提交 672bba3a 编写于 作者: C Christoph Lameter 提交者: Linus Torvalds

SLUB: update comments

Update comments throughout SLUB to reflect the new developments.  Fix up
various awkward sentences.
Signed-off-by: NChristoph Lameter <clameter@sgi.com>
Signed-off-by: NAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: NLinus Torvalds <torvalds@linux-foundation.org>
上级 26a7bd03
...@@ -66,11 +66,11 @@ ...@@ -66,11 +66,11 @@
* SLUB assigns one slab for allocation to each processor. * SLUB assigns one slab for allocation to each processor.
* Allocations only occur from these slabs called cpu slabs. * Allocations only occur from these slabs called cpu slabs.
* *
* Slabs with free elements are kept on a partial list. * Slabs with free elements are kept on a partial list and during regular
* There is no list for full slabs. If an object in a full slab is * operations no list for full slabs is used. If an object in a full slab is
* freed then the slab will show up again on the partial lists. * freed then the slab will show up again on the partial lists.
* Otherwise there is no need to track full slabs unless we have to * We track full slabs for debugging purposes though because otherwise we
* track full slabs for debugging purposes. * cannot scan all objects.
* *
* Slabs are freed when they become empty. Teardown and setup is * Slabs are freed when they become empty. Teardown and setup is
* minimal so we rely on the page allocators per cpu caches for * minimal so we rely on the page allocators per cpu caches for
...@@ -92,8 +92,8 @@ ...@@ -92,8 +92,8 @@
* *
* - The per cpu array is updated for each new slab and and is a remote * - The per cpu array is updated for each new slab and and is a remote
* cacheline for most nodes. This could become a bouncing cacheline given * cacheline for most nodes. This could become a bouncing cacheline given
* enough frequent updates. There are 16 pointers in a cacheline.so at * enough frequent updates. There are 16 pointers in a cacheline, so at
* max 16 cpus could compete. Likely okay. * max 16 cpus could compete for the cacheline which may be okay.
* *
* - Support PAGE_ALLOC_DEBUG. Should be easy to do. * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
* *
...@@ -137,6 +137,7 @@ ...@@ -137,6 +137,7 @@
#define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \ #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
SLAB_POISON | SLAB_STORE_USER) SLAB_POISON | SLAB_STORE_USER)
/* /*
* Set of flags that will prevent slab merging * Set of flags that will prevent slab merging
*/ */
...@@ -171,7 +172,7 @@ static struct notifier_block slab_notifier; ...@@ -171,7 +172,7 @@ static struct notifier_block slab_notifier;
static enum { static enum {
DOWN, /* No slab functionality available */ DOWN, /* No slab functionality available */
PARTIAL, /* kmem_cache_open() works but kmalloc does not */ PARTIAL, /* kmem_cache_open() works but kmalloc does not */
UP, /* Everything works */ UP, /* Everything works but does not show up in sysfs */
SYSFS /* Sysfs up */ SYSFS /* Sysfs up */
} slab_state = DOWN; } slab_state = DOWN;
...@@ -245,9 +246,9 @@ static void print_section(char *text, u8 *addr, unsigned int length) ...@@ -245,9 +246,9 @@ static void print_section(char *text, u8 *addr, unsigned int length)
/* /*
* Slow version of get and set free pointer. * Slow version of get and set free pointer.
* *
* This requires touching the cache lines of kmem_cache. * This version requires touching the cache lines of kmem_cache which
* The offset can also be obtained from the page. In that * we avoid to do in the fast alloc free paths. There we obtain the offset
* case it is in the cacheline that we already need to touch. * from the page struct.
*/ */
static void *get_freepointer(struct kmem_cache *s, void *object) static void *get_freepointer(struct kmem_cache *s, void *object)
{ {
...@@ -429,26 +430,34 @@ static inline int check_valid_pointer(struct kmem_cache *s, ...@@ -429,26 +430,34 @@ static inline int check_valid_pointer(struct kmem_cache *s,
* Bytes of the object to be managed. * Bytes of the object to be managed.
* If the freepointer may overlay the object then the free * If the freepointer may overlay the object then the free
* pointer is the first word of the object. * pointer is the first word of the object.
