memcontrol.c 185.9 KB
Newer Older
B
Balbir Singh 已提交
1 2 3 4 5
/* memcontrol.c - Memory Controller
 *
 * Copyright IBM Corporation, 2007
 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
 *
6 7 8
 * Copyright 2007 OpenVZ SWsoft Inc
 * Author: Pavel Emelianov <xemul@openvz.org>
 *
9 10 11 12
 * Memory thresholds
 * Copyright (C) 2009 Nokia Corporation
 * Author: Kirill A. Shutemov
 *
13 14 15 16
 * Kernel Memory Controller
 * Copyright (C) 2012 Parallels Inc. and Google Inc.
 * Authors: Glauber Costa and Suleiman Souhlal
 *
B
Balbir Singh 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 */

#include <linux/res_counter.h>
#include <linux/memcontrol.h>
#include <linux/cgroup.h>
31
#include <linux/mm.h>
32
#include <linux/hugetlb.h>
K
KAMEZAWA Hiroyuki 已提交
33
#include <linux/pagemap.h>
34
#include <linux/smp.h>
35
#include <linux/page-flags.h>
36
#include <linux/backing-dev.h>
37 38
#include <linux/bit_spinlock.h>
#include <linux/rcupdate.h>
39
#include <linux/limits.h>
40
#include <linux/export.h>
41
#include <linux/mutex.h>
42
#include <linux/rbtree.h>
43
#include <linux/slab.h>
44
#include <linux/swap.h>
45
#include <linux/swapops.h>
46
#include <linux/spinlock.h>
47 48
#include <linux/eventfd.h>
#include <linux/sort.h>
49
#include <linux/fs.h>
50
#include <linux/seq_file.h>
51
#include <linux/vmalloc.h>
52
#include <linux/vmpressure.h>
53
#include <linux/mm_inline.h>
54
#include <linux/page_cgroup.h>
55
#include <linux/cpu.h>
56
#include <linux/oom.h>
57
#include <linux/lockdep.h>
K
KAMEZAWA Hiroyuki 已提交
58
#include "internal.h"
G
Glauber Costa 已提交
59
#include <net/sock.h>
M
Michal Hocko 已提交
60
#include <net/ip.h>
G
Glauber Costa 已提交
61
#include <net/tcp_memcontrol.h>
62
#include "slab.h"
B
Balbir Singh 已提交
63

64 65
#include <asm/uaccess.h>

66 67
#include <trace/events/vmscan.h>

68
struct cgroup_subsys mem_cgroup_subsys __read_mostly;
69 70
EXPORT_SYMBOL(mem_cgroup_subsys);

71
#define MEM_CGROUP_RECLAIM_RETRIES	5
72
static struct mem_cgroup *root_mem_cgroup __read_mostly;
B
Balbir Singh 已提交
73

A
Andrew Morton 已提交
74
#ifdef CONFIG_MEMCG_SWAP
L
Li Zefan 已提交
75
/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
76
int do_swap_account __read_mostly;
77 78

/* for remember boot option*/
A
Andrew Morton 已提交
79
#ifdef CONFIG_MEMCG_SWAP_ENABLED
80 81 82 83 84
static int really_do_swap_account __initdata = 1;
#else
static int really_do_swap_account __initdata = 0;
#endif

85
#else
86
#define do_swap_account		0
87 88 89
#endif


90 91 92
static const char * const mem_cgroup_stat_names[] = {
	"cache",
	"rss",
93
	"rss_huge",
94
	"mapped_file",
95
	"writeback",
96 97 98
	"swap",
};

99 100 101
enum mem_cgroup_events_index {
	MEM_CGROUP_EVENTS_PGPGIN,	/* # of pages paged in */
	MEM_CGROUP_EVENTS_PGPGOUT,	/* # of pages paged out */
102 103
	MEM_CGROUP_EVENTS_PGFAULT,	/* # of page-faults */
	MEM_CGROUP_EVENTS_PGMAJFAULT,	/* # of major page-faults */
104 105
	MEM_CGROUP_EVENTS_NSTATS,
};
106 107 108 109 110 111 112 113

static const char * const mem_cgroup_events_names[] = {
	"pgpgin",
	"pgpgout",
	"pgfault",
	"pgmajfault",
};

114 115 116 117 118 119 120 121
static const char * const mem_cgroup_lru_names[] = {
	"inactive_anon",
	"active_anon",
	"inactive_file",
	"active_file",
	"unevictable",
};

122 123 124 125 126 127 128 129
/*
 * Per memcg event counter is incremented at every pagein/pageout. With THP,
 * it will be incremated by the number of pages. This counter is used for
 * for trigger some periodic events. This is straightforward and better
 * than using jiffies etc. to handle periodic memcg event.
 */
enum mem_cgroup_events_target {
	MEM_CGROUP_TARGET_THRESH,
130
	MEM_CGROUP_TARGET_SOFTLIMIT,
131
	MEM_CGROUP_TARGET_NUMAINFO,
132 133
	MEM_CGROUP_NTARGETS,
};
134 135 136
#define THRESHOLDS_EVENTS_TARGET 128
#define SOFTLIMIT_EVENTS_TARGET 1024
#define NUMAINFO_EVENTS_TARGET	1024
137

138
struct mem_cgroup_stat_cpu {
139
	long count[MEM_CGROUP_STAT_NSTATS];
140
	unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
141
	unsigned long nr_page_events;
142
	unsigned long targets[MEM_CGROUP_NTARGETS];
143 144
};

145
struct mem_cgroup_reclaim_iter {
M
Michal Hocko 已提交
146 147 148 149
	/*
	 * last scanned hierarchy member. Valid only if last_dead_count
	 * matches memcg->dead_count of the hierarchy root group.
	 */
150
	struct mem_cgroup *last_visited;
M
Michal Hocko 已提交
151 152
	unsigned long last_dead_count;

153 154 155 156
	/* scan generation, increased every round-trip */
	unsigned int generation;
};

157 158 159 160
/*
 * per-zone information in memory controller.
 */
struct mem_cgroup_per_zone {
161
	struct lruvec		lruvec;
162
	unsigned long		lru_size[NR_LRU_LISTS];
K
KOSAKI Motohiro 已提交
163

164 165
	struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];

166 167 168 169
	struct rb_node		tree_node;	/* RB tree node */
	unsigned long long	usage_in_excess;/* Set to the value by which */
						/* the soft limit is exceeded*/
	bool			on_tree;
170
	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
171
						/* use container_of	   */
172 173 174 175 176 177
};

struct mem_cgroup_per_node {
	struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
};

178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
/*
 * Cgroups above their limits are maintained in a RB-Tree, independent of
 * their hierarchy representation
 */

struct mem_cgroup_tree_per_zone {
	struct rb_root rb_root;
	spinlock_t lock;
};

struct mem_cgroup_tree_per_node {
	struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
};

struct mem_cgroup_tree {
	struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
};

static struct mem_cgroup_tree soft_limit_tree __read_mostly;

198 199 200 201 202
struct mem_cgroup_threshold {
	struct eventfd_ctx *eventfd;
	u64 threshold;
};

K
KAMEZAWA Hiroyuki 已提交
203
/* For threshold */
204
struct mem_cgroup_threshold_ary {
205
	/* An array index points to threshold just below or equal to usage. */
206
	int current_threshold;
207 208 209 210 211
	/* Size of entries[] */
	unsigned int size;
	/* Array of thresholds */
	struct mem_cgroup_threshold entries[0];
};
212 213 214 215 216 217 218 219 220 221 222 223

struct mem_cgroup_thresholds {
	/* Primary thresholds array */
	struct mem_cgroup_threshold_ary *primary;
	/*
	 * Spare threshold array.
	 * This is needed to make mem_cgroup_unregister_event() "never fail".
	 * It must be able to store at least primary->size - 1 entries.
	 */
	struct mem_cgroup_threshold_ary *spare;
};

K
KAMEZAWA Hiroyuki 已提交
224 225 226 227 228
/* for OOM */
struct mem_cgroup_eventfd_list {
	struct list_head list;
	struct eventfd_ctx *eventfd;
};
229

230 231
static void mem_cgroup_threshold(struct mem_cgroup *memcg);
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
232

B
Balbir Singh 已提交
233 234 235 236 237 238 239
/*
 * The memory controller data structure. The memory controller controls both
 * page cache and RSS per cgroup. We would eventually like to provide
 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
 * to help the administrator determine what knobs to tune.
 *
 * TODO: Add a water mark for the memory controller. Reclaim will begin when
240 241 242
 * we hit the water mark. May be even add a low water mark, such that
 * no reclaim occurs from a cgroup at it's low water mark, this is
 * a feature that will be implemented much later in the future.
B
Balbir Singh 已提交
243 244 245 246 247 248 249
 */
struct mem_cgroup {
	struct cgroup_subsys_state css;
	/*
	 * the counter to account for memory usage
	 */
	struct res_counter res;
250

251 252 253
	/* vmpressure notifications */
	struct vmpressure vmpressure;

254 255 256 257
	/*
	 * the counter to account for mem+swap usage.
	 */
	struct res_counter memsw;
258

259 260 261 262
	/*
	 * the counter to account for kernel memory usage.
	 */
	struct res_counter kmem;
263 264 265 266
	/*
	 * Should the accounting and control be hierarchical, per subtree?
	 */
	bool use_hierarchy;
267
	unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
268 269 270

	bool		oom_lock;
	atomic_t	under_oom;
271
	atomic_t	oom_wakeups;
272

273
	int	swappiness;
274 275
	/* OOM-Killer disable */
	int		oom_kill_disable;
K
KOSAKI Motohiro 已提交
276

277 278 279
	/* set when res.limit == memsw.limit */
	bool		memsw_is_minimum;

280 281 282 283
	/* protect arrays of thresholds */
	struct mutex thresholds_lock;

	/* thresholds for memory usage. RCU-protected */
284
	struct mem_cgroup_thresholds thresholds;
285

286
	/* thresholds for mem+swap usage. RCU-protected */
287
	struct mem_cgroup_thresholds memsw_thresholds;
288

K
KAMEZAWA Hiroyuki 已提交
289 290
	/* For oom notifier event fd */
	struct list_head oom_notify;
291

292 293 294 295
	/*
	 * Should we move charges of a task when a task is moved into this
	 * mem_cgroup ? And what type of charges should we move ?
	 */
A
Andrew Morton 已提交
296
	unsigned long move_charge_at_immigrate;
297 298 299 300
	/*
	 * set > 0 if pages under this cgroup are moving to other cgroup.
	 */
	atomic_t	moving_account;
301 302
	/* taken only while moving_account > 0 */
	spinlock_t	move_lock;
303
	/*
304
	 * percpu counter.
305
	 */
306
	struct mem_cgroup_stat_cpu __percpu *stat;
307 308 309 310 311 312
	/*
	 * used when a cpu is offlined or other synchronizations
	 * See mem_cgroup_read_stat().
	 */
	struct mem_cgroup_stat_cpu nocpu_base;
	spinlock_t pcp_counter_lock;
G
Glauber Costa 已提交
313

M
Michal Hocko 已提交
314
	atomic_t	dead_count;
M
Michal Hocko 已提交
315
#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
G
Glauber Costa 已提交
316 317
	struct tcp_memcontrol tcp_mem;
#endif
318 319 320 321 322 323 324 325
#if defined(CONFIG_MEMCG_KMEM)
	/* analogous to slab_common's slab_caches list. per-memcg */
	struct list_head memcg_slab_caches;
	/* Not a spinlock, we can take a lot of time walking the list */
	struct mutex slab_caches_mutex;
        /* Index in the kmem_cache->memcg_params->memcg_caches array */
	int kmemcg_id;
#endif
326 327 328 329 330 331 332

	int last_scanned_node;
#if MAX_NUMNODES > 1
	nodemask_t	scan_nodes;
	atomic_t	numainfo_events;
	atomic_t	numainfo_updating;
#endif
333

334 335
	struct mem_cgroup_per_node *nodeinfo[0];
	/* WARNING: nodeinfo must be the last member here */
B
Balbir Singh 已提交
336 337
};

338 339 340 341 342 343
static size_t memcg_size(void)
{
	return sizeof(struct mem_cgroup) +
		nr_node_ids * sizeof(struct mem_cgroup_per_node);
}

344 345 346
/* internal only representation about the status of kmem accounting. */
enum {
	KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
347
	KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
348
	KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
349 350
};

351 352 353
/* We account when limit is on, but only after call sites are patched */
#define KMEM_ACCOUNTED_MASK \
		((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
354 355 356 357 358 359

#ifdef CONFIG_MEMCG_KMEM
static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}
360 361 362 363 364 365

static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
{
	return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
}

366 367 368 369 370
static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
{
	set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

371 372 373 374 375
static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
{
	clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
}

376 377
static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
{
378 379 380 381 382
	/*
	 * Our caller must use css_get() first, because memcg_uncharge_kmem()
	 * will call css_put() if it sees the memcg is dead.
	 */
	smp_wmb();
383 384 385 386 387 388 389 390 391
	if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
		set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
}

static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
{
	return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
				  &memcg->kmem_account_flags);
}
392 393
#endif

394 395
/* Stuffs for move charges at task migration. */
/*
396 397
 * Types of charges to be moved. "move_charge_at_immitgrate" and
 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
398 399
 */
enum move_type {
400
	MOVE_CHARGE_TYPE_ANON,	/* private anonymous page and swap of it */
401
	MOVE_CHARGE_TYPE_FILE,	/* file page(including tmpfs) and swap of it */
402 403 404
	NR_MOVE_TYPE,
};

405 406
/* "mc" and its members are protected by cgroup_mutex */
static struct move_charge_struct {
407
	spinlock_t	  lock; /* for from, to */
408 409
	struct mem_cgroup *from;
	struct mem_cgroup *to;
410
	unsigned long immigrate_flags;
411
	unsigned long precharge;
412
	unsigned long moved_charge;
413
	unsigned long moved_swap;
414 415 416
	struct task_struct *moving_task;	/* a task moving charges */
	wait_queue_head_t waitq;		/* a waitq for other context */
} mc = {
417
	.lock = __SPIN_LOCK_UNLOCKED(mc.lock),
418 419
	.waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
};
420

D
Daisuke Nishimura 已提交
421 422
static bool move_anon(void)
{
423
	return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
D
Daisuke Nishimura 已提交
424 425
}

426 427
static bool move_file(void)
{
428
	return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
429 430
}

431 432 433 434
/*
 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
 * limit reclaim to prevent infinite loops, if they ever occur.
 */
435
#define	MEM_CGROUP_MAX_RECLAIM_LOOPS		100
436
#define	MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS	2
437

438 439
enum charge_type {
	MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
440
	MEM_CGROUP_CHARGE_TYPE_ANON,
K
KAMEZAWA Hiroyuki 已提交
441
	MEM_CGROUP_CHARGE_TYPE_SWAPOUT,	/* for accounting swapcache */
K
KAMEZAWA Hiroyuki 已提交
442
	MEM_CGROUP_CHARGE_TYPE_DROP,	/* a page was unused swap cache */
443 444 445
	NR_CHARGE_TYPE,
};

446
/* for encoding cft->private value on file */
G
Glauber Costa 已提交
447 448 449 450
enum res_type {
	_MEM,
	_MEMSWAP,
	_OOM_TYPE,
451
	_KMEM,
G
Glauber Costa 已提交
452 453
};

454 455
#define MEMFILE_PRIVATE(x, val)	((x) << 16 | (val))
#define MEMFILE_TYPE(val)	((val) >> 16 & 0xffff)
456
#define MEMFILE_ATTR(val)	((val) & 0xffff)
K
KAMEZAWA Hiroyuki 已提交
457 458
/* Used for OOM nofiier */
#define OOM_CONTROL		(0)
459

460 461 462 463 464 465 466 467
/*
 * Reclaim flags for mem_cgroup_hierarchical_reclaim
 */
#define MEM_CGROUP_RECLAIM_NOSWAP_BIT	0x0
#define MEM_CGROUP_RECLAIM_NOSWAP	(1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
#define MEM_CGROUP_RECLAIM_SHRINK_BIT	0x1
#define MEM_CGROUP_RECLAIM_SHRINK	(1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)

468 469 470 471 472 473 474
/*
 * The memcg_create_mutex will be held whenever a new cgroup is created.
 * As a consequence, any change that needs to protect against new child cgroups
 * appearing has to hold it as well.
 */
static DEFINE_MUTEX(memcg_create_mutex);

475 476
struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
{
477
	return s ? container_of(s, struct mem_cgroup, css) : NULL;
478 479
}

480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
/* Some nice accessors for the vmpressure. */
struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
{
	if (!memcg)
		memcg = root_mem_cgroup;
	return &memcg->vmpressure;
}

struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
{
	return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
}

struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
{
	return &mem_cgroup_from_css(css)->vmpressure;
}

