提交 28ccd296 编写于 作者: M Matt Evans 提交者: Sarah Sharp

xhci: Make xHCI driver endian-safe

This patch changes the struct members defining access to xHCI device-visible
memory to use __le32/__le64 where appropriate, and then adds swaps where
required.  Checked with sparse that all accesses are correct.

MMIO accesses use readl/writel so already are performed LE, but prototypes
now reflect this with __le*.

There were a couple of (debug) instances of DMA pointers being truncated to
32bits which have been fixed too.
Signed-off-by: NMatt Evans <matt@ozlabs.org>
Signed-off-by: NSarah Sharp <sarah.a.sharp@linux.intel.com>
上级 7fc2a616
...@@ -147,7 +147,7 @@ static void xhci_print_op_regs(struct xhci_hcd *xhci) ...@@ -147,7 +147,7 @@ static void xhci_print_op_regs(struct xhci_hcd *xhci)
static void xhci_print_ports(struct xhci_hcd *xhci) static void xhci_print_ports(struct xhci_hcd *xhci)
{ {
u32 __iomem *addr; __le32 __iomem *addr;
int i, j; int i, j;
int ports; int ports;
char *names[NUM_PORT_REGS] = { char *names[NUM_PORT_REGS] = {
...@@ -253,27 +253,27 @@ void xhci_print_trb_offsets(struct xhci_hcd *xhci, union xhci_trb *trb) ...@@ -253,27 +253,27 @@ void xhci_print_trb_offsets(struct xhci_hcd *xhci, union xhci_trb *trb)
void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb) void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb)
{ {
u64 address; u64 address;
u32 type = xhci_readl(xhci, &trb->link.control) & TRB_TYPE_BITMASK; u32 type = le32_to_cpu(trb->link.control) & TRB_TYPE_BITMASK;
switch (type) { switch (type) {
case TRB_TYPE(TRB_LINK): case TRB_TYPE(TRB_LINK):
xhci_dbg(xhci, "Link TRB:\n"); xhci_dbg(xhci, "Link TRB:\n");
xhci_print_trb_offsets(xhci, trb); xhci_print_trb_offsets(xhci, trb);
address = trb->link.segment_ptr; address = le64_to_cpu(trb->link.segment_ptr);
xhci_dbg(xhci, "Next ring segment DMA address = 0x%llx\n", address); xhci_dbg(xhci, "Next ring segment DMA address = 0x%llx\n", address);
xhci_dbg(xhci, "Interrupter target = 0x%x\n", xhci_dbg(xhci, "Interrupter target = 0x%x\n",
GET_INTR_TARGET(trb->link.intr_target)); GET_INTR_TARGET(le32_to_cpu(trb->link.intr_target)));
xhci_dbg(xhci, "Cycle bit = %u\n", xhci_dbg(xhci, "Cycle bit = %u\n",
(unsigned int) (trb->link.control & TRB_CYCLE)); (unsigned int) (le32_to_cpu(trb->link.control) & TRB_CYCLE));
xhci_dbg(xhci, "Toggle cycle bit = %u\n", xhci_dbg(xhci, "Toggle cycle bit = %u\n",
(unsigned int) (trb->link.control & LINK_TOGGLE)); (unsigned int) (le32_to_cpu(trb->link.control) & LINK_TOGGLE));
xhci_dbg(xhci, "No Snoop bit = %u\n", xhci_dbg(xhci, "No Snoop bit = %u\n",
(unsigned int) (trb->link.control & TRB_NO_SNOOP)); (unsigned int) (le32_to_cpu(trb->link.control) & TRB_NO_SNOOP));
break; break;
case TRB_TYPE(TRB_TRANSFER): case TRB_TYPE(TRB_TRANSFER):
address = trb->trans_event.buffer; address = le64_to_cpu(trb->trans_event.buffer);
/* /*
* FIXME: look at flags to figure out if it's an address or if * FIXME: look at flags to figure out if it's an address or if
* the data is directly in the buffer field. * the data is directly in the buffer field.
...@@ -281,11 +281,12 @@ void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb) ...@@ -281,11 +281,12 @@ void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb)
xhci_dbg(xhci, "DMA address or buffer contents= %llu\n", address); xhci_dbg(xhci, "DMA address or buffer contents= %llu\n", address);
break; break;
case TRB_TYPE(TRB_COMPLETION): case TRB_TYPE(TRB_COMPLETION):
address = trb->event_cmd.cmd_trb; address = le64_to_cpu(trb->event_cmd.cmd_trb);
xhci_dbg(xhci, "Command TRB pointer = %llu\n", address); xhci_dbg(xhci, "Command TRB pointer = %llu\n", address);
xhci_dbg(xhci, "Completion status = %u\n", xhci_dbg(xhci, "Completion status = %u\n",
(unsigned int) GET_COMP_CODE(trb->event_cmd.status)); (unsigned int) GET_COMP_CODE(le32_to_cpu(trb->event_cmd.status)));
xhci_dbg(xhci, "Flags = 0x%x\n", (unsigned int) trb->event_cmd.flags); xhci_dbg(xhci, "Flags = 0x%x\n",
(unsigned int) le32_to_cpu(trb->event_cmd.flags));
break; break;
default: default:
xhci_dbg(xhci, "Unknown TRB with TRB type ID %u\n", xhci_dbg(xhci, "Unknown TRB with TRB type ID %u\n",
...@@ -311,16 +312,16 @@ void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb) ...@@ -311,16 +312,16 @@ void xhci_debug_trb(struct xhci_hcd *xhci, union xhci_trb *trb)
void xhci_debug_segment(struct xhci_hcd *xhci, struct xhci_segment *seg) void xhci_debug_segment(struct xhci_hcd *xhci, struct xhci_segment *seg)
{ {
int i; int i;
u32 addr = (u32) seg->dma; u64 addr = seg->dma;
union xhci_trb *trb = seg->trbs; union xhci_trb *trb = seg->trbs;
for (i = 0; i < TRBS_PER_SEGMENT; ++i) { for (i = 0; i < TRBS_PER_SEGMENT; ++i) {
trb = &seg->trbs[i]; trb = &seg->trbs[i];
xhci_dbg(xhci, "@%08x %08x %08x %08x %08x\n", addr, xhci_dbg(xhci, "@%016llx %08x %08x %08x %08x\n", addr,
lower_32_bits(trb->link.segment_ptr), (u32)lower_32_bits(le64_to_cpu(trb->link.segment_ptr)),
upper_32_bits(trb->link.segment_ptr), (u32)upper_32_bits(le64_to_cpu(trb->link.segment_ptr)),
(unsigned int) trb->link.intr_target, (unsigned int) le32_to_cpu(trb->link.intr_target),
(unsigned int) trb->link.control); (unsigned int) le32_to_cpu(trb->link.control));
addr += sizeof(*trb); addr += sizeof(*trb);
} }
} }
...@@ -391,18 +392,18 @@ void xhci_dbg_ep_rings(struct xhci_hcd *xhci, ...@@ -391,18 +392,18 @@ void xhci_dbg_ep_rings(struct xhci_hcd *xhci,
void xhci_dbg_erst(struct xhci_hcd *xhci, struct xhci_erst *erst) void xhci_dbg_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
{ {
u32 addr = (u32) erst->erst_dma_addr; u64 addr = erst->erst_dma_addr;
int i; int i;
struct xhci_erst_entry *entry; struct xhci_erst_entry *entry;
for (i = 0; i < erst->num_entries; ++i) { for (i = 0; i < erst->num_entries; ++i) {
entry = &erst->entries[i]; entry = &erst->entries[i];
xhci_dbg(xhci, "@%08x %08x %08x %08x %08x\n", xhci_dbg(xhci, "@%016llx %08x %08x %08x %08x\n",
(unsigned int) addr, addr,
lower_32_bits(entry->seg_addr), lower_32_bits(le64_to_cpu(entry->seg_addr)),
upper_32_bits(entry->seg_addr), upper_32_bits(le64_to_cpu(entry->seg_addr)),
(unsigned int) entry->seg_size, (unsigned int) le32_to_cpu(entry->seg_size),
(unsigned int) entry->rsvd); (unsigned int) le32_to_cpu(entry->rsvd));
addr += sizeof(*entry); addr += sizeof(*entry);
} }
} }
...@@ -436,7 +437,7 @@ char *xhci_get_slot_state(struct xhci_hcd *xhci, ...@@ -436,7 +437,7 @@ char *xhci_get_slot_state(struct xhci_hcd *xhci,
{ {
struct xhci_slot_ctx *slot_ctx = xhci_get_slot_ctx(xhci, ctx); struct xhci_slot_ctx *slot_ctx = xhci_get_slot_ctx(xhci, ctx);
switch (GET_SLOT_STATE(slot_ctx->dev_state)) { switch (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state))) {
case 0: case 0:
return "enabled/disabled"; return "enabled/disabled";
case 1: case 1:
......