*
* Poisoning uses 0x6b (POISON_FREE) and the last byte is * Poisoning uses 0x6b (POISON_FREE) and the last byte is
* 0xa5 (POISON_END) * 0xa5 (POISON_END)
* *
* object + s->objsize * object + s->objsize
* Padding to reach word boundary. This is also used for Redzoning. * Padding to reach word boundary. This is also used for Redzoning.
* Padding is extended to word size if Redzoning is enabled * Padding is extended by another word if Redzoning is enabled and
* and objsize == inuse. * objsize == inuse.
*
* We fill with 0xbb (RED_INACTIVE) for inactive objects and with * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
* 0xcc (RED_ACTIVE) for objects in use. * 0xcc (RED_ACTIVE) for objects in use.
* *
* object + s->inuse * object + s->inuse
* Meta data starts here.
*
* A. Free pointer (if we cannot overwrite object on free) * A. Free pointer (if we cannot overwrite object on free)
* B. Tracking data for SLAB_STORE_USER * B. Tracking data for SLAB_STORE_USER
* C. Padding to reach required alignment boundary * C. Padding to reach required alignment boundary or at mininum
* Padding is done using 0x5a (POISON_INUSE) * one word if debuggin is on to be able to detect writes
* before the word boundary.
*
* Padding is done using 0x5a (POISON_INUSE)
* *
* object + s->size * object + s->size
* Nothing is used beyond s->size.
* *
* If slabcaches are merged then the objsize and inuse boundaries are to * If slabcaches are merged then the objsize and inuse boundaries are mostly
* be ignored. And therefore no slab options that rely on these boundaries * ignored. And therefore no slab options that rely on these boundaries
* may be used with merged slabcaches. * may be used with merged slabcaches.
*/ */
...@@ -574,8 +583,7 @@ static int check_object(struct kmem_cache *s, struct page *page, ...@@ -574,8 +583,7 @@ static int check_object(struct kmem_cache *s, struct page *page,
/* /*
* No choice but to zap it and thus loose the remainder * No choice but to zap it and thus loose the remainder
* of the free objects in this slab. May cause * of the free objects in this slab. May cause
* another error because the object count maybe * another error because the object count is now wrong.
* wrong now.
*/ */
set_freepointer(s, p, NULL); set_freepointer(s, p, NULL);
return 0; return 0;
...@@ -615,9 +623,8 @@ static int check_slab(struct kmem_cache *s, struct page *page) ...@@ -615,9 +623,8 @@ static int check_slab(struct kmem_cache *s, struct page *page)
} }
/* /*
* Determine if a certain object on a page is on the freelist and * Determine if a certain object on a page is on the freelist. Must hold the
* therefore free. Must hold the slab lock for cpu slabs to * slab lock to guarantee that the chains are in a consistent state.
* guarantee that the chains are consistent.
*/ */
static int on_freelist(struct kmem_cache *s, struct page *page, void *search) static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
{ {
...@@ -663,7 +670,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search) ...@@ -663,7 +670,7 @@ static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
} }
/* /*
* Tracking of fully allocated slabs for debugging * Tracking of fully allocated slabs for debugging purposes.
*/ */
static void add_full(struct kmem_cache_node *n, struct page *page) static void add_full(struct kmem_cache_node *n, struct page *page)
{ {
...@@ -714,7 +721,7 @@ static int alloc_object_checks(struct kmem_cache *s, struct page *page, ...@@ -714,7 +721,7 @@ static int alloc_object_checks(struct kmem_cache *s, struct page *page,
/* /*
* If this is a slab page then lets do the best we can * If this is a slab page then lets do the best we can
* to avoid issues in the future. Marking all objects * to avoid issues in the future. Marking all objects
* as used avoids touching the remainder. * as used avoids touching the remaining objects.
*/ */
printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n", printk(KERN_ERR "@@@ SLUB: %s slab 0x%p. Marking all objects used.\n",
s->name, page); s->name, page);
...@@ -970,9 +977,9 @@ static void remove_partial(struct kmem_cache *s, ...@@ -970,9 +977,9 @@ static void remove_partial(struct kmem_cache *s,
} }
/* /*
* Lock page and remove it from the partial list * Lock slab and remove from the partial list.