498 499 500 501 502
static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
{
	return (memcg == root_mem_cgroup);
}

G
Glauber Costa 已提交
503
/* Writing them here to avoid exposing memcg's inner layout */
M
Michal Hocko 已提交
504
#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
G
Glauber Costa 已提交
505 506 507

void sock_update_memcg(struct sock *sk)
{
508
	if (mem_cgroup_sockets_enabled) {
G
Glauber Costa 已提交
509
		struct mem_cgroup *memcg;
510
		struct cg_proto *cg_proto;
G
Glauber Costa 已提交
511 512 513

		BUG_ON(!sk->sk_prot->proto_cgroup);

514 515 516 517 518 519 520 521 522 523
		/* Socket cloning can throw us here with sk_cgrp already
		 * filled. It won't however, necessarily happen from
		 * process context. So the test for root memcg given
		 * the current task's memcg won't help us in this case.
		 *
		 * Respecting the original socket's memcg is a better
		 * decision in this case.
		 */
		if (sk->sk_cgrp) {
			BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
524
			css_get(&sk->sk_cgrp->memcg->css);
525 526 527
			return;
		}

G
Glauber Costa 已提交
528 529
		rcu_read_lock();
		memcg = mem_cgroup_from_task(current);
530
		cg_proto = sk->sk_prot->proto_cgroup(memcg);
531 532
		if (!mem_cgroup_is_root(memcg) &&
		    memcg_proto_active(cg_proto) && css_tryget(&memcg->css)) {
533
			sk->sk_cgrp = cg_proto;
G
Glauber Costa 已提交
534 535 536 537 538 539 540 541
		}
		rcu_read_unlock();
	}
}
EXPORT_SYMBOL(sock_update_memcg);

void sock_release_memcg(struct sock *sk)
{
542
	if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
G
Glauber Costa 已提交
543 544 545
		struct mem_cgroup *memcg;
		WARN_ON(!sk->sk_cgrp->memcg);
		memcg = sk->sk_cgrp->memcg;
546
		css_put(&sk->sk_cgrp->memcg->css);
G
Glauber Costa 已提交
547 548
	}
}
G
Glauber Costa 已提交
549 550 551 552 553 554 555 556 557

struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
{
	if (!memcg || mem_cgroup_is_root(memcg))
		return NULL;

	return &memcg->tcp_mem.cg_proto;
}
EXPORT_SYMBOL(tcp_proto_cgroup);
G
Glauber Costa 已提交
558

559 560 561 562 563 564 565 566 567 568 569 570
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
	if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
		return;
	static_key_slow_dec(&memcg_socket_limit_enabled);
}
#else
static void disarm_sock_keys(struct mem_cgroup *memcg)
{
}
#endif

571
#ifdef CONFIG_MEMCG_KMEM
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589
/*
 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
 * There are two main reasons for not using the css_id for this:
 *  1) this works better in sparse environments, where we have a lot of memcgs,
 *     but only a few kmem-limited. Or also, if we have, for instance, 200
 *     memcgs, and none but the 200th is kmem-limited, we'd have to have a
 *     200 entry array for that.
 *
 *  2) In order not to violate the cgroup API, we would like to do all memory
 *     allocation in ->create(). At that point, we haven't yet allocated the
 *     css_id. Having a separate index prevents us from messing with the cgroup
 *     core for this
 *
 * The current size of the caches array is stored in
 * memcg_limited_groups_array_size.  It will double each time we have to
 * increase it.
 */
static DEFINE_IDA(kmem_limited_groups);
590 591
int memcg_limited_groups_array_size;

592 593 594 595 596 597 598 599 600 601 602 603 604 605 606
/*
 * MIN_SIZE is different than 1, because we would like to avoid going through
 * the alloc/free process all the time. In a small machine, 4 kmem-limited
 * cgroups is a reasonable guess. In the future, it could be a parameter or
 * tunable, but that is strictly not necessary.
 *
 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
 * this constant directly from cgroup, but it is understandable that this is
 * better kept as an internal representation in cgroup.c. In any case, the
 * css_id space is not getting any smaller, and we don't have to necessarily
 * increase ours as well if it increases.
 */
#define MEMCG_CACHES_MIN_SIZE 4
#define MEMCG_CACHES_MAX_SIZE 65535

607 608 609 610 611 612
/*
 * A lot of the calls to the cache allocation functions are expected to be
 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
 * conditional to this static branch, we'll have to allow modules that does
 * kmem_cache_alloc and the such to see this symbol as well
 */
613
struct static_key memcg_kmem_enabled_key;
614
EXPORT_SYMBOL(memcg_kmem_enabled_key);
615 616 617

static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
618
	if (memcg_kmem_is_active(memcg)) {
619
		static_key_slow_dec(&memcg_kmem_enabled_key);
620 621
		ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
	}
622 623 624 625 626
	/*
	 * This check can't live in kmem destruction function,
	 * since the charges will outlive the cgroup
	 */
	WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
627 628 629 630 631 632 633 634 635 636 637 638 639
}
#else
static void disarm_kmem_keys(struct mem_cgroup *memcg)
{
}
#endif /* CONFIG_MEMCG_KMEM */

static void disarm_static_keys(struct mem_cgroup *memcg)
{
	disarm_sock_keys(memcg);
	disarm_kmem_keys(memcg);
}

640
static void drain_all_stock_async(struct mem_cgroup *memcg);
641

642
static struct mem_cgroup_per_zone *
643
mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
644
{
645
	VM_BUG_ON((unsigned)nid >= nr_node_ids);
646
	return &memcg->nodeinfo[nid]->zoneinfo[zid];
647 648
}

649
struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
650
{
651
	return &memcg->css;
652 653
}

654
static struct mem_cgroup_per_zone *
655
page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
656
{
657 658
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
659

660
	return mem_cgroup_zoneinfo(memcg, nid, zid);
661 662
}

663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820
static struct mem_cgroup_tree_per_zone *
soft_limit_tree_node_zone(int nid, int zid)
{
	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static struct mem_cgroup_tree_per_zone *
soft_limit_tree_from_page(struct page *page)
{
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);

	return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
}

static void
__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz,
				unsigned long long new_usage_in_excess)
{
	struct rb_node **p = &mctz->rb_root.rb_node;
	struct rb_node *parent = NULL;
	struct mem_cgroup_per_zone *mz_node;

	if (mz->on_tree)
		return;

	mz->usage_in_excess = new_usage_in_excess;
	if (!mz->usage_in_excess)
		return;
	while (*p) {
		parent = *p;
		mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
					tree_node);
		if (mz->usage_in_excess < mz_node->usage_in_excess)
			p = &(*p)->rb_left;
		/*
		 * We can't avoid mem cgroups that are over their soft
		 * limit by the same amount
		 */
		else if (mz->usage_in_excess >= mz_node->usage_in_excess)
			p = &(*p)->rb_right;
	}
	rb_link_node(&mz->tree_node, parent, p);
	rb_insert_color(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = true;
}

static void
__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	if (!mz->on_tree)
		return;
	rb_erase(&mz->tree_node, &mctz->rb_root);
	mz->on_tree = false;
}

static void
mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
				struct mem_cgroup_per_zone *mz,
				struct mem_cgroup_tree_per_zone *mctz)
{
	spin_lock(&mctz->lock);
	__mem_cgroup_remove_exceeded(memcg, mz, mctz);
	spin_unlock(&mctz->lock);
}


static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
{
	unsigned long long excess;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;
	int nid = page_to_nid(page);
	int zid = page_zonenum(page);
	mctz = soft_limit_tree_from_page(page);

	/*
	 * Necessary to update all ancestors when hierarchy is used.
	 * because their event counter is not touched.
	 */
	for (; memcg; memcg = parent_mem_cgroup(memcg)) {
		mz = mem_cgroup_zoneinfo(memcg, nid, zid);
		excess = res_counter_soft_limit_excess(&memcg->res);
		/*
		 * We have to update the tree if mz is on RB-tree or
		 * mem is over its softlimit.
		 */
		if (excess || mz->on_tree) {
			spin_lock(&mctz->lock);
			/* if on-tree, remove it */
			if (mz->on_tree)
				__mem_cgroup_remove_exceeded(memcg, mz, mctz);
			/*
			 * Insert again. mz->usage_in_excess will be updated.
			 * If excess is 0, no tree ops.
			 */
			__mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
			spin_unlock(&mctz->lock);
		}
	}
}

static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
{
	int node, zone;
	struct mem_cgroup_per_zone *mz;
	struct mem_cgroup_tree_per_zone *mctz;

	for_each_node(node) {
		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			mz = mem_cgroup_zoneinfo(memcg, node, zone);
			mctz = soft_limit_tree_node_zone(node, zone);
			mem_cgroup_remove_exceeded(memcg, mz, mctz);
		}
	}
}

static struct mem_cgroup_per_zone *
__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct rb_node *rightmost = NULL;
	struct mem_cgroup_per_zone *mz;

retry:
	mz = NULL;
	rightmost = rb_last(&mctz->rb_root);
	if (!rightmost)
		goto done;		/* Nothing to reclaim from */

	mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
	/*
	 * Remove the node now but someone else can add it back,
	 * we will to add it back at the end of reclaim to its correct
	 * position in the tree.
	 */
	__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
	if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
		!css_tryget(&mz->memcg->css))
		goto retry;
done:
	return mz;
}

static struct mem_cgroup_per_zone *
mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
{
	struct mem_cgroup_per_zone *mz;

	spin_lock(&mctz->lock);
	mz = __mem_cgroup_largest_soft_limit_node(mctz);
	spin_unlock(&mctz->lock);
	return mz;
}

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839
/*
 * Implementation Note: reading percpu statistics for memcg.
 *
 * Both of vmstat[] and percpu_counter has threshold and do periodic
 * synchronization to implement "quick" read. There are trade-off between
 * reading cost and precision of value. Then, we may have a chance to implement
 * a periodic synchronizion of counter in memcg's counter.
 *
 * But this _read() function is used for user interface now. The user accounts
 * memory usage by memory cgroup and he _always_ requires exact value because
 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
 * have to visit all online cpus and make sum. So, for now, unnecessary
 * synchronization is not implemented. (just implemented for cpu hotplug)
 *
 * If there are kernel internal actions which can make use of some not-exact
 * value, and reading all cpu value can be performance bottleneck in some
 * common workload, threashold and synchonization as vmstat[] should be
 * implemented.
 */
840
static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
841
				 enum mem_cgroup_stat_index idx)
842
{
843
	long val = 0;
844 845
	int cpu;

846 847
	get_online_cpus();
	for_each_online_cpu(cpu)
848
		val += per_cpu(memcg->stat->count[idx], cpu);
849
#ifdef CONFIG_HOTPLUG_CPU
850 851 852
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.count[idx];
	spin_unlock(&memcg->pcp_counter_lock);
853 854
#endif
	put_online_cpus();
855 856 857
	return val;
}

858
static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
859 860 861
					 bool charge)
{
	int val = (charge) ? 1 : -1;
862
	this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
863 864
}

865
static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
866 867 868 869 870
					    enum mem_cgroup_events_index idx)
{
	unsigned long val = 0;
	int cpu;

871
	get_online_cpus();
872
	for_each_online_cpu(cpu)
873
		val += per_cpu(memcg->stat->events[idx], cpu);
874
#ifdef CONFIG_HOTPLUG_CPU
875 876 877
	spin_lock(&memcg->pcp_counter_lock);
	val += memcg->nocpu_base.events[idx];
	spin_unlock(&memcg->pcp_counter_lock);
878
#endif
879
	put_online_cpus();
880 881 882
	return val;
}

883
static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
884
					 struct page *page,
885
					 bool anon, int nr_pages)
886
{
887 888
	preempt_disable();

889 890 891 892 893 894
	/*
	 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
	 * counted as CACHE even if it's on ANON LRU.
	 */
	if (anon)
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
895
				nr_pages);
896
	else
897
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
898
				nr_pages);
899

900 901 902 903
	if (PageTransHuge(page))
		__this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
				nr_pages);

904 905
	/* pagein of a big page is an event. So, ignore page size */
	if (nr_pages > 0)
906
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
907
	else {
908
		__this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
909 910
		nr_pages = -nr_pages; /* for event */
	}
911

912
	__this_cpu_add(memcg->stat->nr_page_events, nr_pages);
913

914
	preempt_enable();
915 916
}

917
unsigned long
918
mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
919 920 921 922 923 924 925 926
{
	struct mem_cgroup_per_zone *mz;

	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	return mz->lru_size[lru];
}

static unsigned long
927
mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
928
			unsigned int lru_mask)
929 930
{
	struct mem_cgroup_per_zone *mz;
H
Hugh Dickins 已提交
931
	enum lru_list lru;
932 933
	unsigned long ret = 0;

934
	mz = mem_cgroup_zoneinfo(memcg, nid, zid);
935

H
Hugh Dickins 已提交
936 937 938
	for_each_lru(lru) {
		if (BIT(lru) & lru_mask)
			ret += mz->lru_size[lru];
939 940 941 942 943
	}
	return ret;
}

static unsigned long
944
mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
945 946
			int nid, unsigned int lru_mask)
{
947 948 949
	u64 total = 0;
	int zid;

950
	for (zid = 0; zid < MAX_NR_ZONES; zid++)
951 952
		total += mem_cgroup_zone_nr_lru_pages(memcg,
						nid, zid, lru_mask);
953

954 955
	return total;
}
956

957
static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
958
			unsigned int lru_mask)
959
{
960
	int nid;
961 962
	u64 total = 0;

963
	for_each_node_state(nid, N_MEMORY)
964
		total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
965
	return total;
966 967
}

968 969
static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
				       enum mem_cgroup_events_target target)
970 971 972
{
	unsigned long val, next;

973
	val = __this_cpu_read(memcg->stat->nr_page_events);
974
	next = __this_cpu_read(memcg->stat->targets[target]);
975
	/* from time_after() in jiffies.h */
976 977 978 979 980
	if ((long)next - (long)val < 0) {
		switch (target) {
		case MEM_CGROUP_TARGET_THRESH:
			next = val + THRESHOLDS_EVENTS_TARGET;
			break;
981 982 983
		case MEM_CGROUP_TARGET_SOFTLIMIT:
			next = val + SOFTLIMIT_EVENTS_TARGET;
			break;
984 985 986 987 988 989 990 991
		case MEM_CGROUP_TARGET_NUMAINFO:
			next = val + NUMAINFO_EVENTS_TARGET;
			break;
		default:
			break;
		}
		__this_cpu_write(memcg->stat->targets[target], next);
		return true;
992
	}
993
	return false;
994 995 996 997 998 999
}

/*
 * Check events in order.
 *
 */
1000
static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
1001
{
1002
	preempt_disable();
1003
	/* threshold event is triggered in finer grain than soft limit */
1004 1005
	if (unlikely(mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_THRESH))) {
1006
		bool do_softlimit;
1007
		bool do_numainfo __maybe_unused;
1008

1009 1010
		do_softlimit = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_SOFTLIMIT);
1011 1012 1013 1014 1015 1016
#if MAX_NUMNODES > 1
		do_numainfo = mem_cgroup_event_ratelimit(memcg,
						MEM_CGROUP_TARGET_NUMAINFO);
#endif
		preempt_enable();

1017
		mem_cgroup_threshold(memcg);
1018 1019
		if (unlikely(do_softlimit))
			mem_cgroup_update_tree(memcg, page);
1020
#if MAX_NUMNODES > 1
1021
		if (unlikely(do_numainfo))
1022
			atomic_inc(&memcg->numainfo_events);
1023
#endif
1024 1025
	} else
		preempt_enable();
1026 1027
}

1028
struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1029
{
1030 1031 1032 1033 1034 1035 1036 1037
	/*
	 * mm_update_next_owner() may clear mm->owner to NULL
	 * if it races with swapoff, page migration, etc.
	 * So this can be called with p == NULL.
	 */
	if (unlikely(!p))
		return NULL;

1038
	return mem_cgroup_from_css(task_css(p, mem_cgroup_subsys_id));
1039 1040
}

1041
struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
1042
{
1043
	struct mem_cgroup *memcg = NULL;
1044 1045 1046

	if (!mm)
		return NULL;
1047 1048 1049 1050 1051 1052 1053
	/*
	 * Because we have no locks, mm->owner's may be being moved to other
	 * cgroup. We use css_tryget() here even if this looks
	 * pessimistic (rather than adding locks here).
	 */
	rcu_read_lock();
	do {
1054 1055
		memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
		if (unlikely(!memcg))
1056
			break;
1057
	} while (!css_tryget(&memcg->css));
1058
	rcu_read_unlock();
1059
	return memcg;
1060 1061
}