...@@ -50,7 +50,7 @@ static void xhci_common_hub_descriptor(struct xhci_hcd *xhci, ...@@ -50,7 +50,7 @@ static void xhci_common_hub_descriptor(struct xhci_hcd *xhci,
temp |= 0x0008; temp |= 0x0008;
/* Bits 6:5 - no TTs in root ports */ /* Bits 6:5 - no TTs in root ports */
/* Bit 7 - no port indicators */ /* Bit 7 - no port indicators */
desc->wHubCharacteristics = (__force __u16) cpu_to_le16(temp); desc->wHubCharacteristics = cpu_to_le16(temp);
} }
/* Fill in the USB 2.0 roothub descriptor */ /* Fill in the USB 2.0 roothub descriptor */
...@@ -314,7 +314,7 @@ void xhci_ring_device(struct xhci_hcd *xhci, int slot_id) ...@@ -314,7 +314,7 @@ void xhci_ring_device(struct xhci_hcd *xhci, int slot_id)
} }
static void xhci_disable_port(struct usb_hcd *hcd, struct xhci_hcd *xhci, static void xhci_disable_port(struct usb_hcd *hcd, struct xhci_hcd *xhci,
u16 wIndex, u32 __iomem *addr, u32 port_status) u16 wIndex, __le32 __iomem *addr, u32 port_status)
{ {
/* Don't allow the USB core to disable SuperSpeed ports. */ /* Don't allow the USB core to disable SuperSpeed ports. */
if (hcd->speed == HCD_USB3) { if (hcd->speed == HCD_USB3) {
...@@ -331,7 +331,7 @@ static void xhci_disable_port(struct usb_hcd *hcd, struct xhci_hcd *xhci, ...@@ -331,7 +331,7 @@ static void xhci_disable_port(struct usb_hcd *hcd, struct xhci_hcd *xhci,
} }
static void xhci_clear_port_change_bit(struct xhci_hcd *xhci, u16 wValue, static void xhci_clear_port_change_bit(struct xhci_hcd *xhci, u16 wValue,
u16 wIndex, u32 __iomem *addr, u32 port_status) u16 wIndex, __le32 __iomem *addr, u32 port_status)
{ {
char *port_change_bit; char *port_change_bit;
u32 status; u32 status;
...@@ -376,7 +376,7 @@ int xhci_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue, ...@@ -376,7 +376,7 @@ int xhci_hub_control(struct usb_hcd *hcd, u16 typeReq, u16 wValue,
unsigned long flags; unsigned long flags;
u32 temp, temp1, status; u32 temp, temp1, status;
int retval = 0; int retval = 0;
u32 __iomem **port_array; __le32 __iomem **port_array;
int slot_id; int slot_id;
struct xhci_bus_state *bus_state; struct xhci_bus_state *bus_state;
...@@ -664,7 +664,7 @@ int xhci_hub_status_data(struct usb_hcd *hcd, char *buf) ...@@ -664,7 +664,7 @@ int xhci_hub_status_data(struct usb_hcd *hcd, char *buf)
int i, retval; int i, retval;
struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_hcd *xhci = hcd_to_xhci(hcd);
int ports; int ports;
u32 __iomem **port_array; __le32 __iomem **port_array;
struct xhci_bus_state *bus_state; struct xhci_bus_state *bus_state;
if (hcd->speed == HCD_USB3) { if (hcd->speed == HCD_USB3) {
...@@ -709,7 +709,7 @@ int xhci_bus_suspend(struct usb_hcd *hcd) ...@@ -709,7 +709,7 @@ int xhci_bus_suspend(struct usb_hcd *hcd)
{ {
struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_hcd *xhci = hcd_to_xhci(hcd);
int max_ports, port_index; int max_ports, port_index;
u32 __iomem **port_array; __le32 __iomem **port_array;
struct xhci_bus_state *bus_state; struct xhci_bus_state *bus_state;
unsigned long flags; unsigned long flags;
...@@ -779,7 +779,7 @@ int xhci_bus_suspend(struct usb_hcd *hcd) ...@@ -779,7 +779,7 @@ int xhci_bus_suspend(struct usb_hcd *hcd)
if (DEV_HIGHSPEED(t1)) { if (DEV_HIGHSPEED(t1)) {
/* enable remote wake up for USB 2.0 */ /* enable remote wake up for USB 2.0 */
u32 __iomem *addr; __le32 __iomem *addr;
u32 tmp; u32 tmp;
/* Add one to the port status register address to get /* Add one to the port status register address to get
...@@ -801,7 +801,7 @@ int xhci_bus_resume(struct usb_hcd *hcd) ...@@ -801,7 +801,7 @@ int xhci_bus_resume(struct usb_hcd *hcd)
{ {
struct xhci_hcd *xhci = hcd_to_xhci(hcd); struct xhci_hcd *xhci = hcd_to_xhci(hcd);
int max_ports, port_index; int max_ports, port_index;
u32 __iomem **port_array; __le32 __iomem **port_array;
struct xhci_bus_state *bus_state; struct xhci_bus_state *bus_state;
u32 temp; u32 temp;
unsigned long flags; unsigned long flags;
...@@ -875,7 +875,7 @@ int xhci_bus_resume(struct usb_hcd *hcd) ...@@ -875,7 +875,7 @@ int xhci_bus_resume(struct usb_hcd *hcd)
if (DEV_HIGHSPEED(temp)) { if (DEV_HIGHSPEED(temp)) {
/* disable remote wake up for USB 2.0 */ /* disable remote wake up for USB 2.0 */
u32 __iomem *addr; __le32 __iomem *addr;
u32 tmp; u32 tmp;
/* Add one to the port status register address to get /* Add one to the port status register address to get
......
