diff --git a/arch/x86/include/asm/kvm_host.h b/arch/x86/include/asm/kvm_host.h index 9f1d66e2e3b553b5a347ee6a545099ed40fe46e3..dea2e7e962e3e0648c9ecaaaffc5cb723b32f299 100644 --- a/arch/x86/include/asm/kvm_host.h +++ b/arch/x86/include/asm/kvm_host.h @@ -867,6 +867,8 @@ void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask, void kvm_mmu_reset_context(struct kvm_vcpu *vcpu); void kvm_mmu_slot_remove_write_access(struct kvm *kvm, struct kvm_memory_slot *memslot); +void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, + struct kvm_memory_slot *memslot); void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, struct kvm_memory_slot *memslot); void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm, diff --git a/arch/x86/kvm/mmu.c b/arch/x86/kvm/mmu.c index cee759299a356dd720a22095ea4cb684c89fcdd3..146f295ee32214a6f4ad40a58e53b61a3d1fa06d 100644 --- a/arch/x86/kvm/mmu.c +++ b/arch/x86/kvm/mmu.c @@ -4465,6 +4465,79 @@ void kvm_mmu_slot_remove_write_access(struct kvm *kvm, kvm_flush_remote_tlbs(kvm); } +static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm, + unsigned long *rmapp) +{ + u64 *sptep; + struct rmap_iterator iter; + int need_tlb_flush = 0; + pfn_t pfn; + struct kvm_mmu_page *sp; + + for (sptep = rmap_get_first(*rmapp, &iter); sptep;) { + BUG_ON(!(*sptep & PT_PRESENT_MASK)); + + sp = page_header(__pa(sptep)); + pfn = spte_to_pfn(*sptep); + + /* + * Only EPT supported for now; otherwise, one would need to + * find out efficiently whether the guest page tables are + * also using huge pages. + */ + if (sp->role.direct && + !kvm_is_reserved_pfn(pfn) && + PageTransCompound(pfn_to_page(pfn))) { + drop_spte(kvm, sptep); + sptep = rmap_get_first(*rmapp, &iter); + need_tlb_flush = 1; + } else + sptep = rmap_get_next(&iter); + } + + return need_tlb_flush; +} + +void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm, + struct kvm_memory_slot *memslot) +{ + bool flush = false; + unsigned long *rmapp; + unsigned long last_index, index; + gfn_t gfn_start, gfn_end; + + spin_lock(&kvm->mmu_lock); + + gfn_start = memslot->base_gfn; + gfn_end = memslot->base_gfn + memslot->npages - 1; + + if (gfn_start >= gfn_end) + goto out; + + rmapp = memslot->arch.rmap[0]; + last_index = gfn_to_index(gfn_end, memslot->base_gfn, + PT_PAGE_TABLE_LEVEL); + + for (index = 0; index <= last_index; ++index, ++rmapp) { + if (*rmapp) + flush |= kvm_mmu_zap_collapsible_spte(kvm, rmapp); + + if (need_resched() || spin_needbreak(&kvm->mmu_lock)) { + if (flush) { + kvm_flush_remote_tlbs(kvm); + flush = false; + } + cond_resched_lock(&kvm->mmu_lock); + } + } + + if (flush) + kvm_flush_remote_tlbs(kvm); + +out: + spin_unlock(&kvm->mmu_lock); +} + void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm, struct kvm_memory_slot *memslot) { diff --git a/arch/x86/kvm/x86.c b/arch/x86/kvm/x86.c index faf044dba60c77a215eef99124dfeea898212caf..b8cb1d09169740c415116557f7524e0ede5a9a7d 100644 --- a/arch/x86/kvm/x86.c +++ b/arch/x86/kvm/x86.c @@ -7664,6 +7664,23 @@ void kvm_arch_commit_memory_region(struct kvm *kvm, /* It's OK to get 'new' slot here as it has already been installed */ new = id_to_memslot(kvm->memslots, mem->slot); + /* + * Dirty logging tracks sptes in 4k granularity, meaning that large + * sptes have to be split. If live migration is successful, the guest + * in the source machine will be destroyed and large sptes will be + * created in the destination. However, if the guest continues to run + * in the source machine (for example if live migration fails), small + * sptes will remain around and cause bad performance. + * + * Scan sptes if dirty logging has been stopped, dropping those + * which can be collapsed into a single large-page spte. Later + * page faults will create the large-page sptes. + */ + if ((change != KVM_MR_DELETE) && + (old->flags & KVM_MEM_LOG_DIRTY_PAGES) && + !(new->flags & KVM_MEM_LOG_DIRTY_PAGES)) + kvm_mmu_zap_collapsible_sptes(kvm, new); + /* * Set up write protection and/or dirty logging for the new slot. *