提交 4cb3cee0 编写于 作者: B Benjamin Herrenschmidt 提交者: Paul Mackerras

[POWERPC] Allow hooking of PCI MMIO & PIO accessors on 64 bits

This patch reworks the way iSeries hooks on PCI IO operations (both MMIO
and PIO) and provides a generic way for other platforms to do so (we
have need to do that for various other platforms).

While reworking the IO ops, I ended up doing some spring cleaning in
io.h and eeh.h which I might want to split into 2 or 3 patches (among
others, eeh.h had a lot of useless stuff in it).

A side effect is that EEH for PIO should work now (it used to pass IO
ports down to the eeh address check functions which is bogus).

Also, new are MMIO "repeat" ops, which other archs like ARM already had,
and that we have too now: readsb, readsw, readsl, writesb, writesw,
writesl.

In the long run, I might also make EEH use the hooks instead
of wrapping at the toplevel, which would make things even cleaner and
relegate EEH completely in platforms/iseries, but we have to measure the
performance impact there (though it's really only on MMIO reads)

Since I also need to hook on ioremap, I shuffled the functions a bit
there. I introduced ioremap_flags() to use by drivers who want to pass
explicit flags to ioremap (and it can be hooked). The old __ioremap() is
still there as a low level and cannot be hooked, thus drivers who use it
should migrate unless they know they want the low level version.

The patch "arch provides generic iomap missing accessors" (should be
number 4 in this series) is a pre-requisite to provide full iomap
API support with this patch.
Signed-off-by: NBenjamin Herrenschmidt <benh@kernel.crashing.org>
Signed-off-by: NPaul Mackerras <paulus@samba.org>
上级 d03f387e
...@@ -394,6 +394,7 @@ config PPC_PSERIES ...@@ -394,6 +394,7 @@ config PPC_PSERIES
config PPC_ISERIES config PPC_ISERIES
bool "IBM Legacy iSeries" bool "IBM Legacy iSeries"
depends on PPC_MULTIPLATFORM && PPC64 depends on PPC_MULTIPLATFORM && PPC64
select PPC_INDIRECT_IO
config PPC_CHRP config PPC_CHRP
bool "Common Hardware Reference Platform (CHRP) based machines" bool "Common Hardware Reference Platform (CHRP) based machines"
...@@ -548,6 +549,15 @@ config PPC_970_NAP ...@@ -548,6 +549,15 @@ config PPC_970_NAP
bool bool
default n default n
config PPC_INDIRECT_IO
bool
select GENERIC_IOMAP
default n
config GENERIC_IOMAP
bool
default n
source "drivers/cpufreq/Kconfig" source "drivers/cpufreq/Kconfig"
config CPU_FREQ_PMAC config CPU_FREQ_PMAC
......
...@@ -62,7 +62,7 @@ obj-$(CONFIG_PPC_UDBG_16550) += legacy_serial.o udbg_16550.o ...@@ -62,7 +62,7 @@ obj-$(CONFIG_PPC_UDBG_16550) += legacy_serial.o udbg_16550.o
module-$(CONFIG_PPC64) += module_64.o module-$(CONFIG_PPC64) += module_64.o
obj-$(CONFIG_MODULES) += $(module-y) obj-$(CONFIG_MODULES) += $(module-y)
pci64-$(CONFIG_PPC64) += pci_64.o pci_dn.o iomap.o pci64-$(CONFIG_PPC64) += pci_64.o pci_dn.o
pci32-$(CONFIG_PPC32) := pci_32.o pci32-$(CONFIG_PPC32) := pci_32.o
obj-$(CONFIG_PCI) += $(pci64-y) $(pci32-y) obj-$(CONFIG_PCI) += $(pci64-y) $(pci32-y)
kexec-$(CONFIG_PPC64) := machine_kexec_64.o kexec-$(CONFIG_PPC64) := machine_kexec_64.o
...@@ -71,6 +71,10 @@ obj-$(CONFIG_KEXEC) += machine_kexec.o crash.o $(kexec-y) ...@@ -71,6 +71,10 @@ obj-$(CONFIG_KEXEC) += machine_kexec.o crash.o $(kexec-y)
obj-$(CONFIG_AUDIT) += audit.o obj-$(CONFIG_AUDIT) += audit.o
obj64-$(CONFIG_AUDIT) += compat_audit.o obj64-$(CONFIG_AUDIT) += compat_audit.o
ifneq ($(CONFIG_PPC_INDIRECT_IO),y)
pci64-$(CONFIG_PPC64) += iomap.o
endif
ifeq ($(CONFIG_PPC_ISERIES),y) ifeq ($(CONFIG_PPC_ISERIES),y)
$(obj)/head_64.o: $(obj)/lparmap.s $(obj)/head_64.o: $(obj)/lparmap.s
AFLAGS_head_64.o += -I$(obj) AFLAGS_head_64.o += -I$(obj)
......
...@@ -25,13 +25,11 @@ ...@@ -25,13 +25,11 @@
#include <asm/firmware.h> #include <asm/firmware.h>
#include <asm/bug.h> #include <asm/bug.h>
void _insb(volatile u8 __iomem *port, void *buf, long count) void _insb(const volatile u8 __iomem *port, void *buf, long count)
{ {
u8 *tbuf = buf; u8 *tbuf = buf;
u8 tmp; u8 tmp;
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
if (unlikely(count <= 0)) if (unlikely(count <= 0))
return; return;
asm volatile("sync"); asm volatile("sync");
...@@ -48,8 +46,6 @@ void _outsb(volatile u8 __iomem *port, const void *buf, long count) ...@@ -48,8 +46,6 @@ void _outsb(volatile u8 __iomem *port, const void *buf, long count)
{ {
const u8 *tbuf = buf; const u8 *tbuf = buf;
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
if (unlikely(count <= 0)) if (unlikely(count <= 0))
return; return;
asm volatile("sync"); asm volatile("sync");
...@@ -60,13 +56,11 @@ void _outsb(volatile u8 __iomem *port, const void *buf, long count) ...@@ -60,13 +56,11 @@ void _outsb(volatile u8 __iomem *port, const void *buf, long count)
} }
EXPORT_SYMBOL(_outsb); EXPORT_SYMBOL(_outsb);
void _insw_ns(volatile u16 __iomem *port, void *buf, long count) void _insw_ns(const volatile u16 __iomem *port, void *buf, long count)
{ {
u16 *tbuf = buf; u16 *tbuf = buf;
u16 tmp; u16 tmp;
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
if (unlikely(count <= 0)) if (unlikely(count <= 0))
return; return;
asm volatile("sync"); asm volatile("sync");
...@@ -83,8 +77,6 @@ void _outsw_ns(volatile u16 __iomem *port, const void *buf, long count) ...@@ -83,8 +77,6 @@ void _outsw_ns(volatile u16 __iomem *port, const void *buf, long count)
{ {
const u16 *tbuf = buf; const u16 *tbuf = buf;
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
if (unlikely(count <= 0)) if (unlikely(count <= 0))
return; return;
asm volatile("sync"); asm volatile("sync");
...@@ -95,13 +87,11 @@ void _outsw_ns(volatile u16 __iomem *port, const void *buf, long count) ...@@ -95,13 +87,11 @@ void _outsw_ns(volatile u16 __iomem *port, const void *buf, long count)
} }
EXPORT_SYMBOL(_outsw_ns); EXPORT_SYMBOL(_outsw_ns);
void _insl_ns(volatile u32 __iomem *port, void *buf, long count) void _insl_ns(const volatile u32 __iomem *port, void *buf, long count)
{ {
u32 *tbuf = buf; u32 *tbuf = buf;
u32 tmp; u32 tmp;
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
if (unlikely(count <= 0)) if (unlikely(count <= 0))
return; return;
asm volatile("sync"); asm volatile("sync");
...@@ -118,8 +108,6 @@ void _outsl_ns(volatile u32 __iomem *port, const void *buf, long count) ...@@ -118,8 +108,6 @@ void _outsl_ns(volatile u32 __iomem *port, const void *buf, long count)
{ {
const u32 *tbuf = buf; const u32 *tbuf = buf;
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
if (unlikely(count <= 0)) if (unlikely(count <= 0))
return; return;
asm volatile("sync"); asm volatile("sync");
......
...@@ -1137,7 +1137,7 @@ int unmap_bus_range(struct pci_bus *bus) ...@@ -1137,7 +1137,7 @@ int unmap_bus_range(struct pci_bus *bus)
if (get_bus_io_range(bus, &start_phys, &start_virt, &size)) if (get_bus_io_range(bus, &start_phys, &start_virt, &size))
return 1; return 1;
if (iounmap_explicit((void __iomem *) start_virt, size)) if (__iounmap_explicit((void __iomem *) start_virt, size))
return 1; return 1;
return 0; return 0;
......