...@@ -89,16 +89,17 @@ static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev, ...@@ -89,16 +89,17 @@ static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
return; return;
prev->next = next; prev->next = next;
if (link_trbs) { if (link_trbs) {
prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma; prev->trbs[TRBS_PER_SEGMENT-1].link.
segment_ptr = cpu_to_le64(next->dma);
/* Set the last TRB in the segment to have a TRB type ID of Link TRB */ /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
val = prev->trbs[TRBS_PER_SEGMENT-1].link.control; val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
val &= ~TRB_TYPE_BITMASK; val &= ~TRB_TYPE_BITMASK;
val |= TRB_TYPE(TRB_LINK); val |= TRB_TYPE(TRB_LINK);
/* Always set the chain bit with 0.95 hardware */ /* Always set the chain bit with 0.95 hardware */
if (xhci_link_trb_quirk(xhci)) if (xhci_link_trb_quirk(xhci))
val |= TRB_CHAIN; val |= TRB_CHAIN;
prev->trbs[TRBS_PER_SEGMENT-1].link.control = val; prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
} }
xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n", xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
(unsigned long long)prev->dma, (unsigned long long)prev->dma,
...@@ -186,7 +187,8 @@ static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci, ...@@ -186,7 +187,8 @@ static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
if (link_trbs) { if (link_trbs) {
/* See section 4.9.2.1 and 6.4.4.1 */ /* See section 4.9.2.1 and 6.4.4.1 */
prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE); prev->trbs[TRBS_PER_SEGMENT-1].link.
control |= cpu_to_le32(LINK_TOGGLE);
xhci_dbg(xhci, "Wrote link toggle flag to" xhci_dbg(xhci, "Wrote link toggle flag to"
" segment %p (virtual), 0x%llx (DMA)\n", " segment %p (virtual), 0x%llx (DMA)\n",
prev, (unsigned long long)prev->dma); prev, (unsigned long long)prev->dma);
...@@ -548,7 +550,8 @@ struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci, ...@@ -548,7 +550,8 @@ struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
addr = cur_ring->first_seg->dma | addr = cur_ring->first_seg->dma |
SCT_FOR_CTX(SCT_PRI_TR) | SCT_FOR_CTX(SCT_PRI_TR) |
cur_ring->cycle_state; cur_ring->cycle_state;
stream_info->stream_ctx_array[cur_stream].stream_ring = addr; stream_info->stream_ctx_array[cur_stream].
stream_ring = cpu_to_le64(addr);
xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n", xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
cur_stream, (unsigned long long) addr); cur_stream, (unsigned long long) addr);
...@@ -614,10 +617,10 @@ void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci, ...@@ -614,10 +617,10 @@ void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
max_primary_streams = fls(stream_info->num_stream_ctxs) - 2; max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n", xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
1 << (max_primary_streams + 1)); 1 << (max_primary_streams + 1));
ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK; ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
ep_ctx->ep_info |= EP_MAXPSTREAMS(max_primary_streams); ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
ep_ctx->ep_info |= EP_HAS_LSA; | EP_HAS_LSA);
ep_ctx->deq = stream_info->ctx_array_dma; ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
} }
/* /*
...@@ -630,10 +633,9 @@ void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci, ...@@ -630,10 +633,9 @@ void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
struct xhci_virt_ep *ep) struct xhci_virt_ep *ep)
{ {
dma_addr_t addr; dma_addr_t addr;
ep_ctx->ep_info &= ~EP_MAXPSTREAMS_MASK; ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
ep_ctx->ep_info &= ~EP_HAS_LSA;
addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue); addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
ep_ctx->deq = addr | ep->ring->cycle_state; ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
} }
/* Frees all stream contexts associated with the endpoint, /* Frees all stream contexts associated with the endpoint,
...@@ -781,11 +783,11 @@ int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id, ...@@ -781,11 +783,11 @@ int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
dev->udev = udev; dev->udev = udev;
/* Point to output device context in dcbaa. */ /* Point to output device context in dcbaa. */
xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma; xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n", xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
slot_id, slot_id,
&xhci->dcbaa->dev_context_ptrs[slot_id], &xhci->dcbaa->dev_context_ptrs[slot_id],
(unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]); (unsigned long long) le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
return 1; return 1;
fail: fail:
...@@ -810,8 +812,9 @@ void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci, ...@@ -810,8 +812,9 @@ void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
* configured device has reset, so all control transfers should have * configured device has reset, so all control transfers should have
* been completed or cancelled before the reset. * been completed or cancelled before the reset.
*/ */
ep0_ctx->deq = xhci_trb_virt_to_dma(ep_ring->enq_seg, ep_ring->enqueue); ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
ep0_ctx->deq |= ep_ring->cycle_state; ep_ring->enqueue)
| ep_ring->cycle_state);
} }
/* /*
...@@ -885,24 +888,22 @@ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *ud ...@@ -885,24 +888,22 @@ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *ud
slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx); slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
/* 2) New slot context and endpoint 0 context are valid*/ /* 2) New slot context and endpoint 0 context are valid*/
ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG; ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
/* 3) Only the control endpoint is valid - one endpoint context */ /* 3) Only the control endpoint is valid - one endpoint context */
slot_ctx->dev_info |= LAST_CTX(1); slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | (u32) udev->route);
slot_ctx->dev_info |= (u32) udev->route;
switch (udev->speed) { switch (udev->speed) {
case USB_SPEED_SUPER: case USB_SPEED_SUPER:
slot_ctx->dev_info |= (u32) SLOT_SPEED_SS; slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_SS);
break; break;
case USB_SPEED_HIGH: case USB_SPEED_HIGH:
slot_ctx->dev_info |= (u32) SLOT_SPEED_HS; slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_HS);
break; break;
case USB_SPEED_FULL: case USB_SPEED_FULL:
slot_ctx->dev_info |= (u32) SLOT_SPEED_FS; slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_FS);
break; break;
case USB_SPEED_LOW: case USB_SPEED_LOW:
slot_ctx->dev_info |= (u32) SLOT_SPEED_LS; slot_ctx->dev_info |= cpu_to_le32((u32) SLOT_SPEED_LS);
break; break;
case USB_SPEED_WIRELESS: case USB_SPEED_WIRELESS:
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
...@@ -916,7 +917,7 @@ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *ud ...@@ -916,7 +917,7 @@ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *ud
port_num = xhci_find_real_port_number(xhci, udev); port_num = xhci_find_real_port_number(xhci, udev);
if (!port_num) if (!port_num)
return -EINVAL; return -EINVAL;
slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(port_num); slot_ctx->dev_info2 |= cpu_to_le32((u32) ROOT_HUB_PORT(port_num));
/* Set the port number in the virtual_device to the faked port number */ /* Set the port number in the virtual_device to the faked port number */
for (top_dev = udev; top_dev->parent && top_dev->parent->parent; for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
top_dev = top_dev->parent) top_dev = top_dev->parent)
...@@ -927,31 +928,31 @@ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *ud ...@@ -927,31 +928,31 @@ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *ud
/* Is this a LS/FS device under an external HS hub? */ /* Is this a LS/FS device under an external HS hub? */
if (udev->tt && udev->tt->hub->parent) { if (udev->tt && udev->tt->hub->parent) {
slot_ctx->tt_info = udev->tt->hub->slot_id; slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
slot_ctx->tt_info |= udev->ttport << 8; (udev->ttport << 8));
if (udev->tt->multi) if (udev->tt->multi)
slot_ctx->dev_info |= DEV_MTT; slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
} }
xhci_dbg(xhci, "udev->tt = %p\n", udev->tt); xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport); xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
/* Step 4 - ring already allocated */ /* Step 4 - ring already allocated */
/* Step 5 */ /* Step 5 */
ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP); ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
/* /*
* XXX: Not sure about wireless USB devices. * XXX: Not sure about wireless USB devices.
