提交 5bac3acf 编写于 作者: C Chuanxiao 提交者: David Woodhouse

nand/denali Clean up all white spaces in code indent

Hi,
I have changed the outlook mail cliet to be linux mutt client and use my
personal gmail to submit patches.
Here are 5 new patches to fix nand/denali check patch errors. The other
4 patches will be sent out after this mail.
Thanks for your review.

>From d125ad3f57bbf517131dccad6b5933edf8c2632a Mon Sep 17 00:00:00 2001
From: Chuanxiao Dong <chuanxiao.dong@intel.com>
Date: Tue, 3 Aug 2010 15:54:48 +0800
Subject: [PATCH 1/5] mtd: denali.c: clean up all whitespaces in code indent
Signed-off-by: NChuanxiao Dong <chuanxiao.dong@intel.com>
Signed-off-by: NDavid Woodhouse <David.Woodhouse@intel.com>
上级 d2350c2a
......@@ -29,7 +29,7 @@
MODULE_LICENSE("GPL");
/* We define a module parameter that allows the user to override
/* We define a module parameter that allows the user to override
* the hardware and decide what timing mode should be used.
*/
#define NAND_DEFAULT_TIMINGS -1
......@@ -54,13 +54,13 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates
INTR_STATUS0__RST_COMP | \
INTR_STATUS0__ERASE_COMP)
/* indicates whether or not the internal value for the flash bank is
/* indicates whether or not the internal value for the flash bank is
valid or not */
#define CHIP_SELECT_INVALID -1
#define CHIP_SELECT_INVALID -1
#define SUPPORT_8BITECC 1
/* This macro divides two integers and rounds fractional values up
/* This macro divides two integers and rounds fractional values up
* to the nearest integer value. */
#define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
......@@ -83,7 +83,7 @@ MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting. -1 indicates
#define ADDR_CYCLE 1
#define STATUS_CYCLE 2
/* this is a helper macro that allows us to
/* this is a helper macro that allows us to
* format the bank into the proper bits for the controller */
#define BANK(x) ((x) << 24)
......@@ -95,28 +95,28 @@ static const struct pci_device_id denali_pci_ids[] = {
};
/* these are static lookup tables that give us easy access to
registers in the NAND controller.
/* these are static lookup tables that give us easy access to
registers in the NAND controller.
*/
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
INTR_STATUS1,
INTR_STATUS2,
static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
INTR_STATUS1,
INTR_STATUS2,
INTR_STATUS3};
static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
DEVICE_RESET__BANK1,
DEVICE_RESET__BANK2,
DEVICE_RESET__BANK3};
DEVICE_RESET__BANK1,
DEVICE_RESET__BANK2,
DEVICE_RESET__BANK3};
static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
INTR_STATUS1__TIME_OUT,
INTR_STATUS2__TIME_OUT,
INTR_STATUS3__TIME_OUT};
INTR_STATUS1__TIME_OUT,
INTR_STATUS2__TIME_OUT,
INTR_STATUS3__TIME_OUT};
static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
INTR_STATUS1__RST_COMP,
INTR_STATUS2__RST_COMP,
INTR_STATUS3__RST_COMP};
INTR_STATUS1__RST_COMP,
INTR_STATUS2__RST_COMP,
INTR_STATUS3__RST_COMP};
/* specifies the debug level of the driver */
static int nand_debug_level = 0;
......@@ -131,21 +131,21 @@ static uint32_t read_interrupt_status(struct denali_nand_info *denali);
/* This is a wrapper for writing to the denali registers.
* this allows us to create debug information so we can
* observe how the driver is programming the device.
* observe how the driver is programming the device.
* it uses standard linux convention for (val, addr) */
static void denali_write32(uint32_t value, void *addr)
{
iowrite32(value, addr);
iowrite32(value, addr);
#if DEBUG_DENALI
printk(KERN_ERR "wrote: 0x%x -> 0x%x\n", value, (uint32_t)((uint32_t)addr & 0x1fff));
#endif
}
}
/* Certain operations for the denali NAND controller use an indexed mode to read/write
data. The operation is performed by writing the address value of the command to
the device memory followed by the data. This function abstracts this common
operation.
/* Certain operations for the denali NAND controller use an indexed mode to read/write
data. The operation is performed by writing the address value of the command to
the device memory followed by the data. This function abstracts this common
operation.
