrpriv = dev_get_drvdata(rdev);
struct caam_drv_private *ctrlpriv;
unsigned long flags;
/* Get the owning controller's private space */
ctrlpriv = dev_get_drvdata(jrpriv->parentdev);
/*
* Make sure ring empty before release
*/
if (rd_reg32(&jrpriv->rregs->outring_used) ||
(rd_reg32(&jrpriv->rregs->inpring_avail) != JOBR_DEPTH))
return -EBUSY;
/* Release ring */
spin_lock_irqsave(&ctrlpriv->jr_alloc_lock, flags);
jrpriv->assign = JOBR_UNASSIGNED;
spin_unlock_irqrestore(&ctrlpriv->jr_alloc_lock, flags);
return 0;
}
EXPORT_SYMBOL(caam_jr_deregister);
/**
* caam_jr_enqueue() - Enqueue a job descriptor head. Returns 0 if OK,
* -EBUSY if the queue is full, -EIO if it cannot map the caller's
* descriptor.
* @dev: device of the job ring to be used. This device should have
* been assigned prior by caam_jr_register().
* @desc: points to a job descriptor that execute our request. All
* descriptors (and all referenced data) must be in a DMAable
* region, and all data references must be physical addresses
* accessible to CAAM (i.e. within a PAMU window granted
* to it).
* @cbk: pointer to a callback function to be invoked upon completion
* of this request. This has the form:
* callback(struct device *dev, u32 *desc, u32 stat, void *arg)
* where:
* @dev: contains the job ring device that processed this
* response.
* @desc: descriptor that initiated the request, same as
* "desc" being argued to caam_jr_enqueue().
* @status: untranslated status received from CAAM. See the
* reference manual for a detailed description of
* error meaning, or see the JRSTA definitions in the
* register header file
* @areq: optional pointer to an argument passed with the
* original request
* @areq: optional pointer to a user argument for use at callback
* time.
**/
int caam_jr_enqueue(struct device *dev, u32 *desc,
void (*cbk)(struct device *dev, u32 *desc,
u32 status, void *areq),
void *areq)
{
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
struct caam_jrentry_info *head_entry;
unsigned long flags;
int head, tail, desc_size;
dma_addr_t desc_dma;
desc_size = (*desc & HDR_JD_LENGTH_MASK) * sizeof(u32);
desc_dma = dma_map_single(dev, desc, desc_size, DMA_TO_DEVICE);
if (dma_mapping_error(dev, desc_dma)) {
dev_err(dev, "caam_jr_enqueue(): can't map jobdesc\n");
return -EIO;
}
spin_lock_irqsave(&jrp->inplock, flags);
head = jrp->head;
tail = ACCESS_ONCE(jrp->tail);
if (!rd_reg32(&jrp->rregs->inpring_avail) ||
CIRC_SPACE(head, tail, JOBR_DEPTH) <= 0) {
spin_unlock_irqrestore(&jrp->inplock, flags);
dma_unmap_single(dev, desc_dma, desc_size, DMA_TO_DEVICE);
return -EBUSY;
}
head_entry = &jrp->entinfo[head];
head_entry->desc_addr_virt = desc;
head_entry->desc_size = desc_size;
head_entry->callbk = (void *)cbk;
head_entry->cbkarg = areq;
head_entry->desc_addr_dma = desc_dma;
jrp->inpring[jrp->inp_ring_write_index] = desc_dma;
smp_wmb();
jrp->inp_ring_write_index = (jrp->inp_ring_write_index + 1) &
(JOBR_DEPTH - 1);
jrp->head = (head + 1) & (JOBR_DEPTH - 1);
wmb();
wr_reg32(&jrp->rregs->inpring_jobadd, 1);
spin_unlock_irqrestore(&jrp->inplock, flags);
return 0;
}
EXPORT_SYMBOL(caam_jr_enqueue);
static int caam_reset_hw_jr(struct device *dev)
{
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