...@@ -599,3 +599,10 @@ void __init setup_per_cpu_areas(void) ...@@ -599,3 +599,10 @@ void __init setup_per_cpu_areas(void)
} }
} }
#endif #endif
#ifdef CONFIG_PPC_INDIRECT_IO
struct ppc_pci_io ppc_pci_io;
EXPORT_SYMBOL(ppc_pci_io);
#endif /* CONFIG_PPC_INDIRECT_IO */
...@@ -129,22 +129,12 @@ static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa, ...@@ -129,22 +129,12 @@ static void __iomem * __ioremap_com(unsigned long addr, unsigned long pa,
return (void __iomem *) (ea + (addr & ~PAGE_MASK)); return (void __iomem *) (ea + (addr & ~PAGE_MASK));
} }
void __iomem *
ioremap(unsigned long addr, unsigned long size)
{
return __ioremap(addr, size, _PAGE_NO_CACHE | _PAGE_GUARDED);
}
void __iomem * __ioremap(unsigned long addr, unsigned long size, void __iomem * __ioremap(unsigned long addr, unsigned long size,
unsigned long flags) unsigned long flags)
{ {
unsigned long pa, ea; unsigned long pa, ea;
void __iomem *ret; void __iomem *ret;
if (firmware_has_feature(FW_FEATURE_ISERIES))
return (void __iomem *)addr;
/* /*
* Choose an address to map it to. * Choose an address to map it to.
* Once the imalloc system is running, we use it. * Once the imalloc system is running, we use it.
...@@ -178,6 +168,25 @@ void __iomem * __ioremap(unsigned long addr, unsigned long size, ...@@ -178,6 +168,25 @@ void __iomem * __ioremap(unsigned long addr, unsigned long size,
return ret; return ret;
} }
void __iomem * ioremap(unsigned long addr, unsigned long size)
{
unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
if (ppc_md.ioremap)
return ppc_md.ioremap(addr, size, flags);
return __ioremap(addr, size, flags);
}
void __iomem * ioremap_flags(unsigned long addr, unsigned long size,
unsigned long flags)
{
if (ppc_md.ioremap)
return ppc_md.ioremap(addr, size, flags);
return __ioremap(addr, size, flags);
}
#define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK)) #define IS_PAGE_ALIGNED(_val) ((_val) == ((_val) & PAGE_MASK))
int __ioremap_explicit(unsigned long pa, unsigned long ea, int __ioremap_explicit(unsigned long pa, unsigned long ea,
...@@ -235,13 +244,10 @@ int __ioremap_explicit(unsigned long pa, unsigned long ea, ...@@ -235,13 +244,10 @@ int __ioremap_explicit(unsigned long pa, unsigned long ea,
* *
* XXX what about calls before mem_init_done (ie python_countermeasures()) * XXX what about calls before mem_init_done (ie python_countermeasures())
*/ */
void iounmap(volatile void __iomem *token) void __iounmap(void __iomem *token)
{ {
void *addr; void *addr;
if (firmware_has_feature(FW_FEATURE_ISERIES))
return;
if (!mem_init_done) if (!mem_init_done)
return; return;
...@@ -250,6 +256,14 @@ void iounmap(volatile void __iomem *token) ...@@ -250,6 +256,14 @@ void iounmap(volatile void __iomem *token)
im_free(addr); im_free(addr);
} }
void iounmap(void __iomem *token)
{
if (ppc_md.iounmap)
ppc_md.iounmap(token);
else
__iounmap(token);
}
static int iounmap_subset_regions(unsigned long addr, unsigned long size) static int iounmap_subset_regions(unsigned long addr, unsigned long size)
{ {
struct vm_struct *area; struct vm_struct *area;
...@@ -268,7 +282,7 @@ static int iounmap_subset_regions(unsigned long addr, unsigned long size) ...@@ -268,7 +282,7 @@ static int iounmap_subset_regions(unsigned long addr, unsigned long size)
return 0; return 0;
} }
int iounmap_explicit(volatile void __iomem *start, unsigned long size) int __iounmap_explicit(void __iomem *start, unsigned long size)
{ {
struct vm_struct *area; struct vm_struct *area;
unsigned long addr; unsigned long addr;
...@@ -303,8 +317,10 @@ int iounmap_explicit(volatile void __iomem *start, unsigned long size) ...@@ -303,8 +317,10 @@ int iounmap_explicit(volatile void __iomem *start, unsigned long size)
} }
EXPORT_SYMBOL(ioremap); EXPORT_SYMBOL(ioremap);
EXPORT_SYMBOL(ioremap_flags);
EXPORT_SYMBOL(__ioremap); EXPORT_SYMBOL(__ioremap);
EXPORT_SYMBOL(iounmap); EXPORT_SYMBOL(iounmap);
EXPORT_SYMBOL(__iounmap);
void __iomem * reserve_phb_iospace(unsigned long size) void __iomem * reserve_phb_iospace(unsigned long size)
{ {
......
...@@ -155,53 +155,6 @@ static void pci_Log_Error(char *Error_Text, int Bus, int SubBus, ...@@ -155,53 +155,6 @@ static void pci_Log_Error(char *Error_Text, int Bus, int SubBus,
Error_Text, Bus, SubBus, AgentId, HvRc); Error_Text, Bus, SubBus, AgentId, HvRc);
} }
/*
* iSeries_pcibios_init
*
* Description:
* This function checks for all possible system PCI host bridges that connect
* PCI buses. The system hypervisor is queried as to the guest partition
* ownership status. A pci_controller is built for any bus which is partially
* owned or fully owned by this guest partition.
*/
void iSeries_pcibios_init(void)
{
struct pci_controller *phb;
struct device_node *root = of_find_node_by_path("/");
struct device_node *node = NULL;
if (root == NULL) {
printk(KERN_CRIT "iSeries_pcibios_init: can't find root "
"of device tree\n");
return;
}
while ((node = of_get_next_child(root, node)) != NULL) {
HvBusNumber bus;
const u32 *busp;
if ((node->type == NULL) || (strcmp(node->type, "pci") != 0))
continue;
busp = get_property(node, "bus-range", NULL);
if (busp == NULL)
continue;
bus = *busp;
printk("bus %d appears to exist\n", bus);
phb = pcibios_alloc_controller(node);
if (phb == NULL)
continue;
phb->pci_mem_offset = phb->local_number = bus;
phb->first_busno = bus;
phb->last_busno = bus;
phb->ops = &iSeries_pci_ops;
}
of_node_put(root);
pci_devs_phb_init();
}
/* /*
* iSeries_pci_final_fixup(void) * iSeries_pci_final_fixup(void)
*/ */
...@@ -438,11 +391,7 @@ static inline struct device_node *xlate_iomm_address( ...@@ -438,11 +391,7 @@ static inline struct device_node *xlate_iomm_address(
/* /*
* Read MM I/O Instructions for the iSeries * Read MM I/O Instructions for the iSeries
* On MM I/O error, all ones are returned and iSeries_pci_IoError is cal * On MM I/O error, all ones are returned and iSeries_pci_IoError is cal
* else, data is returned in big Endian format. * else, data is returned in Big Endian format.