1062 1063 1064 1065 1066 1067 1068
/*
 * Returns a next (in a pre-order walk) alive memcg (with elevated css
 * ref. count) or NULL if the whole root's subtree has been visited.
 *
 * helper function to be used by mem_cgroup_iter
 */
static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1069
		struct mem_cgroup *last_visited)
1070
{
1071
	struct cgroup_subsys_state *prev_css, *next_css;
1072

1073
	prev_css = last_visited ? &last_visited->css : NULL;
1074
skip_node:
1075
	next_css = css_next_descendant_pre(prev_css, &root->css);
1076 1077 1078 1079 1080 1081 1082 1083

	/*
	 * Even if we found a group we have to make sure it is
	 * alive. css && !memcg means that the groups should be
	 * skipped and we should continue the tree walk.
	 * last_visited css is safe to use because it is
	 * protected by css_get and the tree walk is rcu safe.
	 */
1084 1085 1086
	if (next_css) {
		struct mem_cgroup *mem = mem_cgroup_from_css(next_css);

1087 1088 1089
		if (css_tryget(&mem->css))
			return mem;
		else {
1090
			prev_css = next_css;
1091 1092 1093 1094 1095 1096 1097
			goto skip_node;
		}
	}

	return NULL;
}

1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149
static void mem_cgroup_iter_invalidate(struct mem_cgroup *root)
{
	/*
	 * When a group in the hierarchy below root is destroyed, the
	 * hierarchy iterator can no longer be trusted since it might
	 * have pointed to the destroyed group.  Invalidate it.
	 */
	atomic_inc(&root->dead_count);
}

static struct mem_cgroup *
mem_cgroup_iter_load(struct mem_cgroup_reclaim_iter *iter,
		     struct mem_cgroup *root,
		     int *sequence)
{
	struct mem_cgroup *position = NULL;
	/*
	 * A cgroup destruction happens in two stages: offlining and
	 * release.  They are separated by a RCU grace period.
	 *
	 * If the iterator is valid, we may still race with an
	 * offlining.  The RCU lock ensures the object won't be
	 * released, tryget will fail if we lost the race.
	 */
	*sequence = atomic_read(&root->dead_count);
	if (iter->last_dead_count == *sequence) {
		smp_rmb();
		position = iter->last_visited;
		if (position && !css_tryget(&position->css))
			position = NULL;
	}
	return position;
}

static void mem_cgroup_iter_update(struct mem_cgroup_reclaim_iter *iter,
				   struct mem_cgroup *last_visited,
				   struct mem_cgroup *new_position,
				   int sequence)
{
	if (last_visited)
		css_put(&last_visited->css);
	/*
	 * We store the sequence count from the time @last_visited was
	 * loaded successfully instead of rereading it here so that we
	 * don't lose destruction events in between.  We could have
	 * raced with the destruction of @new_position after all.
	 */
	iter->last_visited = new_position;
	smp_wmb();
	iter->last_dead_count = sequence;
}

1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166
/**
 * mem_cgroup_iter - iterate over memory cgroup hierarchy
 * @root: hierarchy root
 * @prev: previously returned memcg, NULL on first invocation
 * @reclaim: cookie for shared reclaim walks, NULL for full walks
 *
 * Returns references to children of the hierarchy below @root, or
 * @root itself, or %NULL after a full round-trip.
 *
 * Caller must pass the return value in @prev on subsequent
 * invocations for reference counting, or use mem_cgroup_iter_break()
 * to cancel a hierarchy walk before the round-trip is complete.
 *
 * Reclaimers can specify a zone and a priority level in @reclaim to
 * divide up the memcgs in the hierarchy among all concurrent
 * reclaimers operating on the same zone and priority.
 */
1167
struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1168
				   struct mem_cgroup *prev,
1169
				   struct mem_cgroup_reclaim_cookie *reclaim)
K
KAMEZAWA Hiroyuki 已提交
1170
{
1171
	struct mem_cgroup *memcg = NULL;
1172
	struct mem_cgroup *last_visited = NULL;
1173

1174 1175
	if (mem_cgroup_disabled())
		return NULL;
1176

1177 1178
	if (!root)
		root = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
1179

1180
	if (prev && !reclaim)
1181
		last_visited = prev;
K
KAMEZAWA Hiroyuki 已提交
1182

1183 1184
	if (!root->use_hierarchy && root != root_mem_cgroup) {
		if (prev)
1185
			goto out_css_put;
1186
		return root;
1187
	}
K
KAMEZAWA Hiroyuki 已提交
1188

1189
	rcu_read_lock();
1190
	while (!memcg) {
1191
		struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
1192
		int uninitialized_var(seq);
1193

1194 1195 1196 1197 1198 1199 1200
		if (reclaim) {
			int nid = zone_to_nid(reclaim->zone);
			int zid = zone_idx(reclaim->zone);
			struct mem_cgroup_per_zone *mz;

			mz = mem_cgroup_zoneinfo(root, nid, zid);
			iter = &mz->reclaim_iter[reclaim->priority];
1201
			if (prev && reclaim->generation != iter->generation) {
M
Michal Hocko 已提交
1202
				iter->last_visited = NULL;
1203 1204
				goto out_unlock;
			}
M
Michal Hocko 已提交
1205

1206
			last_visited = mem_cgroup_iter_load(iter, root, &seq);
1207
		}
K
KAMEZAWA Hiroyuki 已提交
1208

1209
		memcg = __mem_cgroup_iter_next(root, last_visited);
K
KAMEZAWA Hiroyuki 已提交
1210

1211
		if (reclaim) {
1212
			mem_cgroup_iter_update(iter, last_visited, memcg, seq);
1213

M
Michal Hocko 已提交
1214
			if (!memcg)
1215 1216 1217 1218
				iter->generation++;
			else if (!prev && memcg)
				reclaim->generation = iter->generation;
		}
1219

1220
		if (prev && !memcg)
1221
			goto out_unlock;
1222
	}
1223 1224
out_unlock:
	rcu_read_unlock();
1225 1226 1227 1228
out_css_put:
	if (prev && prev != root)
		css_put(&prev->css);

1229
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
1230
}
K
KAMEZAWA Hiroyuki 已提交
1231

1232 1233 1234 1235 1236 1237 1238
/**
 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
 * @root: hierarchy root
 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
 */
void mem_cgroup_iter_break(struct mem_cgroup *root,
			   struct mem_cgroup *prev)
1239 1240 1241 1242 1243 1244
{
	if (!root)
		root = root_mem_cgroup;
	if (prev && prev != root)
		css_put(&prev->css);
}
K
KAMEZAWA Hiroyuki 已提交
1245

1246 1247 1248 1249 1250 1251
/*
 * Iteration constructs for visiting all cgroups (under a tree).  If
 * loops are exited prematurely (break), mem_cgroup_iter_break() must
 * be used for reference counting.
 */
#define for_each_mem_cgroup_tree(iter, root)		\
1252
	for (iter = mem_cgroup_iter(root, NULL, NULL);	\
1253
	     iter != NULL;				\
1254
	     iter = mem_cgroup_iter(root, iter, NULL))
1255

1256
#define for_each_mem_cgroup(iter)			\
1257
	for (iter = mem_cgroup_iter(NULL, NULL, NULL);	\
1258
	     iter != NULL;				\
1259
	     iter = mem_cgroup_iter(NULL, iter, NULL))
K
KAMEZAWA Hiroyuki 已提交
1260

1261
void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
1262
{
1263
	struct mem_cgroup *memcg;
1264 1265

	rcu_read_lock();
1266 1267
	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
	if (unlikely(!memcg))
1268 1269 1270 1271
		goto out;

	switch (idx) {
	case PGFAULT:
1272 1273 1274 1275
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
		break;
	case PGMAJFAULT:
		this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
1276 1277 1278 1279 1280 1281 1282
		break;
	default:
		BUG();
	}
out:
	rcu_read_unlock();
}
1283
EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
1284

1285 1286 1287
/**
 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
 * @zone: zone of the wanted lruvec
1288
 * @memcg: memcg of the wanted lruvec
1289 1290 1291 1292 1293 1294 1295 1296 1297
 *
 * Returns the lru list vector holding pages for the given @zone and
 * @mem.  This can be the global zone lruvec, if the memory controller
 * is disabled.
 */
struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
				      struct mem_cgroup *memcg)
{
	struct mem_cgroup_per_zone *mz;
1298
	struct lruvec *lruvec;
1299

1300 1301 1302 1303
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1304 1305

	mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
1306 1307 1308 1309 1310 1311 1312 1313 1314 1315
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
1316 1317
}

K
KAMEZAWA Hiroyuki 已提交
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330
/*
 * Following LRU functions are allowed to be used without PCG_LOCK.
 * Operations are called by routine of global LRU independently from memcg.
 * What we have to take care of here is validness of pc->mem_cgroup.
 *
 * Changes to pc->mem_cgroup happens when
 * 1. charge
 * 2. moving account
 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
 * It is added to LRU before charge.
 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
 * When moving account, the page is not on LRU. It's isolated.
 */
1331

1332
/**
1333
 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
1334
 * @page: the page
1335
 * @zone: zone of the page
1336
 */
1337
struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
K
KAMEZAWA Hiroyuki 已提交
1338 1339
{
	struct mem_cgroup_per_zone *mz;
1340 1341
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;
1342
	struct lruvec *lruvec;
1343

1344 1345 1346 1347
	if (mem_cgroup_disabled()) {
		lruvec = &zone->lruvec;
		goto out;
	}
1348

K
KAMEZAWA Hiroyuki 已提交
1349
	pc = lookup_page_cgroup(page);
1350
	memcg = pc->mem_cgroup;
1351 1352

	/*
1353
	 * Surreptitiously switch any uncharged offlist page to root:
1354 1355 1356 1357 1358 1359 1360
	 * an uncharged page off lru does nothing to secure
	 * its former mem_cgroup from sudden removal.
	 *
	 * Our caller holds lru_lock, and PageCgroupUsed is updated
	 * under page_cgroup lock: between them, they make all uses
	 * of pc->mem_cgroup safe.
	 */
1361
	if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
1362 1363
		pc->mem_cgroup = memcg = root_mem_cgroup;

1364
	mz = page_cgroup_zoneinfo(memcg, page);
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	lruvec = &mz->lruvec;
out:
	/*
	 * Since a node can be onlined after the mem_cgroup was created,
	 * we have to be prepared to initialize lruvec->zone here;
	 * and if offlined then reonlined, we need to reinitialize it.
	 */
	if (unlikely(lruvec->zone != zone))
		lruvec->zone = zone;
	return lruvec;
K
KAMEZAWA Hiroyuki 已提交
1375
}
1376

1377
/**
1378 1379 1380 1381
 * mem_cgroup_update_lru_size - account for adding or removing an lru page
 * @lruvec: mem_cgroup per zone lru vector
 * @lru: index of lru list the page is sitting on
 * @nr_pages: positive when adding or negative when removing
1382
 *
1383 1384
 * This function must be called when a page is added to or removed from an
 * lru list.
1385
 */
1386 1387
void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
				int nr_pages)
1388 1389
{
	struct mem_cgroup_per_zone *mz;
1390
	unsigned long *lru_size;
1391 1392 1393 1394

	if (mem_cgroup_disabled())
		return;

1395 1396 1397 1398
	mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
	lru_size = mz->lru_size + lru;
	*lru_size += nr_pages;
	VM_BUG_ON((long)(*lru_size) < 0);
K
KAMEZAWA Hiroyuki 已提交
1399
}
1400

1401
/*
1402
 * Checks whether given mem is same or in the root_mem_cgroup's
1403 1404
 * hierarchy subtree
 */
1405 1406
bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				  struct mem_cgroup *memcg)
1407
{
1408 1409
	if (root_memcg == memcg)
		return true;
1410
	if (!root_memcg->use_hierarchy || !memcg)
1411
		return false;
1412 1413 1414 1415 1416 1417 1418 1419
	return css_is_ancestor(&memcg->css, &root_memcg->css);
}

static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
				       struct mem_cgroup *memcg)
{
	bool ret;

1420
	rcu_read_lock();
1421
	ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
1422 1423
	rcu_read_unlock();
	return ret;
1424 1425
}

1426 1427
bool task_in_mem_cgroup(struct task_struct *task,
			const struct mem_cgroup *memcg)
1428
{
1429
	struct mem_cgroup *curr = NULL;
1430
	struct task_struct *p;
1431
	bool ret;
1432

1433
	p = find_lock_task_mm(task);
1434 1435 1436 1437 1438 1439 1440 1441 1442
	if (p) {
		curr = try_get_mem_cgroup_from_mm(p->mm);
		task_unlock(p);
	} else {
		/*
		 * All threads may have already detached their mm's, but the oom
		 * killer still needs to detect if they have already been oom
		 * killed to prevent needlessly killing additional tasks.
		 */
1443
		rcu_read_lock();
1444 1445 1446
		curr = mem_cgroup_from_task(task);
		if (curr)
			css_get(&curr->css);
1447
		rcu_read_unlock();
1448
	}
1449
	if (!curr)
1450
		return false;
1451
	/*
1452
	 * We should check use_hierarchy of "memcg" not "curr". Because checking
1453
	 * use_hierarchy of "curr" here make this function true if hierarchy is
1454 1455
	 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
	 * hierarchy(even if use_hierarchy is disabled in "memcg").
1456
	 */
1457
	ret = mem_cgroup_same_or_subtree(memcg, curr);
1458
	css_put(&curr->css);
1459 1460 1461
	return ret;
}

1462
int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
1463
{
1464
	unsigned long inactive_ratio;
1465
	unsigned long inactive;
1466
	unsigned long active;
1467
	unsigned long gb;
1468

1469 1470
	inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
	active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
1471

1472 1473 1474 1475 1476 1477
	gb = (inactive + active) >> (30 - PAGE_SHIFT);
	if (gb)
		inactive_ratio = int_sqrt(10 * gb);
	else
		inactive_ratio = 1;

1478
	return inactive * inactive_ratio < active;
1479 1480
}

1481 1482 1483
#define mem_cgroup_from_res_counter(counter, member)	\
	container_of(counter, struct mem_cgroup, member)

1484
/**
1485
 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
W
Wanpeng Li 已提交
1486
 * @memcg: the memory cgroup
1487
 *
1488
 * Returns the maximum amount of memory @mem can be charged with, in
1489
 * pages.
1490
 */
1491
static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1492
{
1493 1494
	unsigned long long margin;

1495
	margin = res_counter_margin(&memcg->res);
1496
	if (do_swap_account)
1497
		margin = min(margin, res_counter_margin(&memcg->memsw));
1498
	return margin >> PAGE_SHIFT;
1499 1500
}

1501
int mem_cgroup_swappiness(struct mem_cgroup *memcg)
K
KOSAKI Motohiro 已提交
1502 1503
{
	/* root ? */
T
Tejun Heo 已提交
1504
	if (!css_parent(&memcg->css))
K
KOSAKI Motohiro 已提交
1505 1506
		return vm_swappiness;

1507
	return memcg->swappiness;
K
KOSAKI Motohiro 已提交
1508 1509
}

1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523
/*
 * memcg->moving_account is used for checking possibility that some thread is
 * calling move_account(). When a thread on CPU-A starts moving pages under
 * a memcg, other threads should check memcg->moving_account under
 * rcu_read_lock(), like this:
 *
 *         CPU-A                                    CPU-B
 *                                              rcu_read_lock()
 *         memcg->moving_account+1              if (memcg->mocing_account)
 *                                                   take heavy locks.
 *         synchronize_rcu()                    update something.
 *                                              rcu_read_unlock()
 *         start move here.
 */
1524 1525 1526 1527

/* for quick checking without looking up memcg */
atomic_t memcg_moving __read_mostly;

1528
static void mem_cgroup_start_move(struct mem_cgroup *memcg)
1529
{
1530
	atomic_inc(&memcg_moving);
1531
	atomic_inc(&memcg->moving_account);
1532 1533 1534
	synchronize_rcu();
}

1535
static void mem_cgroup_end_move(struct mem_cgroup *memcg)
1536
{
1537 1538 1539 1540
	/*
	 * Now, mem_cgroup_clear_mc() may call this function with NULL.
	 * We check NULL in callee rather than caller.
	 */
1541 1542
	if (memcg) {
		atomic_dec(&memcg_moving);
1543
		atomic_dec(&memcg->moving_account);
1544
	}
1545
}
1546

1547 1548 1549
/*
 * 2 routines for checking "mem" is under move_account() or not.
 *
1550 1551
 * mem_cgroup_stolen() -  checking whether a cgroup is mc.from or not. This
 *			  is used for avoiding races in accounting.  If true,
1552 1553 1554 1555 1556 1557 1558
 *			  pc->mem_cgroup may be overwritten.
 *
 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
 *			  under hierarchy of moving cgroups. This is for
 *			  waiting at hith-memory prressure caused by "move".
 */