*/ */
switch (udev->speed) { switch (udev->speed) {
case USB_SPEED_SUPER: case USB_SPEED_SUPER:
ep0_ctx->ep_info2 |= MAX_PACKET(512); ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
break; break;
case USB_SPEED_HIGH: case USB_SPEED_HIGH:
/* USB core guesses at a 64-byte max packet first for FS devices */ /* USB core guesses at a 64-byte max packet first for FS devices */
case USB_SPEED_FULL: case USB_SPEED_FULL:
ep0_ctx->ep_info2 |= MAX_PACKET(64); ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
break; break;
case USB_SPEED_LOW: case USB_SPEED_LOW:
ep0_ctx->ep_info2 |= MAX_PACKET(8); ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
break; break;
case USB_SPEED_WIRELESS: case USB_SPEED_WIRELESS:
xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n"); xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
...@@ -962,12 +963,10 @@ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *ud ...@@ -962,12 +963,10 @@ int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *ud
BUG(); BUG();
} }
/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */ /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
ep0_ctx->ep_info2 |= MAX_BURST(0); ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
ep0_ctx->ep_info2 |= ERROR_COUNT(3);
ep0_ctx->deq = ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
dev->eps[0].ring->first_seg->dma; dev->eps[0].ring->cycle_state);
ep0_ctx->deq |= dev->eps[0].ring->cycle_state;
/* Steps 7 and 8 were done in xhci_alloc_virt_device() */ /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
...@@ -1133,8 +1132,8 @@ static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci, ...@@ -1133,8 +1132,8 @@ static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
if (udev->speed == USB_SPEED_SUPER) if (udev->speed == USB_SPEED_SUPER)
return ep->ss_ep_comp.wBytesPerInterval; return ep->ss_ep_comp.wBytesPerInterval;
max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize); max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11; max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize) & 0x1800) >> 11;
/* A 0 in max burst means 1 transfer per ESIT */ /* A 0 in max burst means 1 transfer per ESIT */
return max_packet * (max_burst + 1); return max_packet * (max_burst + 1);
} }
...@@ -1183,10 +1182,10 @@ int xhci_endpoint_init(struct xhci_hcd *xhci, ...@@ -1183,10 +1182,10 @@ int xhci_endpoint_init(struct xhci_hcd *xhci,
} }
virt_dev->eps[ep_index].skip = false; virt_dev->eps[ep_index].skip = false;
ep_ring = virt_dev->eps[ep_index].new_ring; ep_ring = virt_dev->eps[ep_index].new_ring;
ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state; ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep); ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
ep_ctx->ep_info |= EP_MULT(xhci_get_endpoint_mult(udev, ep)); | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
/* FIXME dig Mult and streams info out of ep companion desc */ /* FIXME dig Mult and streams info out of ep companion desc */
...@@ -1194,22 +1193,22 @@ int xhci_endpoint_init(struct xhci_hcd *xhci, ...@@ -1194,22 +1193,22 @@ int xhci_endpoint_init(struct xhci_hcd *xhci,
* error count = 0 means infinite retries. * error count = 0 means infinite retries.
*/ */
if (!usb_endpoint_xfer_isoc(&ep->desc)) if (!usb_endpoint_xfer_isoc(&ep->desc))
ep_ctx->ep_info2 = ERROR_COUNT(3); ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
else else
ep_ctx->ep_info2 = ERROR_COUNT(1); ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(1));
ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep); ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
/* Set the max packet size and max burst */ /* Set the max packet size and max burst */
switch (udev->speed) { switch (udev->speed) {
case USB_SPEED_SUPER: case USB_SPEED_SUPER:
max_packet = ep->desc.wMaxPacketSize; max_packet = le16_to_cpu(ep->desc.wMaxPacketSize);
ep_ctx->ep_info2 |= MAX_PACKET(max_packet); ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
/* dig out max burst from ep companion desc */ /* dig out max burst from ep companion desc */
max_packet = ep->ss_ep_comp.bMaxBurst; max_packet = ep->ss_ep_comp.bMaxBurst;
if (!max_packet) if (!max_packet)
xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n"); xhci_warn(xhci, "WARN no SS endpoint bMaxBurst\n");
ep_ctx->ep_info2 |= MAX_BURST(max_packet); ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
break; break;
case USB_SPEED_HIGH: case USB_SPEED_HIGH:
/* bits 11:12 specify the number of additional transaction /* bits 11:12 specify the number of additional transaction
...@@ -1217,20 +1216,21 @@ int xhci_endpoint_init(struct xhci_hcd *xhci, ...@@ -1217,20 +1216,21 @@ int xhci_endpoint_init(struct xhci_hcd *xhci,
*/ */
if (usb_endpoint_xfer_isoc(&ep->desc) || if (usb_endpoint_xfer_isoc(&ep->desc) ||
usb_endpoint_xfer_int(&ep->desc)) { usb_endpoint_xfer_int(&ep->desc)) {
max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11; max_burst = (le16_to_cpu(ep->desc.wMaxPacketSize)
ep_ctx->ep_info2 |= MAX_BURST(max_burst); & 0x1800) >> 11;
ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
} }
/* Fall through */ /* Fall through */
case USB_SPEED_FULL: case USB_SPEED_FULL:
case USB_SPEED_LOW: case USB_SPEED_LOW:
max_packet = GET_MAX_PACKET(ep->desc.wMaxPacketSize); max_packet = GET_MAX_PACKET(le16_to_cpu(ep->desc.wMaxPacketSize));
ep_ctx->ep_info2 |= MAX_PACKET(max_packet); ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
break; break;
default: default:
BUG(); BUG();
} }
max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep); max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
ep_ctx->tx_info = MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload); ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
/* /*
* XXX no idea how to calculate the average TRB buffer length for bulk * XXX no idea how to calculate the average TRB buffer length for bulk
...@@ -1247,7 +1247,7 @@ int xhci_endpoint_init(struct xhci_hcd *xhci, ...@@ -1247,7 +1247,7 @@ int xhci_endpoint_init(struct xhci_hcd *xhci,
* use Event Data TRBs, and we don't chain in a link TRB on short * use Event Data TRBs, and we don't chain in a link TRB on short
* transfers, we're basically dividing by 1. * transfers, we're basically dividing by 1.
*/ */
ep_ctx->tx_info |= AVG_TRB_LENGTH_FOR_EP(max_esit_payload); ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
/* FIXME Debug endpoint context */ /* FIXME Debug endpoint context */
return 0; return 0;
...@@ -1347,7 +1347,7 @@ static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags) ...@@ -1347,7 +1347,7 @@ static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
if (!xhci->scratchpad->sp_dma_buffers) if (!xhci->scratchpad->sp_dma_buffers)
goto fail_sp4; goto fail_sp4;
xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma; xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
for (i = 0; i < num_sp; i++) { for (i = 0; i < num_sp; i++) {
dma_addr_t dma; dma_addr_t dma;
void *buf = pci_alloc_consistent(to_pci_dev(dev), void *buf = pci_alloc_consistent(to_pci_dev(dev),
...@@ -1724,7 +1724,7 @@ static void xhci_set_hc_event_deq(struct xhci_hcd *xhci) ...@@ -1724,7 +1724,7 @@ static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
} }
static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
u32 __iomem *addr, u8 major_revision) __le32 __iomem *addr, u8 major_revision)
{ {
u32 temp, port_offset, port_count; u32 temp, port_offset, port_count;
int i; int i;
...@@ -1789,7 +1789,7 @@ static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports, ...@@ -1789,7 +1789,7 @@ static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
*/ */
static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags) static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
{ {
u32 __iomem *addr; __le32 __iomem *addr;
u32 offset; u32 offset;
unsigned int num_ports; unsigned int num_ports;
int i, port_index; int i, port_index;
...@@ -2042,8 +2042,8 @@ int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags) ...@@ -2042,8 +2042,8 @@ int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
/* set ring base address and size for each segment table entry */ /* set ring base address and size for each segment table entry */
for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) { for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
struct xhci_erst_entry *entry = &xhci->erst.entries[val]; struct xhci_erst_entry *entry = &xhci->erst.entries[val];
entry->seg_addr = seg->dma; entry->seg_addr = cpu_to_le64(seg->dma);
entry->seg_size = TRBS_PER_SEGMENT; entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
entry->rsvd = 0; entry->rsvd = 0;
seg = seg->next; seg = seg->next;
} }
......