*
* iSeries_Read_Byte = Read Byte ( 8 bit)
* iSeries_Read_Word = Read Word (16 bit)
* iSeries_Read_Long = Read Long (32 bit)
*/ */
static u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress) static u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
{ {
...@@ -462,14 +411,15 @@ static u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress) ...@@ -462,14 +411,15 @@ static u8 iSeries_Read_Byte(const volatile void __iomem *IoAddress)
num_printed = 0; num_printed = 0;
} }
if (num_printed++ < 10) if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n", IoAddress); printk(KERN_ERR "iSeries_Read_Byte: invalid access at IO address %p\n",
IoAddress);
return 0xff; return 0xff;
} }
do { do {
HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0); HvCall3Ret16(HvCallPciBarLoad8, &ret, dsa, BarOffset, 0);
} while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0); } while (CheckReturnCode("RDB", DevNode, &retry, ret.rc) != 0);
return (u8)ret.value; return ret.value;
} }
static u16 iSeries_Read_Word(const volatile void __iomem *IoAddress) static u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
...@@ -490,7 +440,8 @@ static u16 iSeries_Read_Word(const volatile void __iomem *IoAddress) ...@@ -490,7 +440,8 @@ static u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
num_printed = 0; num_printed = 0;
} }
if (num_printed++ < 10) if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n", IoAddress); printk(KERN_ERR "iSeries_Read_Word: invalid access at IO address %p\n",
IoAddress);
return 0xffff; return 0xffff;
} }
do { do {
...@@ -498,7 +449,7 @@ static u16 iSeries_Read_Word(const volatile void __iomem *IoAddress) ...@@ -498,7 +449,7 @@ static u16 iSeries_Read_Word(const volatile void __iomem *IoAddress)
BarOffset, 0); BarOffset, 0);
} while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0); } while (CheckReturnCode("RDW", DevNode, &retry, ret.rc) != 0);
return swab16((u16)ret.value); return ret.value;
} }
static u32 iSeries_Read_Long(const volatile void __iomem *IoAddress) static u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
...@@ -519,7 +470,8 @@ static u32 iSeries_Read_Long(const volatile void __iomem *IoAddress) ...@@ -519,7 +470,8 @@ static u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
num_printed = 0; num_printed = 0;
} }
if (num_printed++ < 10) if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n", IoAddress); printk(KERN_ERR "iSeries_Read_Long: invalid access at IO address %p\n",
IoAddress);
return 0xffffffff; return 0xffffffff;
} }
do { do {
...@@ -527,15 +479,12 @@ static u32 iSeries_Read_Long(const volatile void __iomem *IoAddress) ...@@ -527,15 +479,12 @@ static u32 iSeries_Read_Long(const volatile void __iomem *IoAddress)
BarOffset, 0); BarOffset, 0);
} while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0); } while (CheckReturnCode("RDL", DevNode, &retry, ret.rc) != 0);
return swab32((u32)ret.value); return ret.value;
} }
/* /*
* Write MM I/O Instructions for the iSeries * Write MM I/O Instructions for the iSeries
* *
* iSeries_Write_Byte = Write Byte (8 bit)
* iSeries_Write_Word = Write Word(16 bit)
* iSeries_Write_Long = Write Long(32 bit)
*/ */
static void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress) static void iSeries_Write_Byte(u8 data, volatile void __iomem *IoAddress)
{ {
...@@ -581,11 +530,12 @@ static void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress) ...@@ -581,11 +530,12 @@ static void iSeries_Write_Word(u16 data, volatile void __iomem *IoAddress)
num_printed = 0; num_printed = 0;
} }
if (num_printed++ < 10) if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n", IoAddress); printk(KERN_ERR "iSeries_Write_Word: invalid access at IO address %p\n",
IoAddress);
return; return;
} }
do { do {
rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, swab16(data), 0); rc = HvCall4(HvCallPciBarStore16, dsa, BarOffset, data, 0);
} while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0); } while (CheckReturnCode("WWW", DevNode, &retry, rc) != 0);
} }
...@@ -607,231 +557,221 @@ static void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress) ...@@ -607,231 +557,221 @@ static void iSeries_Write_Long(u32 data, volatile void __iomem *IoAddress)
num_printed = 0; num_printed = 0;
} }
if (num_printed++ < 10) if (num_printed++ < 10)
printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n", IoAddress); printk(KERN_ERR "iSeries_Write_Long: invalid access at IO address %p\n",
IoAddress);
return; return;
} }
do { do {
rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, swab32(data), 0); rc = HvCall4(HvCallPciBarStore32, dsa, BarOffset, data, 0);
} while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0); } while (CheckReturnCode("WWL", DevNode, &retry, rc) != 0);
} }
extern unsigned char __raw_readb(const volatile void __iomem *addr) static u8 iseries_readb(const volatile void __iomem *addr)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); return iSeries_Read_Byte(addr);
return *(volatile unsigned char __force *)addr;
} }
EXPORT_SYMBOL(__raw_readb);
extern unsigned short __raw_readw(const volatile void __iomem *addr) static u16 iseries_readw(const volatile void __iomem *addr)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); return le16_to_cpu(iSeries_Read_Word(addr));
return *(volatile unsigned short __force *)addr;
} }
EXPORT_SYMBOL(__raw_readw);
extern unsigned int __raw_readl(const volatile void __iomem *addr) static u32 iseries_readl(const volatile void __iomem *addr)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); return le32_to_cpu(iSeries_Read_Long(addr));
return *(volatile unsigned int __force *)addr;
} }
EXPORT_SYMBOL(__raw_readl);
extern unsigned long __raw_readq(const volatile void __iomem *addr) static u16 iseries_readw_be(const volatile void __iomem *addr)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); return iSeries_Read_Word(addr);
return *(volatile unsigned long __force *)addr;
}
EXPORT_SYMBOL(__raw_readq);
extern void __raw_writeb(unsigned char v, volatile void __iomem *addr)
{
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
*(volatile unsigned char __force *)addr = v;
} }
EXPORT_SYMBOL(__raw_writeb);
extern void __raw_writew(unsigned short v, volatile void __iomem *addr) static u32 iseries_readl_be(const volatile void __iomem *addr)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); return iSeries_Read_Long(addr);
*(volatile unsigned short __force *)addr = v;
} }
EXPORT_SYMBOL(__raw_writew);
extern void __raw_writel(unsigned int v, volatile void __iomem *addr) static void iseries_writeb(u8 data, volatile void __iomem *addr)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); iSeries_Write_Byte(data, addr);
*(volatile unsigned int __force *)addr = v;
} }
EXPORT_SYMBOL(__raw_writel);
extern void __raw_writeq(unsigned long v, volatile void __iomem *addr) static void iseries_writew(u16 data, volatile void __iomem *addr)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); iSeries_Write_Word(cpu_to_le16(data), addr);
*(volatile unsigned long __force *)addr = v;
} }
EXPORT_SYMBOL(__raw_writeq);
int in_8(const volatile unsigned char __iomem *addr) static void iseries_writel(u32 data, volatile void __iomem *addr)
{ {
if (firmware_has_feature(FW_FEATURE_ISERIES)) iSeries_Write_Long(cpu_to_le32(data), addr);
return iSeries_Read_Byte(addr);
return __in_8(addr);
} }
EXPORT_SYMBOL(in_8);
void out_8(volatile unsigned char __iomem *addr, int val) static void iseries_writew_be(u16 data, volatile void __iomem *addr)
{ {
if (firmware_has_feature(FW_FEATURE_ISERIES)) iSeries_Write_Word(data, addr);
iSeries_Write_Byte(val, addr);
else
__out_8(addr, val);
} }
EXPORT_SYMBOL(out_8);
int in_le16(const volatile unsigned short __iomem *addr) static void iseries_writel_be(u32 data, volatile void __iomem *addr)
{ {
if (firmware_has_feature(FW_FEATURE_ISERIES)) iSeries_Write_Long(data, addr);
return iSeries_Read_Word(addr);
return __in_le16(addr);
} }
EXPORT_SYMBOL(in_le16);
int in_be16(const volatile unsigned short __iomem *addr) static void iseries_readsb(const volatile void __iomem *addr, void *buf,
unsigned long count)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); u8 *dst = buf;
while(count-- > 0)
return __in_be16(addr); *(dst++) = iSeries_Read_Byte(addr);
} }
EXPORT_SYMBOL(in_be16);
void out_le16(volatile unsigned short __iomem *addr, int val) static void iseries_readsw(const volatile void __iomem *addr, void *buf,
unsigned long count)
{ {
if (firmware_has_feature(FW_FEATURE_ISERIES)) u16 *dst = buf;
iSeries_Write_Word(val, addr); while(count-- > 0)
else *(dst++) = iSeries_Read_Word(addr);
__out_le16(addr, val);
} }
EXPORT_SYMBOL(out_le16);
void out_be16(volatile unsigned short __iomem *addr, int val) static void iseries_readsl(const volatile void __iomem *addr, void *buf,
unsigned long count)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); u32 *dst = buf;
while(count-- > 0)
__out_be16(addr, val); *(dst++) = iSeries_Read_Long(addr);
} }
EXPORT_SYMBOL(out_be16);
unsigned in_le32(const volatile unsigned __iomem *addr) static void iseries_writesb(volatile void __iomem *addr, const void *buf,
unsigned long count)
{ {
if (firmware_has_feature(FW_FEATURE_ISERIES)) const u8 *src = buf;
return iSeries_Read_Long(addr); while(count-- > 0)
return __in_le32(addr); iSeries_Write_Byte(*(src++), addr);
} }
EXPORT_SYMBOL(in_le32);
unsigned in_be32(const volatile unsigned __iomem *addr) static void iseries_writesw(volatile void __iomem *addr, const void *buf,
unsigned long count)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); const u16 *src = buf;
while(count-- > 0)
return __in_be32(addr); iSeries_Write_Word(*(src++), addr);
} }
EXPORT_SYMBOL(in_be32);
void out_le32(volatile unsigned __iomem *addr, int val) static void iseries_writesl(volatile void __iomem *addr, const void *buf,
unsigned long count)
{ {
if (firmware_has_feature(FW_FEATURE_ISERIES)) const u32 *src = buf;
iSeries_Write_Long(val, addr); while(count-- > 0)
else iSeries_Write_Long(*(src++), addr);
__out_le32(addr, val);
} }
EXPORT_SYMBOL(out_le32);
void out_be32(volatile unsigned __iomem *addr, int val) static void iseries_memset_io(volatile void __iomem *addr, int c,
unsigned long n)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); volatile char __iomem *d = addr;
__out_be32(addr, val); while (n-- > 0)
iSeries_Write_Byte(c, d++);
} }
EXPORT_SYMBOL(out_be32);
unsigned long in_le64(const volatile unsigned long __iomem *addr) static void iseries_memcpy_fromio(void *dest, const volatile void __iomem *src,
unsigned long n)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); char *d = dest;
const volatile char __iomem *s = src;
return __in_le64(addr); while (n-- > 0)
*d++ = iSeries_Read_Byte(s++);
} }
EXPORT_SYMBOL(in_le64);
unsigned long in_be64(const volatile unsigned long __iomem *addr) static void iseries_memcpy_toio(volatile void __iomem *dest, const void *src,
unsigned long n)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); const char *s = src;
volatile char __iomem *d = dest;
return __in_be64(addr); while (n-- > 0)
iSeries_Write_Byte(*s++, d++);
} }
EXPORT_SYMBOL(in_be64);
void out_le64(volatile unsigned long __iomem *addr, unsigned long val)
{
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES));
__out_le64(addr, val); /* We only set MMIO ops. The default PIO ops will be default
} * to the MMIO ops + pci_io_base which is 0 on iSeries as
EXPORT_SYMBOL(out_le64); * expected so both should work.