1559
static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
1560 1561
{
	VM_BUG_ON(!rcu_read_lock_held());
1562
	return atomic_read(&memcg->moving_account) > 0;
1563
}
1564

1565
static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1566
{
1567 1568
	struct mem_cgroup *from;
	struct mem_cgroup *to;
1569
	bool ret = false;
1570 1571 1572 1573 1574 1575 1576 1577 1578
	/*
	 * Unlike task_move routines, we access mc.to, mc.from not under
	 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
	 */
	spin_lock(&mc.lock);
	from = mc.from;
	to = mc.to;
	if (!from)
		goto unlock;
1579

1580 1581
	ret = mem_cgroup_same_or_subtree(memcg, from)
		|| mem_cgroup_same_or_subtree(memcg, to);
1582 1583
unlock:
	spin_unlock(&mc.lock);
1584 1585 1586
	return ret;
}

1587
static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1588 1589
{
	if (mc.moving_task && current != mc.moving_task) {
1590
		if (mem_cgroup_under_move(memcg)) {
1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
			DEFINE_WAIT(wait);
			prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
			/* moving charge context might have finished. */
			if (mc.moving_task)
				schedule();
			finish_wait(&mc.waitq, &wait);
			return true;
		}
	}
	return false;
}

1603 1604 1605 1606
/*
 * Take this lock when
 * - a code tries to modify page's memcg while it's USED.
 * - a code tries to modify page state accounting in a memcg.
1607
 * see mem_cgroup_stolen(), too.
1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620
 */
static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
				  unsigned long *flags)
{
	spin_lock_irqsave(&memcg->move_lock, *flags);
}

static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
				unsigned long *flags)
{
	spin_unlock_irqrestore(&memcg->move_lock, *flags);
}

1621
#define K(x) ((x) << (PAGE_SHIFT-10))
1622
/**
1623
 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640
 * @memcg: The memory cgroup that went over limit
 * @p: Task that is going to be killed
 *
 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
 * enabled
 */
void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
{
	struct cgroup *task_cgrp;
	struct cgroup *mem_cgrp;
	/*
	 * Need a buffer in BSS, can't rely on allocations. The code relies
	 * on the assumption that OOM is serialized for memory controller.
	 * If this assumption is broken, revisit this code.
	 */
	static char memcg_name[PATH_MAX];
	int ret;
1641 1642
	struct mem_cgroup *iter;
	unsigned int i;
1643

1644
	if (!p)
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662
		return;

	rcu_read_lock();

	mem_cgrp = memcg->css.cgroup;
	task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);

	ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		/*
		 * Unfortunately, we are unable to convert to a useful name
		 * But we'll still print out the usage information
		 */
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

1663
	pr_info("Task in %s killed", memcg_name);
1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675

	rcu_read_lock();
	ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
	if (ret < 0) {
		rcu_read_unlock();
		goto done;
	}
	rcu_read_unlock();

	/*
	 * Continues from above, so we don't need an KERN_ level
	 */
1676
	pr_cont(" as a result of limit of %s\n", memcg_name);
1677 1678
done:

1679
	pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
1680 1681 1682
		res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->res, RES_FAILCNT));
1683
	pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
1684 1685 1686
		res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1687
	pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
1688 1689 1690
		res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
		res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714

	for_each_mem_cgroup_tree(iter, memcg) {
		pr_info("Memory cgroup stats");

		rcu_read_lock();
		ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
		if (!ret)
			pr_cont(" for %s", memcg_name);
		rcu_read_unlock();
		pr_cont(":");

		for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
			if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
				continue;
			pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
				K(mem_cgroup_read_stat(iter, i)));
		}

		for (i = 0; i < NR_LRU_LISTS; i++)
			pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
				K(mem_cgroup_nr_lru_pages(iter, BIT(i))));

		pr_cont("\n");
	}
1715 1716
}

1717 1718 1719 1720
/*
 * This function returns the number of memcg under hierarchy tree. Returns
 * 1(self count) if no children.
 */
1721
static int mem_cgroup_count_children(struct mem_cgroup *memcg)
1722 1723
{
	int num = 0;
K
KAMEZAWA Hiroyuki 已提交
1724 1725
	struct mem_cgroup *iter;

1726
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
1727
		num++;
1728 1729 1730
	return num;
}

D
David Rientjes 已提交
1731 1732 1733
/*
 * Return the memory (and swap, if configured) limit for a memcg.
 */
1734
static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
D
David Rientjes 已提交
1735 1736 1737
{
	u64 limit;

1738 1739
	limit = res_counter_read_u64(&memcg->res, RES_LIMIT);

D
David Rientjes 已提交
1740
	/*
1741
	 * Do not consider swap space if we cannot swap due to swappiness
D
David Rientjes 已提交
1742
	 */
1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756
	if (mem_cgroup_swappiness(memcg)) {
		u64 memsw;

		limit += total_swap_pages << PAGE_SHIFT;
		memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);

		/*
		 * If memsw is finite and limits the amount of swap space
		 * available to this memcg, return that limit.
		 */
		limit = min(limit, memsw);
	}

	return limit;
D
David Rientjes 已提交
1757 1758
}

1759 1760
static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
				     int order)
1761 1762 1763 1764 1765 1766 1767
{
	struct mem_cgroup *iter;
	unsigned long chosen_points = 0;
	unsigned long totalpages;
	unsigned int points = 0;
	struct task_struct *chosen = NULL;

1768
	/*
1769 1770 1771
	 * If current has a pending SIGKILL or is exiting, then automatically
	 * select it.  The goal is to allow it to allocate so that it may
	 * quickly exit and free its memory.
1772
	 */
1773
	if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
1774 1775 1776 1777 1778
		set_thread_flag(TIF_MEMDIE);
		return;
	}

	check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
1779 1780
	totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
	for_each_mem_cgroup_tree(iter, memcg) {
1781
		struct css_task_iter it;
1782 1783
		struct task_struct *task;

1784 1785
		css_task_iter_start(&iter->css, &it);
		while ((task = css_task_iter_next(&it))) {
1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797
			switch (oom_scan_process_thread(task, totalpages, NULL,
							false)) {
			case OOM_SCAN_SELECT:
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = ULONG_MAX;
				get_task_struct(chosen);
				/* fall through */
			case OOM_SCAN_CONTINUE:
				continue;
			case OOM_SCAN_ABORT:
1798
				css_task_iter_end(&it);
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814
				mem_cgroup_iter_break(memcg, iter);
				if (chosen)
					put_task_struct(chosen);
				return;
			case OOM_SCAN_OK:
				break;
			};
			points = oom_badness(task, memcg, NULL, totalpages);
			if (points > chosen_points) {
				if (chosen)
					put_task_struct(chosen);
				chosen = task;
				chosen_points = points;
				get_task_struct(chosen);
			}
		}
1815
		css_task_iter_end(&it);
1816 1817 1818 1819 1820 1821 1822 1823 1824
	}

	if (!chosen)
		return;
	points = chosen_points * 1000 / totalpages;
	oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
			 NULL, "Memory cgroup out of memory");
}

1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
					gfp_t gfp_mask,
					unsigned long flags)
{
	unsigned long total = 0;
	bool noswap = false;
	int loop;

	if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
		noswap = true;
	if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
		noswap = true;

	for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
		if (loop)
			drain_all_stock_async(memcg);
		total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
		/*
		 * Allow limit shrinkers, which are triggered directly
		 * by userspace, to catch signals and stop reclaim
		 * after minimal progress, regardless of the margin.
		 */
		if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
			break;
		if (mem_cgroup_margin(memcg))
			break;
		/*
		 * If nothing was reclaimed after two attempts, there
		 * may be no reclaimable pages in this hierarchy.
		 */
		if (loop && !total)
			break;
	}
	return total;
}

1861 1862
/**
 * test_mem_cgroup_node_reclaimable
W
Wanpeng Li 已提交
1863
 * @memcg: the target memcg
1864 1865 1866 1867 1868 1869 1870
 * @nid: the node ID to be checked.
 * @noswap : specify true here if the user wants flle only information.
 *
 * This function returns whether the specified memcg contains any
 * reclaimable pages on a node. Returns true if there are any reclaimable
 * pages in the node.
 */
1871
static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
1872 1873
		int nid, bool noswap)
{
1874
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
1875 1876 1877
		return true;
	if (noswap || !total_swap_pages)
		return false;
1878
	if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
1879 1880 1881 1882
		return true;
	return false;

}
1883
#if MAX_NUMNODES > 1
1884 1885 1886 1887 1888 1889 1890

/*
 * Always updating the nodemask is not very good - even if we have an empty
 * list or the wrong list here, we can start from some node and traverse all
 * nodes based on the zonelist. So update the list loosely once per 10 secs.
 *
 */
1891
static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
1892 1893
{
	int nid;
1894 1895 1896 1897
	/*
	 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
	 * pagein/pageout changes since the last update.
	 */
1898
	if (!atomic_read(&memcg->numainfo_events))
1899
		return;
1900
	if (atomic_inc_return(&memcg->numainfo_updating) > 1)
1901 1902 1903
		return;

	/* make a nodemask where this memcg uses memory from */
1904
	memcg->scan_nodes = node_states[N_MEMORY];
1905

1906
	for_each_node_mask(nid, node_states[N_MEMORY]) {
1907

1908 1909
		if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
			node_clear(nid, memcg->scan_nodes);
1910
	}
1911

1912 1913
	atomic_set(&memcg->numainfo_events, 0);
	atomic_set(&memcg->numainfo_updating, 0);
1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927
}

/*
 * Selecting a node where we start reclaim from. Because what we need is just
 * reducing usage counter, start from anywhere is O,K. Considering
 * memory reclaim from current node, there are pros. and cons.
 *
 * Freeing memory from current node means freeing memory from a node which
 * we'll use or we've used. So, it may make LRU bad. And if several threads
 * hit limits, it will see a contention on a node. But freeing from remote
 * node means more costs for memory reclaim because of memory latency.
 *
 * Now, we use round-robin. Better algorithm is welcomed.
 */
1928
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1929 1930 1931
{
	int node;

1932 1933
	mem_cgroup_may_update_nodemask(memcg);
	node = memcg->last_scanned_node;
1934

1935
	node = next_node(node, memcg->scan_nodes);
1936
	if (node == MAX_NUMNODES)
1937
		node = first_node(memcg->scan_nodes);
1938 1939 1940 1941 1942 1943 1944 1945 1946
	/*
	 * We call this when we hit limit, not when pages are added to LRU.
	 * No LRU may hold pages because all pages are UNEVICTABLE or
	 * memcg is too small and all pages are not on LRU. In that case,
	 * we use curret node.
	 */
	if (unlikely(node == MAX_NUMNODES))
		node = numa_node_id();

1947
	memcg->last_scanned_node = node;
1948 1949 1950
	return node;
}

1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
/*
 * Check all nodes whether it contains reclaimable pages or not.
 * For quick scan, we make use of scan_nodes. This will allow us to skip
 * unused nodes. But scan_nodes is lazily updated and may not cotain
 * enough new information. We need to do double check.
 */
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	int nid;

	/*
	 * quick check...making use of scan_node.
	 * We can skip unused nodes.
	 */
	if (!nodes_empty(memcg->scan_nodes)) {
		for (nid = first_node(memcg->scan_nodes);
		     nid < MAX_NUMNODES;
		     nid = next_node(nid, memcg->scan_nodes)) {

			if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
				return true;
		}
	}
	/*
	 * Check rest of nodes.
	 */
	for_each_node_state(nid, N_MEMORY) {
		if (node_isset(nid, memcg->scan_nodes))
			continue;
		if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
			return true;
	}
	return false;
}

1986
#else
1987
int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
1988 1989 1990
{
	return 0;
}
1991

1992 1993 1994 1995
static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
{
	return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
}
1996 1997
#endif

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045
static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
				   struct zone *zone,
				   gfp_t gfp_mask,
				   unsigned long *total_scanned)
{
	struct mem_cgroup *victim = NULL;
	int total = 0;
	int loop = 0;
	unsigned long excess;
	unsigned long nr_scanned;
	struct mem_cgroup_reclaim_cookie reclaim = {
		.zone = zone,
		.priority = 0,
	};

	excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;

	while (1) {
		victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
		if (!victim) {
			loop++;
			if (loop >= 2) {
				/*
				 * If we have not been able to reclaim
				 * anything, it might because there are
				 * no reclaimable pages under this hierarchy
				 */
				if (!total)
					break;
				/*
				 * We want to do more targeted reclaim.
				 * excess >> 2 is not to excessive so as to
				 * reclaim too much, nor too less that we keep
				 * coming back to reclaim from this cgroup
				 */
				if (total >= (excess >> 2) ||
					(loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
					break;
			}
			continue;
		}
		if (!mem_cgroup_reclaimable(victim, false))
			continue;
		total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
						     zone, &nr_scanned);
		*total_scanned += nr_scanned;
		if (!res_counter_soft_limit_excess(&root_memcg->res))
			break;
2046
	}
2047 2048
	mem_cgroup_iter_break(root_memcg, victim);
	return total;
2049 2050
}

2051 2052 2053 2054 2055 2056
#ifdef CONFIG_LOCKDEP
static struct lockdep_map memcg_oom_lock_dep_map = {
	.name = "memcg_oom_lock",
};
#endif

2057 2058
static DEFINE_SPINLOCK(memcg_oom_lock);

K
KAMEZAWA Hiroyuki 已提交
2059 2060 2061 2062
/*
 * Check OOM-Killer is already running under our hierarchy.
 * If someone is running, return false.
 */
2063
static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2064
{
2065
	struct mem_cgroup *iter, *failed = NULL;
2066

2067 2068
	spin_lock(&memcg_oom_lock);

2069
	for_each_mem_cgroup_tree(iter, memcg) {
2070
		if (iter->oom_lock) {
2071 2072 2073 2074 2075
			/*
			 * this subtree of our hierarchy is already locked
			 * so we cannot give a lock.
			 */
			failed = iter;
2076 2077
			mem_cgroup_iter_break(memcg, iter);
			break;
2078 2079
		} else
			iter->oom_lock = true;
K
KAMEZAWA Hiroyuki 已提交
2080
	}
K
KAMEZAWA Hiroyuki 已提交
2081

2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
	if (failed) {
		/*
		 * OK, we failed to lock the whole subtree so we have
		 * to clean up what we set up to the failing subtree
		 */
		for_each_mem_cgroup_tree(iter, memcg) {
			if (iter == failed) {
				mem_cgroup_iter_break(memcg, iter);
				break;
			}
			iter->oom_lock = false;
2093
		}
2094 2095
	} else
		mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
2096 2097 2098 2099

	spin_unlock(&memcg_oom_lock);

	return !failed;
2100
}
2101

2102
static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
2103
{
K
KAMEZAWA Hiroyuki 已提交
2104 2105
	struct mem_cgroup *iter;

2106
	spin_lock(&memcg_oom_lock);
2107
	mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
2108
	for_each_mem_cgroup_tree(iter, memcg)
2109
		iter->oom_lock = false;
2110
	spin_unlock(&memcg_oom_lock);
2111 2112
}

2113
static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
2114 2115 2116
{
	struct mem_cgroup *iter;

2117
	for_each_mem_cgroup_tree(iter, memcg)
2118 2119 2120
		atomic_inc(&iter->under_oom);
}

2121
static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
2122 2123 2124
{
	struct mem_cgroup *iter;

K
KAMEZAWA Hiroyuki 已提交
2125 2126 2127 2128 2129
	/*
	 * When a new child is created while the hierarchy is under oom,
	 * mem_cgroup_oom_lock() may not be called. We have to use
	 * atomic_add_unless() here.
	 */
2130
	for_each_mem_cgroup_tree(iter, memcg)
2131
		atomic_add_unless(&iter->under_oom, -1, 0);
2132 2133
}

K
KAMEZAWA Hiroyuki 已提交
2134 2135
static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);

K
KAMEZAWA Hiroyuki 已提交
2136
struct oom_wait_info {
2137
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
2138 2139 2140 2141 2142 2143
	wait_queue_t	wait;
};

static int memcg_oom_wake_function(wait_queue_t *wait,
	unsigned mode, int sync, void *arg)
{
2144 2145
	struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
	struct mem_cgroup *oom_wait_memcg;
K
KAMEZAWA Hiroyuki 已提交
2146 2147 2148
	struct oom_wait_info *oom_wait_info;

	oom_wait_info = container_of(wait, struct oom_wait_info, wait);
2149
	oom_wait_memcg = oom_wait_info->memcg;
K
KAMEZAWA Hiroyuki 已提交
2150 2151

	/*
2152
	 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
K
KAMEZAWA Hiroyuki 已提交
2153 2154
	 * Then we can use css_is_ancestor without taking care of RCU.
	 */
2155 2156
	if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
		&& !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
K
KAMEZAWA Hiroyuki 已提交
2157 2158 2159 2160
		return 0;
	return autoremove_wake_function(wait, mode, sync, arg);
}