* *
* Must hold list_lock * Must hold list_lock.
*/ */
static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page) static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
{ {
...@@ -985,7 +992,7 @@ static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page) ...@@ -985,7 +992,7 @@ static int lock_and_del_slab(struct kmem_cache_node *n, struct page *page)
} }
/* /*
* Try to get a partial slab from a specific node * Try to allocate a partial slab from a specific node.
*/ */
static struct page *get_partial_node(struct kmem_cache_node *n) static struct page *get_partial_node(struct kmem_cache_node *n)
{ {
...@@ -994,7 +1001,8 @@ static struct page *get_partial_node(struct kmem_cache_node *n) ...@@ -994,7 +1001,8 @@ static struct page *get_partial_node(struct kmem_cache_node *n)
/* /*
* Racy check. If we mistakenly see no partial slabs then we * Racy check. If we mistakenly see no partial slabs then we
* just allocate an empty slab. If we mistakenly try to get a * just allocate an empty slab. If we mistakenly try to get a
* partial slab then get_partials() will return NULL. * partial slab and there is none available then get_partials()
* will return NULL.
*/ */
if (!n || !n->nr_partial) if (!n || !n->nr_partial)
return NULL; return NULL;
...@@ -1010,8 +1018,7 @@ static struct page *get_partial_node(struct kmem_cache_node *n) ...@@ -1010,8 +1018,7 @@ static struct page *get_partial_node(struct kmem_cache_node *n)
} }
/* /*
* Get a page from somewhere. Search in increasing NUMA * Get a page from somewhere. Search in increasing NUMA distances.
* distances.
*/ */
static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
{ {
...@@ -1021,24 +1028,22 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags) ...@@ -1021,24 +1028,22 @@ static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
struct page *page; struct page *page;
/* /*
* The defrag ratio allows to configure the tradeoffs between * The defrag ratio allows a configuration of the tradeoffs between
* inter node defragmentation and node local allocations. * inter node defragmentation and node local allocations. A lower
* A lower defrag_ratio increases the tendency to do local * defrag_ratio increases the tendency to do local allocations
* allocations instead of scanning throught the partial * instead of attempting to obtain partial slabs from other nodes.
* lists on other nodes.
* *
* If defrag_ratio is set to 0 then kmalloc() always * If the defrag_ratio is set to 0 then kmalloc() always
* returns node local objects. If its higher then kmalloc() * returns node local objects. If the ratio is higher then kmalloc()
* may return off node objects in order to avoid fragmentation. * may return off node objects because partial slabs are obtained
* * from other nodes and filled up.
* A higher ratio means slabs may be taken from other nodes
* thus reducing the number of partial slabs on those nodes.
* *
* If /sys/slab/xx/defrag_ratio is set to 100 (which makes * If /sys/slab/xx/defrag_ratio is set to 100 (which makes
* defrag_ratio = 1000) then every (well almost) allocation * defrag_ratio = 1000) then every (well almost) allocation will
* will first attempt to defrag slab caches on other nodes. This * first attempt to defrag slab caches on other nodes. This means
* means scanning over all nodes to look for partial slabs which * scanning over all nodes to look for partial slabs which may be
* may be a bit expensive to do on every slab allocation. * expensive if we do it every time we are trying to find a slab
* with available objects.
*/ */
if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio) if (!s->defrag_ratio || get_cycles() % 1024 > s->defrag_ratio)
return NULL; return NULL;
...@@ -1098,11 +1103,12 @@ static void putback_slab(struct kmem_cache *s, struct page *page) ...@@ -1098,11 +1103,12 @@ static void putback_slab(struct kmem_cache *s, struct page *page)
} else { } else {
if (n->nr_partial < MIN_PARTIAL) { if (n->nr_partial < MIN_PARTIAL) {
/* /*
* Adding an empty page to the partial slabs in order * Adding an empty slab to the partial slabs in order
* to avoid page allocator overhead. This page needs to * to avoid page allocator overhead. This slab needs
* come after all the others that are not fully empty * to come after the other slabs with objects in
* in order to make sure that we do maximum * order to fill them up. That way the size of the
* defragmentation. * partial list stays small. kmem_cache_shrink can
* reclaim empty slabs from the partial list.