*
* Note that we don't implement the readq/writeq versions as
* I don't know of an HV call for doing so. Thus, the default
* operation will be used instead, which will fault a the value
* return by iSeries for MMIO addresses always hits a non mapped
* area. This is as good as the BUG() we used to have there.
*/
static struct ppc_pci_io __initdata iseries_pci_io = {
.readb = iseries_readb,
.readw = iseries_readw,
.readl = iseries_readl,
.readw_be = iseries_readw_be,
.readl_be = iseries_readl_be,
.writeb = iseries_writeb,
.writew = iseries_writew,
.writel = iseries_writel,
.writew_be = iseries_writew_be,
.writel_be = iseries_writel_be,
.readsb = iseries_readsb,
.readsw = iseries_readsw,
.readsl = iseries_readsl,
.writesb = iseries_writesb,
.writesw = iseries_writesw,
.writesl = iseries_writesl,
.memset_io = iseries_memset_io,
.memcpy_fromio = iseries_memcpy_fromio,
.memcpy_toio = iseries_memcpy_toio,
};
void out_be64(volatile unsigned long __iomem *addr, unsigned long val) /*
* iSeries_pcibios_init
*
* Description:
* This function checks for all possible system PCI host bridges that connect
* PCI buses. The system hypervisor is queried as to the guest partition
* ownership status. A pci_controller is built for any bus which is partially
* owned or fully owned by this guest partition.
*/
void __init iSeries_pcibios_init(void)
{ {
BUG_ON(firmware_has_feature(FW_FEATURE_ISERIES)); struct pci_controller *phb;
struct device_node *root = of_find_node_by_path("/");
struct device_node *node = NULL;
__out_be64(addr, val); /* Install IO hooks */
} ppc_pci_io = iseries_pci_io;
EXPORT_SYMBOL(out_be64);
void memset_io(volatile void __iomem *addr, int c, unsigned long n) if (root == NULL) {
{ printk(KERN_CRIT "iSeries_pcibios_init: can't find root "
if (firmware_has_feature(FW_FEATURE_ISERIES)) { "of device tree\n");
volatile char __iomem *d = addr; return;
while (n-- > 0) {
iSeries_Write_Byte(c, d++);
} }
} else while ((node = of_get_next_child(root, node)) != NULL) {
eeh_memset_io(addr, c, n); HvBusNumber bus;
} const u32 *busp;
EXPORT_SYMBOL(memset_io);
void memcpy_fromio(void *dest, const volatile void __iomem *src, if ((node->type == NULL) || (strcmp(node->type, "pci") != 0))
unsigned long n) continue;
{
if (firmware_has_feature(FW_FEATURE_ISERIES)) {
char *d = dest;
const volatile char __iomem *s = src;
while (n-- > 0) { busp = get_property(node, "bus-range", NULL);
*d++ = iSeries_Read_Byte(s++); if (busp == NULL)
continue;
bus = *busp;
printk("bus %d appears to exist\n", bus);
phb = pcibios_alloc_controller(node);
if (phb == NULL)
continue;
phb->pci_mem_offset = phb->local_number = bus;
phb->first_busno = bus;
phb->last_busno = bus;
phb->ops = &iSeries_pci_ops;
} }
} else
eeh_memcpy_fromio(dest, src, n);
}
EXPORT_SYMBOL(memcpy_fromio);
void memcpy_toio(volatile void __iomem *dest, const void *src, unsigned long n) of_node_put(root);
{
if (firmware_has_feature(FW_FEATURE_ISERIES)) {
const char *s = src;
volatile char __iomem *d = dest;
while (n-- > 0) { pci_devs_phb_init();
iSeries_Write_Byte(*s++, d++);
}
} else
eeh_memcpy_toio(dest, src, n);
} }
EXPORT_SYMBOL(memcpy_toio);
...@@ -617,6 +617,16 @@ static void iseries_dedicated_idle(void) ...@@ -617,6 +617,16 @@ static void iseries_dedicated_idle(void)
void __init iSeries_init_IRQ(void) { } void __init iSeries_init_IRQ(void) { }
#endif #endif
static void __iomem *iseries_ioremap(unsigned long address, unsigned long size,
unsigned long flags)
{
return (void __iomem *)address;
}
static void iseries_iounmap(void __iomem *token)
{
}
/* /*
* iSeries has no legacy IO, anything calling this function has to * iSeries has no legacy IO, anything calling this function has to
* fail or bad things will happen * fail or bad things will happen
...@@ -655,6 +665,8 @@ define_machine(iseries) { ...@@ -655,6 +665,8 @@ define_machine(iseries) {
.progress = iSeries_progress, .progress = iSeries_progress,
.probe = iseries_probe, .probe = iseries_probe,
.check_legacy_ioport = iseries_check_legacy_ioport, .check_legacy_ioport = iseries_check_legacy_ioport,
.ioremap = iseries_ioremap,
.iounmap = iseries_iounmap,
/* XXX Implement enable_pmcs for iSeries */ /* XXX Implement enable_pmcs for iSeries */
}; };
......
...@@ -120,10 +120,6 @@ static inline u8 eeh_readb(const volatile void __iomem *addr) ...@@ -120,10 +120,6 @@ static inline u8 eeh_readb(const volatile void __iomem *addr)
return eeh_check_failure(addr, val); return eeh_check_failure(addr, val);
return val; return val;
} }
static inline void eeh_writeb(u8 val, volatile void __iomem *addr)
{
out_8(addr, val);
}
static inline u16 eeh_readw(const volatile void __iomem *addr) static inline u16 eeh_readw(const volatile void __iomem *addr)
{ {
...@@ -132,21 +128,6 @@ static inline u16 eeh_readw(const volatile void __iomem *addr) ...@@ -132,21 +128,6 @@ static inline u16 eeh_readw(const volatile void __iomem *addr)
return eeh_check_failure(addr, val); return eeh_check_failure(addr, val);
return val; return val;
} }
static inline void eeh_writew(u16 val, volatile void __iomem *addr)
{
out_le16(addr, val);
}
static inline u16 eeh_raw_readw(const volatile void __iomem *addr)
{
u16 val = in_be16(addr);
if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure(addr, val);
return val;
}
static inline void eeh_raw_writew(u16 val, volatile void __iomem *addr) {
volatile u16 __iomem *vaddr = (volatile u16 __iomem *) addr;
out_be16(vaddr, val);
}
static inline u32 eeh_readl(const volatile void __iomem *addr) static inline u32 eeh_readl(const volatile void __iomem *addr)
{ {
...@@ -155,44 +136,38 @@ static inline u32 eeh_readl(const volatile void __iomem *addr) ...@@ -155,44 +136,38 @@ static inline u32 eeh_readl(const volatile void __iomem *addr)
return eeh_check_failure(addr, val); return eeh_check_failure(addr, val);
return val; return val;
} }
static inline void eeh_writel(u32 val, volatile void __iomem *addr)
{ static inline u64 eeh_readq(const volatile void __iomem *addr)
out_le32(addr, val);
}
static inline u32 eeh_raw_readl(const volatile void __iomem *addr)
{ {
u32 val = in_be32(addr); u64 val = in_le64(addr);
if (EEH_POSSIBLE_ERROR(val, u32)) if (EEH_POSSIBLE_ERROR(val, u64))
return eeh_check_failure(addr, val); return eeh_check_failure(addr, val);
return val; return val;
} }
static inline void eeh_raw_writel(u32 val, volatile void __iomem *addr)
{
out_be32(addr, val);
}
static inline u64 eeh_readq(const volatile void __iomem *addr) static inline u16 eeh_readw_be(const volatile void __iomem *addr)
{ {
u64 val = in_le64(addr); u16 val = in_be16(addr);
if (EEH_POSSIBLE_ERROR(val, u64)) if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure(addr, val); return eeh_check_failure(addr, val);
return val; return val;
} }
static inline void eeh_writeq(u64 val, volatile void __iomem *addr)
static inline u32 eeh_readl_be(const volatile void __iomem *addr)
{ {
out_le64(addr, val); u32 val = in_be32(addr);
if (EEH_POSSIBLE_ERROR(val, u32))
return eeh_check_failure(addr, val);
return val;
} }
static inline u64 eeh_raw_readq(const volatile void __iomem *addr)
static inline u64 eeh_readq_be(const volatile void __iomem *addr)
{ {
u64 val = in_be64(addr); u64 val = in_be64(addr);
if (EEH_POSSIBLE_ERROR(val, u64)) if (EEH_POSSIBLE_ERROR(val, u64))
return eeh_check_failure(addr, val); return eeh_check_failure(addr, val);
return val; return val;
} }
static inline void eeh_raw_writeq(u64 val, volatile void __iomem *addr)