2161
static void memcg_wakeup_oom(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
2162
{
2163
	atomic_inc(&memcg->oom_wakeups);
2164 2165
	/* for filtering, pass "memcg" as argument. */
	__wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
K
KAMEZAWA Hiroyuki 已提交
2166 2167
}

2168
static void memcg_oom_recover(struct mem_cgroup *memcg)
2169
{
2170 2171
	if (memcg && atomic_read(&memcg->under_oom))
		memcg_wakeup_oom(memcg);
2172 2173
}

2174
static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
2175
{
2176 2177
	if (!current->memcg_oom.may_oom)
		return;
K
KAMEZAWA Hiroyuki 已提交
2178
	/*
2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190
	 * We are in the middle of the charge context here, so we
	 * don't want to block when potentially sitting on a callstack
	 * that holds all kinds of filesystem and mm locks.
	 *
	 * Also, the caller may handle a failed allocation gracefully
	 * (like optional page cache readahead) and so an OOM killer
	 * invocation might not even be necessary.
	 *
	 * That's why we don't do anything here except remember the
	 * OOM context and then deal with it at the end of the page
	 * fault when the stack is unwound, the locks are released,
	 * and when we know whether the fault was overall successful.
K
KAMEZAWA Hiroyuki 已提交
2191
	 */
2192 2193 2194 2195
	css_get(&memcg->css);
	current->memcg_oom.memcg = memcg;
	current->memcg_oom.gfp_mask = mask;
	current->memcg_oom.order = order;
2196 2197 2198 2199
}

/**
 * mem_cgroup_oom_synchronize - complete memcg OOM handling
2200
 * @handle: actually kill/wait or just clean up the OOM state
2201
 *
2202 2203
 * This has to be called at the end of a page fault if the memcg OOM
 * handler was enabled.
2204
 *
2205
 * Memcg supports userspace OOM handling where failed allocations must
2206 2207 2208 2209
 * sleep on a waitqueue until the userspace task resolves the
 * situation.  Sleeping directly in the charge context with all kinds
 * of locks held is not a good idea, instead we remember an OOM state
 * in the task and mem_cgroup_oom_synchronize() has to be called at
2210
 * the end of the page fault to complete the OOM handling.
2211 2212
 *
 * Returns %true if an ongoing memcg OOM situation was detected and
2213
 * completed, %false otherwise.
2214
 */
2215
bool mem_cgroup_oom_synchronize(bool handle)
2216
{
2217
	struct mem_cgroup *memcg = current->memcg_oom.memcg;
2218
	struct oom_wait_info owait;
2219
	bool locked;
2220 2221 2222

	/* OOM is global, do not handle */
	if (!memcg)
2223
		return false;
2224

2225 2226
	if (!handle)
		goto cleanup;
2227 2228 2229 2230 2231 2232

	owait.memcg = memcg;
	owait.wait.flags = 0;
	owait.wait.func = memcg_oom_wake_function;
	owait.wait.private = current;
	INIT_LIST_HEAD(&owait.wait.task_list);
K
KAMEZAWA Hiroyuki 已提交
2233

2234
	prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247
	mem_cgroup_mark_under_oom(memcg);

	locked = mem_cgroup_oom_trylock(memcg);

	if (locked)
		mem_cgroup_oom_notify(memcg);

	if (locked && !memcg->oom_kill_disable) {
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
		mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
					 current->memcg_oom.order);
	} else {
2248
		schedule();
2249 2250 2251 2252 2253
		mem_cgroup_unmark_under_oom(memcg);
		finish_wait(&memcg_oom_waitq, &owait.wait);
	}

	if (locked) {
2254 2255 2256 2257 2258 2259 2260 2261
		mem_cgroup_oom_unlock(memcg);
		/*
		 * There is no guarantee that an OOM-lock contender
		 * sees the wakeups triggered by the OOM kill
		 * uncharges.  Wake any sleepers explicitely.
		 */
		memcg_oom_recover(memcg);
	}
2262 2263
cleanup:
	current->memcg_oom.memcg = NULL;
2264
	css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2265
	return true;
2266 2267
}

2268 2269 2270
/*
 * Currently used to update mapped file statistics, but the routine can be
 * generalized to update other statistics as well.
2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287
 *
 * Notes: Race condition
 *
 * We usually use page_cgroup_lock() for accessing page_cgroup member but
 * it tends to be costly. But considering some conditions, we doesn't need
 * to do so _always_.
 *
 * Considering "charge", lock_page_cgroup() is not required because all
 * file-stat operations happen after a page is attached to radix-tree. There
 * are no race with "charge".
 *
 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
 * if there are race with "uncharge". Statistics itself is properly handled
 * by flags.
 *
 * Considering "move", this is an only case we see a race. To make the race
2288 2289
 * small, we check mm->moving_account and detect there are possibility of race
 * If there is, we take a lock.
2290
 */
2291

2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304
void __mem_cgroup_begin_update_page_stat(struct page *page,
				bool *locked, unsigned long *flags)
{
	struct mem_cgroup *memcg;
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
again:
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
		return;
	/*
	 * If this memory cgroup is not under account moving, we don't
2305
	 * need to take move_lock_mem_cgroup(). Because we already hold
2306
	 * rcu_read_lock(), any calls to move_account will be delayed until
2307
	 * rcu_read_unlock() if mem_cgroup_stolen() == true.
2308
	 */
2309
	if (!mem_cgroup_stolen(memcg))
2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326
		return;

	move_lock_mem_cgroup(memcg, flags);
	if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
		move_unlock_mem_cgroup(memcg, flags);
		goto again;
	}
	*locked = true;
}

void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
{
	struct page_cgroup *pc = lookup_page_cgroup(page);

	/*
	 * It's guaranteed that pc->mem_cgroup never changes while
	 * lock is held because a routine modifies pc->mem_cgroup
2327
	 * should take move_lock_mem_cgroup().
2328 2329 2330 2331
	 */
	move_unlock_mem_cgroup(pc->mem_cgroup, flags);
}

2332
void mem_cgroup_update_page_stat(struct page *page,
S
Sha Zhengju 已提交
2333
				 enum mem_cgroup_stat_index idx, int val)
2334
{
2335
	struct mem_cgroup *memcg;
2336
	struct page_cgroup *pc = lookup_page_cgroup(page);
2337
	unsigned long uninitialized_var(flags);
2338

2339
	if (mem_cgroup_disabled())
2340
		return;
2341

2342
	VM_BUG_ON(!rcu_read_lock_held());
2343 2344
	memcg = pc->mem_cgroup;
	if (unlikely(!memcg || !PageCgroupUsed(pc)))
2345
		return;
2346

2347
	this_cpu_add(memcg->stat->count[idx], val);
2348
}
2349

2350 2351 2352 2353
/*
 * size of first charge trial. "32" comes from vmscan.c's magic value.
 * TODO: maybe necessary to use big numbers in big irons.
 */
2354
#define CHARGE_BATCH	32U
2355 2356
struct memcg_stock_pcp {
	struct mem_cgroup *cached; /* this never be root cgroup */
2357
	unsigned int nr_pages;
2358
	struct work_struct work;
2359
	unsigned long flags;
2360
#define FLUSHING_CACHED_CHARGE	0
2361 2362
};
static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
2363
static DEFINE_MUTEX(percpu_charge_mutex);
2364

2365 2366 2367 2368 2369 2370 2371 2372 2373 2374
/**
 * consume_stock: Try to consume stocked charge on this cpu.
 * @memcg: memcg to consume from.
 * @nr_pages: how many pages to charge.
 *
 * The charges will only happen if @memcg matches the current cpu's memcg
 * stock, and at least @nr_pages are available in that stock.  Failure to
 * service an allocation will refill the stock.
 *
 * returns true if successful, false otherwise.
2375
 */
2376
static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2377 2378 2379 2380
{
	struct memcg_stock_pcp *stock;
	bool ret = true;

2381 2382 2383
	if (nr_pages > CHARGE_BATCH)
		return false;

2384
	stock = &get_cpu_var(memcg_stock);
2385 2386
	if (memcg == stock->cached && stock->nr_pages >= nr_pages)
		stock->nr_pages -= nr_pages;
2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399
	else /* need to call res_counter_charge */
		ret = false;
	put_cpu_var(memcg_stock);
	return ret;
}

/*
 * Returns stocks cached in percpu to res_counter and reset cached information.
 */
static void drain_stock(struct memcg_stock_pcp *stock)
{
	struct mem_cgroup *old = stock->cached;

2400 2401 2402 2403
	if (stock->nr_pages) {
		unsigned long bytes = stock->nr_pages * PAGE_SIZE;

		res_counter_uncharge(&old->res, bytes);
2404
		if (do_swap_account)
2405 2406
			res_counter_uncharge(&old->memsw, bytes);
		stock->nr_pages = 0;
2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418
	}
	stock->cached = NULL;
}

/*
 * This must be called under preempt disabled or must be called by
 * a thread which is pinned to local cpu.
 */
static void drain_local_stock(struct work_struct *dummy)
{
	struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
	drain_stock(stock);
2419
	clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2420 2421
}

2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
static void __init memcg_stock_init(void)
{
	int cpu;

	for_each_possible_cpu(cpu) {
		struct memcg_stock_pcp *stock =
					&per_cpu(memcg_stock, cpu);
		INIT_WORK(&stock->work, drain_local_stock);
	}
}

2433 2434
/*
 * Cache charges(val) which is from res_counter, to local per_cpu area.
2435
 * This will be consumed by consume_stock() function, later.
2436
 */
2437
static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2438 2439 2440
{
	struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);

2441
	if (stock->cached != memcg) { /* reset if necessary */
2442
		drain_stock(stock);
2443
		stock->cached = memcg;
2444
	}
2445
	stock->nr_pages += nr_pages;
2446 2447 2448 2449
	put_cpu_var(memcg_stock);
}

/*
2450
 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2451 2452
 * of the hierarchy under it. sync flag says whether we should block
 * until the work is done.
2453
 */
2454
static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
2455
{
2456
	int cpu, curcpu;
2457

2458 2459
	/* Notify other cpus that system-wide "drain" is running */
	get_online_cpus();
2460
	curcpu = get_cpu();
2461 2462
	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2463
		struct mem_cgroup *memcg;
2464

2465 2466
		memcg = stock->cached;
		if (!memcg || !stock->nr_pages)
2467
			continue;
2468
		if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
2469
			continue;
2470 2471 2472 2473 2474 2475
		if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
			if (cpu == curcpu)
				drain_local_stock(&stock->work);
			else
				schedule_work_on(cpu, &stock->work);
		}
2476
	}
2477
	put_cpu();
2478 2479 2480 2481 2482 2483

	if (!sync)
		goto out;

	for_each_online_cpu(cpu) {
		struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2484
		if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
2485 2486 2487
			flush_work(&stock->work);
	}
out:
A
Andrew Morton 已提交
2488
	put_online_cpus();
2489 2490 2491 2492 2493 2494 2495 2496
}

/*
 * Tries to drain stocked charges in other cpus. This function is asynchronous
 * and just put a work per cpu for draining localy on each cpu. Caller can
 * expects some charges will be back to res_counter later but cannot wait for
 * it.
 */
2497
static void drain_all_stock_async(struct mem_cgroup *root_memcg)
2498
{
2499 2500 2501 2502 2503
	/*
	 * If someone calls draining, avoid adding more kworker runs.
	 */
	if (!mutex_trylock(&percpu_charge_mutex))
		return;
2504
	drain_all_stock(root_memcg, false);
2505
	mutex_unlock(&percpu_charge_mutex);
2506 2507 2508
}

/* This is a synchronous drain interface. */
2509
static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
2510 2511
{
	/* called when force_empty is called */
2512
	mutex_lock(&percpu_charge_mutex);
2513
	drain_all_stock(root_memcg, true);
2514
	mutex_unlock(&percpu_charge_mutex);
2515 2516
}

2517 2518 2519 2520
/*
 * This function drains percpu counter value from DEAD cpu and
 * move it to local cpu. Note that this function can be preempted.
 */
2521
static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
2522 2523 2524
{
	int i;

2525
	spin_lock(&memcg->pcp_counter_lock);
2526
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
2527
		long x = per_cpu(memcg->stat->count[i], cpu);
2528

2529 2530
		per_cpu(memcg->stat->count[i], cpu) = 0;
		memcg->nocpu_base.count[i] += x;
2531
	}
2532
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
2533
		unsigned long x = per_cpu(memcg->stat->events[i], cpu);
2534

2535 2536
		per_cpu(memcg->stat->events[i], cpu) = 0;
		memcg->nocpu_base.events[i] += x;
2537
	}
2538
	spin_unlock(&memcg->pcp_counter_lock);
2539 2540
}

2541
static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
2542 2543 2544 2545 2546
					unsigned long action,
					void *hcpu)
{
	int cpu = (unsigned long)hcpu;
	struct memcg_stock_pcp *stock;
2547
	struct mem_cgroup *iter;
2548

2549
	if (action == CPU_ONLINE)
2550 2551
		return NOTIFY_OK;

2552
	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
2553
		return NOTIFY_OK;
2554

2555
	for_each_mem_cgroup(iter)
2556 2557
		mem_cgroup_drain_pcp_counter(iter, cpu);

2558 2559 2560 2561 2562
	stock = &per_cpu(memcg_stock, cpu);
	drain_stock(stock);
	return NOTIFY_OK;
}

2563 2564 2565 2566 2567 2568 2569 2570 2571

/* See __mem_cgroup_try_charge() for details */
enum {
	CHARGE_OK,		/* success */
	CHARGE_RETRY,		/* need to retry but retry is not bad */
	CHARGE_NOMEM,		/* we can't do more. return -ENOMEM */
	CHARGE_WOULDBLOCK,	/* GFP_WAIT wasn't set and no enough res. */
};

2572
static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2573
				unsigned int nr_pages, unsigned int min_pages,
2574
				bool invoke_oom)
2575
{
2576
	unsigned long csize = nr_pages * PAGE_SIZE;
2577 2578 2579 2580 2581
	struct mem_cgroup *mem_over_limit;
	struct res_counter *fail_res;
	unsigned long flags = 0;
	int ret;

2582
	ret = res_counter_charge(&memcg->res, csize, &fail_res);
2583 2584 2585 2586

	if (likely(!ret)) {
		if (!do_swap_account)
			return CHARGE_OK;
2587
		ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
2588 2589 2590
		if (likely(!ret))
			return CHARGE_OK;

2591
		res_counter_uncharge(&memcg->res, csize);
2592 2593 2594 2595
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
		flags |= MEM_CGROUP_RECLAIM_NOSWAP;
	} else
		mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
2596 2597 2598 2599
	/*
	 * Never reclaim on behalf of optional batching, retry with a
	 * single page instead.
	 */
2600
	if (nr_pages > min_pages)
2601 2602 2603 2604 2605
		return CHARGE_RETRY;

	if (!(gfp_mask & __GFP_WAIT))
		return CHARGE_WOULDBLOCK;

2606 2607 2608
	if (gfp_mask & __GFP_NORETRY)
		return CHARGE_NOMEM;

2609
	ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
2610
	if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2611
		return CHARGE_RETRY;
2612
	/*
2613 2614 2615 2616 2617 2618 2619
	 * Even though the limit is exceeded at this point, reclaim
	 * may have been able to free some pages.  Retry the charge
	 * before killing the task.
	 *
	 * Only for regular pages, though: huge pages are rather
	 * unlikely to succeed so close to the limit, and we fall back
	 * to regular pages anyway in case of failure.
2620
	 */
2621
	if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
2622 2623 2624 2625 2626 2627 2628 2629 2630
		return CHARGE_RETRY;

	/*
	 * At task move, charge accounts can be doubly counted. So, it's
	 * better to wait until the end of task_move if something is going on.
	 */
	if (mem_cgroup_wait_acct_move(mem_over_limit))
		return CHARGE_RETRY;

2631 2632
	if (invoke_oom)
		mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
2633

2634
	return CHARGE_NOMEM;
2635 2636
}

2637
/*
2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656
 * __mem_cgroup_try_charge() does
 * 1. detect memcg to be charged against from passed *mm and *ptr,
 * 2. update res_counter
 * 3. call memory reclaim if necessary.
 *
 * In some special case, if the task is fatal, fatal_signal_pending() or
 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
 * as possible without any hazards. 2: all pages should have a valid
 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
 * pointer, that is treated as a charge to root_mem_cgroup.
 *
 * So __mem_cgroup_try_charge() will return
 *  0       ...  on success, filling *ptr with a valid memcg pointer.
 *  -ENOMEM ...  charge failure because of resource limits.
 *  -EINTR  ...  if thread is fatal. *ptr is filled with root_mem_cgroup.
 *
 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
 * the oom-killer can be invoked.
2657
 */
2658
static int __mem_cgroup_try_charge(struct mm_struct *mm,
A
Andrea Arcangeli 已提交
2659
				   gfp_t gfp_mask,
2660
				   unsigned int nr_pages,
2661
				   struct mem_cgroup **ptr,
2662
				   bool oom)
2663
{
2664
	unsigned int batch = max(CHARGE_BATCH, nr_pages);
2665
	int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
2666
	struct mem_cgroup *memcg = NULL;
2667
	int ret;
2668