*/ */
add_partial_tail(n, page); add_partial_tail(n, page);
slab_unlock(page); slab_unlock(page);
...@@ -1170,7 +1176,7 @@ static void flush_all(struct kmem_cache *s) ...@@ -1170,7 +1176,7 @@ static void flush_all(struct kmem_cache *s)
* 1. The page struct * 1. The page struct
* 2. The first cacheline of the object to be allocated. * 2. The first cacheline of the object to be allocated.
* *
* The only cache lines that are read (apart from code) is the * The only other cache lines that are read (apart from code) is the
* per cpu array in the kmem_cache struct. * per cpu array in the kmem_cache struct.
* *
* Fastpath is not possible if we need to get a new slab or have * Fastpath is not possible if we need to get a new slab or have
...@@ -1224,9 +1230,11 @@ static void *slab_alloc(struct kmem_cache *s, ...@@ -1224,9 +1230,11 @@ static void *slab_alloc(struct kmem_cache *s,
cpu = smp_processor_id(); cpu = smp_processor_id();
if (s->cpu_slab[cpu]) { if (s->cpu_slab[cpu]) {
/* /*
* Someone else populated the cpu_slab while we enabled * Someone else populated the cpu_slab while we
* interrupts, or we have got scheduled on another cpu. * enabled interrupts, or we have gotten scheduled
* The page may not be on the requested node. * on another cpu. The page may not be on the
* requested node even if __GFP_THISNODE was
* specified. So we need to recheck.
*/ */
if (node == -1 || if (node == -1 ||
page_to_nid(s->cpu_slab[cpu]) == node) { page_to_nid(s->cpu_slab[cpu]) == node) {
...@@ -1239,7 +1247,7 @@ static void *slab_alloc(struct kmem_cache *s, ...@@ -1239,7 +1247,7 @@ static void *slab_alloc(struct kmem_cache *s,
slab_lock(page); slab_lock(page);
goto redo; goto redo;
} }
/* Dump the current slab */ /* New slab does not fit our expectations */
flush_slab(s, s->cpu_slab[cpu], cpu); flush_slab(s, s->cpu_slab[cpu], cpu);
} }
slab_lock(page); slab_lock(page);
...@@ -1280,7 +1288,8 @@ EXPORT_SYMBOL(kmem_cache_alloc_node); ...@@ -1280,7 +1288,8 @@ EXPORT_SYMBOL(kmem_cache_alloc_node);
* The fastpath only writes the cacheline of the page struct and the first * The fastpath only writes the cacheline of the page struct and the first
* cacheline of the object. * cacheline of the object.
* *
* No special cachelines need to be read * We read the cpu_slab cacheline to check if the slab is the per cpu
* slab for this processor.
*/ */
static void slab_free(struct kmem_cache *s, struct page *page, static void slab_free(struct kmem_cache *s, struct page *page,
void *x, void *addr) void *x, void *addr)
...@@ -1325,7 +1334,7 @@ static void slab_free(struct kmem_cache *s, struct page *page, ...@@ -1325,7 +1334,7 @@ static void slab_free(struct kmem_cache *s, struct page *page,
slab_empty: slab_empty:
if (prior) if (prior)
/* /*
* Slab on the partial list. * Slab still on the partial list.
*/ */
remove_partial(s, page); remove_partial(s, page);
...@@ -1374,22 +1383,16 @@ static struct page *get_object_page(const void *x) ...@@ -1374,22 +1383,16 @@ static struct page *get_object_page(const void *x)
} }
/* /*
* kmem_cache_open produces objects aligned at "size" and the first object * Object placement in a slab is made very easy because we always start at
* is placed at offset 0 in the slab (We have no metainformation on the * offset 0. If we tune the size of the object to the alignment then we can
* slab, all slabs are in essence "off slab"). * get the required alignment by putting one properly sized object after
* * another.
* In order to get the desired alignment one just needs to align the
* size.