{
out_be64(addr, val);
}
#define EEH_CHECK_ALIGN(v,a) \ #define EEH_CHECK_ALIGN(v,a) \
((((unsigned long)(v)) & ((a) - 1)) == 0) ((((unsigned long)(v)) & ((a) - 1)) == 0)
...@@ -292,68 +267,29 @@ static inline void eeh_memcpy_toio(volatile void __iomem *dest, const void *src, ...@@ -292,68 +267,29 @@ static inline void eeh_memcpy_toio(volatile void __iomem *dest, const void *src,
#undef EEH_CHECK_ALIGN #undef EEH_CHECK_ALIGN
static inline u8 eeh_inb(unsigned long port)
{
u8 val;
val = in_8((u8 __iomem *)(port+pci_io_base));
if (EEH_POSSIBLE_ERROR(val, u8))
return eeh_check_failure((void __iomem *)(port), val);
return val;
}
static inline void eeh_outb(u8 val, unsigned long port)
{
out_8((u8 __iomem *)(port+pci_io_base), val);
}
static inline u16 eeh_inw(unsigned long port)
{
u16 val;
val = in_le16((u16 __iomem *)(port+pci_io_base));
if (EEH_POSSIBLE_ERROR(val, u16))
return eeh_check_failure((void __iomem *)(port), val);
return val;
}
static inline void eeh_outw(u16 val, unsigned long port)
{
out_le16((u16 __iomem *)(port+pci_io_base), val);
}
static inline u32 eeh_inl(unsigned long port)
{
u32 val;
val = in_le32((u32 __iomem *)(port+pci_io_base));
if (EEH_POSSIBLE_ERROR(val, u32))
return eeh_check_failure((void __iomem *)(port), val);
return val;
}
static inline void eeh_outl(u32 val, unsigned long port)
{
out_le32((u32 __iomem *)(port+pci_io_base), val);
}
/* in-string eeh macros */ /* in-string eeh macros */
static inline void eeh_insb(unsigned long port, void * buf, int ns) static inline void eeh_readsb(const volatile void __iomem *addr, void * buf,
int ns)
{ {
_insb((u8 __iomem *)(port+pci_io_base), buf, ns); _insb(addr, buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8)) if (EEH_POSSIBLE_ERROR((*(((u8*)buf)+ns-1)), u8))
eeh_check_failure((void __iomem *)(port), *(u8*)buf); eeh_check_failure(addr, *(u8*)buf);
} }
static inline void eeh_insw_ns(unsigned long port, void * buf, int ns) static inline void eeh_readsw(const volatile void __iomem *addr, void * buf,
int ns)
{ {
_insw_ns((u16 __iomem *)(port+pci_io_base), buf, ns); _insw(addr, buf, ns);
if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16)) if (EEH_POSSIBLE_ERROR((*(((u16*)buf)+ns-1)), u16))
eeh_check_failure((void __iomem *)(port), *(u16*)buf); eeh_check_failure(addr, *(u16*)buf);
} }
static inline void eeh_insl_ns(unsigned long port, void * buf, int nl) static inline void eeh_readsl(const volatile void __iomem *addr, void * buf,
int nl)
{ {
_insl_ns((u32 __iomem *)(port+pci_io_base), buf, nl); _insl(addr, buf, nl);
if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32)) if (EEH_POSSIBLE_ERROR((*(((u32*)buf)+nl-1)), u32))
eeh_check_failure((void __iomem *)(port), *(u32*)buf); eeh_check_failure(addr, *(u32*)buf);
} }
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
......
...@@ -22,10 +22,17 @@ ...@@ -22,10 +22,17 @@
#endif #endif
#endif #endif
#ifdef __powerpc64__
#define __ide_mm_insw(p, a, c) readsw((void __iomem *)(p), (a), (c))
#define __ide_mm_insl(p, a, c) readsl((void __iomem *)(p), (a), (c))
#define __ide_mm_outsw(p, a, c) writesw((void __iomem *)(p), (a), (c))
#define __ide_mm_outsl(p, a, c) writesl((void __iomem *)(p), (a), (c))
#else
#define __ide_mm_insw(p, a, c) _insw_ns((volatile u16 __iomem *)(p), (a), (c)) #define __ide_mm_insw(p, a, c) _insw_ns((volatile u16 __iomem *)(p), (a), (c))
#define __ide_mm_insl(p, a, c) _insl_ns((volatile u32 __iomem *)(p), (a), (c)) #define __ide_mm_insl(p, a, c) _insl_ns((volatile u32 __iomem *)(p), (a), (c))
#define __ide_mm_outsw(p, a, c) _outsw_ns((volatile u16 __iomem *)(p), (a), (c)) #define __ide_mm_outsw(p, a, c) _outsw_ns((volatile u16 __iomem *)(p), (a), (c))
#define __ide_mm_outsl(p, a, c) _outsl_ns((volatile u32 __iomem *)(p), (a), (c)) #define __ide_mm_outsl(p, a, c) _outsl_ns((volatile u32 __iomem *)(p), (a), (c))
#endif
#ifndef __powerpc64__ #ifndef __powerpc64__
#include <linux/hdreg.h> #include <linux/hdreg.h>
......
/* This file is meant to be include multiple times by other headers */
DEF_PCI_AC_RET(readb, u8, (const PCI_IO_ADDR addr), (addr))
DEF_PCI_AC_RET(readw, u16, (const PCI_IO_ADDR addr), (addr))
DEF_PCI_AC_RET(readl, u32, (const PCI_IO_ADDR addr), (addr))
DEF_PCI_AC_RET(readq, u64, (const PCI_IO_ADDR addr), (addr))
DEF_PCI_AC_RET(readw_be, u16, (const PCI_IO_ADDR addr), (addr))
DEF_PCI_AC_RET(readl_be, u32, (const PCI_IO_ADDR addr), (addr))
DEF_PCI_AC_RET(readq_be, u64, (const PCI_IO_ADDR addr), (addr))
DEF_PCI_AC_NORET(writeb, (u8 val, PCI_IO_ADDR addr), (val, addr))
DEF_PCI_AC_NORET(writew, (u16 val, PCI_IO_ADDR addr), (val, addr))
DEF_PCI_AC_NORET(writel, (u32 val, PCI_IO_ADDR addr), (val, addr))
DEF_PCI_AC_NORET(writeq, (u64 val, PCI_IO_ADDR addr), (val, addr))
DEF_PCI_AC_NORET(writew_be, (u16 val, PCI_IO_ADDR addr), (val, addr))
DEF_PCI_AC_NORET(writel_be, (u32 val, PCI_IO_ADDR addr), (val, addr))
DEF_PCI_AC_NORET(writeq_be, (u64 val, PCI_IO_ADDR addr), (val, addr))
DEF_PCI_AC_RET(inb, u8, (unsigned long port), (port))
DEF_PCI_AC_RET(inw, u16, (unsigned long port), (port))
DEF_PCI_AC_RET(inl, u32, (unsigned long port), (port))
DEF_PCI_AC_NORET(outb, (u8 val, unsigned long port), (val, port))
DEF_PCI_AC_NORET(outw, (u16 val, unsigned long port), (val, port))
DEF_PCI_AC_NORET(outl, (u32 val, unsigned long port), (val, port))
DEF_PCI_AC_NORET(readsb, (const PCI_IO_ADDR a, void *b, unsigned long c), \
(a, b, c))
DEF_PCI_AC_NORET(readsw, (const PCI_IO_ADDR a, void *b, unsigned long c), \
(a, b, c))
DEF_PCI_AC_NORET(readsl, (const PCI_IO_ADDR a, void *b, unsigned long c), \
(a, b, c))
DEF_PCI_AC_NORET(writesb, (PCI_IO_ADDR a, const void *b, unsigned long c), \
(a, b, c))
DEF_PCI_AC_NORET(writesw, (PCI_IO_ADDR a, const void *b, unsigned long c), \
(a, b, c))
DEF_PCI_AC_NORET(writesl, (PCI_IO_ADDR a, const void *b, unsigned long c), \
(a, b, c))
DEF_PCI_AC_NORET(insb, (unsigned long p, void *b, unsigned long c), \
(p, b, c))
DEF_PCI_AC_NORET(insw, (unsigned long p, void *b, unsigned long c), \
(p, b, c))
DEF_PCI_AC_NORET(insl, (unsigned long p, void *b, unsigned long c), \
(p, b, c))
DEF_PCI_AC_NORET(outsb, (unsigned long p, const void *b, unsigned long c), \
(p, b, c))
DEF_PCI_AC_NORET(outsw, (unsigned long p, const void *b, unsigned long c), \
(p, b, c))
DEF_PCI_AC_NORET(outsl, (unsigned long p, const void *b, unsigned long c), \
(p, b, c))
DEF_PCI_AC_NORET(memset_io, (PCI_IO_ADDR a, int c, unsigned long n), \
(a, c, n))
DEF_PCI_AC_NORET(memcpy_fromio,(void *d,const PCI_IO_ADDR s,unsigned long n), \
(d, s, n))
DEF_PCI_AC_NORET(memcpy_toio,(PCI_IO_ADDR d,const void *s,unsigned long n), \
(d, s, n))
...@@ -31,57 +31,122 @@ extern int check_legacy_ioport(unsigned long base_port); ...@@ -31,57 +31,122 @@ extern int check_legacy_ioport(unsigned long base_port);
#define SLOW_DOWN_IO #define SLOW_DOWN_IO
/*
*
* Low level MMIO accessors
*
* This provides the non-bus specific accessors to MMIO. Those are PowerPC
* specific and thus shouldn't be used in generic code. The accessors
* provided here are:
*
* in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
* out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
* _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
*
* Those operate directly on a kernel virtual address. Note that the prototype
* for the out_* accessors has the arguments in opposite order from the usual
* linux PCI accessors. Unlike those, they take the address first and the value
* next.