unsigned int timeout = 100000;
/*
* FIXME: disabling IRQs here inhibits proper job completion
* and error propagation
*/
disable_irq(jrp->irq);
/* initiate flush (required prior to reset) */
wr_reg32(&jrp->rregs->jrcommand, JRCR_RESET);
while (((rd_reg32(&jrp->rregs->jrintstatus) & JRINT_ERR_HALT_MASK) ==
JRINT_ERR_HALT_INPROGRESS) && --timeout)
cpu_relax();
if ((rd_reg32(&jrp->rregs->jrintstatus) & JRINT_ERR_HALT_MASK) !=
JRINT_ERR_HALT_COMPLETE || timeout == 0) {
dev_err(dev, "failed to flush job ring %d\n", jrp->ridx);
return -EIO;
}
/* initiate reset */
timeout = 100000;
wr_reg32(&jrp->rregs->jrcommand, JRCR_RESET);
while ((rd_reg32(&jrp->rregs->jrcommand) & JRCR_RESET) && --timeout)
cpu_relax();
if (timeout == 0) {
dev_err(dev, "failed to reset job ring %d\n", jrp->ridx);
return -EIO;
}
enable_irq(jrp->irq);
return 0;
}
/*
* Init JobR independent of platform property detection
*/
static int caam_jr_init(struct device *dev)
{
struct caam_drv_private_jr *jrp;
dma_addr_t inpbusaddr, outbusaddr;
int i, error;
jrp = dev_get_drvdata(dev);
error = caam_reset_hw_jr(dev);
if (error)
return error;
jrp->inpring = kzalloc(sizeof(dma_addr_t) * JOBR_DEPTH,
GFP_KERNEL | GFP_DMA);
jrp->outring = kzalloc(sizeof(struct jr_outentry) *
JOBR_DEPTH, GFP_KERNEL | GFP_DMA);
jrp->entinfo = kzalloc(sizeof(struct caam_jrentry_info) * JOBR_DEPTH,
GFP_KERNEL);
if ((jrp->inpring == NULL) || (jrp->outring == NULL) ||
(jrp->entinfo == NULL)) {
dev_err(dev, "can't allocate job rings for %d\n",
jrp->ridx);
return -ENOMEM;
}
for (i = 0; i < JOBR_DEPTH; i++)
jrp->entinfo[i].desc_addr_dma = !0;
/* Setup rings */
inpbusaddr = dma_map_single(dev, jrp->inpring,
sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, inpbusaddr)) {
dev_err(dev, "caam_jr_init(): can't map input ring\n");
kfree(jrp->inpring);
kfree(jrp->outring);
kfree(jrp->entinfo);
return -EIO;
}
outbusaddr = dma_map_single(dev, jrp->outring,
sizeof(struct jr_outentry) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
if (dma_mapping_error(dev, outbusaddr)) {
dev_err(dev, "caam_jr_init(): can't map output ring\n");
dma_unmap_single(dev, inpbusaddr,
sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
kfree(jrp->inpring);
kfree(jrp->outring);
kfree(jrp->entinfo);
return -EIO;
}
jrp->inp_ring_write_index = 0;
jrp->out_ring_read_index = 0;
jrp->head = 0;
jrp->tail = 0;
wr_reg64(&jrp->rregs->inpring_base, inpbusaddr);
wr_reg64(&jrp->rregs->outring_base, outbusaddr);
wr_reg32(&jrp->rregs->inpring_size, JOBR_DEPTH);
wr_reg32(&jrp->rregs->outring_size, JOBR_DEPTH);
jrp->ringsize = JOBR_DEPTH;
spin_lock_init(&jrp->inplock);
spin_lock_init(&jrp->outlock);
/* Select interrupt coalescing parameters */
setbits32(&jrp->rregs->rconfig_lo, JOBR_INTC |
(JOBR_INTC_COUNT_THLD << JRCFG_ICDCT_SHIFT) |
(JOBR_INTC_TIME_THLD << JRCFG_ICTT_SHIFT));
/* Connect job ring interrupt handler. */
for_each_possible_cpu(i)
tasklet_init(&jrp->irqtask[i], caam_jr_dequeue,
(unsigned long)dev);
error = request_irq(jrp->irq, caam_jr_interrupt, 0,
"caam-jobr", dev);
if (error) {
dev_err(dev, "can't connect JobR %d interrupt (%d)\n",
jrp->ridx, jrp->irq);
irq_dispose_mapping(jrp->irq);
jrp->irq = 0;