* *
* Notice that the allocation order determines the sizes of the per cpu * Notice that the allocation order determines the sizes of the per cpu
* caches. Each processor has always one slab available for allocations. * caches. Each processor has always one slab available for allocations.
* Increasing the allocation order reduces the number of times that slabs * Increasing the allocation order reduces the number of times that slabs
* must be moved on and off the partial lists and therefore may influence * must be moved on and off the partial lists and is therefore a factor in
* locking overhead. * locking overhead.
*
* The offset is used to relocate the free list link in each object. It is
* therefore possible to move the free list link behind the object. This
* is necessary for RCU to work properly and also useful for debugging.
*/ */
/* /*
...@@ -1400,15 +1403,11 @@ static struct page *get_object_page(const void *x) ...@@ -1400,15 +1403,11 @@ static struct page *get_object_page(const void *x)
*/ */
static int slub_min_order; static int slub_min_order;
static int slub_max_order = DEFAULT_MAX_ORDER; static int slub_max_order = DEFAULT_MAX_ORDER;
/*
* Minimum number of objects per slab. This is necessary in order to
* reduce locking overhead. Similar to the queue size in SLAB.
*/
static int slub_min_objects = DEFAULT_MIN_OBJECTS; static int slub_min_objects = DEFAULT_MIN_OBJECTS;
/* /*
* Merge control. If this is set then no merging of slab caches will occur. * Merge control. If this is set then no merging of slab caches will occur.
* (Could be removed. This was introduced to pacify the merge skeptics.)
*/ */
static int slub_nomerge; static int slub_nomerge;
...@@ -1422,23 +1421,27 @@ static char *slub_debug_slabs; ...@@ -1422,23 +1421,27 @@ static char *slub_debug_slabs;
/* /*
* Calculate the order of allocation given an slab object size. * Calculate the order of allocation given an slab object size.
* *
* The order of allocation has significant impact on other elements * The order of allocation has significant impact on performance and other
* of the system. Generally order 0 allocations should be preferred * system components. Generally order 0 allocations should be preferred since
* since they do not cause fragmentation in the page allocator. Larger * order 0 does not cause fragmentation in the page allocator. Larger objects
* objects may have problems with order 0 because there may be too much * be problematic to put into order 0 slabs because there may be too much
* space left unused in a slab. We go to a higher order if more than 1/8th * unused space left. We go to a higher order if more than 1/8th of the slab
* of the slab would be wasted. * would be wasted.
*
* In order to reach satisfactory performance we must ensure that a minimum
* number of objects is in one slab. Otherwise we may generate too much
* activity on the partial lists which requires taking the list_lock. This is
* less a concern for large slabs though which are rarely used.
* *
* In order to reach satisfactory performance we must ensure that * slub_max_order specifies the order where we begin to stop considering the
* a minimum number of objects is in one slab. Otherwise we may * number of objects in a slab as critical. If we reach slub_max_order then
* generate too much activity on the partial lists. This is less a * we try to keep the page order as low as possible. So we accept more waste
* concern for large slabs though. slub_max_order specifies the order * of space in favor of a small page order.
* where we begin to stop considering the number of objects in a slab.
* *
* Higher order allocations also allow the placement of more objects * Higher order allocations also allow the placement of more objects in a
* in a slab and thereby reduce object handling overhead. If the user * slab and thereby reduce object handling overhead. If the user has
* has requested a higher mininum order then we start with that one * requested a higher mininum order then we start with that one instead of
* instead of zero. * the smallest order which will fit the object.
*/ */
static int calculate_order(int size) static int calculate_order(int size)
{ {
...@@ -1458,18 +1461,18 @@ static int calculate_order(int size) ...@@ -1458,18 +1461,18 @@ static int calculate_order(int size)
rem = slab_size % size; rem = slab_size % size;
if (rem <= (PAGE_SIZE << order) / 8) if (rem <= slab_size / 8)
break; break;
} }
if (order >= MAX_ORDER) if (order >= MAX_ORDER)
return -E2BIG; return -E2BIG;
return order; return order;
} }
/* /*
* Function to figure out which alignment to use from the * Figure out what the alignment of the objects will be.
* various ways of specifying it.