*
* Note: I might drop the _ns suffix on the stream operations soon as it is
* simply normal for stream operations to not swap in the first place.
*
*/
#define IO_SET_SYNC_FLAG() do { get_paca()->io_sync = 1; } while(0)
#define DEF_MMIO_IN(name, type, insn) \
static inline type name(const volatile type __iomem *addr) \
{ \
type ret; \
__asm__ __volatile__("sync;" insn ";twi 0,%0,0;isync" \
: "=r" (ret) : "r" (addr), "m" (*addr)); \
return ret; \
}
#define DEF_MMIO_OUT(name, type, insn) \
static inline void name(volatile type __iomem *addr, type val) \
{ \
__asm__ __volatile__("sync;" insn \
: "=m" (*addr) : "r" (val), "r" (addr)); \
IO_SET_SYNC_FLAG(); \
}
#define DEF_MMIO_IN_BE(name, size, insn) \
DEF_MMIO_IN(name, u##size, __stringify(insn)"%U2%X2 %0,%2")
#define DEF_MMIO_IN_LE(name, size, insn) \
DEF_MMIO_IN(name, u##size, __stringify(insn)" %0,0,%1")
#define DEF_MMIO_OUT_BE(name, size, insn) \
DEF_MMIO_OUT(name, u##size, __stringify(insn)"%U0%X0 %1,%0")
#define DEF_MMIO_OUT_LE(name, size, insn) \
DEF_MMIO_OUT(name, u##size, __stringify(insn)" %1,0,%2")
DEF_MMIO_IN_BE(in_8, 8, lbz);
DEF_MMIO_IN_BE(in_be16, 16, lhz);
DEF_MMIO_IN_BE(in_be32, 32, lwz);
DEF_MMIO_IN_BE(in_be64, 64, ld);
DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
DEF_MMIO_OUT_BE(out_8, 8, stb);
DEF_MMIO_OUT_BE(out_be16, 16, sth);
DEF_MMIO_OUT_BE(out_be32, 32, stw);
DEF_MMIO_OUT_BE(out_be64, 64, std);
DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
/* There is no asm instructions for 64 bits reverse loads and stores */
static inline u64 in_le64(const volatile u64 __iomem *addr)
{
return le64_to_cpu(in_be64(addr));
}
static inline void out_le64(volatile u64 __iomem *addr, u64 val)
{
out_be64(addr, cpu_to_le64(val));
}
/*
* Low level IO stream instructions are defined out of line for now
*/
extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
/* The _ns naming is historical and will be removed. For now, just #define
* the non _ns equivalent names
*/
#define _insw _insw_ns
#define _insl _insl_ns
#define _outsw _outsw_ns
#define _outsl _outsl_ns
/*
*
* PCI and standard ISA accessors
*
* Those are globally defined linux accessors for devices on PCI or ISA
* busses. They follow the Linux defined semantics. The current implementation
* for PowerPC is as close as possible to the x86 version of these, and thus
* provides fairly heavy weight barriers for the non-raw versions
*
* In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
* allowing the platform to provide its own implementation of some or all
* of the accessors.
*/
extern unsigned long isa_io_base; extern unsigned long isa_io_base;
extern unsigned long pci_io_base; extern unsigned long pci_io_base;
#ifdef CONFIG_PPC_ISERIES
/*
extern int in_8(const volatile unsigned char __iomem *addr); * Non ordered and non-swapping "raw" accessors
extern void out_8(volatile unsigned char __iomem *addr, int val); */
extern int in_le16(const volatile unsigned short __iomem *addr);
extern int in_be16(const volatile unsigned short __iomem *addr);
extern void out_le16(volatile unsigned short __iomem *addr, int val);
extern void out_be16(volatile unsigned short __iomem *addr, int val);
extern unsigned in_le32(const volatile unsigned __iomem *addr);
extern unsigned in_be32(const volatile unsigned __iomem *addr);
extern void out_le32(volatile unsigned __iomem *addr, int val);
extern void out_be32(volatile unsigned __iomem *addr, int val);
extern unsigned long in_le64(const volatile unsigned long __iomem *addr);
extern unsigned long in_be64(const volatile unsigned long __iomem *addr);
extern void out_le64(volatile unsigned long __iomem *addr, unsigned long val);
extern void out_be64(volatile unsigned long __iomem *addr, unsigned long val);
extern unsigned char __raw_readb(const volatile void __iomem *addr);
extern unsigned short __raw_readw(const volatile void __iomem *addr);
extern unsigned int __raw_readl(const volatile void __iomem *addr);
extern unsigned long __raw_readq(const volatile void __iomem *addr);
extern void __raw_writeb(unsigned char v, volatile void __iomem *addr);
extern void __raw_writew(unsigned short v, volatile void __iomem *addr);
extern void __raw_writel(unsigned int v, volatile void __iomem *addr);
extern void __raw_writeq(unsigned long v, volatile void __iomem *addr);
extern void memset_io(volatile void __iomem *addr, int c, unsigned long n);
extern void memcpy_fromio(void *dest, const volatile void __iomem *src,
unsigned long n);
extern void memcpy_toio(volatile void __iomem *dest, const void *src,
unsigned long n);
#else /* CONFIG_PPC_ISERIES */
#define in_8(addr) __in_8((addr))
#define out_8(addr, val) __out_8((addr), (val))
#define in_le16(addr) __in_le16((addr))
#define in_be16(addr) __in_be16((addr))
#define out_le16(addr, val) __out_le16((addr), (val))
#define out_be16(addr, val) __out_be16((addr), (val))
#define in_le32(addr) __in_le32((addr))
#define in_be32(addr) __in_be32((addr))
#define out_le32(addr, val) __out_le32((addr), (val))
#define out_be32(addr, val) __out_be32((addr), (val))
#define in_le64(addr) __in_le64((addr))
#define in_be64(addr) __in_be64((addr))
#define out_le64(addr, val) __out_le64((addr), (val))
#define out_be64(addr, val) __out_be64((addr), (val))
static inline unsigned char __raw_readb(const volatile void __iomem *addr) static inline unsigned char __raw_readb(const volatile void __iomem *addr)
{ {
...@@ -115,52 +180,203 @@ static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr) ...@@ -115,52 +180,203 @@ static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
{ {
*(volatile unsigned long __force *)addr = v; *(volatile unsigned long __force *)addr = v;
} }
#define memset_io(a,b,c) eeh_memset_io((a),(b),(c))
#define memcpy_fromio(a,b,c) eeh_memcpy_fromio((a),(b),(c))
#define memcpy_toio(a,b,c) eeh_memcpy_toio((a),(b),(c))
#endif /* CONFIG_PPC_ISERIES */
/* /*
* The insw/outsw/insl/outsl macros don't do byte-swapping. *
* They are only used in practice for transferring buffers which * PCI PIO and MMIO accessors.
* are arrays of bytes, and byte-swapping is not appropriate in *
* that case. - paulus */ */
#define insb(port, buf, ns) eeh_insb((port), (buf), (ns))
#define insw(port, buf, ns) eeh_insw_ns((port), (buf), (ns))
#define insl(port, buf, nl) eeh_insl_ns((port), (buf), (nl))
#define outsb(port, buf, ns) _outsb((u8 __iomem *)((port)+pci_io_base), (buf), (ns))
#define outsw(port, buf, ns) _outsw_ns((u16 __iomem *)((port)+pci_io_base), (buf), (ns))
#define outsl(port, buf, nl) _outsl_ns((u32 __iomem *)((port)+pci_io_base), (buf), (nl))
#define readb(addr) eeh_readb(addr)
#define readw(addr) eeh_readw(addr)
#define readl(addr) eeh_readl(addr)
#define readq(addr) eeh_readq(addr)
#define writeb(data, addr) eeh_writeb((data), (addr))
#define writew(data, addr) eeh_writew((data), (addr))
#define writel(data, addr) eeh_writel((data), (addr))
#define writeq(data, addr) eeh_writeq((data), (addr))
#define inb(port) eeh_inb((unsigned long)port)
#define outb(val, port) eeh_outb(val, (unsigned long)port)
#define inw(port) eeh_inw((unsigned long)port)
#define outw(val, port) eeh_outw(val, (unsigned long)port)
#define inl(port) eeh_inl((unsigned long)port)
#define outl(val, port) eeh_outl(val, (unsigned long)port)
#include <asm/eeh.h>
/* Shortcut to the MMIO argument pointer */
#define PCI_IO_ADDR volatile void __iomem *
/* Indirect IO address tokens:
*
* When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
* on all IOs.
*
* To help platforms who may need to differenciate MMIO addresses in
* their hooks, a bitfield is reserved for use by the platform near the
* top of MMIO addresses (not PIO, those have to cope the hard way).
*
* This bit field is 12 bits and is at the top of the IO virtual
* addresses PCI_IO_INDIRECT_TOKEN_MASK.
*
* The kernel virtual space is thus:
*
* 0xD000000000000000 : vmalloc
* 0xD000080000000000 : PCI PHB IO space
* 0xD000080080000000 : ioremap
* 0xD0000fffffffffff : end of ioremap region
*
* Since the top 4 bits are reserved as the region ID, we use thus
* the next 12 bits and keep 4 bits available for the future if the
* virtual address space is ever to be extended.