*/
static void index_addr(struct denali_nand_info *denali, uint32_t address, uint32_t data)
{
......@@ -161,7 +161,7 @@ static void index_addr_read_data(struct denali_nand_info *denali,
*pdata = ioread32(denali->flash_mem + 0x10);
}
/* We need to buffer some data for some of the NAND core routines.
/* We need to buffer some data for some of the NAND core routines.
* The operations manage buffering that data. */
static void reset_buf(struct denali_nand_info *denali)
{
......@@ -183,7 +183,7 @@ static void read_status(struct denali_nand_info *denali)
reset_buf(denali);
/* initiate a device status read */
cmd = MODE_11 | BANK(denali->flash_bank);
cmd = MODE_11 | BANK(denali->flash_bank);
index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
......@@ -199,7 +199,7 @@ static void read_status(struct denali_nand_info *denali)
static void reset_bank(struct denali_nand_info *denali)
{
uint32_t irq_status = 0;
uint32_t irq_mask = reset_complete[denali->flash_bank] |
uint32_t irq_mask = reset_complete[denali->flash_bank] |
operation_timeout[denali->flash_bank];
int bank = 0;
......@@ -209,7 +209,7 @@ static void reset_bank(struct denali_nand_info *denali)
denali_write32(bank, denali->flash_reg + DEVICE_RESET);
irq_status = wait_for_irq(denali, irq_mask);
if (irq_status & operation_timeout[denali->flash_bank])
{
printk(KERN_ERR "reset bank failed.\n");
......@@ -610,7 +610,7 @@ static void get_hynix_nand_para(struct denali_nand_info *denali)
}
/* determines how many NAND chips are connected to the controller. Note for
Intel CE4100 devices we don't support more than one device.
Intel CE4100 devices we don't support more than one device.
*/
static void find_valid_banks(struct denali_nand_info *denali)
{
......@@ -641,8 +641,8 @@ static void find_valid_banks(struct denali_nand_info *denali)
{
/* Platform limitations of the CE4100 device limit
* users to a single chip solution for NAND.
* Multichip support is not enabled.
*/
* Multichip support is not enabled.
*/
if (denali->total_used_banks != 1)
{
printk(KERN_ERR "Sorry, Intel CE4100 only supports "
......@@ -885,7 +885,7 @@ static uint16_t NAND_Read_Device_ID(struct denali_nand_info *denali)
dump_device_info(denali);
/* If the user specified to override the default timings
* with a specific ONFI mode, we apply those changes here.
* with a specific ONFI mode, we apply those changes here.
*/
if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
{
......@@ -912,7 +912,7 @@ static void NAND_LLD_Enable_Disable_Interrupts(struct denali_nand_info *denali,
*/
static inline bool is_flash_bank_valid(int flash_bank)
{
return (flash_bank >= 0 && flash_bank < 4);
return (flash_bank >= 0 && flash_bank < 4);
}
static void denali_irq_init(struct denali_nand_info *denali)
......@@ -948,7 +948,7 @@ static void denali_irq_enable(struct denali_nand_info *denali, uint32_t int_mask
}
/* This function only returns when an interrupt that this driver cares about
* occurs. This is to reduce the overhead of servicing interrupts
* occurs. This is to reduce the overhead of servicing interrupts
*/
static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
{
......@@ -1003,9 +1003,9 @@ static void print_irq_log(struct denali_nand_info *denali)
}
#endif
/* This is the interrupt service routine. It handles all interrupts
* sent to this device. Note that on CE4100, this is a shared
* interrupt.
/* This is the interrupt service routine. It handles all interrupts
* sent to this device. Note that on CE4100, this is a shared
* interrupt.
*/
static irqreturn_t denali_isr(int irq, void *dev_id)
{
......@@ -1015,12 +1015,12 @@ static irqreturn_t denali_isr(int irq, void *dev_id)
spin_lock(&denali->irq_lock);
/* check to see if a valid NAND chip has
* been selected.
/* check to see if a valid NAND chip has
* been selected.