*/ */
static unsigned long calculate_alignment(unsigned long flags, static unsigned long calculate_alignment(unsigned long flags,
unsigned long align, unsigned long size) unsigned long align, unsigned long size)
...@@ -1624,18 +1627,16 @@ static int calculate_sizes(struct kmem_cache *s) ...@@ -1624,18 +1627,16 @@ static int calculate_sizes(struct kmem_cache *s)
size = ALIGN(size, sizeof(void *)); size = ALIGN(size, sizeof(void *));
/* /*
* If we are redzoning then check if there is some space between the * If we are Redzoning then check if there is some space between the
* end of the object and the free pointer. If not then add an * end of the object and the free pointer. If not then add an
* additional word, so that we can establish a redzone between * additional word to have some bytes to store Redzone information.
* the object and the freepointer to be able to check for overwrites.
*/ */
if ((flags & SLAB_RED_ZONE) && size == s->objsize) if ((flags & SLAB_RED_ZONE) && size == s->objsize)
size += sizeof(void *); size += sizeof(void *);
/* /*
* With that we have determined how much of the slab is in actual * With that we have determined the number of bytes in actual use
* use by the object. This is the potential offset to the free * by the object. This is the potential offset to the free pointer.
* pointer.
*/ */
s->inuse = size; s->inuse = size;
...@@ -1669,6 +1670,7 @@ static int calculate_sizes(struct kmem_cache *s) ...@@ -1669,6 +1670,7 @@ static int calculate_sizes(struct kmem_cache *s)
* of the object. * of the object.
*/ */
size += sizeof(void *); size += sizeof(void *);
/* /*
* Determine the alignment based on various parameters that the * Determine the alignment based on various parameters that the
* user specified and the dynamic determination of cache line size * user specified and the dynamic determination of cache line size
...@@ -1770,7 +1772,6 @@ EXPORT_SYMBOL(kmem_cache_open); ...@@ -1770,7 +1772,6 @@ EXPORT_SYMBOL(kmem_cache_open);
int kmem_ptr_validate(struct kmem_cache *s, const void *object) int kmem_ptr_validate(struct kmem_cache *s, const void *object)
{ {
struct page * page; struct page * page;
void *addr;
page = get_object_page(object); page = get_object_page(object);
...@@ -1807,7 +1808,8 @@ const char *kmem_cache_name(struct kmem_cache *s) ...@@ -1807,7 +1808,8 @@ const char *kmem_cache_name(struct kmem_cache *s)
EXPORT_SYMBOL(kmem_cache_name); EXPORT_SYMBOL(kmem_cache_name);
/* /*
* Attempt to free all slabs on a node * Attempt to free all slabs on a node. Return the number of slabs we
* were unable to free.
*/ */
static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
struct list_head *list) struct list_head *list)
...@@ -1828,7 +1830,7 @@ static int free_list(struct kmem_cache *s, struct kmem_cache_node *n, ...@@ -1828,7 +1830,7 @@ static int free_list(struct kmem_cache *s, struct kmem_cache_node *n,
} }
/* /*
* Release all resources used by slab cache * Release all resources used by a slab cache.
*/ */
static int kmem_cache_close(struct kmem_cache *s) static int kmem_cache_close(struct kmem_cache *s)
{ {
...@@ -2089,13 +2091,14 @@ void kfree(const void *x) ...@@ -2089,13 +2091,14 @@ void kfree(const void *x)
EXPORT_SYMBOL(kfree); EXPORT_SYMBOL(kfree);
/* /*
* kmem_cache_shrink removes empty slabs from the partial lists * kmem_cache_shrink removes empty slabs from the partial lists and sorts
* and then sorts the partially allocated slabs by the number * the remaining slabs by the number of items in use. The slabs with the
* of items in use. The slabs with the most items in use * most items in use come first. New allocations will then fill those up
* come first. New allocations will remove these from the * and thus they can be removed from the partial lists.
* partial list because they are full. The slabs with the *
* least items are placed last. If it happens that the objects * The slabs with the least items are placed last. This results in them
* are freed then the page can be returned to the page allocator. * being allocated from last increasing the chance that the last objects
* are freed in them.