*
* The direct IO mapping operations will then mask off those bits
* before doing the actual access, though that only happen when
* CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
* mechanism
*/
#ifdef CONFIG_PPC_INDIRECT_IO
#define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
#define PCI_IO_IND_TOKEN_SHIFT 48
#define PCI_FIX_ADDR(addr) \
((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
#define PCI_GET_ADDR_TOKEN(addr) \
(((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
PCI_IO_IND_TOKEN_SHIFT)
#define PCI_SET_ADDR_TOKEN(addr, token) \
do { \
unsigned long __a = (unsigned long)(addr); \
__a &= ~PCI_IO_IND_TOKEN_MASK; \
__a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
(addr) = (void __iomem *)__a; \
} while(0)
#else
#define PCI_FIX_ADDR(addr) (addr)
#endif
/* The "__do_*" operations below provide the actual "base" implementation
* for each of the defined acccessor. Some of them use the out_* functions
* directly, some of them still use EEH, though we might change that in the
* future. Those macros below provide the necessary argument swapping and
* handling of the IO base for PIO.
*
* They are themselves used by the macros that define the actual accessors
* and can be used by the hooks if any.
*
* Note that PIO operations are always defined in terms of their corresonding
* MMIO operations. That allows platforms like iSeries who want to modify the
* behaviour of both to only hook on the MMIO version and get both. It's also
* possible to hook directly at the toplevel PIO operation if they have to
* be handled differently
*/
#define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
#define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
#define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
#define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
#define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
#define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
#define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
#define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
#define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
#define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
#define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
#define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
#define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
#define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
#define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)pci_io_base+port);
#define __do_outw(val, port) writew(val,(PCI_IO_ADDR)pci_io_base+port);
#define __do_outl(val, port) writel(val,(PCI_IO_ADDR)pci_io_base+port);
#define __do_inb(port) readb((PCI_IO_ADDR)pci_io_base + port);
#define __do_inw(port) readw((PCI_IO_ADDR)pci_io_base + port);
#define __do_inl(port) readl((PCI_IO_ADDR)pci_io_base + port);
#define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
#define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
#define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
#define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
#define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
#define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
#define __do_insb(p, b, n) readsb((PCI_IO_ADDR)pci_io_base+(p), (b), (n))
#define __do_insw(p, b, n) readsw((PCI_IO_ADDR)pci_io_base+(p), (b), (n))
#define __do_insl(p, b, n) readsl((PCI_IO_ADDR)pci_io_base+(p), (b), (n))
#define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)pci_io_base+(p),(b),(n))
#define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)pci_io_base+(p),(b),(n))
#define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)pci_io_base+(p),(b),(n))
#define __do_memset_io(addr, c, n) eeh_memset_io(PCI_FIX_ADDR(addr), c, n)
#define __do_memcpy_fromio(dst, src, n) eeh_memcpy_fromio(dst, \
PCI_FIX_ADDR(src), n)
#define __do_memcpy_toio(dst, src, n) eeh_memcpy_toio(PCI_FIX_ADDR(dst), \
src, n)
#ifdef CONFIG_PPC_INDIRECT_IO
#define DEF_PCI_HOOK(x) x
#else
#define DEF_PCI_HOOK(x) NULL
#endif
/* Structure containing all the hooks */
extern struct ppc_pci_io {
#define DEF_PCI_AC_RET(name, ret, at, al) ret (*name) at;
#define DEF_PCI_AC_NORET(name, at, al) void (*name) at;
#include <asm/io-defs.h>
#undef DEF_PCI_AC_RET
#undef DEF_PCI_AC_NORET
} ppc_pci_io;
/* The inline wrappers */
#define DEF_PCI_AC_RET(name, ret, at, al) \
static inline ret name at \
{ \
if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
return ppc_pci_io.name al; \
return __do_##name al; \
}
#define DEF_PCI_AC_NORET(name, at, al) \
static inline void name at \
{ \
if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
ppc_pci_io.name al; \
else \
__do_##name al; \
}
#include <asm/io-defs.h>
#undef DEF_PCI_AC_RET
#undef DEF_PCI_AC_NORET
/* Some drivers check for the presence of readq & writeq with
* a #ifdef, so we make them happy here.
*/
#define readq readq
#define writeq writeq
/* Nothing to do for cache stuff x*/
#define dma_cache_inv(_start,_size) do { } while (0)
#define dma_cache_wback(_start,_size) do { } while (0)
#define dma_cache_wback_inv(_start,_size) do { } while (0)
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
/*
* We don't do relaxed operations yet, at least not with this semantic
*/
#define readb_relaxed(addr) readb(addr) #define readb_relaxed(addr) readb(addr)
#define readw_relaxed(addr) readw(addr) #define readw_relaxed(addr) readw(addr)
#define readl_relaxed(addr) readl(addr) #define readl_relaxed(addr) readl(addr)
#define readq_relaxed(addr) readq(addr) #define readq_relaxed(addr) readq(addr)
extern void _insb(volatile u8 __iomem *port, void *buf, long count); /*
extern void _outsb(volatile u8 __iomem *port, const void *buf, long count); * Enforce synchronisation of stores vs. spin_unlock
extern void _insw_ns(volatile u16 __iomem *port, void *buf, long count); * (this does it explicitely, though our implementation of spin_unlock
extern void _outsw_ns(volatile u16 __iomem *port, const void *buf, long count); * does it implicitely too)
extern void _insl_ns(volatile u32 __iomem *port, void *buf, long count); */
extern void _outsl_ns(volatile u32 __iomem *port, const void *buf, long count);
static inline void mmiowb(void) static inline void mmiowb(void)
{ {
unsigned long tmp; unsigned long tmp;
...@@ -170,6 +386,23 @@ static inline void mmiowb(void) ...@@ -170,6 +386,23 @@ static inline void mmiowb(void)
: "memory"); : "memory");
} }
static inline void iosync(void)
{
__asm__ __volatile__ ("sync" : : : "memory");
}
/* Enforce in-order execution of data I/O.
* No distinction between read/write on PPC; use eieio for all three.
* Those are fairly week though. They don't provide a barrier between
* MMIO and cacheable storage nor do they provide a barrier vs. locks,
* they only provide barriers between 2 __raw MMIO operations and
* possibly break write combining.
*/
#define iobarrier_rw() eieio()
#define iobarrier_r() eieio()
#define iobarrier_w() eieio()
/* /*
* output pause versions need a delay at least for the * output pause versions need a delay at least for the
* w83c105 ide controller in a p610. * w83c105 ide controller in a p610.
...@@ -185,11 +418,6 @@ static inline void mmiowb(void) ...@@ -185,11 +418,6 @@ static inline void mmiowb(void)
#define IO_SPACE_LIMIT ~(0UL) #define IO_SPACE_LIMIT ~(0UL)
extern int __ioremap_explicit(unsigned long p_addr, unsigned long v_addr,
unsigned long size, unsigned long flags);
extern void __iomem *__ioremap(unsigned long address, unsigned long size,
unsigned long flags);
/** /**
* ioremap - map bus memory into CPU space * ioremap - map bus memory into CPU space
* @address: bus address of the memory * @address: bus address of the memory
...@@ -200,14 +428,70 @@ extern void __iomem *__ioremap(unsigned long address, unsigned long size, ...@@ -200,14 +428,70 @@ extern void __iomem *__ioremap(unsigned long address, unsigned long size,
* writew/writel functions and the other mmio helpers. The returned * writew/writel functions and the other mmio helpers. The returned
* address is not guaranteed to be usable directly as a virtual * address is not guaranteed to be usable directly as a virtual
* address. * address.
*
* We provide a few variations of it:
*
* * ioremap is the standard one and provides non-cacheable guarded mappings
* and can be hooked by the platform via ppc_md
*
* * ioremap_flags allows to specify the page flags as an argument and can
* also be hooked by the platform via ppc_md
*
* * ioremap_nocache is identical to ioremap
*
* * iounmap undoes such a mapping and can be hooked
*
* * __ioremap_explicit (and the pending __iounmap_explicit) are low level
* functions to create hand-made mappings for use only by the PCI code
* and cannot currently be hooked.
