提交 14860220 编写于 作者: R Rex Zhu 提交者: Alex Deucher

drm/amd/powerplay: implement fw image related smum interface for tonga.

Signed-off-by: NRex Zhu <Rex.Zhu@amd.com>
Reviewed-by: NAlex Deucher <alexander.deucher@amd.com>
Signed-off-by: NAlex Deucher <alexander.deucher@amd.com>
上级 b859c207
...@@ -800,7 +800,7 @@ static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr) ...@@ -800,7 +800,7 @@ static int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
if (0 == result) { if (0 == result) {
data->soft_regs_start = tmp; data->soft_regs_start = tmp;
tonga_smu->ulSoftRegsStart = tmp; tonga_smu->soft_regs_start = tmp;
} }
error |= (0 != result); error |= (0 != result);
......
...@@ -3,7 +3,7 @@ ...@@ -3,7 +3,7 @@
# It provides the smu management services for the driver. # It provides the smu management services for the driver.
SMU_MGR = smumgr.o cz_smumgr.o tonga_smumgr.o fiji_smumgr.o fiji_smc.o\ SMU_MGR = smumgr.o cz_smumgr.o tonga_smumgr.o fiji_smumgr.o fiji_smc.o\
polaris10_smumgr.o iceland_smumgr.o polaris10_smc.o polaris10_smumgr.o iceland_smumgr.o polaris10_smc.o tonga_smc.o
AMD_PP_SMUMGR = $(addprefix $(AMD_PP_PATH)/smumgr/,$(SMU_MGR)) AMD_PP_SMUMGR = $(addprefix $(AMD_PP_PATH)/smumgr/,$(SMU_MGR))
......
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
*
*/
#include "tonga_smc.h"
#include "smu7_dyn_defaults.h"
#include "smu7_hwmgr.h"
#include "hardwaremanager.h"
#include "ppatomctrl.h"
#include "pp_debug.h"
#include "cgs_common.h"
#include "atombios.h"
#include "tonga_smumgr.h"
#include "pppcielanes.h"
#include "pp_endian.h"
#include "smu7_ppsmc.h"
#include "smu72_discrete.h"
#include "smu/smu_7_1_2_d.h"
#include "smu/smu_7_1_2_sh_mask.h"
#include "gmc/gmc_8_1_d.h"
#include "gmc/gmc_8_1_sh_mask.h"
#include "bif/bif_5_0_d.h"
#include "bif/bif_5_0_sh_mask.h"
#include "dce/dce_10_0_d.h"
#include "dce/dce_10_0_sh_mask.h"
#define VOLTAGE_SCALE 4
#define POWERTUNE_DEFAULT_SET_MAX 1
#define VOLTAGE_VID_OFFSET_SCALE1 625
#define VOLTAGE_VID_OFFSET_SCALE2 100
#define MC_CG_ARB_FREQ_F1 0x0b
#define VDDC_VDDCI_DELTA 200
static struct tonga_pt_defaults tonga_power_tune_data_set_array[POWERTUNE_DEFAULT_SET_MAX] = {
/* sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
* TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
*/
{1, 0xF, 0xFD, 0x19,
5, 45, 0, 0xB0000,
{0x79, 0x253, 0x25D, 0xAE, 0x72, 0x80, 0x83, 0x86, 0x6F, 0xC8,
0xC9, 0xC9, 0x2F, 0x4D, 0x61},
{0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203,
0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4}
},
};
/* [Fmin, Fmax, LDO_REFSEL, USE_FOR_LOW_FREQ] */
static const uint16_t tonga_clock_stretcher_lookup_table[2][4] = {
{600, 1050, 3, 0},
{600, 1050, 6, 1}
};
/* [FF, SS] type, [] 4 voltage ranges,
* and [Floor Freq, Boundary Freq, VID min , VID max]
*/
static const uint32_t tonga_clock_stretcher_ddt_table[2][4][4] = {
{ {265, 529, 120, 128}, {325, 650, 96, 119}, {430, 860, 32, 95}, {0, 0, 0, 31} },
{ {275, 550, 104, 112}, {319, 638, 96, 103}, {360, 720, 64, 95}, {384, 768, 32, 63} }
};
/* [Use_For_Low_freq] value, [0%, 5%, 10%, 7.14%, 14.28%, 20%] */
static const uint8_t tonga_clock_stretch_amount_conversion[2][6] = {
{0, 1, 3, 2, 4, 5},
{0, 2, 4, 5, 6, 5}
};
/* PPGen has the gain setting generated in x * 100 unit
* This function is to convert the unit to x * 4096(0x1000) unit.
* This is the unit expected by SMC firmware
*/
static int tonga_get_dependecy_volt_by_clk(struct pp_hwmgr *hwmgr,
phm_ppt_v1_clock_voltage_dependency_table *allowed_clock_voltage_table,
uint32_t clock, SMU_VoltageLevel *voltage, uint32_t *mvdd)
{
uint32_t i = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
/* clock - voltage dependency table is empty table */
if (allowed_clock_voltage_table->count == 0)
return -EINVAL;
for (i = 0; i < allowed_clock_voltage_table->count; i++) {
/* find first sclk bigger than request */
if (allowed_clock_voltage_table->entries[i].clk >= clock) {
voltage->VddGfx = phm_get_voltage_index(
pptable_info->vddgfx_lookup_table,
allowed_clock_voltage_table->entries[i].vddgfx);
voltage->Vddc = phm_get_voltage_index(
pptable_info->vddc_lookup_table,
allowed_clock_voltage_table->entries[i].vddc);
if (allowed_clock_voltage_table->entries[i].vddci)
voltage->Vddci =
phm_get_voltage_id(&data->vddci_voltage_table, allowed_clock_voltage_table->entries[i].vddci);
else
voltage->Vddci =
phm_get_voltage_id(&data->vddci_voltage_table,
allowed_clock_voltage_table->entries[i].vddc - VDDC_VDDCI_DELTA);
if (allowed_clock_voltage_table->entries[i].mvdd)
*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i].mvdd;
voltage->Phases = 1;
return 0;
}
}
/* sclk is bigger than max sclk in the dependence table */
voltage->VddGfx = phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
allowed_clock_voltage_table->entries[i-1].vddgfx);
voltage->Vddc = phm_get_voltage_index(pptable_info->vddc_lookup_table,
allowed_clock_voltage_table->entries[i-1].vddc);
if (allowed_clock_voltage_table->entries[i-1].vddci)
voltage->Vddci = phm_get_voltage_id(&data->vddci_voltage_table,
allowed_clock_voltage_table->entries[i-1].vddci);
if (allowed_clock_voltage_table->entries[i-1].mvdd)
*mvdd = (uint32_t) allowed_clock_voltage_table->entries[i-1].mvdd;
return 0;
}
/**
* Vddc table preparation for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int tonga_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
unsigned int count;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
table->VddcLevelCount = data->vddc_voltage_table.count;
for (count = 0; count < table->VddcLevelCount; count++) {
table->VddcTable[count] =
PP_HOST_TO_SMC_US(data->vddc_voltage_table.entries[count].value * VOLTAGE_SCALE);
}
CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
}
return 0;
}
/**
* VddGfx table preparation for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int tonga_populate_smc_vdd_gfx_table(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
unsigned int count;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
table->VddGfxLevelCount = data->vddgfx_voltage_table.count;
for (count = 0; count < data->vddgfx_voltage_table.count; count++) {
table->VddGfxTable[count] =
PP_HOST_TO_SMC_US(data->vddgfx_voltage_table.entries[count].value * VOLTAGE_SCALE);
}
CONVERT_FROM_HOST_TO_SMC_UL(table->VddGfxLevelCount);
}
return 0;
}
/**
* Vddci table preparation for SMC.
*
* @param *hwmgr The address of the hardware manager.
* @param *table The SMC DPM table structure to be populated.
* @return 0
*/
static int tonga_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t count;
table->VddciLevelCount = data->vddci_voltage_table.count;
for (count = 0; count < table->VddciLevelCount; count++) {
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
table->VddciTable[count] =
PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
table->SmioTable1.Pattern[count].Voltage =
PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level. */
table->SmioTable1.Pattern[count].Smio =
(uint8_t) count;
table->Smio[count] |=
data->vddci_voltage_table.entries[count].smio_low;
table->VddciTable[count] =
PP_HOST_TO_SMC_US(data->vddci_voltage_table.entries[count].value * VOLTAGE_SCALE);
}
}
table->SmioMask1 = data->vddci_voltage_table.mask_low;
CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
return 0;
}
/**
* Mvdd table preparation for SMC.
*
* @param *hwmgr The address of the hardware manager.
* @param *table The SMC DPM table structure to be populated.
* @return 0
*/
static int tonga_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t count;
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
table->MvddLevelCount = data->mvdd_voltage_table.count;
for (count = 0; count < table->MvddLevelCount; count++) {
table->SmioTable2.Pattern[count].Voltage =
PP_HOST_TO_SMC_US(data->mvdd_voltage_table.entries[count].value * VOLTAGE_SCALE);
/* Index into DpmTable.Smio. Drive bits from Smio entry to get this voltage level.*/
table->SmioTable2.Pattern[count].Smio =
(uint8_t) count;
table->Smio[count] |=
data->mvdd_voltage_table.entries[count].smio_low;
}
table->SmioMask2 = data->mvdd_voltage_table.mask_low;
CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
}
return 0;
}
/**
* Preparation of vddc and vddgfx CAC tables for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int tonga_populate_cac_tables(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
uint32_t count;
uint8_t index = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_voltage_lookup_table *vddgfx_lookup_table =
pptable_info->vddgfx_lookup_table;
struct phm_ppt_v1_voltage_lookup_table *vddc_lookup_table =
pptable_info->vddc_lookup_table;
/* table is already swapped, so in order to use the value from it
* we need to swap it back.