此差异已折叠。
...@@ -973,8 +973,8 @@ static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, ...@@ -973,8 +973,8 @@ static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
out_ctx = xhci->devs[slot_id]->out_ctx; out_ctx = xhci->devs[slot_id]->out_ctx;
ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index); ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
hw_max_packet_size = MAX_PACKET_DECODED(ep_ctx->ep_info2); hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
max_packet_size = urb->dev->ep0.desc.wMaxPacketSize; max_packet_size = le16_to_cpu(urb->dev->ep0.desc.wMaxPacketSize);
if (hw_max_packet_size != max_packet_size) { if (hw_max_packet_size != max_packet_size) {
xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n"); xhci_dbg(xhci, "Max Packet Size for ep 0 changed.\n");
xhci_dbg(xhci, "Max packet size in usb_device = %d\n", xhci_dbg(xhci, "Max packet size in usb_device = %d\n",
...@@ -988,15 +988,15 @@ static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, ...@@ -988,15 +988,15 @@ static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
xhci->devs[slot_id]->out_ctx, ep_index); xhci->devs[slot_id]->out_ctx, ep_index);
in_ctx = xhci->devs[slot_id]->in_ctx; in_ctx = xhci->devs[slot_id]->in_ctx;
ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index); ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
ep_ctx->ep_info2 &= ~MAX_PACKET_MASK; ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
ep_ctx->ep_info2 |= MAX_PACKET(max_packet_size); ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
/* Set up the input context flags for the command */ /* Set up the input context flags for the command */
/* FIXME: This won't work if a non-default control endpoint /* FIXME: This won't work if a non-default control endpoint
* changes max packet sizes. * changes max packet sizes.
*/ */
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
ctrl_ctx->add_flags = EP0_FLAG; ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
ctrl_ctx->drop_flags = 0; ctrl_ctx->drop_flags = 0;
xhci_dbg(xhci, "Slot %d input context\n", slot_id); xhci_dbg(xhci, "Slot %d input context\n", slot_id);
...@@ -1010,7 +1010,7 @@ static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id, ...@@ -1010,7 +1010,7 @@ static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
/* Clean up the input context for later use by bandwidth /* Clean up the input context for later use by bandwidth
* functions. * functions.
*/ */
ctrl_ctx->add_flags = SLOT_FLAG; ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
} }
return ret; return ret;
} }
...@@ -1331,27 +1331,30 @@ int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev, ...@@ -1331,27 +1331,30 @@ int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
/* If the HC already knows the endpoint is disabled, /* If the HC already knows the endpoint is disabled,
* or the HCD has noted it is disabled, ignore this request * or the HCD has noted it is disabled, ignore this request
*/ */
if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED || if ((le32_to_cpu(ep_ctx->ep_info) & EP_STATE_MASK) ==
ctrl_ctx->drop_flags & xhci_get_endpoint_flag(&ep->desc)) { EP_STATE_DISABLED ||
le32_to_cpu(ctrl_ctx->drop_flags) &
xhci_get_endpoint_flag(&ep->desc)) {
xhci_warn(xhci, "xHCI %s called with disabled ep %p\n", xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
__func__, ep); __func__, ep);
return 0; return 0;
} }
ctrl_ctx->drop_flags |= drop_flag; ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
new_drop_flags = ctrl_ctx->drop_flags; new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
ctrl_ctx->add_flags &= ~drop_flag; ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
new_add_flags = ctrl_ctx->add_flags; new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
last_ctx = xhci_last_valid_endpoint(ctrl_ctx->add_flags); last_ctx = xhci_last_valid_endpoint(le32_to_cpu(ctrl_ctx->add_flags));
slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
/* Update the last valid endpoint context, if we deleted the last one */ /* Update the last valid endpoint context, if we deleted the last one */
if ((slot_ctx->dev_info & LAST_CTX_MASK) > LAST_CTX(last_ctx)) { if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) >
slot_ctx->dev_info &= ~LAST_CTX_MASK; LAST_CTX(last_ctx)) {
slot_ctx->dev_info |= LAST_CTX(last_ctx); slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
} }
new_slot_info = slot_ctx->dev_info; new_slot_info = le32_to_cpu(slot_ctx->dev_info);
xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep); xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
...@@ -1419,7 +1422,8 @@ int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, ...@@ -1419,7 +1422,8 @@ int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
/* If the HCD has already noted the endpoint is enabled, /* If the HCD has already noted the endpoint is enabled,
* ignore this request. * ignore this request.
*/ */
if (ctrl_ctx->add_flags & xhci_get_endpoint_flag(&ep->desc)) { if (le32_to_cpu(ctrl_ctx->add_flags) &
xhci_get_endpoint_flag(&ep->desc)) {
xhci_warn(xhci, "xHCI %s called with enabled ep %p\n", xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
__func__, ep); __func__, ep);
return 0; return 0;
...@@ -1437,8 +1441,8 @@ int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, ...@@ -1437,8 +1441,8 @@ int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
return -ENOMEM; return -ENOMEM;
} }
ctrl_ctx->add_flags |= added_ctxs; ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
new_add_flags = ctrl_ctx->add_flags; new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
/* If xhci_endpoint_disable() was called for this endpoint, but the /* If xhci_endpoint_disable() was called for this endpoint, but the
* xHC hasn't been notified yet through the check_bandwidth() call, * xHC hasn't been notified yet through the check_bandwidth() call,
...@@ -1446,15 +1450,16 @@ int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev, ...@@ -1446,15 +1450,16 @@ int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
* descriptors. We must drop and re-add this endpoint, so we leave the * descriptors. We must drop and re-add this endpoint, so we leave the
* drop flags alone. * drop flags alone.