*/
if (is_flash_bank_valid(denali->flash_bank))
{
/* check to see if controller generated
/* check to see if controller generated
* the interrupt, since this is a shared interrupt */
if ((irq_status = denali_irq_detected(denali)) != 0)
{
......@@ -1078,10 +1078,10 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
/* our interrupt was detected */
break;
}
else
else
{
/* these are not the interrupts you are looking for -
need to wait again */
/* these are not the interrupts you are looking for -
* need to wait again */
spin_unlock_irq(&denali->irq_lock);
#if DEBUG_DENALI
print_irq_log(denali);
......@@ -1095,20 +1095,20 @@ static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
if (comp_res == 0)
{
/* timeout */
printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
intr_status, irq_mask);
printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
intr_status, irq_mask);
intr_status = 0;
}
return intr_status;
}
/* This helper function setups the registers for ECC and whether or not
/* This helper function setups the registers for ECC and whether or not
the spare area will be transfered. */
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare)
{
int ecc_en_flag = 0, transfer_spare_flag = 0;
int ecc_en_flag = 0, transfer_spare_flag = 0;
/* set ECC, transfer spare bits if needed */
ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
......@@ -1119,15 +1119,15 @@ static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
denali_write32(transfer_spare_flag, denali->flash_reg + TRANSFER_SPARE_REG);
}
/* sends a pipeline command operation to the controller. See the Denali NAND
controller's user guide for more information (section 4.2.3.6).
/* sends a pipeline command operation to the controller. See the Denali NAND
controller's user guide for more information (section 4.2.3.6).
*/
static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare, int access_type,
static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en,
bool transfer_spare, int access_type,
int op)
{
int status = PASS;
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
irq_mask = 0;
if (op == DENALI_READ) irq_mask = INTR_STATUS0__LOAD_COMP;
......@@ -1145,32 +1145,32 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
/* clear interrupts */
clear_interrupts(denali);
clear_interrupts(denali);
addr = BANK(denali->flash_bank) | denali->page;
if (op == DENALI_WRITE && access_type != SPARE_ACCESS)
{
cmd = MODE_01 | addr;
cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
}
else if (op == DENALI_WRITE && access_type == SPARE_ACCESS)
{
/* read spare area */
cmd = MODE_10 | addr;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
cmd = MODE_01 | addr;
cmd = MODE_01 | addr;
denali_write32(cmd, denali->flash_mem);
}
else if (op == DENALI_READ)
{
/* setup page read request for access type */
cmd = MODE_10 | addr;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, access_type);
/* page 33 of the NAND controller spec indicates we should not
use the pipeline commands in Spare area only mode. So we
use the pipeline commands in Spare area only mode. So we
don't.
*/
if (access_type == SPARE_ACCESS)
......@@ -1181,8 +1181,8 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
else
{
index_addr(denali, (uint32_t)cmd, 0x2000 | op | page_count);
/* wait for command to be accepted
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
......@@ -1204,13 +1204,13 @@ static int denali_send_pipeline_cmd(struct denali_nand_info *denali, bool ecc_en
}
/* helper function that simply writes a buffer to the flash */
static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
int len)
static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* verify that the len is a multiple of 4. see comment in
* read_data_from_flash_mem() */
/* verify that the len is a multiple of 4. see comment in
* read_data_from_flash_mem() */
BUG_ON((len % 4) != 0);
/* write the data to the flash memory */
......@@ -1219,21 +1219,20 @@ static int write_data_to_flash_mem(struct denali_nand_info *denali, const uint8_
{
denali_write32(*buf32++, denali->flash_mem + 0x10);
}
return i*4; /* intent is to return the number of bytes read */
return i*4; /* intent is to return the number of bytes read */
}
/* helper function that simply reads a buffer from the flash */
static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *buf,
int len)
{
uint32_t i = 0, *buf32;
/* we assume that len will be a multiple of 4, if not
* it would be nice to know about it ASAP rather than
* have random failures...
*
* This assumption is based on the fact that this
* function is designed to be used to read flash pages,
* have random failures...
* This assumption is based on the fact that this
* function is designed to be used to read flash pages,
* which are typically multiples of 4...