*/
uint32_t vddc_level_count = PP_SMC_TO_HOST_UL(table->VddcLevelCount);
uint32_t vddgfx_level_count = PP_SMC_TO_HOST_UL(table->VddGfxLevelCount);
for (count = 0; count < vddc_level_count; count++) {
/* We are populating vddc CAC data to BapmVddc table in split and merged mode */
index = phm_get_voltage_index(vddc_lookup_table,
data->vddc_voltage_table.entries[count].value);
table->BapmVddcVidLoSidd[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
table->BapmVddcVidHiSidd[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
table->BapmVddcVidHiSidd2[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
}
if ((data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2)) {
/* We are populating vddgfx CAC data to BapmVddgfx table in split mode */
for (count = 0; count < vddgfx_level_count; count++) {
index = phm_get_voltage_index(vddgfx_lookup_table,
convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_mid));
table->BapmVddGfxVidHiSidd2[count] =
convert_to_vid(vddgfx_lookup_table->entries[index].us_cac_high);
}
} else {
for (count = 0; count < vddc_level_count; count++) {
index = phm_get_voltage_index(vddc_lookup_table,
data->vddc_voltage_table.entries[count].value);
table->BapmVddGfxVidLoSidd[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_low);
table->BapmVddGfxVidHiSidd[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_mid);
table->BapmVddGfxVidHiSidd2[count] =
convert_to_vid(vddc_lookup_table->entries[index].us_cac_high);
}
}
return 0;
}
/**
* Preparation of voltage tables for SMC.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int tonga_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result;
result = tonga_populate_smc_vddc_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate VDDC voltage table to SMC",
return -EINVAL);
result = tonga_populate_smc_vdd_ci_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate VDDCI voltage table to SMC",
return -EINVAL);
result = tonga_populate_smc_vdd_gfx_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate VDDGFX voltage table to SMC",
return -EINVAL);
result = tonga_populate_smc_mvdd_table(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate MVDD voltage table to SMC",
return -EINVAL);
result = tonga_populate_cac_tables(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"can not populate CAC voltage tables to SMC",
return -EINVAL);
return 0;
}
static int tonga_populate_ulv_level(struct pp_hwmgr *hwmgr,
struct SMU72_Discrete_Ulv *state)
{
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
state->CcPwrDynRm = 0;
state->CcPwrDynRm1 = 0;
state->VddcOffset = (uint16_t) table_info->us_ulv_voltage_offset;
state->VddcOffsetVid = (uint8_t)(table_info->us_ulv_voltage_offset *
VOLTAGE_VID_OFFSET_SCALE2 / VOLTAGE_VID_OFFSET_SCALE1);
state->VddcPhase = 1;
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
return 0;
}
static int tonga_populate_ulv_state(struct pp_hwmgr *hwmgr,
struct SMU72_Discrete_DpmTable *table)
{
return tonga_populate_ulv_level(hwmgr, &table->Ulv);
}
static int tonga_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU72_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
uint32_t i;
/* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
table->LinkLevel[i].PcieGenSpeed =
(uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
table->LinkLevel[i].PcieLaneCount =
(uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
table->LinkLevel[i].EnabledForActivity =
1;
table->LinkLevel[i].SPC =
(uint8_t)(data->pcie_spc_cap & 0xff);
table->LinkLevel[i].DownThreshold =
PP_HOST_TO_SMC_UL(5);
table->LinkLevel[i].UpThreshold =
PP_HOST_TO_SMC_UL(30);
}
smu_data->smc_state_table.LinkLevelCount =
(uint8_t)dpm_table->pcie_speed_table.count;
data->dpm_level_enable_mask.pcie_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
return 0;
}
/**
* Calculates the SCLK dividers using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param engine_clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int tonga_calculate_sclk_params(struct pp_hwmgr *hwmgr,
uint32_t engine_clock, SMU72_Discrete_GraphicsLevel *sclk)
{
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
pp_atomctrl_clock_dividers_vi dividers;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
uint32_t spll_func_cntl_4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
uint32_t cg_spll_spread_spectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
uint32_t reference_clock;
uint32_t reference_divider;
uint32_t fbdiv;
int result;
/* get the engine clock dividers for this clock value*/
result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.", return result);
/* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
reference_clock = atomctrl_get_reference_clock(hwmgr);
reference_divider = 1 + dividers.uc_pll_ref_div;
/* low 14 bits is fraction and high 12 bits is divider*/
fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
/* SPLL_FUNC_CNTL setup*/
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
CG_SPLL_FUNC_CNTL, SPLL_PDIV_A, dividers.uc_pll_post_div);
/* SPLL_FUNC_CNTL_3 setup*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
/* set to use fractional accumulation*/
spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
pp_atomctrl_internal_ss_info ss_info;
uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
/*
* ss_info.speed_spectrum_percentage -- in unit of 0.01%
* ss_info.speed_spectrum_rate -- in unit of khz
*/
/* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
/* clkv = 2 * D * fbdiv / NS */
uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
cg_spll_spread_spectrum =
PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
cg_spll_spread_spectrum =
PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
cg_spll_spread_spectrum_2 =
PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
}
}
sclk->SclkFrequency = engine_clock;
sclk->CgSpllFuncCntl3 = spll_func_cntl_3;
sclk->CgSpllFuncCntl4 = spll_func_cntl_4;
sclk->SpllSpreadSpectrum = cg_spll_spread_spectrum;
sclk->SpllSpreadSpectrum2 = cg_spll_spread_spectrum_2;
sclk->SclkDid = (uint8_t)dividers.pll_post_divider;
return 0;
}
/**
* Populates single SMC SCLK structure using the provided engine clock
*
* @param hwmgr the address of the hardware manager
* @param engine_clock the engine clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int tonga_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
uint32_t engine_clock,
uint16_t sclk_activity_level_threshold,
SMU72_Discrete_GraphicsLevel *graphic_level)
{
int result;
uint32_t mvdd;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
result = tonga_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
/* populate graphics levels*/
result = tonga_get_dependecy_volt_by_clk(hwmgr,
pptable_info->vdd_dep_on_sclk, engine_clock,
&graphic_level->MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE((0 == result),
"can not find VDDC voltage value for VDDC "
"engine clock dependency table", return result);
/* SCLK frequency in units of 10KHz*/
graphic_level->SclkFrequency = engine_clock;
/* Indicates maximum activity level for this performance level. 50% for now*/
graphic_level->ActivityLevel = sclk_activity_level_threshold;
graphic_level->CcPwrDynRm = 0;
graphic_level->CcPwrDynRm1 = 0;
/* this level can be used if activity is high enough.*/
graphic_level->EnabledForActivity = 0;
/* this level can be used for throttling.*/
graphic_level->EnabledForThrottle = 1;
graphic_level->UpHyst = 0;
graphic_level->DownHyst = 0;
graphic_level->VoltageDownHyst = 0;
graphic_level->PowerThrottle = 0;
data->display_timing.min_clock_in_sr =
hwmgr->display_config.min_core_set_clock_in_sr;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkDeepSleep))
graphic_level->DeepSleepDivId =
smu7_get_sleep_divider_id_from_clock(engine_clock,
data->display_timing.min_clock_in_sr);
/* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
if (0 == result) {
/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVoltage);*/
/* CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);*/
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
}
return result;
}
/**
* Populates all SMC SCLK levels' structure based on the trimmed allowed dpm engine clock states
*
* @param hwmgr the address of the hardware manager
*/
int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
struct phm_ppt_v1_information *pptable_info = (struct phm_ppt_v1_information *)(hwmgr->pptable);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
struct phm_ppt_v1_pcie_table *pcie_table = pptable_info->pcie_table;
uint8_t pcie_entry_count = (uint8_t) data->dpm_table.pcie_speed_table.count;
uint32_t level_array_address = smu_data->dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, GraphicsLevel);
uint32_t level_array_size = sizeof(SMU72_Discrete_GraphicsLevel) *
SMU72_MAX_LEVELS_GRAPHICS;
SMU72_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
uint32_t i, max_entry;
uint8_t highest_pcie_level_enabled = 0;
uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
uint8_t count = 0;
int result = 0;
memset(levels, 0x00, level_array_size);
for (i = 0; i < dpm_table->sclk_table.count; i++) {
result = tonga_populate_single_graphic_level(hwmgr,
dpm_table->sclk_table.dpm_levels[i].value,
(uint16_t)smu_data->activity_target[i],
&(smu_data->smc_state_table.GraphicsLevel[i]));
if (result != 0)
return result;
/* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
if (i > 1)
smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
}
/* Only enable level 0 for now. */
smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
/* set highest level watermark to high */
if (dpm_table->sclk_table.count > 1)
smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
PPSMC_DISPLAY_WATERMARK_HIGH;
smu_data->smc_state_table.GraphicsDpmLevelCount =
(uint8_t)dpm_table->sclk_table.count;
data->dpm_level_enable_mask.sclk_dpm_enable_mask =
phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
if (pcie_table != NULL) {
PP_ASSERT_WITH_CODE((pcie_entry_count >= 1),
"There must be 1 or more PCIE levels defined in PPTable.",
return -EINVAL);
max_entry = pcie_entry_count - 1; /* for indexing, we need to decrement by 1.*/
for (i = 0; i < dpm_table->sclk_table.count; i++) {
smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel =
(uint8_t) ((i < max_entry) ? i : max_entry);
}
} else {
if (0 == data->dpm_level_enable_mask.pcie_dpm_enable_mask)
printk(KERN_ERR "[ powerplay ] Pcie Dpm Enablemask is 0 !");
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1<<(highest_pcie_level_enabled+1))) != 0)) {
highest_pcie_level_enabled++;
}
while (data->dpm_level_enable_mask.pcie_dpm_enable_mask &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1<<lowest_pcie_level_enabled)) == 0)) {
lowest_pcie_level_enabled++;
}
while ((count < highest_pcie_level_enabled) &&
((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
(1<<(lowest_pcie_level_enabled+1+count))) == 0)) {
count++;
}
mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
(lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
/* set pcieDpmLevel to highest_pcie_level_enabled*/
for (i = 2; i < dpm_table->sclk_table.count; i++)
smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
/* set pcieDpmLevel to lowest_pcie_level_enabled*/
smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
/* set pcieDpmLevel to mid_pcie_level_enabled*/
smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
}
/* level count will send to smc once at init smc table and never change*/
result = tonga_copy_bytes_to_smc(hwmgr->smumgr, level_array_address,
(uint8_t *)levels, (uint32_t)level_array_size,
SMC_RAM_END);
return result;
}
/**
* Populates the SMC MCLK structure using the provided memory clock
*
* @param hwmgr the address of the hardware manager
* @param memory_clock the memory clock to use to populate the structure
* @param sclk the SMC SCLK structure to be populated
*/
static int tonga_calculate_mclk_params(
struct pp_hwmgr *hwmgr,
uint32_t memory_clock,
SMU72_Discrete_MemoryLevel *mclk,
bool strobe_mode,
bool dllStateOn
)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
uint32_t mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
uint32_t mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
uint32_t mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
uint32_t mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
uint32_t mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
uint32_t mpll_ss1 = data->clock_registers.vMPLL_SS1;
uint32_t mpll_ss2 = data->clock_registers.vMPLL_SS2;
pp_atomctrl_memory_clock_param mpll_param;
int result;
result = atomctrl_get_memory_pll_dividers_si(hwmgr,