K
KAMEZAWA Hiroyuki 已提交
2669 2670 2671 2672 2673 2674 2675 2676
	/*
	 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
	 * in system level. So, allow to go ahead dying process in addition to
	 * MEMDIE process.
	 */
	if (unlikely(test_thread_flag(TIF_MEMDIE)
		     || fatal_signal_pending(current)))
		goto bypass;
2677

2678 2679 2680
	if (unlikely(task_in_memcg_oom(current)))
		goto bypass;

2681
	/*
2682 2683
	 * We always charge the cgroup the mm_struct belongs to.
	 * The mm_struct's mem_cgroup changes on task migration if the
2684
	 * thread group leader migrates. It's possible that mm is not
2685
	 * set, if so charge the root memcg (happens for pagecache usage).
2686
	 */
2687
	if (!*ptr && !mm)
2688
		*ptr = root_mem_cgroup;
K
KAMEZAWA Hiroyuki 已提交
2689
again:
2690 2691 2692
	if (*ptr) { /* css should be a valid one */
		memcg = *ptr;
		if (mem_cgroup_is_root(memcg))
K
KAMEZAWA Hiroyuki 已提交
2693
			goto done;
2694
		if (consume_stock(memcg, nr_pages))
K
KAMEZAWA Hiroyuki 已提交
2695
			goto done;
2696
		css_get(&memcg->css);
2697
	} else {
K
KAMEZAWA Hiroyuki 已提交
2698
		struct task_struct *p;
2699

K
KAMEZAWA Hiroyuki 已提交
2700 2701 2702
		rcu_read_lock();
		p = rcu_dereference(mm->owner);
		/*
2703
		 * Because we don't have task_lock(), "p" can exit.
2704
		 * In that case, "memcg" can point to root or p can be NULL with
2705 2706 2707 2708 2709 2710
		 * race with swapoff. Then, we have small risk of mis-accouning.
		 * But such kind of mis-account by race always happens because
		 * we don't have cgroup_mutex(). It's overkill and we allo that
		 * small race, here.
		 * (*) swapoff at el will charge against mm-struct not against
		 * task-struct. So, mm->owner can be NULL.
K
KAMEZAWA Hiroyuki 已提交
2711
		 */
2712
		memcg = mem_cgroup_from_task(p);
2713 2714 2715
		if (!memcg)
			memcg = root_mem_cgroup;
		if (mem_cgroup_is_root(memcg)) {
K
KAMEZAWA Hiroyuki 已提交
2716 2717 2718
			rcu_read_unlock();
			goto done;
		}
2719
		if (consume_stock(memcg, nr_pages)) {
K
KAMEZAWA Hiroyuki 已提交
2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731
			/*
			 * It seems dagerous to access memcg without css_get().
			 * But considering how consume_stok works, it's not
			 * necessary. If consume_stock success, some charges
			 * from this memcg are cached on this cpu. So, we
			 * don't need to call css_get()/css_tryget() before
			 * calling consume_stock().
			 */
			rcu_read_unlock();
			goto done;
		}
		/* after here, we may be blocked. we need to get refcnt */
2732
		if (!css_tryget(&memcg->css)) {
K
KAMEZAWA Hiroyuki 已提交
2733 2734 2735 2736 2737
			rcu_read_unlock();
			goto again;
		}
		rcu_read_unlock();
	}
2738

2739
	do {
2740
		bool invoke_oom = oom && !nr_oom_retries;
2741

2742
		/* If killed, bypass charge */
K
KAMEZAWA Hiroyuki 已提交
2743
		if (fatal_signal_pending(current)) {
2744
			css_put(&memcg->css);
2745
			goto bypass;
K
KAMEZAWA Hiroyuki 已提交
2746
		}
2747

2748 2749
		ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
					   nr_pages, invoke_oom);
2750 2751 2752 2753
		switch (ret) {
		case CHARGE_OK:
			break;
		case CHARGE_RETRY: /* not in OOM situation but retry */
2754
			batch = nr_pages;
2755 2756
			css_put(&memcg->css);
			memcg = NULL;
K
KAMEZAWA Hiroyuki 已提交
2757
			goto again;
2758
		case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
2759
			css_put(&memcg->css);
2760 2761
			goto nomem;
		case CHARGE_NOMEM: /* OOM routine works */
2762
			if (!oom || invoke_oom) {
2763
				css_put(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
2764
				goto nomem;
K
KAMEZAWA Hiroyuki 已提交
2765
			}
2766 2767
			nr_oom_retries--;
			break;
2768
		}
2769 2770
	} while (ret != CHARGE_OK);

2771
	if (batch > nr_pages)
2772 2773
		refill_stock(memcg, batch - nr_pages);
	css_put(&memcg->css);
2774
done:
2775
	*ptr = memcg;
2776 2777
	return 0;
nomem:
2778 2779 2780 2781
	if (!(gfp_mask & __GFP_NOFAIL)) {
		*ptr = NULL;
		return -ENOMEM;
	}
K
KAMEZAWA Hiroyuki 已提交
2782
bypass:
2783 2784
	*ptr = root_mem_cgroup;
	return -EINTR;
2785
}
2786

2787 2788 2789 2790 2791
/*
 * Somemtimes we have to undo a charge we got by try_charge().
 * This function is for that and do uncharge, put css's refcnt.
 * gotten by try_charge().
 */
2792
static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
2793
				       unsigned int nr_pages)
2794
{
2795
	if (!mem_cgroup_is_root(memcg)) {
2796 2797
		unsigned long bytes = nr_pages * PAGE_SIZE;

2798
		res_counter_uncharge(&memcg->res, bytes);
2799
		if (do_swap_account)
2800
			res_counter_uncharge(&memcg->memsw, bytes);
2801
	}
2802 2803
}

2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821
/*
 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
 * This is useful when moving usage to parent cgroup.
 */
static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
					unsigned int nr_pages)
{
	unsigned long bytes = nr_pages * PAGE_SIZE;

	if (mem_cgroup_is_root(memcg))
		return;

	res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
	if (do_swap_account)
		res_counter_uncharge_until(&memcg->memsw,
						memcg->memsw.parent, bytes);
}

2822 2823
/*
 * A helper function to get mem_cgroup from ID. must be called under
T
Tejun Heo 已提交
2824 2825 2826
 * rcu_read_lock().  The caller is responsible for calling css_tryget if
 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
 * called against removed memcg.)
2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837
 */
static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
{
	struct cgroup_subsys_state *css;

	/* ID 0 is unused ID */
	if (!id)
		return NULL;
	css = css_lookup(&mem_cgroup_subsys, id);
	if (!css)
		return NULL;
2838
	return mem_cgroup_from_css(css);
2839 2840
}

2841
struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2842
{
2843
	struct mem_cgroup *memcg = NULL;
2844
	struct page_cgroup *pc;
2845
	unsigned short id;
2846 2847
	swp_entry_t ent;

2848 2849 2850
	VM_BUG_ON(!PageLocked(page));

	pc = lookup_page_cgroup(page);
2851
	lock_page_cgroup(pc);
2852
	if (PageCgroupUsed(pc)) {
2853 2854 2855
		memcg = pc->mem_cgroup;
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2856
	} else if (PageSwapCache(page)) {
2857
		ent.val = page_private(page);
2858
		id = lookup_swap_cgroup_id(ent);
2859
		rcu_read_lock();
2860 2861 2862
		memcg = mem_cgroup_lookup(id);
		if (memcg && !css_tryget(&memcg->css))
			memcg = NULL;
2863
		rcu_read_unlock();
2864
	}
2865
	unlock_page_cgroup(pc);
2866
	return memcg;
2867 2868
}

2869
static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
2870
				       struct page *page,
2871
				       unsigned int nr_pages,
2872 2873
				       enum charge_type ctype,
				       bool lrucare)
2874
{
2875
	struct page_cgroup *pc = lookup_page_cgroup(page);
2876
	struct zone *uninitialized_var(zone);
2877
	struct lruvec *lruvec;
2878
	bool was_on_lru = false;
2879
	bool anon;
2880

2881
	lock_page_cgroup(pc);
2882
	VM_BUG_ON(PageCgroupUsed(pc));
2883 2884 2885 2886
	/*
	 * we don't need page_cgroup_lock about tail pages, becase they are not
	 * accessed by any other context at this point.
	 */
2887 2888 2889 2890 2891 2892 2893 2894 2895

	/*
	 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
	 * may already be on some other mem_cgroup's LRU.  Take care of it.
	 */
	if (lrucare) {
		zone = page_zone(page);
		spin_lock_irq(&zone->lru_lock);
		if (PageLRU(page)) {
2896
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2897
			ClearPageLRU(page);
2898
			del_page_from_lru_list(page, lruvec, page_lru(page));
2899 2900 2901 2902
			was_on_lru = true;
		}
	}

2903
	pc->mem_cgroup = memcg;
2904 2905 2906 2907 2908 2909
	/*
	 * We access a page_cgroup asynchronously without lock_page_cgroup().
	 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
	 * is accessed after testing USED bit. To make pc->mem_cgroup visible
	 * before USED bit, we need memory barrier here.
	 * See mem_cgroup_add_lru_list(), etc.
A
Andrew Morton 已提交
2910
	 */
K
KAMEZAWA Hiroyuki 已提交
2911
	smp_wmb();
2912
	SetPageCgroupUsed(pc);
2913

2914 2915
	if (lrucare) {
		if (was_on_lru) {
2916
			lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
2917 2918
			VM_BUG_ON(PageLRU(page));
			SetPageLRU(page);
2919
			add_page_to_lru_list(page, lruvec, page_lru(page));
2920 2921 2922 2923
		}
		spin_unlock_irq(&zone->lru_lock);
	}

2924
	if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
2925 2926 2927 2928
		anon = true;
	else
		anon = false;

2929
	mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
2930
	unlock_page_cgroup(pc);
2931

2932
	/*
2933 2934 2935
	 * "charge_statistics" updated event counter. Then, check it.
	 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
	 * if they exceeds softlimit.
2936
	 */
2937
	memcg_check_events(memcg, page);
2938
}
2939

2940 2941
static DEFINE_MUTEX(set_limit_mutex);

2942 2943 2944 2945 2946 2947 2948
#ifdef CONFIG_MEMCG_KMEM
static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
{
	return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
		(memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
}

G
Glauber Costa 已提交
2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961
/*
 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
 * in the memcg_cache_params struct.
 */
static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
{
	struct kmem_cache *cachep;

	VM_BUG_ON(p->is_root_cache);
	cachep = p->root_cache;
	return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
}

2962
#ifdef CONFIG_SLABINFO
2963 2964
static int mem_cgroup_slabinfo_read(struct cgroup_subsys_state *css,
				    struct cftype *cft, struct seq_file *m)
2965
{
2966
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982
	struct memcg_cache_params *params;

	if (!memcg_can_account_kmem(memcg))
		return -EIO;

	print_slabinfo_header(m);

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list)
		cache_show(memcg_params_to_cache(params), m);
	mutex_unlock(&memcg->slab_caches_mutex);

	return 0;
}
#endif

2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994
static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
{
	struct res_counter *fail_res;
	struct mem_cgroup *_memcg;
	int ret = 0;

	ret = res_counter_charge(&memcg->kmem, size, &fail_res);
	if (ret)
		return ret;

	_memcg = memcg;
	ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
2995
				      &_memcg, oom_gfp_allowed(gfp));
2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028

	if (ret == -EINTR)  {
		/*
		 * __mem_cgroup_try_charge() chosed to bypass to root due to
		 * OOM kill or fatal signal.  Since our only options are to
		 * either fail the allocation or charge it to this cgroup, do
		 * it as a temporary condition. But we can't fail. From a
		 * kmem/slab perspective, the cache has already been selected,
		 * by mem_cgroup_kmem_get_cache(), so it is too late to change
		 * our minds.
		 *
		 * This condition will only trigger if the task entered
		 * memcg_charge_kmem in a sane state, but was OOM-killed during
		 * __mem_cgroup_try_charge() above. Tasks that were already
		 * dying when the allocation triggers should have been already
		 * directed to the root cgroup in memcontrol.h
		 */
		res_counter_charge_nofail(&memcg->res, size, &fail_res);
		if (do_swap_account)
			res_counter_charge_nofail(&memcg->memsw, size,
						  &fail_res);
		ret = 0;
	} else if (ret)
		res_counter_uncharge(&memcg->kmem, size);

	return ret;
}

static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
{
	res_counter_uncharge(&memcg->res, size);
	if (do_swap_account)
		res_counter_uncharge(&memcg->memsw, size);
3029 3030 3031 3032 3033

	/* Not down to 0 */
	if (res_counter_uncharge(&memcg->kmem, size))
		return;

3034 3035 3036 3037 3038 3039 3040 3041
	/*
	 * Releases a reference taken in kmem_cgroup_css_offline in case
	 * this last uncharge is racing with the offlining code or it is
	 * outliving the memcg existence.
	 *
	 * The memory barrier imposed by test&clear is paired with the
	 * explicit one in memcg_kmem_mark_dead().
	 */
3042
	if (memcg_kmem_test_and_clear_dead(memcg))
3043
		css_put(&memcg->css);
3044 3045
}

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065
void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
{
	if (!memcg)
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
	mutex_unlock(&memcg->slab_caches_mutex);
}

/*
 * helper for acessing a memcg's index. It will be used as an index in the
 * child cache array in kmem_cache, and also to derive its name. This function
 * will return -1 when this is not a kmem-limited memcg.
 */
int memcg_cache_id(struct mem_cgroup *memcg)
{
	return memcg ? memcg->kmemcg_id : -1;
}

3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128
/*
 * This ends up being protected by the set_limit mutex, during normal
 * operation, because that is its main call site.
 *
 * But when we create a new cache, we can call this as well if its parent
 * is kmem-limited. That will have to hold set_limit_mutex as well.
 */
int memcg_update_cache_sizes(struct mem_cgroup *memcg)
{
	int num, ret;

	num = ida_simple_get(&kmem_limited_groups,
				0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
	if (num < 0)
		return num;
	/*
	 * After this point, kmem_accounted (that we test atomically in
	 * the beginning of this conditional), is no longer 0. This
	 * guarantees only one process will set the following boolean
	 * to true. We don't need test_and_set because we're protected
	 * by the set_limit_mutex anyway.
	 */
	memcg_kmem_set_activated(memcg);

	ret = memcg_update_all_caches(num+1);
	if (ret) {
		ida_simple_remove(&kmem_limited_groups, num);
		memcg_kmem_clear_activated(memcg);
		return ret;
	}

	memcg->kmemcg_id = num;
	INIT_LIST_HEAD(&memcg->memcg_slab_caches);
	mutex_init(&memcg->slab_caches_mutex);
	return 0;
}

static size_t memcg_caches_array_size(int num_groups)
{
	ssize_t size;
	if (num_groups <= 0)
		return 0;

	size = 2 * num_groups;
	if (size < MEMCG_CACHES_MIN_SIZE)
		size = MEMCG_CACHES_MIN_SIZE;
	else if (size > MEMCG_CACHES_MAX_SIZE)
		size = MEMCG_CACHES_MAX_SIZE;

	return size;
}

/*
 * We should update the current array size iff all caches updates succeed. This
 * can only be done from the slab side. The slab mutex needs to be held when
 * calling this.
 */
void memcg_update_array_size(int num)
{
	if (num > memcg_limited_groups_array_size)
		memcg_limited_groups_array_size = memcg_caches_array_size(num);
}

3129 3130
static void kmem_cache_destroy_work_func(struct work_struct *w);

3131 3132 3133 3134
int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
{
	struct memcg_cache_params *cur_params = s->memcg_params;

3135
	VM_BUG_ON(!is_root_cache(s));
3136 3137 3138 3139 3140 3141

	if (num_groups > memcg_limited_groups_array_size) {
		int i;
		ssize_t size = memcg_caches_array_size(num_groups);

		size *= sizeof(void *);
3142
		size += offsetof(struct memcg_cache_params, memcg_caches);
3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181

		s->memcg_params = kzalloc(size, GFP_KERNEL);
		if (!s->memcg_params) {
			s->memcg_params = cur_params;
			return -ENOMEM;
		}

		s->memcg_params->is_root_cache = true;