*
* * __ioremap is the low level implementation used by ioremap and
* ioremap_flags and cannot be hooked (but can be used by a hook on one
* of the previous ones)
*
* * __iounmap, is the low level implementation used by iounmap and cannot
* be hooked (but can be used by a hook on iounmap)
*
*/ */
extern void __iomem *ioremap(unsigned long address, unsigned long size); extern void __iomem *ioremap(unsigned long address, unsigned long size);
extern void __iomem *ioremap_flags(unsigned long address, unsigned long size,
unsigned long flags);
#define ioremap_nocache(addr, size) ioremap((addr), (size)) #define ioremap_nocache(addr, size) ioremap((addr), (size))
extern int iounmap_explicit(volatile void __iomem *addr, unsigned long size); extern void iounmap(void __iomem *addr);
extern void iounmap(volatile void __iomem *addr);
extern void __iomem *__ioremap(unsigned long address, unsigned long size,
unsigned long flags);
extern void __iounmap(void __iomem *addr);
extern int __ioremap_explicit(unsigned long p_addr, unsigned long v_addr,
unsigned long size, unsigned long flags);
extern int __iounmap_explicit(void __iomem *start, unsigned long size);
extern void __iomem * reserve_phb_iospace(unsigned long size); extern void __iomem * reserve_phb_iospace(unsigned long size);
/*
* When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
* which needs some additional definitions here. They basically allow PIO
* space overall to be 1GB. This will work as long as we never try to use
* iomap to map MMIO below 1GB which should be fine on ppc64
*/
#define HAVE_ARCH_PIO_SIZE 1
#define PIO_OFFSET 0x00000000UL
#define PIO_MASK 0x3fffffffUL
#define PIO_RESERVED 0x40000000UL
#define mmio_read16be(addr) readw_be(addr)
#define mmio_read32be(addr) readl_be(addr)
#define mmio_write16be(val, addr) writew_be(val, addr)
#define mmio_write32be(val, addr) writel_be(val, addr)
#define mmio_insb(addr, dst, count) readsb(addr, dst, count)
#define mmio_insw(addr, dst, count) readsw(addr, dst, count)
#define mmio_insl(addr, dst, count) readsl(addr, dst, count)
#define mmio_outsb(addr, src, count) writesb(addr, src, count)
#define mmio_outsw(addr, src, count) writesw(addr, src, count)
#define mmio_outsl(addr, src, count) writesl(addr, src, count)
/** /**
* virt_to_phys - map virtual addresses to physical * virt_to_phys - map virtual addresses to physical
* @address: address to remap * @address: address to remap
...@@ -254,177 +538,6 @@ static inline void * phys_to_virt(unsigned long address) ...@@ -254,177 +538,6 @@ static inline void * phys_to_virt(unsigned long address)
*/ */
#define BIO_VMERGE_BOUNDARY 0 #define BIO_VMERGE_BOUNDARY 0
static inline void iosync(void)
{
__asm__ __volatile__ ("sync" : : : "memory");
}
/* Enforce in-order execution of data I/O.
* No distinction between read/write on PPC; use eieio for all three.
*/
#define iobarrier_rw() eieio()
#define iobarrier_r() eieio()
#define iobarrier_w() eieio()
/*
* 8, 16 and 32 bit, big and little endian I/O operations, with barrier.
* These routines do not perform EEH-related I/O address translation,
* and should not be used directly by device drivers. Use inb/readb
* instead.
*/
static inline int __in_8(const volatile unsigned char __iomem *addr)
{
int ret;
__asm__ __volatile__("sync; lbz%U1%X1 %0,%1; twi 0,%0,0; isync"
: "=r" (ret) : "m" (*addr));
return ret;
}
static inline void __out_8(volatile unsigned char __iomem *addr, int val)
{
__asm__ __volatile__("sync; stb%U0%X0 %1,%0"
: "=m" (*addr) : "r" (val));
get_paca()->io_sync = 1;
}
static inline int __in_le16(const volatile unsigned short __iomem *addr)
{
int ret;
__asm__ __volatile__("sync; lhbrx %0,0,%1; twi 0,%0,0; isync"
: "=r" (ret) : "r" (addr), "m" (*addr));
return ret;
}
static inline int __in_be16(const volatile unsigned short __iomem *addr)
{
int ret;
__asm__ __volatile__("sync; lhz%U1%X1 %0,%1; twi 0,%0,0; isync"
: "=r" (ret) : "m" (*addr));
return ret;
}
static inline void __out_le16(volatile unsigned short __iomem *addr, int val)
{
__asm__ __volatile__("sync; sthbrx %1,0,%2"
: "=m" (*addr) : "r" (val), "r" (addr));
get_paca()->io_sync = 1;
}
static inline void __out_be16(volatile unsigned short __iomem *addr, int val)
{
__asm__ __volatile__("sync; sth%U0%X0 %1,%0"
: "=m" (*addr) : "r" (val));
get_paca()->io_sync = 1;
}
static inline unsigned __in_le32(const volatile unsigned __iomem *addr)
{
unsigned ret;
__asm__ __volatile__("sync; lwbrx %0,0,%1; twi 0,%0,0; isync"
: "=r" (ret) : "r" (addr), "m" (*addr));
return ret;
}
static inline unsigned __in_be32(const volatile unsigned __iomem *addr)
{
unsigned ret;
__asm__ __volatile__("sync; lwz%U1%X1 %0,%1; twi 0,%0,0; isync"
: "=r" (ret) : "m" (*addr));
return ret;
}
static inline void __out_le32(volatile unsigned __iomem *addr, int val)
{
__asm__ __volatile__("sync; stwbrx %1,0,%2" : "=m" (*addr)
: "r" (val), "r" (addr));
get_paca()->io_sync = 1;
}
static inline void __out_be32(volatile unsigned __iomem *addr, int val)
{
__asm__ __volatile__("sync; stw%U0%X0 %1,%0"
: "=m" (*addr) : "r" (val));
get_paca()->io_sync = 1;
}
static inline unsigned long __in_le64(const volatile unsigned long __iomem *addr)
{
unsigned long tmp, ret;
__asm__ __volatile__(
"sync\n"
"ld %1,0(%2)\n"
"twi 0,%1,0\n"
"isync\n"
"rldimi %0,%1,5*8,1*8\n"
"rldimi %0,%1,3*8,2*8\n"
"rldimi %0,%1,1*8,3*8\n"
"rldimi %0,%1,7*8,4*8\n"
"rldicl %1,%1,32,0\n"
"rlwimi %0,%1,8,8,31\n"
"rlwimi %0,%1,24,16,23\n"
: "=r" (ret) , "=r" (tmp) : "b" (addr) , "m" (*addr));
return ret;
}
static inline unsigned long __in_be64(const volatile unsigned long __iomem *addr)
{
unsigned long ret;
__asm__ __volatile__("sync; ld%U1%X1 %0,%1; twi 0,%0,0; isync"
: "=r" (ret) : "m" (*addr));
return ret;
}
static inline void __out_le64(volatile unsigned long __iomem *addr, unsigned long val)
{
unsigned long tmp;
__asm__ __volatile__(
"rldimi %0,%1,5*8,1*8\n"
"rldimi %0,%1,3*8,2*8\n"
"rldimi %0,%1,1*8,3*8\n"
"rldimi %0,%1,7*8,4*8\n"
"rldicl %1,%1,32,0\n"
"rlwimi %0,%1,8,8,31\n"
"rlwimi %0,%1,24,16,23\n"
"sync\n"
"std %0,0(%3)"
: "=&r" (tmp) , "=&r" (val) : "1" (val) , "b" (addr) , "m" (*addr));
get_paca()->io_sync = 1;
}
static inline void __out_be64(volatile unsigned long __iomem *addr, unsigned long val)
{
__asm__ __volatile__("sync; std%U0%X0 %1,%0" : "=m" (*addr) : "r" (val));
get_paca()->io_sync = 1;
}
#include <asm/eeh.h>
/* Nothing to do */
#define dma_cache_inv(_start,_size) do { } while (0)
#define dma_cache_wback(_start,_size) do { } while (0)
#define dma_cache_wback_inv(_start,_size) do { } while (0)
/*
* Convert a physical pointer to a virtual kernel pointer for /dev/mem
* access
*/
#define xlate_dev_mem_ptr(p) __va(p)
/*
* Convert a virtual cached pointer to an uncached pointer
*/
#define xlate_dev_kmem_ptr(p) p
#endif /* __KERNEL__ */ #endif /* __KERNEL__ */
#endif /* CONFIG_PPC64 */ #endif /* CONFIG_PPC64 */
......
...@@ -87,6 +87,10 @@ struct machdep_calls { ...@@ -87,6 +87,10 @@ struct machdep_calls {
void (*tce_flush)(struct iommu_table *tbl); void (*tce_flush)(struct iommu_table *tbl);
void (*pci_dma_dev_setup)(struct pci_dev *dev); void (*pci_dma_dev_setup)(struct pci_dev *dev);
void (*pci_dma_bus_setup)(struct pci_bus *bus); void (*pci_dma_bus_setup)(struct pci_bus *bus);
void __iomem * (*ioremap)(unsigned long addr, unsigned long size,
unsigned long flags);
void (*iounmap)(void __iomem *token);
#endif /* CONFIG_PPC64 */ #endif /* CONFIG_PPC64 */
int (*probe)(void); int (*probe)(void);
......
...@@ -321,12 +321,12 @@ __do_out_asm(outl, "stwbrx") ...@@ -321,12 +321,12 @@ __do_out_asm(outl, "stwbrx")
#define inl_p(port) inl((port)) #define inl_p(port) inl((port))
#define outl_p(val, port) outl((val), (port)) #define outl_p(val, port) outl((val), (port))
extern void _insb(volatile u8 __iomem *port, void *buf, long count); extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
extern void _outsb(volatile u8 __iomem *port, const void *buf, long count); extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
extern void _insw_ns(volatile u16 __iomem *port, void *buf, long count); extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
extern void _outsw_ns(volatile u16 __iomem *port, const void *buf, long count); extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
extern void _insl_ns(volatile u32 __iomem *port, void *buf, long count); extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
extern void _outsl_ns(volatile u32 __iomem *port, const void *buf, long count); extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
#define IO_SPACE_LIMIT ~0 #define IO_SPACE_LIMIT ~0
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册