*/
......@@ -1245,7 +1244,7 @@ static int read_data_from_flash_mem(struct denali_nand_info *denali, uint8_t *bu
{
*buf32++ = ioread32(denali->flash_mem + 0x10);
}
return i*4; /* intent is to return the number of bytes read */
return i*4; /* intent is to return the number of bytes read */
}
/* writes OOB data to the device */
......@@ -1253,14 +1252,14 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
INTR_STATUS0__PROGRAM_FAIL;
int status = 0;
denali->page = page;
if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
DENALI_WRITE) == PASS)
if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
DENALI_WRITE) == PASS)
{
write_data_to_flash_mem(denali, buf, mtd->oobsize);
......@@ -1271,7 +1270,7 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
spin_unlock_irq(&denali->irq_lock);
#endif
/* wait for operation to complete */
irq_status = wait_for_irq(denali, irq_mask);
......@@ -1281,10 +1280,10 @@ static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
status = -EIO;
}
}
else
{
else
{
printk(KERN_ERR "unable to send pipeline command\n");
status = -EIO;
status = -EIO;
}
return status;
}
......@@ -1300,12 +1299,12 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
#if DEBUG_DENALI
printk("read_oob %d\n", page);
#endif
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == PASS)
if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
DENALI_READ) == PASS)
{
read_data_from_flash_mem(denali, buf, mtd->oobsize);
read_data_from_flash_mem(denali, buf, mtd->oobsize);
/* wait for command to be accepted
/* wait for command to be accepted
* can always use status0 bit as the mask is identical for each
* bank. */
irq_status = wait_for_irq(denali, irq_mask);
......@@ -1319,10 +1318,10 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
* instability with the controller if you do a block erase
* and the last transaction was a SPARE_ACCESS. Block erase
* is reliable (according to the MTD test infrastructure)
* if you are in MAIN_ACCESS.
* if you are in MAIN_ACCESS.
*/
addr = BANK(denali->flash_bank) | denali->page;
cmd = MODE_10 | addr;
cmd = MODE_10 | addr;
index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
#if DEBUG_DENALI
......@@ -1334,14 +1333,14 @@ static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
}
}
/* this function examines buffers to see if they contain data that
/* this function examines buffers to see if they contain data that
* indicate that the buffer is part of an erased region of flash.
*/
bool is_erased(uint8_t *buf, int len)
{
int i = 0;
for (i = 0; i < len; i++)
{
{
if (buf[i] != 0xFF)
{
return false;
......@@ -1358,7 +1357,7 @@ bool is_erased(uint8_t *buf, int len)
#define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
#define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint8_t *oobbuf, uint32_t irq_status)
{
bool check_erased_page = false;
......@@ -1370,27 +1369,27 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
uint32_t err_byte = 0, err_sector = 0, err_device = 0;
uint32_t err_correction_value = 0;
do
do
{
err_address = ioread32(denali->flash_reg +
err_address = ioread32(denali->flash_reg +
ECC_ERROR_ADDRESS);
err_sector = ECC_SECTOR(err_address);
err_byte = ECC_BYTE(err_address);
err_correction_info = ioread32(denali->flash_reg +
err_correction_info = ioread32(denali->flash_reg +
ERR_CORRECTION_INFO);
err_correction_value =
err_correction_value =
ECC_CORRECTION_VALUE(err_correction_info);
err_device = ECC_ERR_DEVICE(err_correction_info);
if (ECC_ERROR_CORRECTABLE(err_correction_info))
{
/* offset in our buffer is computed as:
sector number * sector size + offset in
sector number * sector size + offset in
sector
*/
int offset = err_sector * ECC_SECTOR_SIZE +
int offset = err_sector * ECC_SECTOR_SIZE +
err_byte;
if (offset < denali->mtd.writesize)
{
......@@ -1407,15 +1406,15 @@ static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
}
else
{
/* if the error is not correctable, need to
/* if the error is not correctable, need to
* look at the page to see if it is an erased page.
* if so, then it's not a real ECC error */
* if so, then it's not a real ECC error */
check_erased_page = true;
}
#if DEBUG_DENALI
#if DEBUG_DENALI
printk("Detected ECC error in page %d: err_addr = 0x%08x,"
" info to fix is 0x%08x\n", denali->page, err_address,
" info to fix is 0x%08x\n", denali->page, err_address,
err_correction_info);
#endif
} while (!ECC_LAST_ERR(err_correction_info));
......@@ -1458,9 +1457,9 @@ static void denali_setup_dma(struct denali_nand_info *denali, int op)
index_addr(denali, mode | 0x14000, 0x2400);
}
/* writes a page. user specifies type, and this function handles the
/* writes a page. user specifies type, and this function handles the
configuration details. */
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf, bool raw_xfer)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
......@@ -1470,7 +1469,7 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
INTR_STATUS0__PROGRAM_FAIL;
/* if it is a raw xfer, we want to disable ecc, and send
......@@ -1486,15 +1485,15 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
if (raw_xfer)
{
/* transfer the data to the spare area */
memcpy(denali->buf.buf + mtd->writesize,
chip->oob_poi,
mtd->oobsize);
memcpy(denali->buf.buf + mtd->writesize,
chip->oob_poi,
mtd->oobsize);
}
pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
clear_interrupts(denali);
denali_enable_dma(denali, true);
denali_enable_dma(denali, true);
denali_setup_dma(denali, DENALI_WRITE);
......@@ -1504,53 +1503,53 @@ static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
if (irq_status == 0)
{
printk(KERN_ERR "timeout on write_page (type = %d)\n", raw_xfer);
denali->status =
(irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
PASS;
denali->status =
(irq_status & INTR_STATUS0__PROGRAM_FAIL) ? NAND_STATUS_FAIL :
PASS;
}
denali_enable_dma(denali, false);
denali_enable_dma(denali, false);
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
}
/* NAND core entry points */
/* this is the callback that the NAND core calls to write a page. Since
writing a page with ECC or without is similar, all the work is done
/* this is the callback that the NAND core calls to write a page. Since
writing a page with ECC or without is similar, all the work is done
by write_page above. */
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
/* for regular page writes, we let HW handle all the ECC
* data written to the device. */
* data written to the device. */
write_page(mtd, chip, buf, false);
}
/* This is the callback that the NAND core calls to write a page without ECC.