*/ */
new_drop_flags = ctrl_ctx->drop_flags; new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
slot_ctx = xhci_get_slot_ctx(xhci, in_ctx); slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
/* Update the last valid endpoint context, if we just added one past */ /* Update the last valid endpoint context, if we just added one past */
if ((slot_ctx->dev_info & LAST_CTX_MASK) < LAST_CTX(last_ctx)) { if ((le32_to_cpu(slot_ctx->dev_info) & LAST_CTX_MASK) <
slot_ctx->dev_info &= ~LAST_CTX_MASK; LAST_CTX(last_ctx)) {
slot_ctx->dev_info |= LAST_CTX(last_ctx); slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(last_ctx));
} }
new_slot_info = slot_ctx->dev_info; new_slot_info = le32_to_cpu(slot_ctx->dev_info);
/* Store the usb_device pointer for later use */ /* Store the usb_device pointer for later use */
ep->hcpriv = udev; ep->hcpriv = udev;
...@@ -1484,9 +1489,9 @@ static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *vir ...@@ -1484,9 +1489,9 @@ static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *vir
ctrl_ctx->drop_flags = 0; ctrl_ctx->drop_flags = 0;
ctrl_ctx->add_flags = 0; ctrl_ctx->add_flags = 0;
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
slot_ctx->dev_info &= ~LAST_CTX_MASK; slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
/* Endpoint 0 is always valid */ /* Endpoint 0 is always valid */
slot_ctx->dev_info |= LAST_CTX(1); slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
for (i = 1; i < 31; ++i) { for (i = 1; i < 31; ++i) {
ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i); ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
ep_ctx->ep_info = 0; ep_ctx->ep_info = 0;
...@@ -1581,7 +1586,7 @@ static int xhci_configure_endpoint(struct xhci_hcd *xhci, ...@@ -1581,7 +1586,7 @@ static int xhci_configure_endpoint(struct xhci_hcd *xhci,
unsigned long flags; unsigned long flags;
struct xhci_container_ctx *in_ctx; struct xhci_container_ctx *in_ctx;
struct completion *cmd_completion; struct completion *cmd_completion;
int *cmd_status; u32 *cmd_status;
struct xhci_virt_device *virt_dev; struct xhci_virt_device *virt_dev;
spin_lock_irqsave(&xhci->lock, flags); spin_lock_irqsave(&xhci->lock, flags);
...@@ -1595,8 +1600,8 @@ static int xhci_configure_endpoint(struct xhci_hcd *xhci, ...@@ -1595,8 +1600,8 @@ static int xhci_configure_endpoint(struct xhci_hcd *xhci,
/* Enqueue pointer can be left pointing to the link TRB, /* Enqueue pointer can be left pointing to the link TRB,
* we must handle that * we must handle that
*/ */
if ((command->command_trb->link.control & TRB_TYPE_BITMASK) if ((le32_to_cpu(command->command_trb->link.control)
== TRB_TYPE(TRB_LINK)) & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
command->command_trb = command->command_trb =
xhci->cmd_ring->enq_seg->next->trbs; xhci->cmd_ring->enq_seg->next->trbs;
...@@ -1672,14 +1677,13 @@ int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) ...@@ -1672,14 +1677,13 @@ int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */ /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
ctrl_ctx->add_flags |= SLOT_FLAG; ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
ctrl_ctx->add_flags &= ~EP0_FLAG; ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
ctrl_ctx->drop_flags &= ~SLOT_FLAG; ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
ctrl_ctx->drop_flags &= ~EP0_FLAG;
xhci_dbg(xhci, "New Input Control Context:\n"); xhci_dbg(xhci, "New Input Control Context:\n");
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx); slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
xhci_dbg_ctx(xhci, virt_dev->in_ctx, xhci_dbg_ctx(xhci, virt_dev->in_ctx,
LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
ret = xhci_configure_endpoint(xhci, udev, NULL, ret = xhci_configure_endpoint(xhci, udev, NULL,
false, false); false, false);
...@@ -1690,7 +1694,7 @@ int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev) ...@@ -1690,7 +1694,7 @@ int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
xhci_dbg(xhci, "Output context after successful config ep cmd:\n"); xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
xhci_dbg_ctx(xhci, virt_dev->out_ctx, xhci_dbg_ctx(xhci, virt_dev->out_ctx,
LAST_CTX_TO_EP_NUM(slot_ctx->dev_info)); LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
xhci_zero_in_ctx(xhci, virt_dev); xhci_zero_in_ctx(xhci, virt_dev);
/* Install new rings and free or cache any old rings */ /* Install new rings and free or cache any old rings */
...@@ -1740,10 +1744,10 @@ static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci, ...@@ -1740,10 +1744,10 @@ static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
{ {
struct xhci_input_control_ctx *ctrl_ctx; struct xhci_input_control_ctx *ctrl_ctx;
ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx); ctrl_ctx = xhci_get_input_control_ctx(xhci, in_ctx);
ctrl_ctx->add_flags = add_flags; ctrl_ctx->add_flags = cpu_to_le32(add_flags);
ctrl_ctx->drop_flags = drop_flags; ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
xhci_slot_copy(xhci, in_ctx, out_ctx); xhci_slot_copy(xhci, in_ctx, out_ctx);
ctrl_ctx->add_flags |= SLOT_FLAG; ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
xhci_dbg(xhci, "Input Context:\n"); xhci_dbg(xhci, "Input Context:\n");
xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags)); xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
...@@ -1772,7 +1776,7 @@ static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci, ...@@ -1772,7 +1776,7 @@ static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
deq_state->new_deq_ptr); deq_state->new_deq_ptr);
return; return;
} }
ep_ctx->deq = addr | deq_state->new_cycle_state; ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
added_ctxs = xhci_get_endpoint_flag_from_index(ep_index); added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx, xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
...@@ -2327,8 +2331,8 @@ int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev) ...@@ -2327,8 +2331,8 @@ int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
/* Enqueue pointer can be left pointing to the link TRB, /* Enqueue pointer can be left pointing to the link TRB,
* we must handle that * we must handle that
*/ */
if ((reset_device_cmd->command_trb->link.control & TRB_TYPE_BITMASK) if ((le32_to_cpu(reset_device_cmd->command_trb->link.control)
== TRB_TYPE(TRB_LINK)) & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK))
reset_device_cmd->command_trb = reset_device_cmd->command_trb =
xhci->cmd_ring->enq_seg->next->trbs; xhci->cmd_ring->enq_seg->next->trbs;
...@@ -2612,7 +2616,7 @@ int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) ...@@ -2612,7 +2616,7 @@ int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
udev->slot_id, udev->slot_id,
&xhci->dcbaa->dev_context_ptrs[udev->slot_id], &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
(unsigned long long) (unsigned long long)
xhci->dcbaa->dev_context_ptrs[udev->slot_id]); le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
xhci_dbg(xhci, "Output Context DMA address = %#08llx\n", xhci_dbg(xhci, "Output Context DMA address = %#08llx\n",
(unsigned long long)virt_dev->out_ctx->dma); (unsigned long long)virt_dev->out_ctx->dma);
xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id); xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
...@@ -2626,7 +2630,8 @@ int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev) ...@@ -2626,7 +2630,8 @@ int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx); slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
/* Use kernel assigned address for devices; store xHC assigned /* Use kernel assigned address for devices; store xHC assigned
* address locally. */ * address locally. */
virt_dev->address = (slot_ctx->dev_state & DEV_ADDR_MASK) + 1; virt_dev->address = (le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK)
+ 1;
/* Zero the input context control for later use */ /* Zero the input context control for later use */
ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx); ctrl_ctx = xhci_get_input_control_ctx(xhci, virt_dev->in_ctx);
ctrl_ctx->add_flags = 0; ctrl_ctx->add_flags = 0;
...@@ -2670,16 +2675,16 @@ int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, ...@@ -2670,16 +2675,16 @@ int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
spin_lock_irqsave(&xhci->lock, flags); spin_lock_irqsave(&xhci->lock, flags);
xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx); xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx); ctrl_ctx = xhci_get_input_control_ctx(xhci, config_cmd->in_ctx);
ctrl_ctx->add_flags |= SLOT_FLAG; ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx); slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
slot_ctx->dev_info |= DEV_HUB; slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
if (tt->multi) if (tt->multi)
slot_ctx->dev_info |= DEV_MTT; slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
if (xhci->hci_version > 0x95) { if (xhci->hci_version > 0x95) {
xhci_dbg(xhci, "xHCI version %x needs hub " xhci_dbg(xhci, "xHCI version %x needs hub "
"TT think time and number of ports\n", "TT think time and number of ports\n",
(unsigned int) xhci->hci_version); (unsigned int) xhci->hci_version);
slot_ctx->dev_info2 |= XHCI_MAX_PORTS(hdev->maxchild); slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
/* Set TT think time - convert from ns to FS bit times. /* Set TT think time - convert from ns to FS bit times.