memory_clock, &mpll_param, strobe_mode);
PP_ASSERT_WITH_CODE(
0 == result,
"Error retrieving Memory Clock Parameters from VBIOS.",
return result);
/* MPLL_FUNC_CNTL setup*/
mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL,
mpll_param.bw_ctrl);
/* MPLL_FUNC_CNTL_1 setup*/
mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
MPLL_FUNC_CNTL_1, CLKF,
mpll_param.mpll_fb_divider.cl_kf);
mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
MPLL_FUNC_CNTL_1, CLKFRAC,
mpll_param.mpll_fb_divider.clk_frac);
mpll_func_cntl_1 = PHM_SET_FIELD(mpll_func_cntl_1,
MPLL_FUNC_CNTL_1, VCO_MODE,
mpll_param.vco_mode);
/* MPLL_AD_FUNC_CNTL setup*/
mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
MPLL_AD_FUNC_CNTL, YCLK_POST_DIV,
mpll_param.mpll_post_divider);
if (data->is_memory_gddr5) {
/* MPLL_DQ_FUNC_CNTL setup*/
mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
MPLL_DQ_FUNC_CNTL, YCLK_SEL,
mpll_param.yclk_sel);
mpll_dq_func_cntl = PHM_SET_FIELD(mpll_dq_func_cntl,
MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV,
mpll_param.mpll_post_divider);
}
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
/*
************************************
Fref = Reference Frequency
NF = Feedback divider ratio
NR = Reference divider ratio
Fnom = Nominal VCO output frequency = Fref * NF / NR
Fs = Spreading Rate
D = Percentage down-spread / 2
Fint = Reference input frequency to PFD = Fref / NR
NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
CLKS = NS - 1 = ISS_STEP_NUM[11:0]
NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
*************************************
*/
pp_atomctrl_internal_ss_info ss_info;
uint32_t freq_nom;
uint32_t tmp;
uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
/* for GDDR5 for all modes and DDR3 */
if (1 == mpll_param.qdr)
freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
else
freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
/* tmp = (freq_nom / reference_clock * reference_divider) ^ 2 Note: S.I. reference_divider = 1*/
tmp = (freq_nom / reference_clock);
tmp = tmp * tmp;
if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
/* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
/* ss.Info.speed_spectrum_rate -- in unit of khz */
/* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
/* = reference_clock * 5 / speed_spectrum_rate */
uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
/* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
/* = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
uint32_t clkv =
(uint32_t)((((131 * ss_info.speed_spectrum_percentage *
ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
}
}
/* MCLK_PWRMGT_CNTL setup */
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
/* Save the result data to outpupt memory level structure */
mclk->MclkFrequency = memory_clock;
mclk->MpllFuncCntl = mpll_func_cntl;
mclk->MpllFuncCntl_1 = mpll_func_cntl_1;
mclk->MpllFuncCntl_2 = mpll_func_cntl_2;
mclk->MpllAdFuncCntl = mpll_ad_func_cntl;
mclk->MpllDqFuncCntl = mpll_dq_func_cntl;
mclk->MclkPwrmgtCntl = mclk_pwrmgt_cntl;
mclk->DllCntl = dll_cntl;
mclk->MpllSs1 = mpll_ss1;
mclk->MpllSs2 = mpll_ss2;
return 0;
}
static uint8_t tonga_get_mclk_frequency_ratio(uint32_t memory_clock,
bool strobe_mode)
{
uint8_t mc_para_index;
if (strobe_mode) {
if (memory_clock < 12500)
mc_para_index = 0x00;
else if (memory_clock > 47500)
mc_para_index = 0x0f;
else
mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
} else {
if (memory_clock < 65000)
mc_para_index = 0x00;
else if (memory_clock > 135000)
mc_para_index = 0x0f;
else
mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
}
return mc_para_index;
}
static uint8_t tonga_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
{
uint8_t mc_para_index;
if (memory_clock < 10000)
mc_para_index = 0;
else if (memory_clock >= 80000)
mc_para_index = 0x0f;
else
mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
return mc_para_index;
}
static int tonga_populate_single_memory_level(
struct pp_hwmgr *hwmgr,
uint32_t memory_clock,
SMU72_Discrete_MemoryLevel *memory_level
)
{
uint32_t mvdd = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
int result = 0;
bool dll_state_on;
struct cgs_display_info info = {0};
uint32_t mclk_edc_wr_enable_threshold = 40000;
uint32_t mclk_stutter_mode_threshold = 30000;
uint32_t mclk_edc_enable_threshold = 40000;
uint32_t mclk_strobe_mode_threshold = 40000;
if (NULL != pptable_info->vdd_dep_on_mclk) {
result = tonga_get_dependecy_volt_by_clk(hwmgr,
pptable_info->vdd_dep_on_mclk,
memory_clock,
&memory_level->MinVoltage, &mvdd);
PP_ASSERT_WITH_CODE(
0 == result,
"can not find MinVddc voltage value from memory VDDC "
"voltage dependency table",
return result);
}
if (data->mvdd_control == SMU7_VOLTAGE_CONTROL_NONE)
memory_level->MinMvdd = data->vbios_boot_state.mvdd_bootup_value;
else
memory_level->MinMvdd = mvdd;
memory_level->EnabledForThrottle = 1;
memory_level->EnabledForActivity = 0;
memory_level->UpHyst = 0;
memory_level->DownHyst = 100;
memory_level->VoltageDownHyst = 0;
/* Indicates maximum activity level for this performance level.*/
memory_level->ActivityLevel = (uint16_t)data->mclk_activity_target;
memory_level->StutterEnable = 0;
memory_level->StrobeEnable = 0;
memory_level->EdcReadEnable = 0;
memory_level->EdcWriteEnable = 0;
memory_level->RttEnable = 0;
/* default set to low watermark. Highest level will be set to high later.*/
memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
cgs_get_active_displays_info(hwmgr->device, &info);
data->display_timing.num_existing_displays = info.display_count;
if ((mclk_stutter_mode_threshold != 0) &&
(memory_clock <= mclk_stutter_mode_threshold) &&
(!data->is_uvd_enabled)
&& (PHM_READ_FIELD(hwmgr->device, DPG_PIPE_STUTTER_CONTROL, STUTTER_ENABLE) & 0x1)
&& (data->display_timing.num_existing_displays <= 2)
&& (data->display_timing.num_existing_displays != 0))
memory_level->StutterEnable = 1;
/* decide strobe mode*/
memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
(memory_clock <= mclk_strobe_mode_threshold);
/* decide EDC mode and memory clock ratio*/
if (data->is_memory_gddr5) {
memory_level->StrobeRatio = tonga_get_mclk_frequency_ratio(memory_clock,
memory_level->StrobeEnable);
if ((mclk_edc_enable_threshold != 0) &&
(memory_clock > mclk_edc_enable_threshold)) {
memory_level->EdcReadEnable = 1;
}
if ((mclk_edc_wr_enable_threshold != 0) &&
(memory_clock > mclk_edc_wr_enable_threshold)) {
memory_level->EdcWriteEnable = 1;
}
if (memory_level->StrobeEnable) {
if (tonga_get_mclk_frequency_ratio(memory_clock, 1) >=
((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf)) {
dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
} else {
dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
}
} else {
dll_state_on = data->dll_default_on;
}
} else {
memory_level->StrobeRatio =
tonga_get_ddr3_mclk_frequency_ratio(memory_clock);
dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
}
result = tonga_calculate_mclk_params(hwmgr,
memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
if (!result) {
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinMvdd);
/* MCLK frequency in units of 10KHz*/
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
/* Indicates maximum activity level for this performance level.*/
CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
}
return result;
}
int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
struct smu7_dpm_table *dpm_table = &data->dpm_table;
int result;
/* populate MCLK dpm table to SMU7 */
uint32_t level_array_address =
smu_data->dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, MemoryLevel);
uint32_t level_array_size =
sizeof(SMU72_Discrete_MemoryLevel) *
SMU72_MAX_LEVELS_MEMORY;
SMU72_Discrete_MemoryLevel *levels =
smu_data->smc_state_table.MemoryLevel;
uint32_t i;
memset(levels, 0x00, level_array_size);
for (i = 0; i < dpm_table->mclk_table.count; i++) {
PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
"can not populate memory level as memory clock is zero",
return -EINVAL);
result = tonga_populate_single_memory_level(
hwmgr,
dpm_table->mclk_table.dpm_levels[i].value,
&(smu_data->smc_state_table.MemoryLevel[i]));
if (result)
return result;
}
/* Only enable level 0 for now.*/
smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
/*
* in order to prevent MC activity from stutter mode to push DPM up.
* the UVD change complements this by putting the MCLK in a higher state
* by default such that we are not effected by up threshold or and MCLK DPM latency.
*/
smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
/* set highest level watermark to high*/
smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
/* level count will send to smc once at init smc table and never change*/
result = tonga_copy_bytes_to_smc(hwmgr->smumgr,
level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
SMC_RAM_END);
return result;
}
static int tonga_populate_mvdd_value(struct pp_hwmgr *hwmgr,
uint32_t mclk, SMIO_Pattern *smio_pattern)
{
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint32_t i = 0;
if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
/* find mvdd value which clock is more than request */
for (i = 0; i < table_info->vdd_dep_on_mclk->count; i++) {
if (mclk <= table_info->vdd_dep_on_mclk->entries[i].clk) {
/* Always round to higher voltage. */
smio_pattern->Voltage =
data->mvdd_voltage_table.entries[i].value;
break;
}
}
PP_ASSERT_WITH_CODE(i < table_info->vdd_dep_on_mclk->count,
"MVDD Voltage is outside the supported range.",
return -EINVAL);
} else {
return -EINVAL;
}
return 0;
}
static int tonga_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct pp_atomctrl_clock_dividers_vi dividers;
SMIO_Pattern voltage_level;
uint32_t spll_func_cntl = data->clock_registers.vCG_SPLL_FUNC_CNTL;
uint32_t spll_func_cntl_2 = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
uint32_t dll_cntl = data->clock_registers.vDLL_CNTL;
uint32_t mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
/* The ACPI state should not do DPM on DC (or ever).*/
table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
table->ACPILevel.MinVoltage =
smu_data->smc_state_table.GraphicsLevel[0].MinVoltage;
/* assign zero for now*/
table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
/* get the engine clock dividers for this clock value*/
result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
table->ACPILevel.SclkFrequency, &dividers);
PP_ASSERT_WITH_CODE(result == 0,
"Error retrieving Engine Clock dividers from VBIOS.",
return result);
/* divider ID for required SCLK*/
table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
table->ACPILevel.DeepSleepDivId = 0;
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_PWRON, 0);
spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
SPLL_RESET, 1);
spll_func_cntl_2 = PHM_SET_FIELD(spll_func_cntl_2, CG_SPLL_FUNC_CNTL_2,
SCLK_MUX_SEL, 4);
table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
table->ACPILevel.CcPwrDynRm = 0;
table->ACPILevel.CcPwrDynRm1 = 0;
/* For various features to be enabled/disabled while this level is active.*/
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
/* SCLK frequency in units of 10KHz*/
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
/* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
table->MemoryACPILevel.MinVoltage =
smu_data->smc_state_table.MemoryLevel[0].MinVoltage;
/* CONVERT_FROM_HOST_TO_SMC_UL(table->MemoryACPILevel.MinVoltage);*/
if (0 == tonga_populate_mvdd_value(hwmgr, 0, &voltage_level))
table->MemoryACPILevel.MinMvdd =
PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
else
table->MemoryACPILevel.MinMvdd = 0;
/* Force reset on DLL*/
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
/* Disable DLL in ACPIState*/
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
/* Enable DLL bypass signal*/
dll_cntl = PHM_SET_FIELD(dll_cntl,
DLL_CNTL, MRDCK0_BYPASS, 0);
dll_cntl = PHM_SET_FIELD(dll_cntl,
DLL_CNTL, MRDCK1_BYPASS, 0);
table->MemoryACPILevel.DllCntl =
PP_HOST_TO_SMC_UL(dll_cntl);
table->MemoryACPILevel.MclkPwrmgtCntl =
PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
table->MemoryACPILevel.MpllAdFuncCntl =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
table->MemoryACPILevel.MpllDqFuncCntl =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
table->MemoryACPILevel.MpllFuncCntl =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
table->MemoryACPILevel.MpllFuncCntl_1 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
table->MemoryACPILevel.MpllFuncCntl_2 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