/* This is the callback that the NAND core calls to write a page without ECC.
raw access is similiar to ECC page writes, so all the work is done in the
write_page() function above.
write_page() function above.
*/
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
const uint8_t *buf)
{
/* for raw page writes, we want to disable ECC and simply write
/* for raw page writes, we want to disable ECC and simply write
whatever data is in the buffer. */
write_page(mtd, chip, buf, true);
}
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page)
{
return write_oob_data(mtd, chip->oob_poi, page);
return write_oob_data(mtd, chip->oob_poi, page);
}
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
int page, int sndcmd)
{
read_oob_data(mtd, chip->oob_poi, page);
return 0; /* notify NAND core to send command to
* NAND device. */
return 0; /* notify NAND core to send command to
NAND device. */
}
static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
......@@ -1563,7 +1562,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
size_t size = denali->mtd.writesize + denali->mtd.oobsize;
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
INTR_STATUS0__ECC_ERR;
bool check_erased_page = false;
......@@ -1581,7 +1580,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
memcpy(buf, denali->buf.buf, mtd->writesize);
check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
denali_enable_dma(denali, false);
......@@ -1600,7 +1599,7 @@ static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
{
denali->mtd.ecc_stats.failed++;
}
}
}
}
return 0;
}
......@@ -1616,7 +1615,7 @@ static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
uint32_t irq_status = 0;
uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
setup_ecc_for_xfer(denali, false, true);
denali_enable_dma(denali, true);
......@@ -1687,21 +1686,21 @@ static void denali_erase(struct mtd_info *mtd, int page)
printk("erase page: %d\n", page);
#endif
/* clear interrupts */
clear_interrupts(denali);
clear_interrupts(denali);
/* setup page read request for access type */
cmd = MODE_10 | BANK(denali->flash_bank) | page;
index_addr(denali, (uint32_t)cmd, 0x1);
/* wait for erase to complete or failure to occur */
irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
INTR_STATUS0__ERASE_FAIL);
denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ? NAND_STATUS_FAIL :
PASS;
}
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
int page)
{
struct denali_nand_info *denali = mtd_to_denali(mtd);
......@@ -1710,7 +1709,7 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
printk("cmdfunc: 0x%x %d %d\n", cmd, col, page);
#endif
switch (cmd)
{
{
case NAND_CMD_PAGEPROG:
break;
case NAND_CMD_STATUS:
......@@ -1720,19 +1719,19 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
reset_buf(denali);
if (denali->flash_bank < denali->total_used_banks)
{
/* write manufacturer information into nand
/* write manufacturer information into nand
buffer for NAND subsystem to fetch.