dma_unmap_single(dev, inpbusaddr, sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
dma_unmap_single(dev, outbusaddr, sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
kfree(jrp->inpring);
kfree(jrp->outring);
kfree(jrp->entinfo);
return -EINVAL;
}
jrp->assign = JOBR_UNASSIGNED;
return 0;
}
/*
* Shutdown JobR independent of platform property code
*/
int caam_jr_shutdown(struct device *dev)
{
struct caam_drv_private_jr *jrp = dev_get_drvdata(dev);
dma_addr_t inpbusaddr, outbusaddr;
int ret, i;
ret = caam_reset_hw_jr(dev);
for_each_possible_cpu(i)
tasklet_kill(&jrp->irqtask[i]);
/* Release interrupt */
free_irq(jrp->irq, dev);
/* Free rings */
inpbusaddr = rd_reg64(&jrp->rregs->inpring_base);
outbusaddr = rd_reg64(&jrp->rregs->outring_base);
dma_unmap_single(dev, outbusaddr,
sizeof(struct jr_outentry) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
dma_unmap_single(dev, inpbusaddr, sizeof(u32 *) * JOBR_DEPTH,
DMA_BIDIRECTIONAL);
kfree(jrp->outring);
kfree(jrp->inpring);
kfree(jrp->entinfo);
return ret;
}
/*
* Probe routine for each detected JobR subsystem. It assumes that
* property detection was picked up externally.
*/
int caam_jr_probe(struct platform_device *pdev, struct device_node *np,
int ring)
{
struct device *ctrldev, *jrdev;
struct platform_device *jr_pdev;
struct caam_drv_private *ctrlpriv;
struct caam_drv_private_jr *jrpriv;
u32 *jroffset;
int error;
ctrldev = &pdev->dev;
ctrlpriv = dev_get_drvdata(ctrldev);
jrpriv = kmalloc(sizeof(struct caam_drv_private_jr),
GFP_KERNEL);
if (jrpriv == NULL) {
dev_err(ctrldev, "can't alloc private mem for job ring %d\n",
ring);
return -ENOMEM;
}
jrpriv->parentdev = ctrldev; /* point back to parent */
jrpriv->ridx = ring; /* save ring identity relative to detection */
/*
* Derive a pointer to the detected JobRs regs
* Driver has already iomapped the entire space, we just
* need to add in the offset to this JobR. Don't know if I
* like this long-term, but it'll run
*/
jroffset = (u32 *)of_get_property(np, "reg", NULL);
jrpriv->rregs = (struct caam_job_ring __iomem *)((void *)ctrlpriv->ctrl
+ *jroffset);
/* Build a local dev for each detected queue */
jr_pdev = of_platform_device_create(np, NULL, ctrldev);
if (jr_pdev == NULL) {
kfree(jrpriv);
return -EINVAL;
}
jrdev = &jr_pdev->dev;
dev_set_drvdata(jrdev, jrpriv);
ctrlpriv->jrdev[ring] = jrdev;
/* Identify the interrupt */
jrpriv->irq = of_irq_to_resource(np, 0, NULL);
/* Now do the platform independent part */
error = caam_jr_init(jrdev); /* now turn on hardware */
if (error) {
kfree(jrpriv);
return error;
}
return error;
}
/*
* CAAM public-level include definitions for the JobR backend
*
* Copyright 2008-2011 Freescale Semiconductor, Inc.
*/
#ifndef JR_H
#define JR_H
/* Prototypes for backend-level services exposed to APIs */
int caam_jr_register(struct device *ctrldev, struct device **rdev);
int caam_jr_deregister(struct device *rdev);
int caam_jr_enqueue(struct device *dev, u32 *desc,
void (*cbk)(struct device *dev, u32 *desc, u32 status,
void *areq),
void *areq);
extern int caam_jr_probe(struct platform_device *pdev, struct device_node *np,
int ring);
extern int caam_jr_shutdown(struct device *dev);
#endif /* JR_H */
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册