table->MemoryACPILevel.MpllSs1 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
table->MemoryACPILevel.MpllSs2 =
PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
table->MemoryACPILevel.EnabledForThrottle = 0;
table->MemoryACPILevel.EnabledForActivity = 0;
table->MemoryACPILevel.UpHyst = 0;
table->MemoryACPILevel.DownHyst = 100;
table->MemoryACPILevel.VoltageDownHyst = 0;
/* Indicates maximum activity level for this performance level.*/
table->MemoryACPILevel.ActivityLevel =
PP_HOST_TO_SMC_US((uint16_t)data->mclk_activity_target);
table->MemoryACPILevel.StutterEnable = 0;
table->MemoryACPILevel.StrobeEnable = 0;
table->MemoryACPILevel.EdcReadEnable = 0;
table->MemoryACPILevel.EdcWriteEnable = 0;
table->MemoryACPILevel.RttEnable = 0;
return result;
}
static int tonga_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
uint8_t count;
pp_atomctrl_clock_dividers_vi dividers;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
pptable_info->mm_dep_table;
table->UvdLevelCount = (uint8_t) (mm_table->count);
table->UvdBootLevel = 0;
for (count = 0; count < table->UvdLevelCount; count++) {
table->UvdLevel[count].VclkFrequency = mm_table->entries[count].vclk;
table->UvdLevel[count].DclkFrequency = mm_table->entries[count].dclk;
table->UvdLevel[count].MinVoltage.Vddc =
phm_get_voltage_index(pptable_info->vddc_lookup_table,
mm_table->entries[count].vddc);
table->UvdLevel[count].MinVoltage.VddGfx =
(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
mm_table->entries[count].vddgfx) : 0;
table->UvdLevel[count].MinVoltage.Vddci =
phm_get_voltage_id(&data->vddci_voltage_table,
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
table->UvdLevel[count].MinVoltage.Phases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(
hwmgr,
table->UvdLevel[count].VclkFrequency,
&dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Vclk clock",
return result);
table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->UvdLevel[count].DclkFrequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for Dclk clock",
return result);
table->UvdLevel[count].DclkDivider =
(uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
}
return result;
}
static int tonga_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
uint8_t count;
pp_atomctrl_clock_dividers_vi dividers;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
pptable_info->mm_dep_table;
table->VceLevelCount = (uint8_t) (mm_table->count);
table->VceBootLevel = 0;
for (count = 0; count < table->VceLevelCount; count++) {
table->VceLevel[count].Frequency =
mm_table->entries[count].eclk;
table->VceLevel[count].MinVoltage.Vddc =
phm_get_voltage_index(pptable_info->vddc_lookup_table,
mm_table->entries[count].vddc);
table->VceLevel[count].MinVoltage.VddGfx =
(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
mm_table->entries[count].vddgfx) : 0;
table->VceLevel[count].MinVoltage.Vddci =
phm_get_voltage_id(&data->vddci_voltage_table,
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
table->VceLevel[count].MinVoltage.Phases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->VceLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for VCE engine clock",
return result);
table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
}
return result;
}
static int tonga_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
uint8_t count;
pp_atomctrl_clock_dividers_vi dividers;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
pptable_info->mm_dep_table;
table->AcpLevelCount = (uint8_t) (mm_table->count);
table->AcpBootLevel = 0;
for (count = 0; count < table->AcpLevelCount; count++) {
table->AcpLevel[count].Frequency =
pptable_info->mm_dep_table->entries[count].aclk;
table->AcpLevel[count].MinVoltage.Vddc =
phm_get_voltage_index(pptable_info->vddc_lookup_table,
mm_table->entries[count].vddc);
table->AcpLevel[count].MinVoltage.VddGfx =
(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
mm_table->entries[count].vddgfx) : 0;
table->AcpLevel[count].MinVoltage.Vddci =
phm_get_voltage_id(&data->vddci_voltage_table,
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
table->AcpLevel[count].MinVoltage.Phases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->AcpLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for engine clock", return result);
table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
}
return result;
}
static int tonga_populate_smc_samu_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
uint8_t count;
pp_atomctrl_clock_dividers_vi dividers;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct phm_ppt_v1_information *pptable_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
phm_ppt_v1_mm_clock_voltage_dependency_table *mm_table =
pptable_info->mm_dep_table;
table->SamuBootLevel = 0;
table->SamuLevelCount = (uint8_t) (mm_table->count);
for (count = 0; count < table->SamuLevelCount; count++) {
/* not sure whether we need evclk or not */
table->SamuLevel[count].Frequency =
pptable_info->mm_dep_table->entries[count].samclock;
table->SamuLevel[count].MinVoltage.Vddc =
phm_get_voltage_index(pptable_info->vddc_lookup_table,
mm_table->entries[count].vddc);
table->SamuLevel[count].MinVoltage.VddGfx =
(data->vdd_gfx_control == SMU7_VOLTAGE_CONTROL_BY_SVID2) ?
phm_get_voltage_index(pptable_info->vddgfx_lookup_table,
mm_table->entries[count].vddgfx) : 0;
table->SamuLevel[count].MinVoltage.Vddci =
phm_get_voltage_id(&data->vddci_voltage_table,
mm_table->entries[count].vddc - VDDC_VDDCI_DELTA);
table->SamuLevel[count].MinVoltage.Phases = 1;
/* retrieve divider value for VBIOS */
result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
table->SamuLevel[count].Frequency, &dividers);
PP_ASSERT_WITH_CODE((0 == result),
"can not find divide id for samu clock", return result);
table->SamuLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
CONVERT_FROM_HOST_TO_SMC_UL(table->SamuLevel[count].Frequency);
}
return result;
}
static int tonga_populate_memory_timing_parameters(
struct pp_hwmgr *hwmgr,
uint32_t engine_clock,
uint32_t memory_clock,
struct SMU72_Discrete_MCArbDramTimingTableEntry *arb_regs
)
{
uint32_t dramTiming;
uint32_t dramTiming2;
uint32_t burstTime;
int result;
result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
engine_clock, memory_clock);
PP_ASSERT_WITH_CODE(result == 0,
"Error calling VBIOS to set DRAM_TIMING.", return result);
dramTiming = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
arb_regs->McArbDramTiming = PP_HOST_TO_SMC_UL(dramTiming);
arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
arb_regs->McArbBurstTime = (uint8_t)burstTime;
return 0;
}
/**
* Setup parameters for the MC ARB.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
* This function is to be called from the SetPowerState table.
*/
static int tonga_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
int result = 0;
SMU72_Discrete_MCArbDramTimingTable arb_regs;
uint32_t i, j;
memset(&arb_regs, 0x00, sizeof(SMU72_Discrete_MCArbDramTimingTable));
for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
result = tonga_populate_memory_timing_parameters
(hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
data->dpm_table.mclk_table.dpm_levels[j].value,
&arb_regs.entries[i][j]);
if (result)
break;
}
}
if (0 == result) {
result = tonga_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->arb_table_start,
(uint8_t *)&arb_regs,
sizeof(SMU72_Discrete_MCArbDramTimingTable),
SMC_RAM_END
);
}
return result;
}
static int tonga_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
int result = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
table->GraphicsBootLevel = 0;
table->MemoryBootLevel = 0;
/* find boot level from dpm table*/
result = phm_find_boot_level(&(data->dpm_table.sclk_table),
data->vbios_boot_state.sclk_bootup_value,
(uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
if (0 != result) {
smu_data->smc_state_table.GraphicsBootLevel = 0;
printk(KERN_ERR "[powerplay] VBIOS did not find boot engine "
"clock value in dependency table. "
"Using Graphics DPM level 0 !");
result = 0;
}
result = phm_find_boot_level(&(data->dpm_table.mclk_table),
data->vbios_boot_state.mclk_bootup_value,
(uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
if (0 != result) {
smu_data->smc_state_table.MemoryBootLevel = 0;
printk(KERN_ERR "[powerplay] VBIOS did not find boot "
"engine clock value in dependency table."
"Using Memory DPM level 0 !");
result = 0;
}
table->BootVoltage.Vddc =
phm_get_voltage_id(&(data->vddc_voltage_table),
data->vbios_boot_state.vddc_bootup_value);
table->BootVoltage.VddGfx =
phm_get_voltage_id(&(data->vddgfx_voltage_table),
data->vbios_boot_state.vddgfx_bootup_value);
table->BootVoltage.Vddci =
phm_get_voltage_id(&(data->vddci_voltage_table),
data->vbios_boot_state.vddci_bootup_value);
table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
CONVERT_FROM_HOST_TO_SMC_US(table->BootMVdd);
return result;
}
static int tonga_populate_clock_stretcher_data_table(struct pp_hwmgr *hwmgr)
{
uint32_t ro, efuse, efuse2, clock_freq, volt_without_cks,
volt_with_cks, value;
uint16_t clock_freq_u16;
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
uint8_t type, i, j, cks_setting, stretch_amount, stretch_amount2,
volt_offset = 0;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_ppt_v1_clock_voltage_dependency_table *sclk_table =
table_info->vdd_dep_on_sclk;
uint32_t hw_revision, dev_id;
struct cgs_system_info sys_info = {0};
stretch_amount = (uint8_t)table_info->cac_dtp_table->usClockStretchAmount;
sys_info.size = sizeof(struct cgs_system_info);
sys_info.info_id = CGS_SYSTEM_INFO_PCIE_REV;
cgs_query_system_info(hwmgr->device, &sys_info);
hw_revision = (uint32_t)sys_info.value;
sys_info.info_id = CGS_SYSTEM_INFO_PCIE_DEV;
cgs_query_system_info(hwmgr->device, &sys_info);
dev_id = (uint32_t)sys_info.value;
/* Read SMU_Eefuse to read and calculate RO and determine
* if the part is SS or FF. if RO >= 1660MHz, part is FF.
*/
efuse = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_EFUSE_0 + (146 * 4));
efuse2 = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixSMU_EFUSE_0 + (148 * 4));
efuse &= 0xFF000000;
efuse = efuse >> 24;
efuse2 &= 0xF;
if (efuse2 == 1)
ro = (2300 - 1350) * efuse / 255 + 1350;
else
ro = (2500 - 1000) * efuse / 255 + 1000;
if (ro >= 1660)
type = 0;
else
type = 1;
/* Populate Stretch amount */
smu_data->smc_state_table.ClockStretcherAmount = stretch_amount;
/* Populate Sclk_CKS_masterEn0_7 and Sclk_voltageOffset */
for (i = 0; i < sclk_table->count; i++) {
smu_data->smc_state_table.Sclk_CKS_masterEn0_7 |=
sclk_table->entries[i].cks_enable << i;
if (ASICID_IS_TONGA_P(dev_id, hw_revision)) {
volt_without_cks = (uint32_t)((7732 + 60 - ro - 20838 *
(sclk_table->entries[i].clk/100) / 10000) * 1000 /
(8730 - (5301 * (sclk_table->entries[i].clk/100) / 1000)));
volt_with_cks = (uint32_t)((5250 + 51 - ro - 2404 *
(sclk_table->entries[i].clk/100) / 100000) * 1000 /
(6146 - (3193 * (sclk_table->entries[i].clk/100) / 1000)));
} else {
volt_without_cks = (uint32_t)((14041 *
(sclk_table->entries[i].clk/100) / 10000 + 3571 + 75 - ro) * 1000 /
(4026 - (13924 * (sclk_table->entries[i].clk/100) / 10000)));
volt_with_cks = (uint32_t)((13946 *
(sclk_table->entries[i].clk/100) / 10000 + 3320 + 45 - ro) * 1000 /
(3664 - (11454 * (sclk_table->entries[i].clk/100) / 10000)));
}
if (volt_without_cks >= volt_with_cks)
volt_offset = (uint8_t)(((volt_without_cks - volt_with_cks +
sclk_table->entries[i].cks_voffset) * 100 / 625) + 1);
smu_data->smc_state_table.Sclk_voltageOffset[i] = volt_offset;
}
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
STRETCH_ENABLE, 0x0);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
masterReset, 0x1);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
staticEnable, 0x1);
PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, PWR_CKS_ENABLE,
masterReset, 0x0);
/* Populate CKS Lookup Table */
if (stretch_amount == 1 || stretch_amount == 2 || stretch_amount == 5)
stretch_amount2 = 0;
else if (stretch_amount == 3 || stretch_amount == 4)
stretch_amount2 = 1;
else {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher);
PP_ASSERT_WITH_CODE(false,
"Stretch Amount in PPTable not supported\n",
return -EINVAL);
}
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixPWR_CKS_CNTL);
value &= 0xFFC2FF87;
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].minFreq =
tonga_clock_stretcher_lookup_table[stretch_amount2][0];
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].maxFreq =
tonga_clock_stretcher_lookup_table[stretch_amount2][1];
clock_freq_u16 = (uint16_t)(PP_SMC_TO_HOST_UL(smu_data->smc_state_table.