*/
write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
write_byte_to_buf(denali, denali->dev_info.wDeviceID);
write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
*/
write_byte_to_buf(denali, denali->dev_info.wDeviceMaker);
write_byte_to_buf(denali, denali->dev_info.wDeviceID);
write_byte_to_buf(denali, denali->dev_info.bDeviceParam0);
write_byte_to_buf(denali, denali->dev_info.bDeviceParam1);
write_byte_to_buf(denali, denali->dev_info.bDeviceParam2);
}
else
else
{
int i;
for (i = 0; i < 5; i++)
for (i = 0; i < 5; i++)
write_byte_to_buf(denali, 0xff);
}
break;
......@@ -1753,7 +1752,7 @@ static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
}
/* stubs for ECC functions not used by the NAND core */
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
uint8_t *ecc_code)
{
printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
......@@ -1761,7 +1760,7 @@ static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
return -EIO;
}
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
uint8_t *read_ecc, uint8_t *calc_ecc)
{
printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
......@@ -1797,9 +1796,9 @@ static void denali_hw_init(struct denali_nand_info *denali)
static struct nand_ecclayout nand_oob_slc = {
.eccbytes = 4,
.eccpos = { 0, 1, 2, 3 }, /* not used */
.oobfree = {{
.offset = ECC_BYTES_SLC,
.length = 64 - ECC_BYTES_SLC
.oobfree = {{
.offset = ECC_BYTES_SLC,
.length = 64 - ECC_BYTES_SLC
}}
};
......@@ -1807,9 +1806,9 @@ static struct nand_ecclayout nand_oob_slc = {
static struct nand_ecclayout nand_oob_mlc_14bit = {
.eccbytes = 14,
.eccpos = { 0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13 }, /* not used */
.oobfree = {{
.offset = ECC_BYTES_MLC,
.length = 64 - ECC_BYTES_MLC
.oobfree = {{
.offset = ECC_BYTES_MLC,
.length = 64 - ECC_BYTES_MLC
}}
};
......@@ -1842,12 +1841,12 @@ void denali_drv_init(struct denali_nand_info *denali)
denali->idx = 0;
/* setup interrupt handler */
/* the completion object will be used to notify
/* the completion object will be used to notify
* the callee that the interrupt is done */
init_completion(&denali->complete);
/* the spinlock will be used to synchronize the ISR
* with any element that might be access shared
* with any element that might be access shared
* data (interrupt status) */
spin_lock_init(&denali->irq_lock);
......@@ -1880,9 +1879,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
}
if (id->driver_data == INTEL_CE4100) {
/* Due to a silicon limitation, we can only support
* ONFI timing mode 1 and below.
*/
/* Due to a silicon limitation, we can only support
* ONFI timing mode 1 and below.
*/
if (onfi_timing_mode < -1 || onfi_timing_mode > 1)
{
printk("Intel CE4100 only supports ONFI timing mode 1 "
......@@ -1918,7 +1917,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
printk(KERN_ERR "Spectra: no usable DMA configuration\n");
goto failed_enable;
}
denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
denali->buf.dma_buf = pci_map_single(dev, denali->buf.buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
if (pci_dma_mapping_error(dev, denali->buf.dma_buf))
......@@ -1976,8 +1975,8 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
NAND_Read_Device_ID(denali);
/* MTD supported page sizes vary by kernel. We validate our
kernel supports the device here.
/* MTD supported page sizes vary by kernel. We validate our
* kernel supports the device here.
*/
if (denali->dev_info.wPageSize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE)
{
......@@ -2009,18 +2008,18 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
denali->nand.read_byte = denali_read_byte;
denali->nand.waitfunc = denali_waitfunc;
/* scan for NAND devices attached to the controller
/* scan for NAND devices attached to the controller
* this is the first stage in a two step process to register
* with the nand subsystem */
* with the nand subsystem */
if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL))
{
ret = -ENXIO;
goto failed_nand;
}
/* second stage of the NAND scan
* this stage requires information regarding ECC and
* bad block management. */
/* second stage of the NAND scan
* this stage requires information regarding ECC and
* bad block management. */
/* Bad block management */
denali->nand.bbt_td = &bbt_main_descr;
......@@ -2041,9 +2040,9 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
denali->nand.ecc.bytes = ECC_BYTES_SLC;
}
/* These functions are required by the NAND core framework, otherwise,
the NAND core will assert. However, we don't need them, so we'll stub
them out. */
/* These functions are required by the NAND core framework, otherwise,
* the NAND core will assert. However, we don't need them, so we'll stub
* them out. */
denali->nand.ecc.calculate = denali_ecc_calculate;
denali->nand.ecc.correct = denali_ecc_correct;
denali->nand.ecc.hwctl = denali_ecc_hwctl;
......@@ -2079,7 +2078,7 @@ static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
failed_remap_csr:
pci_release_regions(dev);
failed_req_csr:
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
failed_enable:
kfree(denali);
......@@ -2103,7 +2102,7 @@ static void denali_pci_remove(struct pci_dev *dev)
iounmap(denali->flash_mem);
pci_release_regions(dev);
pci_disable_device(dev);
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
PCI_DMA_BIDIRECTIONAL);
pci_set_drvdata(dev, NULL);
kfree(denali);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册