* 0 = 8 FS bit times, 1 = 16 FS bit times, * 0 = 8 FS bit times, 1 = 16 FS bit times,
* 2 = 24 FS bit times, 3 = 32 FS bit times. * 2 = 24 FS bit times, 3 = 32 FS bit times.
...@@ -2687,7 +2692,7 @@ int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev, ...@@ -2687,7 +2692,7 @@ int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
think_time = tt->think_time; think_time = tt->think_time;
if (think_time != 0) if (think_time != 0)
think_time = (think_time / 666) - 1; think_time = (think_time / 666) - 1;
slot_ctx->tt_info |= TT_THINK_TIME(think_time); slot_ctx->tt_info |= cpu_to_le32(TT_THINK_TIME(think_time));
} else { } else {
xhci_dbg(xhci, "xHCI version %x doesn't need hub " xhci_dbg(xhci, "xHCI version %x doesn't need hub "
"TT think time or number of ports\n", "TT think time or number of ports\n",
......
...@@ -57,13 +57,13 @@ ...@@ -57,13 +57,13 @@
* @run_regs_off: RTSOFF - Runtime register space offset * @run_regs_off: RTSOFF - Runtime register space offset
*/ */
struct xhci_cap_regs { struct xhci_cap_regs {
u32 hc_capbase; __le32 hc_capbase;
u32 hcs_params1; __le32 hcs_params1;
u32 hcs_params2; __le32 hcs_params2;
u32 hcs_params3; __le32 hcs_params3;
u32 hcc_params; __le32 hcc_params;
u32 db_off; __le32 db_off;
u32 run_regs_off; __le32 run_regs_off;
/* Reserved up to (CAPLENGTH - 0x1C) */ /* Reserved up to (CAPLENGTH - 0x1C) */
}; };
...@@ -155,26 +155,26 @@ struct xhci_cap_regs { ...@@ -155,26 +155,26 @@ struct xhci_cap_regs {
* devices. * devices.
*/ */
struct xhci_op_regs { struct xhci_op_regs {
u32 command; __le32 command;
u32 status; __le32 status;
u32 page_size; __le32 page_size;
u32 reserved1; __le32 reserved1;
u32 reserved2; __le32 reserved2;
u32 dev_notification; __le32 dev_notification;
u64 cmd_ring; __le64 cmd_ring;
/* rsvd: offset 0x20-2F */ /* rsvd: offset 0x20-2F */
u32 reserved3[4]; __le32 reserved3[4];
u64 dcbaa_ptr; __le64 dcbaa_ptr;
u32 config_reg; __le32 config_reg;
/* rsvd: offset 0x3C-3FF */ /* rsvd: offset 0x3C-3FF */
u32 reserved4[241]; __le32 reserved4[241];
/* port 1 registers, which serve as a base address for other ports */ /* port 1 registers, which serve as a base address for other ports */
u32 port_status_base; __le32 port_status_base;
u32 port_power_base; __le32 port_power_base;
u32 port_link_base; __le32 port_link_base;
u32 reserved5; __le32 reserved5;
/* registers for ports 2-255 */ /* registers for ports 2-255 */
u32 reserved6[NUM_PORT_REGS*254]; __le32 reserved6[NUM_PORT_REGS*254];
}; };
/* USBCMD - USB command - command bitmasks */ /* USBCMD - USB command - command bitmasks */
...@@ -382,12 +382,12 @@ struct xhci_op_regs { ...@@ -382,12 +382,12 @@ struct xhci_op_regs {
* updates the dequeue pointer. * updates the dequeue pointer.
*/ */
struct xhci_intr_reg { struct xhci_intr_reg {
u32 irq_pending; __le32 irq_pending;
u32 irq_control; __le32 irq_control;
u32 erst_size; __le32 erst_size;
u32 rsvd; __le32 rsvd;
u64 erst_base; __le64 erst_base;
u64 erst_dequeue; __le64 erst_dequeue;
}; };
/* irq_pending bitmasks */ /* irq_pending bitmasks */
...@@ -432,8 +432,8 @@ struct xhci_intr_reg { ...@@ -432,8 +432,8 @@ struct xhci_intr_reg {
* or larger accesses" * or larger accesses"
*/ */
struct xhci_run_regs { struct xhci_run_regs {
u32 microframe_index; __le32 microframe_index;
u32 rsvd[7]; __le32 rsvd[7];
struct xhci_intr_reg ir_set[128]; struct xhci_intr_reg ir_set[128];
}; };
...@@ -447,7 +447,7 @@ struct xhci_run_regs { ...@@ -447,7 +447,7 @@ struct xhci_run_regs {
* Section 5.6 * Section 5.6
*/ */
struct xhci_doorbell_array { struct xhci_doorbell_array {
u32 doorbell[256]; __le32 doorbell[256];
}; };
#define DB_VALUE(ep, stream) ((((ep) + 1) & 0xff) | ((stream) << 16)) #define DB_VALUE(ep, stream) ((((ep) + 1) & 0xff) | ((stream) << 16))
...@@ -504,12 +504,12 @@ struct xhci_container_ctx { ...@@ -504,12 +504,12 @@ struct xhci_container_ctx {
* reserved at the end of the slot context for HC internal use. * reserved at the end of the slot context for HC internal use.
*/ */
struct xhci_slot_ctx { struct xhci_slot_ctx {
u32 dev_info; __le32 dev_info;
u32 dev_info2; __le32 dev_info2;
u32 tt_info; __le32 tt_info;
u32 dev_state; __le32 dev_state;
/* offset 0x10 to 0x1f reserved for HC internal use */ /* offset 0x10 to 0x1f reserved for HC internal use */
u32 reserved[4]; __le32 reserved[4];
}; };
/* dev_info bitmasks */ /* dev_info bitmasks */
...@@ -580,12 +580,12 @@ struct xhci_slot_ctx { ...@@ -580,12 +580,12 @@ struct xhci_slot_ctx {
* reserved at the end of the endpoint context for HC internal use. * reserved at the end of the endpoint context for HC internal use.
*/ */
struct xhci_ep_ctx { struct xhci_ep_ctx {
u32 ep_info; __le32 ep_info;
u32 ep_info2; __le32 ep_info2;
u64 deq; __le64 deq;
u32 tx_info; __le32 tx_info;
/* offset 0x14 - 0x1f reserved for HC internal use */ /* offset 0x14 - 0x1f reserved for HC internal use */
u32 reserved[3]; __le32 reserved[3];
}; };
/* ep_info bitmasks */ /* ep_info bitmasks */
...@@ -660,9 +660,9 @@ struct xhci_ep_ctx { ...@@ -660,9 +660,9 @@ struct xhci_ep_ctx {
* @add_context: set the bit of the endpoint context you want to enable * @add_context: set the bit of the endpoint context you want to enable
*/ */
struct xhci_input_control_ctx { struct xhci_input_control_ctx {
u32 drop_flags; __le32 drop_flags;
u32 add_flags; __le32 add_flags;
u32 rsvd2[6]; __le32 rsvd2[6];
}; };
/* Represents everything that is needed to issue a command on the command ring. /* Represents everything that is needed to issue a command on the command ring.