GraphicsLevel[smu_data->smc_state_table.GraphicsDpmLevelCount - 1].
SclkFrequency) / 100);
if (tonga_clock_stretcher_lookup_table[stretch_amount2][0] <
clock_freq_u16 &&
tonga_clock_stretcher_lookup_table[stretch_amount2][1] >
clock_freq_u16) {
/* Program PWR_CKS_CNTL. CKS_USE_FOR_LOW_FREQ */
value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 16;
/* Program PWR_CKS_CNTL. CKS_LDO_REFSEL */
value |= (tonga_clock_stretcher_lookup_table[stretch_amount2][2]) << 18;
/* Program PWR_CKS_CNTL. CKS_STRETCH_AMOUNT */
value |= (tonga_clock_stretch_amount_conversion
[tonga_clock_stretcher_lookup_table[stretch_amount2][3]]
[stretch_amount]) << 3;
}
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
CKS_LOOKUPTableEntry[0].minFreq);
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.CKS_LOOKUPTable.
CKS_LOOKUPTableEntry[0].maxFreq);
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting =
tonga_clock_stretcher_lookup_table[stretch_amount2][2] & 0x7F;
smu_data->smc_state_table.CKS_LOOKUPTable.CKS_LOOKUPTableEntry[0].setting |=
(tonga_clock_stretcher_lookup_table[stretch_amount2][3]) << 7;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixPWR_CKS_CNTL, value);
/* Populate DDT Lookup Table */
for (i = 0; i < 4; i++) {
/* Assign the minimum and maximum VID stored
* in the last row of Clock Stretcher Voltage Table.
*/
smu_data->smc_state_table.ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].minVID =
(uint8_t) tonga_clock_stretcher_ddt_table[type][i][2];
smu_data->smc_state_table.ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].maxVID =
(uint8_t) tonga_clock_stretcher_ddt_table[type][i][3];
/* Loop through each SCLK and check the frequency
* to see if it lies within the frequency for clock stretcher.
*/
for (j = 0; j < smu_data->smc_state_table.GraphicsDpmLevelCount; j++) {
cks_setting = 0;
clock_freq = PP_SMC_TO_HOST_UL(
smu_data->smc_state_table.GraphicsLevel[j].SclkFrequency);
/* Check the allowed frequency against the sclk level[j].
* Sclk's endianness has already been converted,
* and it's in 10Khz unit,
* as opposed to Data table, which is in Mhz unit.
*/
if (clock_freq >= tonga_clock_stretcher_ddt_table[type][i][0] * 100) {
cks_setting |= 0x2;
if (clock_freq < tonga_clock_stretcher_ddt_table[type][i][1] * 100)
cks_setting |= 0x1;
}
smu_data->smc_state_table.ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].setting |= cks_setting << (j * 2);
}
CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.
ClockStretcherDataTable.
ClockStretcherDataTableEntry[i].setting);
}
value = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixPWR_CKS_CNTL);
value &= 0xFFFFFFFE;
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixPWR_CKS_CNTL, value);
return 0;
}
/**
* Populates the SMC VRConfig field in DPM table.
*
* @param hwmgr the address of the hardware manager
* @param table the SMC DPM table structure to be populated
* @return always 0
*/
static int tonga_populate_vr_config(struct pp_hwmgr *hwmgr,
SMU72_Discrete_DpmTable *table)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint16_t config;
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vdd_gfx_control) {
/* Splitted mode */
config = VR_SVI2_PLANE_1;
table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
config = VR_SVI2_PLANE_2;
table->VRConfig |= config;
} else {
printk(KERN_ERR "[ powerplay ] VDDC and VDDGFX should "
"be both on SVI2 control in splitted mode !\n");
}
} else {
/* Merged mode */
config = VR_MERGED_WITH_VDDC;
table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
/* Set Vddc Voltage Controller */
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
config = VR_SVI2_PLANE_1;
table->VRConfig |= config;
} else {
printk(KERN_ERR "[ powerplay ] VDDC should be on "
"SVI2 control in merged mode !\n");
}
}
/* Set Vddci Voltage Controller */
if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
config = VR_SVI2_PLANE_2; /* only in merged mode */
table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
} else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
config = VR_SMIO_PATTERN_1;
table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
}
/* Set Mvdd Voltage Controller */
if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
config = VR_SMIO_PATTERN_2;
table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
}
return 0;
}
/**
* Initialize the ARB DRAM timing table's index field.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
static int tonga_init_arb_table_index(struct pp_smumgr *smumgr)
{
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
uint32_t tmp;
int result;
/*
* This is a read-modify-write on the first byte of the ARB table.
* The first byte in the SMU72_Discrete_MCArbDramTimingTable structure
* is the field 'current'.
* This solution is ugly, but we never write the whole table only
* individual fields in it.
* In reality this field should not be in that structure
* but in a soft register.
*/
result = tonga_read_smc_sram_dword(smumgr,
smu_data->arb_table_start, &tmp, SMC_RAM_END);
if (0 != result)
return result;
tmp &= 0x00FFFFFF;
tmp |= ((uint32_t)MC_CG_ARB_FREQ_F1) << 24;
return tonga_write_smc_sram_dword(smumgr,
smu_data->arb_table_start, tmp, SMC_RAM_END);
}
static int tonga_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
SMU72_Discrete_DpmTable *dpm_table = &(smu_data->smc_state_table);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
struct phm_cac_tdp_table *cac_dtp_table = table_info->cac_dtp_table;
int i, j, k;
uint16_t *pdef1;
uint16_t *pdef2;
dpm_table->DefaultTdp = PP_HOST_TO_SMC_US(
(uint16_t)(cac_dtp_table->usTDP * 256));
dpm_table->TargetTdp = PP_HOST_TO_SMC_US(
(uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
PP_ASSERT_WITH_CODE(cac_dtp_table->usTargetOperatingTemp <= 255,
"Target Operating Temp is out of Range !",
);
dpm_table->GpuTjMax = (uint8_t)(cac_dtp_table->usTargetOperatingTemp);
dpm_table->GpuTjHyst = 8;
dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
dpm_table->BAPM_TEMP_GRADIENT =
PP_HOST_TO_SMC_UL(defaults->bamp_temp_gradient);
pdef1 = defaults->bapmti_r;
pdef2 = defaults->bapmti_rc;
for (i = 0; i < SMU72_DTE_ITERATIONS; i++) {
for (j = 0; j < SMU72_DTE_SOURCES; j++) {
for (k = 0; k < SMU72_DTE_SINKS; k++) {
dpm_table->BAPMTI_R[i][j][k] =
PP_HOST_TO_SMC_US(*pdef1);
dpm_table->BAPMTI_RC[i][j][k] =
PP_HOST_TO_SMC_US(*pdef2);
pdef1++;
pdef2++;
}
}
}
return 0;
}
static int tonga_populate_svi_load_line(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddC;
smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
return 0;
}
static int tonga_populate_tdc_limit(struct pp_hwmgr *hwmgr)
{
uint16_t tdc_limit;
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
/* TDC number of fraction bits are changed from 8 to 7
* for Fiji as requested by SMC team
*/
tdc_limit = (uint16_t)(table_info->cac_dtp_table->usTDC * 256);
smu_data->power_tune_table.TDC_VDDC_PkgLimit =
CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
defaults->tdc_vddc_throttle_release_limit_perc;
smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
return 0;
}
static int tonga_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
{
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
struct tonga_pt_defaults *defaults = smu_data->power_tune_defaults;
uint32_t temp;
if (tonga_read_smc_sram_dword(hwmgr->smumgr,
fuse_table_offset +
offsetof(SMU72_Discrete_PmFuses, TdcWaterfallCtl),
(uint32_t *)&temp, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to read PmFuses.DW6 "
"(SviLoadLineEn) from SMC Failed !",
return -EINVAL);
else
smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
return 0;
}
static int tonga_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
{
int i;
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
/* Currently not used. Set all to zero. */
for (i = 0; i < 16; i++)
smu_data->power_tune_table.LPMLTemperatureScaler[i] = 0;
return 0;
}
static int tonga_populate_fuzzy_fan(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
if ((hwmgr->thermal_controller.advanceFanControlParameters.
usFanOutputSensitivity & (1 << 15)) ||
(hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity == 0))
hwmgr->thermal_controller.advanceFanControlParameters.
usFanOutputSensitivity = hwmgr->thermal_controller.
advanceFanControlParameters.usDefaultFanOutputSensitivity;
smu_data->power_tune_table.FuzzyFan_PwmSetDelta =
PP_HOST_TO_SMC_US(hwmgr->thermal_controller.