*/ */
int kmem_cache_shrink(struct kmem_cache *s) int kmem_cache_shrink(struct kmem_cache *s)
{ {
...@@ -2124,12 +2127,10 @@ int kmem_cache_shrink(struct kmem_cache *s) ...@@ -2124,12 +2127,10 @@ int kmem_cache_shrink(struct kmem_cache *s)
spin_lock_irqsave(&n->list_lock, flags); spin_lock_irqsave(&n->list_lock, flags);
/* /*
* Build lists indexed by the items in use in * Build lists indexed by the items in use in each slab.
* each slab or free slabs if empty.
* *
* Note that concurrent frees may occur while * Note that concurrent frees may occur while we hold the
* we hold the list_lock. page->inuse here is * list_lock. page->inuse here is the upper limit.
* the upper limit.
*/ */
list_for_each_entry_safe(page, t, &n->partial, lru) { list_for_each_entry_safe(page, t, &n->partial, lru) {
if (!page->inuse && slab_trylock(page)) { if (!page->inuse && slab_trylock(page)) {
...@@ -2153,8 +2154,8 @@ int kmem_cache_shrink(struct kmem_cache *s) ...@@ -2153,8 +2154,8 @@ int kmem_cache_shrink(struct kmem_cache *s)
goto out; goto out;
/* /*
* Rebuild the partial list with the slabs filled up * Rebuild the partial list with the slabs filled up most
* most first and the least used slabs at the end. * first and the least used slabs at the end.
*/ */
for (i = s->objects - 1; i >= 0; i--) for (i = s->objects - 1; i >= 0; i--)
list_splice(slabs_by_inuse + i, n->partial.prev); list_splice(slabs_by_inuse + i, n->partial.prev);
...@@ -2217,7 +2218,7 @@ void __init kmem_cache_init(void) ...@@ -2217,7 +2218,7 @@ void __init kmem_cache_init(void)
#ifdef CONFIG_NUMA #ifdef CONFIG_NUMA
/* /*
* Must first have the slab cache available for the allocations of the * Must first have the slab cache available for the allocations of the
* struct kmalloc_cache_node's. There is special bootstrap code in * struct kmem_cache_node's. There is special bootstrap code in
* kmem_cache_open for slab_state == DOWN. * kmem_cache_open for slab_state == DOWN.
*/ */
create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node", create_kmalloc_cache(&kmalloc_caches[0], "kmem_cache_node",
...@@ -2389,8 +2390,8 @@ static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu) ...@@ -2389,8 +2390,8 @@ static void for_all_slabs(void (*func)(struct kmem_cache *, int), int cpu)
} }
/* /*
* Use the cpu notifier to insure that the slab are flushed * Use the cpu notifier to insure that the cpu slabs are flushed when
* when necessary. * necessary.
*/ */
static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb, static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
unsigned long action, void *hcpu) unsigned long action, void *hcpu)
...@@ -2555,11 +2556,6 @@ static void resiliency_test(void) ...@@ -2555,11 +2556,6 @@ static void resiliency_test(void)
static void resiliency_test(void) {}; static void resiliency_test(void) {};
#endif #endif
/*
* These are not as efficient as kmalloc for the non debug case.
* We do not have the page struct available so we have to touch one
* cacheline in struct kmem_cache to check slab flags.
*/
void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller) void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, void *caller)
{ {
struct kmem_cache *s = get_slab(size, gfpflags); struct kmem_cache *s = get_slab(size, gfpflags);
...@@ -2677,7 +2673,7 @@ static unsigned long validate_slab_cache(struct kmem_cache *s) ...@@ -2677,7 +2673,7 @@ static unsigned long validate_slab_cache(struct kmem_cache *s)
} }
/* /*
* Generate lists of locations where slabcache objects are allocated * Generate lists of code addresses where slabcache objects are allocated
* and freed. * and freed.
*/ */
...@@ -2756,7 +2752,7 @@ static int add_location(struct loc_track *t, struct kmem_cache *s, ...@@ -2756,7 +2752,7 @@ static int add_location(struct loc_track *t, struct kmem_cache *s,
} }
/* /*
* Not found. Insert new tracking element * Not found. Insert new tracking element.
*/ */
if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max)) if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max))
return 0; return 0;
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册