...@@ -688,9 +688,9 @@ struct xhci_command { ...@@ -688,9 +688,9 @@ struct xhci_command {
struct xhci_stream_ctx { struct xhci_stream_ctx {
/* 64-bit stream ring address, cycle state, and stream type */ /* 64-bit stream ring address, cycle state, and stream type */
u64 stream_ring; __le64 stream_ring;
/* offset 0x14 - 0x1f reserved for HC internal use */ /* offset 0x14 - 0x1f reserved for HC internal use */
u32 reserved[2]; __le32 reserved[2];
}; };
/* Stream Context Types (section 6.4.1) - bits 3:1 of stream ctx deq ptr */ /* Stream Context Types (section 6.4.1) - bits 3:1 of stream ctx deq ptr */
...@@ -803,7 +803,7 @@ struct xhci_virt_device { ...@@ -803,7 +803,7 @@ struct xhci_virt_device {
*/ */
struct xhci_device_context_array { struct xhci_device_context_array {
/* 64-bit device addresses; we only write 32-bit addresses */ /* 64-bit device addresses; we only write 32-bit addresses */
u64 dev_context_ptrs[MAX_HC_SLOTS]; __le64 dev_context_ptrs[MAX_HC_SLOTS];
/* private xHCD pointers */ /* private xHCD pointers */
dma_addr_t dma; dma_addr_t dma;
}; };
...@@ -816,10 +816,10 @@ struct xhci_device_context_array { ...@@ -816,10 +816,10 @@ struct xhci_device_context_array {
struct xhci_transfer_event { struct xhci_transfer_event {
/* 64-bit buffer address, or immediate data */ /* 64-bit buffer address, or immediate data */
u64 buffer; __le64 buffer;
u32 transfer_len; __le32 transfer_len;
/* This field is interpreted differently based on the type of TRB */ /* This field is interpreted differently based on the type of TRB */
u32 flags; __le32 flags;
}; };
/** Transfer Event bit fields **/ /** Transfer Event bit fields **/
...@@ -898,9 +898,9 @@ struct xhci_transfer_event { ...@@ -898,9 +898,9 @@ struct xhci_transfer_event {
struct xhci_link_trb { struct xhci_link_trb {
/* 64-bit segment pointer*/ /* 64-bit segment pointer*/
u64 segment_ptr; __le64 segment_ptr;
u32 intr_target; __le32 intr_target;
u32 control; __le32 control;
}; };
/* control bitfields */ /* control bitfields */
...@@ -909,9 +909,9 @@ struct xhci_link_trb { ...@@ -909,9 +909,9 @@ struct xhci_link_trb {
/* Command completion event TRB */ /* Command completion event TRB */
struct xhci_event_cmd { struct xhci_event_cmd {
/* Pointer to command TRB, or the value passed by the event data trb */ /* Pointer to command TRB, or the value passed by the event data trb */
u64 cmd_trb; __le64 cmd_trb;
u32 status; __le32 status;
u32 flags; __le32 flags;
}; };
/* flags bitmasks */ /* flags bitmasks */
...@@ -970,7 +970,7 @@ struct xhci_event_cmd { ...@@ -970,7 +970,7 @@ struct xhci_event_cmd {
#define TRB_SIA (1<<31) #define TRB_SIA (1<<31)
struct xhci_generic_trb { struct xhci_generic_trb {
u32 field[4]; __le32 field[4];
}; };
union xhci_trb { union xhci_trb {
...@@ -1118,10 +1118,10 @@ struct xhci_ring { ...@@ -1118,10 +1118,10 @@ struct xhci_ring {
struct xhci_erst_entry { struct xhci_erst_entry {
/* 64-bit event ring segment address */ /* 64-bit event ring segment address */
u64 seg_addr; __le64 seg_addr;
u32 seg_size; __le32 seg_size;
/* Set to zero */ /* Set to zero */
u32 rsvd; __le32 rsvd;
}; };
struct xhci_erst { struct xhci_erst {
...@@ -1286,10 +1286,10 @@ struct xhci_hcd { ...@@ -1286,10 +1286,10 @@ struct xhci_hcd {
/* Is each xHCI roothub port a USB 3.0, USB 2.0, or USB 1.1 port? */ /* Is each xHCI roothub port a USB 3.0, USB 2.0, or USB 1.1 port? */
u8 *port_array; u8 *port_array;
/* Array of pointers to USB 3.0 PORTSC registers */ /* Array of pointers to USB 3.0 PORTSC registers */
u32 __iomem **usb3_ports; __le32 __iomem **usb3_ports;
unsigned int num_usb3_ports; unsigned int num_usb3_ports;
/* Array of pointers to USB 2.0 PORTSC registers */ /* Array of pointers to USB 2.0 PORTSC registers */
u32 __iomem **usb2_ports; __le32 __iomem **usb2_ports;
unsigned int num_usb2_ports; unsigned int num_usb2_ports;
}; };
...@@ -1322,12 +1322,12 @@ static inline struct usb_hcd *xhci_to_hcd(struct xhci_hcd *xhci) ...@@ -1322,12 +1322,12 @@ static inline struct usb_hcd *xhci_to_hcd(struct xhci_hcd *xhci)
/* TODO: copied from ehci.h - can be refactored? */ /* TODO: copied from ehci.h - can be refactored? */
/* xHCI spec says all registers are little endian */ /* xHCI spec says all registers are little endian */
static inline unsigned int xhci_readl(const struct xhci_hcd *xhci, static inline unsigned int xhci_readl(const struct xhci_hcd *xhci,
__u32 __iomem *regs) __le32 __iomem *regs)
{ {
return readl(regs); return readl(regs);
} }
static inline void xhci_writel(struct xhci_hcd *xhci, static inline void xhci_writel(struct xhci_hcd *xhci,
const unsigned int val, __u32 __iomem *regs) const unsigned int val, __le32 __iomem *regs)
{ {
xhci_dbg(xhci, xhci_dbg(xhci,
"`MEM_WRITE_DWORD(3'b000, 32'h%p, 32'h%0x, 4'hf);\n", "`MEM_WRITE_DWORD(3'b000, 32'h%p, 32'h%0x, 4'hf);\n",
...@@ -1345,7 +1345,7 @@ static inline void xhci_writel(struct xhci_hcd *xhci, ...@@ -1345,7 +1345,7 @@ static inline void xhci_writel(struct xhci_hcd *xhci,
* the high dword, and write order is irrelevant. * the high dword, and write order is irrelevant.
*/ */
static inline u64 xhci_read_64(const struct xhci_hcd *xhci, static inline u64 xhci_read_64(const struct xhci_hcd *xhci,
__u64 __iomem *regs) __le64 __iomem *regs)
{ {
__u32 __iomem *ptr = (__u32 __iomem *) regs; __u32 __iomem *ptr = (__u32 __iomem *) regs;
u64 val_lo = readl(ptr); u64 val_lo = readl(ptr);
...@@ -1353,7 +1353,7 @@ static inline u64 xhci_read_64(const struct xhci_hcd *xhci, ...@@ -1353,7 +1353,7 @@ static inline u64 xhci_read_64(const struct xhci_hcd *xhci,
return val_lo + (val_hi << 32); return val_lo + (val_hi << 32);
} }
static inline void xhci_write_64(struct xhci_hcd *xhci, static inline void xhci_write_64(struct xhci_hcd *xhci,
const u64 val, __u64 __iomem *regs) const u64 val, __le64 __iomem *regs)
{ {
__u32 __iomem *ptr = (__u32 __iomem *) regs; __u32 __iomem *ptr = (__u32 __iomem *) regs;
u32 val_lo = lower_32_bits(val); u32 val_lo = lower_32_bits(val);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册