advanceFanControlParameters.usFanOutputSensitivity);
return 0;
}
static int tonga_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
{
int i;
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
/* Currently not used. Set all to zero. */
for (i = 0; i < 16; i++)
smu_data->power_tune_table.GnbLPML[i] = 0;
return 0;
}
static int tonga_min_max_vgnb_lpml_id_from_bapm_vddc(struct pp_hwmgr *hwmgr)
{
return 0;
}
static int tonga_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint16_t hi_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
uint16_t lo_sidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
struct phm_cac_tdp_table *cac_table = table_info->cac_dtp_table;
hi_sidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
lo_sidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
CONVERT_FROM_HOST_TO_SMC_US(hi_sidd);
smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
CONVERT_FROM_HOST_TO_SMC_US(lo_sidd);
return 0;
}
static int tonga_populate_pm_fuses(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
uint32_t pm_fuse_table_offset;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_PowerContainment)) {
if (tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, PmFuseTable),
&pm_fuse_table_offset, SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to get pm_fuse_table_offset Failed !",
return -EINVAL);
/* DW6 */
if (tonga_populate_svi_load_line(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate SviLoadLine Failed !",
return -EINVAL);
/* DW7 */
if (tonga_populate_tdc_limit(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TDCLimit Failed !",
return -EINVAL);
/* DW8 */
if (tonga_populate_dw8(hwmgr, pm_fuse_table_offset))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate TdcWaterfallCtl Failed !",
return -EINVAL);
/* DW9-DW12 */
if (tonga_populate_temperature_scaler(hwmgr) != 0)
PP_ASSERT_WITH_CODE(false,
"Attempt to populate LPMLTemperatureScaler Failed !",
return -EINVAL);
/* DW13-DW14 */
if (tonga_populate_fuzzy_fan(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate Fuzzy Fan "
"Control parameters Failed !",
return -EINVAL);
/* DW15-DW18 */
if (tonga_populate_gnb_lpml(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate GnbLPML Failed !",
return -EINVAL);
/* DW19 */
if (tonga_min_max_vgnb_lpml_id_from_bapm_vddc(hwmgr))
PP_ASSERT_WITH_CODE(false,
"Attempt to populate GnbLPML "
"Min and Max Vid Failed !",
return -EINVAL);
/* DW20 */
if (tonga_populate_bapm_vddc_base_leakage_sidd(hwmgr))
PP_ASSERT_WITH_CODE(
false,
"Attempt to populate BapmVddCBaseLeakage "
"Hi and Lo Sidd Failed !",
return -EINVAL);
if (tonga_copy_bytes_to_smc(hwmgr->smumgr, pm_fuse_table_offset,
(uint8_t *)&smu_data->power_tune_table,
sizeof(struct SMU72_Discrete_PmFuses), SMC_RAM_END))
PP_ASSERT_WITH_CODE(false,
"Attempt to download PmFuseTable Failed !",
return -EINVAL);
}
return 0;
}
static int tonga_populate_mc_reg_address(struct pp_smumgr *smumgr,
SMU72_Discrete_MCRegisters *mc_reg_table)
{
const struct tonga_smumgr *smu_data = (struct tonga_smumgr *)smumgr->backend;
uint32_t i, j;
for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
if (smu_data->mc_reg_table.validflag & 1<<j) {
PP_ASSERT_WITH_CODE(
i < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE,
"Index of mc_reg_table->address[] array "
"out of boundary",
return -EINVAL);
mc_reg_table->address[i].s0 =
PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
mc_reg_table->address[i].s1 =
PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
i++;
}
}
mc_reg_table->last = (uint8_t)i;
return 0;
}
/*convert register values from driver to SMC format */
static void tonga_convert_mc_registers(
const struct tonga_mc_reg_entry *entry,
SMU72_Discrete_MCRegisterSet *data,
uint32_t num_entries, uint32_t valid_flag)
{
uint32_t i, j;
for (i = 0, j = 0; j < num_entries; j++) {
if (valid_flag & 1<<j) {
data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
i++;
}
}
}
static int tonga_convert_mc_reg_table_entry_to_smc(
struct pp_smumgr *smumgr,
const uint32_t memory_clock,
SMU72_Discrete_MCRegisterSet *mc_reg_table_data
)
{
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
uint32_t i = 0;
for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
if (memory_clock <=
smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
break;
}
}
if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
--i;
tonga_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
mc_reg_table_data, smu_data->mc_reg_table.last,
smu_data->mc_reg_table.validflag);
return 0;
}
static int tonga_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
SMU72_Discrete_MCRegisters *mc_regs)
{
int result = 0;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
int res;
uint32_t i;
for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
res = tonga_convert_mc_reg_table_entry_to_smc(
hwmgr->smumgr,
data->dpm_table.mclk_table.dpm_levels[i].value,
&mc_regs->data[i]
);
if (0 != res)
result = res;
}
return result;
}
static int tonga_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
{
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
uint32_t address;
int32_t result;
if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
return 0;
memset(&smu_data->mc_regs, 0, sizeof(SMU72_Discrete_MCRegisters));
result = tonga_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
if (result != 0)
return result;
address = smu_data->mc_reg_table_start +
(uint32_t)offsetof(SMU72_Discrete_MCRegisters, data[0]);
return tonga_copy_bytes_to_smc(
hwmgr->smumgr, address,
(uint8_t *)&smu_data->mc_regs.data[0],
sizeof(SMU72_Discrete_MCRegisterSet) *
data->dpm_table.mclk_table.count,
SMC_RAM_END);
}
static int tonga_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
{
int result;
struct pp_smumgr *smumgr = hwmgr->smumgr;
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(smumgr->backend);
memset(&smu_data->mc_regs, 0x00, sizeof(SMU72_Discrete_MCRegisters));
result = tonga_populate_mc_reg_address(smumgr, &(smu_data->mc_regs));
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize MCRegTable for the MC register addresses !",
return result;);
result = tonga_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize MCRegTable for driver state !",
return result;);
return tonga_copy_bytes_to_smc(smumgr, smu_data->mc_reg_table_start,
(uint8_t *)&smu_data->mc_regs, sizeof(SMU72_Discrete_MCRegisters), SMC_RAM_END);
}
static void tonga_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
if (table_info &&
table_info->cac_dtp_table->usPowerTuneDataSetID <= POWERTUNE_DEFAULT_SET_MAX &&
table_info->cac_dtp_table->usPowerTuneDataSetID)
smu_data->power_tune_defaults =
&tonga_power_tune_data_set_array
[table_info->cac_dtp_table->usPowerTuneDataSetID - 1];
else
smu_data->power_tune_defaults = &tonga_power_tune_data_set_array[0];
}
/**
* Initializes the SMC table and uploads it
*
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data (PowerState)
* @return always 0
*/
int tonga_init_smc_table(struct pp_hwmgr *hwmgr)
{
int result;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
SMU72_Discrete_DpmTable *table = &(smu_data->smc_state_table);
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
uint8_t i;
pp_atomctrl_gpio_pin_assignment gpio_pin_assignment;
memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
tonga_initialize_power_tune_defaults(hwmgr);
if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
tonga_populate_smc_voltage_tables(hwmgr, table);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition))
table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StepVddc))
table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
if (data->is_memory_gddr5)
table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
i = PHM_READ_FIELD(hwmgr->device, CC_MC_MAX_CHANNEL, NOOFCHAN);
if (i == 1 || i == 0)
table->SystemFlags |= 0x40;
if (data->ulv_supported && table_info->us_ulv_voltage_offset) {
result = tonga_populate_ulv_state(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ULV state !",
return result;);
cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
ixCG_ULV_PARAMETER, 0x40035);
}
result = tonga_populate_smc_link_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Link Level !", return result);
result = tonga_populate_all_graphic_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Graphics Level !", return result);
result = tonga_populate_all_memory_levels(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Memory Level !", return result);
result = tonga_populate_smc_acpi_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACPI Level !", return result);
result = tonga_populate_smc_vce_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize VCE Level !", return result);
result = tonga_populate_smc_acp_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize ACP Level !", return result);
result = tonga_populate_smc_samu_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize SAMU Level !", return result);
/* Since only the initial state is completely set up at this
* point (the other states are just copies of the boot state) we only
* need to populate the ARB settings for the initial state.
*/
result = tonga_program_memory_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to Write ARB settings for the initial state.",
return result;);
result = tonga_populate_smc_uvd_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize UVD Level !", return result);
result = tonga_populate_smc_boot_level(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to initialize Boot Level !", return result);
tonga_populate_bapm_parameters_in_dpm_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate BAPM Parameters !", return result);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ClockStretcher)) {
result = tonga_populate_clock_stretcher_data_table(hwmgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate Clock Stretcher Data Table !",
return result;);
}
table->GraphicsVoltageChangeEnable = 1;
table->GraphicsThermThrottleEnable = 1;
table->GraphicsInterval = 1;
table->VoltageInterval = 1;
table->ThermalInterval = 1;
table->TemperatureLimitHigh =
table_info->cac_dtp_table->usTargetOperatingTemp *
SMU7_Q88_FORMAT_CONVERSION_UNIT;
table->TemperatureLimitLow =
(table_info->cac_dtp_table->usTargetOperatingTemp - 1) *
SMU7_Q88_FORMAT_CONVERSION_UNIT;
table->MemoryVoltageChangeEnable = 1;
table->MemoryInterval = 1;
table->VoltageResponseTime = 0;
table->PhaseResponseTime = 0;
table->MemoryThermThrottleEnable = 1;
/*
* Cail reads current link status and reports it as cap (we cannot
* change this due to some previous issues we had)
* SMC drops the link status to lowest level after enabling
* DPM by PowerPlay. After pnp or toggling CF, driver gets reloaded again
* but this time Cail reads current link status which was set to low by
* SMC and reports it as cap to powerplay
* To avoid it, we set PCIeBootLinkLevel to highest dpm level
*/
PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
"There must be 1 or more PCIE levels defined in PPTable.",
return -EINVAL);
table->PCIeBootLinkLevel = (uint8_t) (data->dpm_table.pcie_speed_table.count);
table->PCIeGenInterval = 1;
result = tonga_populate_vr_config(hwmgr, table);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to populate VRConfig setting !", return result);
table->ThermGpio = 17;
table->SclkStepSize = 0x4000;
if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID,
&gpio_pin_assignment)) {
table->VRHotGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
} else {
table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot);
}
if (atomctrl_get_pp_assign_pin(hwmgr, PP_AC_DC_SWITCH_GPIO_PINID,
&gpio_pin_assignment)) {
table->AcDcGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
} else {
table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
}
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_Falcon_QuickTransition);
if (0) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_AutomaticDCTransition);
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_Falcon_QuickTransition);
}
if (atomctrl_get_pp_assign_pin(hwmgr,
THERMAL_INT_OUTPUT_GPIO_PINID, &gpio_pin_assignment)) {
phm_cap_set(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalOutGPIO);
table->ThermOutGpio = gpio_pin_assignment.uc_gpio_pin_bit_shift;
table->ThermOutPolarity =
(0 == (cgs_read_register(hwmgr->device, mmGPIOPAD_A) &
(1 << gpio_pin_assignment.uc_gpio_pin_bit_shift))) ? 1 : 0;
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_ONLY;
/* if required, combine VRHot/PCC with thermal out GPIO*/
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_RegulatorHot) &&
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_CombinePCCWithThermalSignal)){
table->ThermOutMode = SMU7_THERM_OUT_MODE_THERM_VRHOT;
}
} else {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_ThermalOutGPIO);
table->ThermOutGpio = 17;
table->ThermOutPolarity = 1;
table->ThermOutMode = SMU7_THERM_OUT_MODE_DISABLE;
}
for (i = 0; i < SMU72_MAX_ENTRIES_SMIO; i++)
table->Smio[i] = PP_HOST_TO_SMC_UL(table->Smio[i]);
CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask1);
CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMask2);
CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
/* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
result = tonga_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->dpm_table_start + offsetof(SMU72_Discrete_DpmTable, SystemFlags),
(uint8_t *)&(table->SystemFlags),
sizeof(SMU72_Discrete_DpmTable) - 3 * sizeof(SMU72_PIDController),
SMC_RAM_END);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to upload dpm data to SMC memory !", return result;);
result = tonga_init_arb_table_index(hwmgr->smumgr);
PP_ASSERT_WITH_CODE(0 == result,
"Failed to upload arb data to SMC memory !", return result);
tonga_populate_pm_fuses(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate initialize pm fuses !", return result);
result = tonga_populate_initial_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to populate initialize MC Reg table !", return result);
return 0;
}
/**
* Set up the fan table to control the fan using the SMC.
* @param hwmgr the address of the powerplay hardware manager.