		/*
		 * There is the chance it will be bigger than
		 * memcg_limited_groups_array_size, if we failed an allocation
		 * in a cache, in which case all caches updated before it, will
		 * have a bigger array.
		 *
		 * But if that is the case, the data after
		 * memcg_limited_groups_array_size is certainly unused
		 */
		for (i = 0; i < memcg_limited_groups_array_size; i++) {
			if (!cur_params->memcg_caches[i])
				continue;
			s->memcg_params->memcg_caches[i] =
						cur_params->memcg_caches[i];
		}

		/*
		 * Ideally, we would wait until all caches succeed, and only
		 * then free the old one. But this is not worth the extra
		 * pointer per-cache we'd have to have for this.
		 *
		 * It is not a big deal if some caches are left with a size
		 * bigger than the others. And all updates will reset this
		 * anyway.
		 */
		kfree(cur_params);
	}
	return 0;
}

G
Glauber Costa 已提交
3182 3183
int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
			 struct kmem_cache *root_cache)
3184
{
3185
	size_t size;
3186 3187 3188 3189

	if (!memcg_kmem_enabled())
		return 0;

3190 3191
	if (!memcg) {
		size = offsetof(struct memcg_cache_params, memcg_caches);
3192
		size += memcg_limited_groups_array_size * sizeof(void *);
3193 3194
	} else
		size = sizeof(struct memcg_cache_params);
3195

3196 3197 3198 3199
	s->memcg_params = kzalloc(size, GFP_KERNEL);
	if (!s->memcg_params)
		return -ENOMEM;

G
Glauber Costa 已提交
3200
	if (memcg) {
3201
		s->memcg_params->memcg = memcg;
G
Glauber Costa 已提交
3202
		s->memcg_params->root_cache = root_cache;
3203 3204
		INIT_WORK(&s->memcg_params->destroy,
				kmem_cache_destroy_work_func);
3205 3206 3207
	} else
		s->memcg_params->is_root_cache = true;

3208 3209 3210 3211 3212
	return 0;
}

void memcg_release_cache(struct kmem_cache *s)
{
3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236
	struct kmem_cache *root;
	struct mem_cgroup *memcg;
	int id;

	/*
	 * This happens, for instance, when a root cache goes away before we
	 * add any memcg.
	 */
	if (!s->memcg_params)
		return;

	if (s->memcg_params->is_root_cache)
		goto out;

	memcg = s->memcg_params->memcg;
	id  = memcg_cache_id(memcg);

	root = s->memcg_params->root_cache;
	root->memcg_params->memcg_caches[id] = NULL;

	mutex_lock(&memcg->slab_caches_mutex);
	list_del(&s->memcg_params->list);
	mutex_unlock(&memcg->slab_caches_mutex);

3237
	css_put(&memcg->css);
3238
out:
3239 3240 3241
	kfree(s->memcg_params);
}

3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272
/*
 * During the creation a new cache, we need to disable our accounting mechanism
 * altogether. This is true even if we are not creating, but rather just
 * enqueing new caches to be created.
 *
 * This is because that process will trigger allocations; some visible, like
 * explicit kmallocs to auxiliary data structures, name strings and internal
 * cache structures; some well concealed, like INIT_WORK() that can allocate
 * objects during debug.
 *
 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
 * to it. This may not be a bounded recursion: since the first cache creation
 * failed to complete (waiting on the allocation), we'll just try to create the
 * cache again, failing at the same point.
 *
 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
 * inside the following two functions.
 */
static inline void memcg_stop_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account++;
}

static inline void memcg_resume_kmem_account(void)
{
	VM_BUG_ON(!current->mm);
	current->memcg_kmem_skip_account--;
}

G
Glauber Costa 已提交
3273 3274 3275 3276 3277 3278 3279 3280 3281
static void kmem_cache_destroy_work_func(struct work_struct *w)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *p;

	p = container_of(w, struct memcg_cache_params, destroy);

	cachep = memcg_params_to_cache(p);

G
Glauber Costa 已提交
3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302
	/*
	 * If we get down to 0 after shrink, we could delete right away.
	 * However, memcg_release_pages() already puts us back in the workqueue
	 * in that case. If we proceed deleting, we'll get a dangling
	 * reference, and removing the object from the workqueue in that case
	 * is unnecessary complication. We are not a fast path.
	 *
	 * Note that this case is fundamentally different from racing with
	 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
	 * kmem_cache_shrink, not only we would be reinserting a dead cache
	 * into the queue, but doing so from inside the worker racing to
	 * destroy it.
	 *
	 * So if we aren't down to zero, we'll just schedule a worker and try
	 * again
	 */
	if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
		kmem_cache_shrink(cachep);
		if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
			return;
	} else
G
Glauber Costa 已提交
3303 3304 3305 3306 3307 3308 3309 3310
		kmem_cache_destroy(cachep);
}

void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
{
	if (!cachep->memcg_params->dead)
		return;

G
Glauber Costa 已提交
3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330
	/*
	 * There are many ways in which we can get here.
	 *
	 * We can get to a memory-pressure situation while the delayed work is
	 * still pending to run. The vmscan shrinkers can then release all
	 * cache memory and get us to destruction. If this is the case, we'll
	 * be executed twice, which is a bug (the second time will execute over
	 * bogus data). In this case, cancelling the work should be fine.
	 *
	 * But we can also get here from the worker itself, if
	 * kmem_cache_shrink is enough to shake all the remaining objects and
	 * get the page count to 0. In this case, we'll deadlock if we try to
	 * cancel the work (the worker runs with an internal lock held, which
	 * is the same lock we would hold for cancel_work_sync().)
	 *
	 * Since we can't possibly know who got us here, just refrain from
	 * running if there is already work pending
	 */
	if (work_pending(&cachep->memcg_params->destroy))
		return;
G
Glauber Costa 已提交
3331 3332 3333 3334 3335 3336 3337
	/*
	 * We have to defer the actual destroying to a workqueue, because
	 * we might currently be in a context that cannot sleep.
	 */
	schedule_work(&cachep->memcg_params->destroy);
}

3338 3339 3340 3341 3342 3343 3344 3345 3346
/*
 * This lock protects updaters, not readers. We want readers to be as fast as
 * they can, and they will either see NULL or a valid cache value. Our model
 * allow them to see NULL, in which case the root memcg will be selected.
 *
 * We need this lock because multiple allocations to the same cache from a non
 * will span more than one worker. Only one of them can create the cache.
 */
static DEFINE_MUTEX(memcg_cache_mutex);
3347

3348 3349 3350
/*
 * Called with memcg_cache_mutex held
 */
3351 3352 3353 3354
static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
					 struct kmem_cache *s)
{
	struct kmem_cache *new;
3355
	static char *tmp_name = NULL;
3356

3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374
	lockdep_assert_held(&memcg_cache_mutex);

	/*
	 * kmem_cache_create_memcg duplicates the given name and
	 * cgroup_name for this name requires RCU context.
	 * This static temporary buffer is used to prevent from
	 * pointless shortliving allocation.
	 */
	if (!tmp_name) {
		tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
		if (!tmp_name)
			return NULL;
	}

	rcu_read_lock();
	snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
			 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
	rcu_read_unlock();
3375

3376
	new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
G
Glauber Costa 已提交
3377
				      (s->flags & ~SLAB_PANIC), s->ctor, s);
3378

3379 3380 3381
	if (new)
		new->allocflags |= __GFP_KMEMCG;

3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396
	return new;
}

static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
						  struct kmem_cache *cachep)
{
	struct kmem_cache *new_cachep;
	int idx;

	BUG_ON(!memcg_can_account_kmem(memcg));

	idx = memcg_cache_id(memcg);

	mutex_lock(&memcg_cache_mutex);
	new_cachep = cachep->memcg_params->memcg_caches[idx];
3397 3398
	if (new_cachep) {
		css_put(&memcg->css);
3399
		goto out;
3400
	}
3401 3402 3403 3404

	new_cachep = kmem_cache_dup(memcg, cachep);
	if (new_cachep == NULL) {
		new_cachep = cachep;
3405
		css_put(&memcg->css);
3406 3407 3408
		goto out;
	}

G
Glauber Costa 已提交
3409
	atomic_set(&new_cachep->memcg_params->nr_pages , 0);
3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421

	cachep->memcg_params->memcg_caches[idx] = new_cachep;
	/*
	 * the readers won't lock, make sure everybody sees the updated value,
	 * so they won't put stuff in the queue again for no reason
	 */
	wmb();
out:
	mutex_unlock(&memcg_cache_mutex);
	return new_cachep;
}

3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460
void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
{
	struct kmem_cache *c;
	int i;

	if (!s->memcg_params)
		return;
	if (!s->memcg_params->is_root_cache)
		return;

	/*
	 * If the cache is being destroyed, we trust that there is no one else
	 * requesting objects from it. Even if there are, the sanity checks in
	 * kmem_cache_destroy should caught this ill-case.
	 *
	 * Still, we don't want anyone else freeing memcg_caches under our
	 * noses, which can happen if a new memcg comes to life. As usual,
	 * we'll take the set_limit_mutex to protect ourselves against this.
	 */
	mutex_lock(&set_limit_mutex);
	for (i = 0; i < memcg_limited_groups_array_size; i++) {
		c = s->memcg_params->memcg_caches[i];
		if (!c)
			continue;

		/*
		 * We will now manually delete the caches, so to avoid races
		 * we need to cancel all pending destruction workers and
		 * proceed with destruction ourselves.
		 *
		 * kmem_cache_destroy() will call kmem_cache_shrink internally,
		 * and that could spawn the workers again: it is likely that
		 * the cache still have active pages until this very moment.
		 * This would lead us back to mem_cgroup_destroy_cache.
		 *
		 * But that will not execute at all if the "dead" flag is not
		 * set, so flip it down to guarantee we are in control.
		 */
		c->memcg_params->dead = false;
G
Glauber Costa 已提交
3461
		cancel_work_sync(&c->memcg_params->destroy);
3462 3463 3464 3465 3466
		kmem_cache_destroy(c);
	}
	mutex_unlock(&set_limit_mutex);
}

3467 3468 3469 3470 3471 3472
struct create_work {
	struct mem_cgroup *memcg;
	struct kmem_cache *cachep;
	struct work_struct work;
};

G
Glauber Costa 已提交
3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489
static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
	struct kmem_cache *cachep;
	struct memcg_cache_params *params;

	if (!memcg_kmem_is_active(memcg))
		return;

	mutex_lock(&memcg->slab_caches_mutex);
	list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
		cachep = memcg_params_to_cache(params);
		cachep->memcg_params->dead = true;
		schedule_work(&cachep->memcg_params->destroy);
	}
	mutex_unlock(&memcg->slab_caches_mutex);
}

3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501
static void memcg_create_cache_work_func(struct work_struct *w)
{
	struct create_work *cw;

	cw = container_of(w, struct create_work, work);
	memcg_create_kmem_cache(cw->memcg, cw->cachep);
	kfree(cw);
}

/*
 * Enqueue the creation of a per-memcg kmem_cache.
 */
3502 3503
static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
					 struct kmem_cache *cachep)
3504 3505 3506 3507
{
	struct create_work *cw;

	cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
3508 3509
	if (cw == NULL) {
		css_put(&memcg->css);
3510 3511 3512 3513 3514 3515 3516 3517 3518 3519
		return;
	}

	cw->memcg = memcg;
	cw->cachep = cachep;

	INIT_WORK(&cw->work, memcg_create_cache_work_func);
	schedule_work(&cw->work);
}

3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537
static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
				       struct kmem_cache *cachep)
{
	/*
	 * We need to stop accounting when we kmalloc, because if the
	 * corresponding kmalloc cache is not yet created, the first allocation
	 * in __memcg_create_cache_enqueue will recurse.
	 *
	 * However, it is better to enclose the whole function. Depending on
	 * the debugging options enabled, INIT_WORK(), for instance, can
	 * trigger an allocation. This too, will make us recurse. Because at
	 * this point we can't allow ourselves back into memcg_kmem_get_cache,
	 * the safest choice is to do it like this, wrapping the whole function.
	 */
	memcg_stop_kmem_account();
	__memcg_create_cache_enqueue(memcg, cachep);
	memcg_resume_kmem_account();
}
3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559
/*
 * Return the kmem_cache we're supposed to use for a slab allocation.
 * We try to use the current memcg's version of the cache.
 *
 * If the cache does not exist yet, if we are the first user of it,
 * we either create it immediately, if possible, or create it asynchronously
 * in a workqueue.
 * In the latter case, we will let the current allocation go through with
 * the original cache.
 *
 * Can't be called in interrupt context or from kernel threads.
 * This function needs to be called with rcu_read_lock() held.
 */
struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
					  gfp_t gfp)
{
	struct mem_cgroup *memcg;
	int idx;

	VM_BUG_ON(!cachep->memcg_params);
	VM_BUG_ON(!cachep->memcg_params->is_root_cache);

3560 3561 3562
	if (!current->mm || current->memcg_kmem_skip_account)
		return cachep;

3563 3564 3565 3566
	rcu_read_lock();
	memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));

	if (!memcg_can_account_kmem(memcg))
3567
		goto out;
3568 3569 3570 3571 3572 3573 3574 3575

	idx = memcg_cache_id(memcg);

	/*
	 * barrier to mare sure we're always seeing the up to date value.  The
	 * code updating memcg_caches will issue a write barrier to match this.
	 */
	read_barrier_depends();
3576 3577 3578
	if (likely(cachep->memcg_params->memcg_caches[idx])) {
		cachep = cachep->memcg_params->memcg_caches[idx];
		goto out;
3579 3580
	}

3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607
	/* The corresponding put will be done in the workqueue. */
	if (!css_tryget(&memcg->css))
		goto out;
	rcu_read_unlock();

	/*
	 * If we are in a safe context (can wait, and not in interrupt
	 * context), we could be be predictable and return right away.
	 * This would guarantee that the allocation being performed
	 * already belongs in the new cache.
	 *
	 * However, there are some clashes that can arrive from locking.
	 * For instance, because we acquire the slab_mutex while doing
	 * kmem_cache_dup, this means no further allocation could happen
	 * with the slab_mutex held.
	 *
	 * Also, because cache creation issue get_online_cpus(), this
	 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
	 * that ends up reversed during cpu hotplug. (cpuset allocates
	 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
	 * better to defer everything.
	 */
	memcg_create_cache_enqueue(memcg, cachep);
	return cachep;
out:
	rcu_read_unlock();
	return cachep;
3608 3609 3610
}
EXPORT_SYMBOL(__memcg_kmem_get_cache);

3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631
/*
 * We need to verify if the allocation against current->mm->owner's memcg is
 * possible for the given order. But the page is not allocated yet, so we'll
 * need a further commit step to do the final arrangements.
 *
 * It is possible for the task to switch cgroups in this mean time, so at
 * commit time, we can't rely on task conversion any longer.  We'll then use
 * the handle argument to return to the caller which cgroup we should commit
 * against. We could also return the memcg directly and avoid the pointer
 * passing, but a boolean return value gives better semantics considering
 * the compiled-out case as well.
 *
 * Returning true means the allocation is possible.
 */
bool
__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
{
	struct mem_cgroup *memcg;
	int ret;

	*_memcg = NULL;
3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646

	/*
	 * Disabling accounting is only relevant for some specific memcg
	 * internal allocations. Therefore we would initially not have such
	 * check here, since direct calls to the page allocator that are marked
	 * with GFP_KMEMCG only happen outside memcg core. We are mostly
	 * concerned with cache allocations, and by having this test at
	 * memcg_kmem_get_cache, we are already able to relay the allocation to
	 * the root cache and bypass the memcg cache altogether.
	 *
	 * There is one exception, though: the SLUB allocator does not create
	 * large order caches, but rather service large kmallocs directly from
	 * the page allocator. Therefore, the following sequence when backed by
	 * the SLUB allocator:
	 *
A
Andrew Morton 已提交
3647 3648 3649
	 *	memcg_stop_kmem_account();
	 *	kmalloc(<large_number>)
	 *	memcg_resume_kmem_account();
3650 3651 3652 3653 3654 3655 3656 3657 3658 3659
	 *
	 * would effectively ignore the fact that we should skip accounting,
	 * since it will drive us directly to this function without passing
	 * through the cache selector memcg_kmem_get_cache. Such large
	 * allocations are extremely rare but can happen, for instance, for the
	 * cache arrays. We bring this test here.
	 */
	if (!current->mm || current->memcg_kmem_skip_account)
		return true;

3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733
	memcg = try_get_mem_cgroup_from_mm(current->mm);

	/*
	 * very rare case described in mem_cgroup_from_task. Unfortunately there
	 * isn't much we can do without complicating this too much, and it would
	 * be gfp-dependent anyway. Just let it go
	 */
	if (unlikely(!memcg))
		return true;

	if (!memcg_can_account_kmem(memcg)) {
		css_put(&memcg->css);
		return true;
	}

	ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
	if (!ret)
		*_memcg = memcg;

	css_put(&memcg->css);
	return (ret == 0);
}

void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
			      int order)
{
	struct page_cgroup *pc;