* @param pInput the pointer to input data
* @param pOutput the pointer to output data
* @param pStorage the pointer to temporary storage
* @param Result the last failure code
* @return result from set temperature range routine
*/
int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
SMU72_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
uint32_t duty100;
uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
uint16_t fdo_min, slope1, slope2;
uint32_t reference_clock;
int res;
uint64_t tmp64;
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl))
return 0;
if (0 == smu_data->fan_table_start) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC,
CG_FDO_CTRL1, FMAX_DUTY100);
if (0 == duty100) {
phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_MicrocodeFanControl);
return 0;
}
tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
do_div(tmp64, 10000);
fdo_min = (uint16_t)tmp64;
t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed -
hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh -
hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed -
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh -
hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
fan_table.Slope1 = cpu_to_be16(slope1);
fan_table.Slope2 = cpu_to_be16(slope2);
fan_table.FdoMin = cpu_to_be16(fdo_min);
fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
fan_table.HystUp = cpu_to_be16(1);
fan_table.HystSlope = cpu_to_be16(1);
fan_table.TempRespLim = cpu_to_be16(5);
reference_clock = smu7_get_xclk(hwmgr);
fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
fan_table.FanControl_GL_Flag = 1;
res = tonga_copy_bytes_to_smc(hwmgr->smumgr, smu_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
/* TO DO FOR SOME DEVICE ID 0X692b, send this msg return invalid command.
if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit != 0)
res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanMinPwm, \
hwmgr->thermal_controller.advanceFanControlParameters.ucMinimumPWMLimit) ? 0 : -1);
if (res == 0 && hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit != 0)
res = (0 == smum_send_msg_to_smc_with_parameter(hwmgr->smumgr, PPSMC_MSG_SetFanSclkTarget, \
hwmgr->thermal_controller.advanceFanControlParameters.ulMinFanSCLKAcousticLimit) ? 0 : -1);
if (0 != res)
phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
*/
return 0;
}
static int tonga_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
if (data->need_update_smu7_dpm_table &
(DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
return tonga_program_memory_timing_parameters(hwmgr);
return 0;
}
int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
int result = 0;
uint32_t low_sclk_interrupt_threshold = 0;
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_SclkThrottleLowNotification)
&& (hwmgr->gfx_arbiter.sclk_threshold !=
data->low_sclk_interrupt_threshold)) {
data->low_sclk_interrupt_threshold =
hwmgr->gfx_arbiter.sclk_threshold;
low_sclk_interrupt_threshold =
data->low_sclk_interrupt_threshold;
CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
result = tonga_copy_bytes_to_smc(
hwmgr->smumgr,
smu_data->dpm_table_start +
offsetof(SMU72_Discrete_DpmTable,
LowSclkInterruptThreshold),
(uint8_t *)&low_sclk_interrupt_threshold,
sizeof(uint32_t),
SMC_RAM_END);
}
result = tonga_update_and_upload_mc_reg_table(hwmgr);
PP_ASSERT_WITH_CODE((0 == result),
"Failed to upload MC reg table !",
return result);
result = tonga_program_mem_timing_parameters(hwmgr);
PP_ASSERT_WITH_CODE((result == 0),
"Failed to program memory timing parameters !",
);
return result;
}
uint32_t tonga_get_offsetof(uint32_t type, uint32_t member)
{
switch (type) {
case SMU_SoftRegisters:
switch (member) {
case HandshakeDisables:
return offsetof(SMU72_SoftRegisters, HandshakeDisables);
case VoltageChangeTimeout:
return offsetof(SMU72_SoftRegisters, VoltageChangeTimeout);
case AverageGraphicsActivity:
return offsetof(SMU72_SoftRegisters, AverageGraphicsActivity);
case PreVBlankGap:
return offsetof(SMU72_SoftRegisters, PreVBlankGap);
case VBlankTimeout:
return offsetof(SMU72_SoftRegisters, VBlankTimeout);
}
case SMU_Discrete_DpmTable:
switch (member) {
case UvdBootLevel:
return offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
case VceBootLevel:
return offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
case SamuBootLevel:
return offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
case LowSclkInterruptThreshold:
return offsetof(SMU72_Discrete_DpmTable, LowSclkInterruptThreshold);
}
}
printk("cant't get the offset of type %x member %x\n", type, member);
return 0;
}
uint32_t tonga_get_mac_definition(uint32_t value)
{
switch (value) {
case SMU_MAX_LEVELS_GRAPHICS:
return SMU72_MAX_LEVELS_GRAPHICS;
case SMU_MAX_LEVELS_MEMORY:
return SMU72_MAX_LEVELS_MEMORY;
case SMU_MAX_LEVELS_LINK:
return SMU72_MAX_LEVELS_LINK;
case SMU_MAX_ENTRIES_SMIO:
return SMU72_MAX_ENTRIES_SMIO;
case SMU_MAX_LEVELS_VDDC:
return SMU72_MAX_LEVELS_VDDC;
case SMU_MAX_LEVELS_VDDGFX:
return SMU72_MAX_LEVELS_VDDGFX;
case SMU_MAX_LEVELS_VDDCI:
return SMU72_MAX_LEVELS_VDDCI;
case SMU_MAX_LEVELS_MVDD:
return SMU72_MAX_LEVELS_MVDD;
}
printk("cant't get the mac value %x\n", value);
return 0;
}
static int tonga_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
smu_data->smc_state_table.UvdBootLevel = 0;
if (table_info->mm_dep_table->count > 0)
smu_data->smc_state_table.UvdBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = smu_data->dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, UvdBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0x00FFFFFF;
mm_boot_level_value |= smu_data->smc_state_table.UvdBootLevel << 24;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC,
mm_boot_level_offset, mm_boot_level_value);
if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_UVDDPM) ||
phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_UVDDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.UvdBootLevel));
return 0;
}
static int tonga_update_vce_smc_table(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data =
(struct tonga_smumgr *)(hwmgr->smumgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
struct phm_ppt_v1_information *table_info =
(struct phm_ppt_v1_information *)(hwmgr->pptable);
smu_data->smc_state_table.VceBootLevel =
(uint8_t) (table_info->mm_dep_table->count - 1);
mm_boot_level_offset = smu_data->dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, VceBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFF00FFFF;
mm_boot_level_value |= smu_data->smc_state_table.VceBootLevel << 16;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_VCEDPM_SetEnabledMask,
(uint32_t)1 << smu_data->smc_state_table.VceBootLevel);
return 0;
}
static int tonga_update_samu_smc_table(struct pp_hwmgr *hwmgr)
{
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
uint32_t mm_boot_level_offset, mm_boot_level_value;
smu_data->smc_state_table.SamuBootLevel = 0;
mm_boot_level_offset = smu_data->dpm_table_start +
offsetof(SMU72_Discrete_DpmTable, SamuBootLevel);
mm_boot_level_offset /= 4;
mm_boot_level_offset *= 4;
mm_boot_level_value = cgs_read_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset);
mm_boot_level_value &= 0xFFFFFF00;
mm_boot_level_value |= smu_data->smc_state_table.SamuBootLevel << 0;
cgs_write_ind_register(hwmgr->device,
CGS_IND_REG__SMC, mm_boot_level_offset, mm_boot_level_value);
if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
PHM_PlatformCaps_StablePState))
smum_send_msg_to_smc_with_parameter(hwmgr->smumgr,
PPSMC_MSG_SAMUDPM_SetEnabledMask,
(uint32_t)(1 << smu_data->smc_state_table.SamuBootLevel));
return 0;
}
int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
{
switch (type) {
case SMU_UVD_TABLE:
tonga_update_uvd_smc_table(hwmgr);
break;
case SMU_VCE_TABLE:
tonga_update_vce_smc_table(hwmgr);
break;
case SMU_SAMU_TABLE:
tonga_update_samu_smc_table(hwmgr);
break;
default:
break;
}
return 0;
}
/**
* Get the location of various tables inside the FW image.
*
* @param hwmgr the address of the powerplay hardware manager.
* @return always 0
*/
int tonga_process_firmware_header(struct pp_hwmgr *hwmgr)
{
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
uint32_t tmp;
int result;
bool error = false;
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, DpmTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->dpm_table_start = tmp;
error |= (0 != result);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, SoftRegisters),
&tmp, SMC_RAM_END);
if (0 == result) {
data->soft_regs_start = tmp;
smu_data->soft_regs_start = tmp;
}
error |= (0 != result);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, mcRegisterTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->mc_reg_table_start = tmp;
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, FanTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->fan_table_start = tmp;
error |= (0 != result);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, mcArbDramTimingTable),
&tmp, SMC_RAM_END);
if (0 == result)
smu_data->arb_table_start = tmp;
error |= (0 != result);
result = tonga_read_smc_sram_dword(hwmgr->smumgr,
SMU72_FIRMWARE_HEADER_LOCATION +
offsetof(SMU72_Firmware_Header, Version),
&tmp, SMC_RAM_END);
if (0 == result)
hwmgr->microcode_version_info.SMC = tmp;
error |= (0 != result);
return error ? 1 : 0;
}
/*---------------------------MC----------------------------*/
static uint8_t tonga_get_memory_modile_index(struct pp_hwmgr *hwmgr)
{
return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
}
static bool tonga_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
{
bool result = true;
switch (in_reg) {
case mmMC_SEQ_RAS_TIMING:
*out_reg = mmMC_SEQ_RAS_TIMING_LP;
break;
case mmMC_SEQ_DLL_STBY:
*out_reg = mmMC_SEQ_DLL_STBY_LP;
break;
case mmMC_SEQ_G5PDX_CMD0:
*out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
break;
case mmMC_SEQ_G5PDX_CMD1:
*out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
break;
case mmMC_SEQ_G5PDX_CTRL:
*out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
break;
case mmMC_SEQ_CAS_TIMING:
*out_reg = mmMC_SEQ_CAS_TIMING_LP;
break;
case mmMC_SEQ_MISC_TIMING:
*out_reg = mmMC_SEQ_MISC_TIMING_LP;
break;
case mmMC_SEQ_MISC_TIMING2:
*out_reg = mmMC_SEQ_MISC_TIMING2_LP;
break;
case mmMC_SEQ_PMG_DVS_CMD:
*out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
break;
case mmMC_SEQ_PMG_DVS_CTL:
*out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
break;
case mmMC_SEQ_RD_CTL_D0:
*out_reg = mmMC_SEQ_RD_CTL_D0_LP;
break;
case mmMC_SEQ_RD_CTL_D1:
*out_reg = mmMC_SEQ_RD_CTL_D1_LP;
break;
case mmMC_SEQ_WR_CTL_D0:
*out_reg = mmMC_SEQ_WR_CTL_D0_LP;
break;
case mmMC_SEQ_WR_CTL_D1:
*out_reg = mmMC_SEQ_WR_CTL_D1_LP;
break;
case mmMC_PMG_CMD_EMRS:
*out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
break;
case mmMC_PMG_CMD_MRS:
*out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
break;
case mmMC_PMG_CMD_MRS1:
*out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
break;
case mmMC_SEQ_PMG_TIMING:
*out_reg = mmMC_SEQ_PMG_TIMING_LP;
break;
case mmMC_PMG_CMD_MRS2:
*out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
break;
case mmMC_SEQ_WR_CTL_2:
*out_reg = mmMC_SEQ_WR_CTL_2_LP;
break;
default:
result = false;
break;
}
return result;
}
static int tonga_set_s0_mc_reg_index(struct tonga_mc_reg_table *table)
{
uint32_t i;
uint16_t address;
for (i = 0; i < table->last; i++) {
table->mc_reg_address[i].s0 =
tonga_check_s0_mc_reg_index(table->mc_reg_address[i].s1,
&address) ?
address :
table->mc_reg_address[i].s1;
}
return 0;
}
static int tonga_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
struct tonga_mc_reg_table *ni_table)
{
uint8_t i, j;
PP_ASSERT_WITH_CODE((table->last <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
"Invalid VramInfo table.", return -EINVAL);
for (i = 0; i < table->last; i++)
ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
ni_table->last = table->last;
for (i = 0; i < table->num_entries; i++) {
ni_table->mc_reg_table_entry[i].mclk_max =
table->mc_reg_table_entry[i].mclk_max;
for (j = 0; j < table->last; j++) {
ni_table->mc_reg_table_entry[i].mc_data[j] =
table->mc_reg_table_entry[i].mc_data[j];
}
}
ni_table->num_entries = table->num_entries;
return 0;
}
/**
* VBIOS omits some information to reduce size, we need to recover them here.
* 1. when we see mmMC_SEQ_MISC1, bit[31:16] EMRS1, need to be write to
* mmMC_PMG_CMD_EMRS /_LP[15:0]. Bit[15:0] MRS, need to be update
* mmMC_PMG_CMD_MRS/_LP[15:0]
* 2. when we see mmMC_SEQ_RESERVE_M, bit[15:0] EMRS2, need to be write to
* mmMC_PMG_CMD_MRS1/_LP[15:0].
* 3. need to set these data for each clock range
* @param hwmgr the address of the powerplay hardware manager.
* @param table the address of MCRegTable
* @return always 0
*/
static int tonga_set_mc_special_registers(struct pp_hwmgr *hwmgr,
struct tonga_mc_reg_table *table)
{
uint8_t i, j, k;
uint32_t temp_reg;
struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
for (i = 0, j = table->last; i < table->last; i++) {
PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
switch (table->mc_reg_address[i].s1) {
case mmMC_SEQ_MISC1:
temp_reg = cgs_read_register(hwmgr->device,
mmMC_PMG_CMD_EMRS);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
((temp_reg & 0xffff0000)) |
((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
}
j++;
PP_ASSERT_WITH_CODE((j < SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) |
(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
if (!data->is_memory_gddr5)
table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
}
j++;
PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
if (!data->is_memory_gddr5) {
table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
for (k = 0; k < table->num_entries; k++)
table->mc_reg_table_entry[k].mc_data[j] =
(table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
j++;
PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
}
break;
case mmMC_SEQ_RESERVE_M:
temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
for (k = 0; k < table->num_entries; k++) {
table->mc_reg_table_entry[k].mc_data[j] =
(temp_reg & 0xffff0000) |
(table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
}
j++;
PP_ASSERT_WITH_CODE((j <= SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE),
"Invalid VramInfo table.", return -EINVAL);
break;
default:
break;
}
}
table->last = j;
return 0;
}
static int tonga_set_valid_flag(struct tonga_mc_reg_table *table)
{
uint8_t i, j;
for (i = 0; i < table->last; i++) {
for (j = 1; j < table->num_entries; j++) {
if (table->mc_reg_table_entry[j-1].mc_data[i] !=
table->mc_reg_table_entry[j].mc_data[i]) {
table->validflag |= (1<<i);
break;
}
}
}
return 0;
}
int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
{
int result;
struct tonga_smumgr *smu_data = (struct tonga_smumgr *)(hwmgr->smumgr->backend);
pp_atomctrl_mc_reg_table *table;
struct tonga_mc_reg_table *ni_table = &smu_data->mc_reg_table;
uint8_t module_index = tonga_get_memory_modile_index(hwmgr);
table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
if (NULL == table)
return -ENOMEM;
/* Program additional LP registers that are no longer programmed by VBIOS */
cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP,
cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP,
cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP,
cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP,
cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP,
cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
if (0 == result)
result = tonga_copy_vbios_smc_reg_table(table, ni_table);
if (0 == result) {
tonga_set_s0_mc_reg_index(ni_table);
result = tonga_set_mc_special_registers(hwmgr, ni_table);
}
if (0 == result)
tonga_set_valid_flag(ni_table);
kfree(table);
return result;
}
bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr)
{
return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
? true : false;
}
/*
* Copyright 2015 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#ifndef _TONGA_SMC_H
#define _TONGA_SMC_H
#include "smumgr.h"
#include "smu72.h"
#define ASICID_IS_TONGA_P(wDID, bRID) \
(((wDID == 0x6930) && ((bRID == 0xF0) || (bRID == 0xF1) || (bRID == 0xFF))) \
|| ((wDID == 0x6920) && ((bRID == 0) || (bRID == 1))))
struct tonga_pt_defaults {
uint8_t svi_load_line_en;
uint8_t svi_load_line_vddC;
uint8_t tdc_vddc_throttle_release_limit_perc;
uint8_t tdc_mawt;
uint8_t tdc_waterfall_ctl;
uint8_t dte_ambient_temp_base;
uint32_t display_cac;
uint32_t bamp_temp_gradient;
uint16_t bapmti_r[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS];
uint16_t bapmti_rc[SMU72_DTE_ITERATIONS * SMU72_DTE_SOURCES * SMU72_DTE_SINKS];
};
int tonga_populate_all_graphic_levels(struct pp_hwmgr *hwmgr);
int tonga_populate_all_memory_levels(struct pp_hwmgr *hwmgr);
int tonga_init_smc_table(struct pp_hwmgr *hwmgr);
int tonga_thermal_setup_fan_table(struct pp_hwmgr *hwmgr);
int tonga_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type);
int tonga_update_sclk_threshold(struct pp_hwmgr *hwmgr);
uint32_t tonga_get_offsetof(uint32_t type, uint32_t member);
uint32_t tonga_get_mac_definition(uint32_t value);
int tonga_process_firmware_header(struct pp_hwmgr *hwmgr);
int tonga_initialize_mc_reg_table(struct pp_hwmgr *hwmgr);
bool tonga_is_dpm_running(struct pp_hwmgr *hwmgr);
#endif
...@@ -33,6 +33,7 @@ ...@@ -33,6 +33,7 @@
#include "smu/smu_7_1_2_d.h" #include "smu/smu_7_1_2_d.h"
#include "smu/smu_7_1_2_sh_mask.h" #include "smu/smu_7_1_2_sh_mask.h"
#include "cgs_common.h" #include "cgs_common.h"
#include "tonga_smc.h"
#define TONGA_SMC_SIZE 0x20000 #define TONGA_SMC_SIZE 0x20000
#define BUFFER_SIZE 80000 #define BUFFER_SIZE 80000
...@@ -749,6 +750,8 @@ static int tonga_smu_init(struct pp_smumgr *smumgr) ...@@ -749,6 +750,8 @@ static int tonga_smu_init(struct pp_smumgr *smumgr)
struct tonga_smumgr *tonga_smu; struct tonga_smumgr *tonga_smu;
uint8_t *internal_buf; uint8_t *internal_buf;
uint64_t mc_addr = 0; uint64_t mc_addr = 0;
int i;
/* Allocate memory for backend private data */ /* Allocate memory for backend private data */
tonga_smu = (struct tonga_smumgr *)(smumgr->backend); tonga_smu = (struct tonga_smumgr *)(smumgr->backend);
tonga_smu->header_buffer.data_size = tonga_smu->header_buffer.data_size =
...@@ -793,6 +796,9 @@ static int tonga_smu_init(struct pp_smumgr *smumgr) ...@@ -793,6 +796,9 @@ static int tonga_smu_init(struct pp_smumgr *smumgr)
(cgs_handle_t)tonga_smu->smu_buffer.handle); (cgs_handle_t)tonga_smu->smu_buffer.handle);
return -1;); return -1;);
for (i = 0; i < SMU72_MAX_LEVELS_GRAPHICS; i++)
tonga_smu->activity_target[i] = 30;
return 0; return 0;
} }
...@@ -807,6 +813,17 @@ static const struct pp_smumgr_func tonga_smu_funcs = { ...@@ -807,6 +813,17 @@ static const struct pp_smumgr_func tonga_smu_funcs = {
.send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter, .send_msg_to_smc_with_parameter = &tonga_send_msg_to_smc_with_parameter,
.download_pptable_settings = NULL, .download_pptable_settings = NULL,
.upload_pptable_settings = NULL, .upload_pptable_settings = NULL,
.update_smc_table = tonga_update_smc_table,
.get_offsetof = tonga_get_offsetof,
.process_firmware_header = tonga_process_firmware_header,
.init_smc_table = tonga_init_smc_table,
.update_sclk_threshold = tonga_update_sclk_threshold,
.thermal_setup_fan_table = tonga_thermal_setup_fan_table,
.populate_all_graphic_levels = tonga_populate_all_graphic_levels,
.populate_all_memory_levels = tonga_populate_all_memory_levels,
.get_mac_definition = tonga_get_mac_definition,
.initialize_mc_reg_table = tonga_initialize_mc_reg_table,
.is_dpm_running = tonga_is_dpm_running,
}; };
int tonga_smum_init(struct pp_smumgr *smumgr) int tonga_smum_init(struct pp_smumgr *smumgr)
......
...@@ -24,6 +24,10 @@ ...@@ -24,6 +24,10 @@
#ifndef _TONGA_SMUMGR_H_ #ifndef _TONGA_SMUMGR_H_
#define _TONGA_SMUMGR_H_ #define _TONGA_SMUMGR_H_
#include "smu72_discrete.h"
#define SMC_RAM_END 0x40000
struct tonga_buffer_entry { struct tonga_buffer_entry {
uint32_t data_size; uint32_t data_size;
uint32_t mc_addr_low; uint32_t mc_addr_low;
...@@ -32,13 +36,44 @@ struct tonga_buffer_entry { ...@@ -32,13 +36,44 @@ struct tonga_buffer_entry {
unsigned long handle; unsigned long handle;
}; };
struct tonga_mc_reg_entry {
uint32_t mclk_max;
uint32_t mc_data[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE];
};
struct tonga_mc_reg_table {
uint8_t last; /* number of registers*/
uint8_t num_entries; /* number of entries in mc_reg_table_entry used*/
uint16_t validflag; /* indicate the corresponding register is valid or not. 1: valid, 0: invalid. bit0->address[0], bit1->address[1], etc.*/
struct tonga_mc_reg_entry mc_reg_table_entry[MAX_AC_TIMING_ENTRIES];
SMU72_Discrete_MCRegisterAddress mc_reg_address[SMU72_DISCRETE_MC_REGISTER_ARRAY_SIZE];
};
struct tonga_smumgr { struct tonga_smumgr {
uint8_t *pHeader; uint8_t *pHeader;
uint8_t *pMecImage; uint8_t *pMecImage;
uint32_t ulSoftRegsStart;
uint32_t soft_regs_start;
uint32_t dpm_table_start;
uint32_t mc_reg_table_start;
uint32_t fan_table_start;
uint32_t arb_table_start;
struct tonga_buffer_entry header_buffer; struct tonga_buffer_entry header_buffer;
struct tonga_buffer_entry smu_buffer; struct tonga_buffer_entry smu_buffer;
struct SMU72_Discrete_DpmTable smc_state_table;
struct SMU72_Discrete_Ulv ulv_setting;
struct SMU72_Discrete_PmFuses power_tune_table;
struct tonga_pt_defaults *power_tune_defaults;
SMU72_Discrete_MCRegisters mc_regs;
struct tonga_mc_reg_table mc_reg_table;
uint32_t activity_target[SMU72_MAX_LEVELS_GRAPHICS];
}; };
extern int tonga_smum_init(struct pp_smumgr *smumgr); extern int tonga_smum_init(struct pp_smumgr *smumgr);
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册