	VM_BUG_ON(mem_cgroup_is_root(memcg));

	/* The page allocation failed. Revert */
	if (!page) {
		memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
		return;
	}

	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	pc->mem_cgroup = memcg;
	SetPageCgroupUsed(pc);
	unlock_page_cgroup(pc);
}

void __memcg_kmem_uncharge_pages(struct page *page, int order)
{
	struct mem_cgroup *memcg = NULL;
	struct page_cgroup *pc;


	pc = lookup_page_cgroup(page);
	/*
	 * Fast unlocked return. Theoretically might have changed, have to
	 * check again after locking.
	 */
	if (!PageCgroupUsed(pc))
		return;

	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
		ClearPageCgroupUsed(pc);
	}
	unlock_page_cgroup(pc);

	/*
	 * We trust that only if there is a memcg associated with the page, it
	 * is a valid allocation
	 */
	if (!memcg)
		return;

	VM_BUG_ON(mem_cgroup_is_root(memcg));
	memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
}
G
Glauber Costa 已提交
3734 3735 3736 3737
#else
static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
{
}
3738 3739
#endif /* CONFIG_MEMCG_KMEM */

3740 3741
#ifdef CONFIG_TRANSPARENT_HUGEPAGE

3742
#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
3743 3744
/*
 * Because tail pages are not marked as "used", set it. We're under
3745 3746 3747
 * zone->lru_lock, 'splitting on pmd' and compound_lock.
 * charge/uncharge will be never happen and move_account() is done under
 * compound_lock(), so we don't have to take care of races.
3748
 */
3749
void mem_cgroup_split_huge_fixup(struct page *head)
3750 3751
{
	struct page_cgroup *head_pc = lookup_page_cgroup(head);
3752
	struct page_cgroup *pc;
3753
	struct mem_cgroup *memcg;
3754
	int i;
3755

3756 3757
	if (mem_cgroup_disabled())
		return;
3758 3759

	memcg = head_pc->mem_cgroup;
3760 3761
	for (i = 1; i < HPAGE_PMD_NR; i++) {
		pc = head_pc + i;
3762
		pc->mem_cgroup = memcg;
3763 3764 3765
		smp_wmb();/* see __commit_charge() */
		pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
	}
3766 3767
	__this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
		       HPAGE_PMD_NR);
3768
}
3769
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3770

3771 3772 3773 3774 3775 3776 3777 3778
static inline
void mem_cgroup_move_account_page_stat(struct mem_cgroup *from,
					struct mem_cgroup *to,
					unsigned int nr_pages,
					enum mem_cgroup_stat_index idx)
{
	/* Update stat data for mem_cgroup */
	preempt_disable();
3779
	__this_cpu_sub(from->stat->count[idx], nr_pages);
3780 3781 3782 3783
	__this_cpu_add(to->stat->count[idx], nr_pages);
	preempt_enable();
}

3784
/**
3785
 * mem_cgroup_move_account - move account of the page
3786
 * @page: the page
3787
 * @nr_pages: number of regular pages (>1 for huge pages)
3788 3789 3790 3791 3792
 * @pc:	page_cgroup of the page.
 * @from: mem_cgroup which the page is moved from.
 * @to:	mem_cgroup which the page is moved to. @from != @to.
 *
 * The caller must confirm following.
K
KAMEZAWA Hiroyuki 已提交
3793
 * - page is not on LRU (isolate_page() is useful.)
3794
 * - compound_lock is held when nr_pages > 1
3795
 *
3796 3797
 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
 * from old cgroup.
3798
 */
3799 3800 3801 3802
static int mem_cgroup_move_account(struct page *page,
				   unsigned int nr_pages,
				   struct page_cgroup *pc,
				   struct mem_cgroup *from,
3803
				   struct mem_cgroup *to)
3804
{
3805 3806
	unsigned long flags;
	int ret;
3807
	bool anon = PageAnon(page);
3808

3809
	VM_BUG_ON(from == to);
3810
	VM_BUG_ON(PageLRU(page));
3811 3812 3813 3814 3815 3816 3817
	/*
	 * The page is isolated from LRU. So, collapse function
	 * will not handle this page. But page splitting can happen.
	 * Do this check under compound_page_lock(). The caller should
	 * hold it.
	 */
	ret = -EBUSY;
3818
	if (nr_pages > 1 && !PageTransHuge(page))
3819 3820 3821 3822 3823 3824 3825 3826
		goto out;

	lock_page_cgroup(pc);

	ret = -EINVAL;
	if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
		goto unlock;

3827
	move_lock_mem_cgroup(from, &flags);
3828

3829 3830 3831 3832 3833 3834 3835 3836
	if (!anon && page_mapped(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_FILE_MAPPED);

	if (PageWriteback(page))
		mem_cgroup_move_account_page_stat(from, to, nr_pages,
			MEM_CGROUP_STAT_WRITEBACK);

3837
	mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
3838

3839
	/* caller should have done css_get */
K
KAMEZAWA Hiroyuki 已提交
3840
	pc->mem_cgroup = to;
3841
	mem_cgroup_charge_statistics(to, page, anon, nr_pages);
3842
	move_unlock_mem_cgroup(from, &flags);
3843 3844
	ret = 0;
unlock:
3845
	unlock_page_cgroup(pc);
3846 3847 3848
	/*
	 * check events
	 */
3849 3850
	memcg_check_events(to, page);
	memcg_check_events(from, page);
3851
out:
3852 3853 3854
	return ret;
}

3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874
/**
 * mem_cgroup_move_parent - moves page to the parent group
 * @page: the page to move
 * @pc: page_cgroup of the page
 * @child: page's cgroup
 *
 * move charges to its parent or the root cgroup if the group has no
 * parent (aka use_hierarchy==0).
 * Although this might fail (get_page_unless_zero, isolate_lru_page or
 * mem_cgroup_move_account fails) the failure is always temporary and
 * it signals a race with a page removal/uncharge or migration. In the
 * first case the page is on the way out and it will vanish from the LRU
 * on the next attempt and the call should be retried later.
 * Isolation from the LRU fails only if page has been isolated from
 * the LRU since we looked at it and that usually means either global
 * reclaim or migration going on. The page will either get back to the
 * LRU or vanish.
 * Finaly mem_cgroup_move_account fails only if the page got uncharged
 * (!PageCgroupUsed) or moved to a different group. The page will
 * disappear in the next attempt.
3875
 */
3876 3877
static int mem_cgroup_move_parent(struct page *page,
				  struct page_cgroup *pc,
3878
				  struct mem_cgroup *child)
3879 3880
{
	struct mem_cgroup *parent;
3881
	unsigned int nr_pages;
3882
	unsigned long uninitialized_var(flags);
3883 3884
	int ret;

3885
	VM_BUG_ON(mem_cgroup_is_root(child));
3886

3887 3888 3889 3890 3891
	ret = -EBUSY;
	if (!get_page_unless_zero(page))
		goto out;
	if (isolate_lru_page(page))
		goto put;
3892

3893
	nr_pages = hpage_nr_pages(page);
K
KAMEZAWA Hiroyuki 已提交
3894

3895 3896 3897 3898 3899 3900
	parent = parent_mem_cgroup(child);
	/*
	 * If no parent, move charges to root cgroup.
	 */
	if (!parent)
		parent = root_mem_cgroup;
3901

3902 3903
	if (nr_pages > 1) {
		VM_BUG_ON(!PageTransHuge(page));
3904
		flags = compound_lock_irqsave(page);
3905
	}
3906

3907
	ret = mem_cgroup_move_account(page, nr_pages,
3908
				pc, child, parent);
3909 3910
	if (!ret)
		__mem_cgroup_cancel_local_charge(child, nr_pages);
3911

3912
	if (nr_pages > 1)
3913
		compound_unlock_irqrestore(page, flags);
K
KAMEZAWA Hiroyuki 已提交
3914
	putback_lru_page(page);
3915
put:
3916
	put_page(page);
3917
out:
3918 3919 3920
	return ret;
}

3921 3922 3923 3924 3925 3926 3927
/*
 * Charge the memory controller for page usage.
 * Return
 * 0 if the charge was successful
 * < 0 if the cgroup is over its limit
 */
static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
3928
				gfp_t gfp_mask, enum charge_type ctype)
3929
{
3930
	struct mem_cgroup *memcg = NULL;
3931
	unsigned int nr_pages = 1;
3932
	bool oom = true;
3933
	int ret;
A
Andrea Arcangeli 已提交
3934

A
Andrea Arcangeli 已提交
3935
	if (PageTransHuge(page)) {
3936
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
3937
		VM_BUG_ON(!PageTransHuge(page));
3938 3939 3940 3941 3942
		/*
		 * Never OOM-kill a process for a huge page.  The
		 * fault handler will fall back to regular pages.
		 */
		oom = false;
A
Andrea Arcangeli 已提交
3943
	}
3944

3945
	ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
3946
	if (ret == -ENOMEM)
3947
		return ret;
3948
	__mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
3949 3950 3951
	return 0;
}

3952 3953
int mem_cgroup_newpage_charge(struct page *page,
			      struct mm_struct *mm, gfp_t gfp_mask)
3954
{
3955
	if (mem_cgroup_disabled())
3956
		return 0;
3957 3958 3959
	VM_BUG_ON(page_mapped(page));
	VM_BUG_ON(page->mapping && !PageAnon(page));
	VM_BUG_ON(!mm);
3960
	return mem_cgroup_charge_common(page, mm, gfp_mask,
3961
					MEM_CGROUP_CHARGE_TYPE_ANON);
3962 3963
}

3964 3965 3966
/*
 * While swap-in, try_charge -> commit or cancel, the page is locked.
 * And when try_charge() successfully returns, one refcnt to memcg without
3967
 * struct page_cgroup is acquired. This refcnt will be consumed by
3968 3969
 * "commit()" or removed by "cancel()"
 */
3970 3971 3972 3973
static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
					  struct page *page,
					  gfp_t mask,
					  struct mem_cgroup **memcgp)
3974
{
3975
	struct mem_cgroup *memcg;
3976
	struct page_cgroup *pc;
3977
	int ret;
3978

3979 3980 3981 3982 3983 3984 3985 3986 3987 3988
	pc = lookup_page_cgroup(page);
	/*
	 * Every swap fault against a single page tries to charge the
	 * page, bail as early as possible.  shmem_unuse() encounters
	 * already charged pages, too.  The USED bit is protected by
	 * the page lock, which serializes swap cache removal, which
	 * in turn serializes uncharging.
	 */
	if (PageCgroupUsed(pc))
		return 0;
3989 3990
	if (!do_swap_account)
		goto charge_cur_mm;
3991 3992
	memcg = try_get_mem_cgroup_from_page(page);
	if (!memcg)
3993
		goto charge_cur_mm;
3994 3995
	*memcgp = memcg;
	ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
3996
	css_put(&memcg->css);
3997 3998
	if (ret == -EINTR)
		ret = 0;
3999
	return ret;
4000
charge_cur_mm:
4001 4002 4003 4004
	ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
	if (ret == -EINTR)
		ret = 0;
	return ret;
4005 4006
}

4007 4008 4009 4010 4011 4012
int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
				 gfp_t gfp_mask, struct mem_cgroup **memcgp)
{
	*memcgp = NULL;
	if (mem_cgroup_disabled())
		return 0;
4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026
	/*
	 * A racing thread's fault, or swapoff, may have already
	 * updated the pte, and even removed page from swap cache: in
	 * those cases unuse_pte()'s pte_same() test will fail; but
	 * there's also a KSM case which does need to charge the page.
	 */
	if (!PageSwapCache(page)) {
		int ret;

		ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
		if (ret == -EINTR)
			ret = 0;
		return ret;
	}
4027 4028 4029
	return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
}

4030 4031 4032 4033 4034 4035 4036 4037 4038
void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
{
	if (mem_cgroup_disabled())
		return;
	if (!memcg)
		return;
	__mem_cgroup_cancel_charge(memcg, 1);
}

D
Daisuke Nishimura 已提交
4039
static void
4040
__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
D
Daisuke Nishimura 已提交
4041
					enum charge_type ctype)
4042
{
4043
	if (mem_cgroup_disabled())
4044
		return;
4045
	if (!memcg)
4046
		return;
4047

4048
	__mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
4049 4050 4051
	/*
	 * Now swap is on-memory. This means this page may be
	 * counted both as mem and swap....double count.
4052 4053 4054
	 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
	 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
	 * may call delete_from_swap_cache() before reach here.
4055
	 */
4056
	if (do_swap_account && PageSwapCache(page)) {
4057
		swp_entry_t ent = {.val = page_private(page)};
4058
		mem_cgroup_uncharge_swap(ent);
4059
	}
4060 4061
}

4062 4063
void mem_cgroup_commit_charge_swapin(struct page *page,
				     struct mem_cgroup *memcg)
D
Daisuke Nishimura 已提交
4064
{
4065
	__mem_cgroup_commit_charge_swapin(page, memcg,
4066
					  MEM_CGROUP_CHARGE_TYPE_ANON);
D
Daisuke Nishimura 已提交
4067 4068
}

4069 4070
int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
				gfp_t gfp_mask)
4071
{
4072 4073 4074 4075
	struct mem_cgroup *memcg = NULL;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
	int ret;

4076
	if (mem_cgroup_disabled())
4077 4078 4079 4080 4081 4082 4083
		return 0;
	if (PageCompound(page))
		return 0;

	if (!PageSwapCache(page))
		ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
	else { /* page is swapcache/shmem */
4084 4085
		ret = __mem_cgroup_try_charge_swapin(mm, page,
						     gfp_mask, &memcg);
4086 4087 4088 4089
		if (!ret)
			__mem_cgroup_commit_charge_swapin(page, memcg, type);
	}
	return ret;
4090 4091
}

4092
static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
4093 4094
				   unsigned int nr_pages,
				   const enum charge_type ctype)
4095 4096 4097
{
	struct memcg_batch_info *batch = NULL;
	bool uncharge_memsw = true;
4098

4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109
	/* If swapout, usage of swap doesn't decrease */
	if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
		uncharge_memsw = false;

	batch = &current->memcg_batch;
	/*
	 * In usual, we do css_get() when we remember memcg pointer.
	 * But in this case, we keep res->usage until end of a series of
	 * uncharges. Then, it's ok to ignore memcg's refcnt.
	 */
	if (!batch->memcg)
4110
		batch->memcg = memcg;
4111 4112
	/*
	 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
L
Lucas De Marchi 已提交
4113
	 * In those cases, all pages freed continuously can be expected to be in
4114 4115 4116 4117 4118 4119 4120 4121
	 * the same cgroup and we have chance to coalesce uncharges.
	 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
	 * because we want to do uncharge as soon as possible.
	 */

	if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
		goto direct_uncharge;

4122
	if (nr_pages > 1)
A
Andrea Arcangeli 已提交
4123 4124
		goto direct_uncharge;

4125 4126 4127 4128 4129
	/*
	 * In typical case, batch->memcg == mem. This means we can
	 * merge a series of uncharges to an uncharge of res_counter.
	 * If not, we uncharge res_counter ony by one.
	 */
4130
	if (batch->memcg != memcg)
4131 4132
		goto direct_uncharge;
	/* remember freed charge and uncharge it later */
4133
	batch->nr_pages++;
4134
	if (uncharge_memsw)
4135
		batch->memsw_nr_pages++;
4136 4137
	return;
direct_uncharge:
4138
	res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
4139
	if (uncharge_memsw)
4140 4141 4142
		res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
	if (unlikely(batch->memcg != memcg))
		memcg_oom_recover(memcg);
4143
}
4144

4145
/*
4146
 * uncharge if !page_mapped(page)
4147
 */
4148
static struct mem_cgroup *
4149 4150
__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
			     bool end_migration)
4151
{
4152
	struct mem_cgroup *memcg = NULL;
4153 4154
	unsigned int nr_pages = 1;
	struct page_cgroup *pc;
4155
	bool anon;
4156

4157
	if (mem_cgroup_disabled())
4158
		return NULL;
4159

A
Andrea Arcangeli 已提交
4160
	if (PageTransHuge(page)) {
4161
		nr_pages <<= compound_order(page);
A
Andrea Arcangeli 已提交
4162 4163
		VM_BUG_ON(!PageTransHuge(page));
	}
4164
	/*
4165
	 * Check if our page_cgroup is valid
4166
	 */
4167
	pc = lookup_page_cgroup(page);
4168
	if (unlikely(!PageCgroupUsed(pc)))
4169
		return NULL;
4170

4171
	lock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4172

4173
	memcg = pc->mem_cgroup;
4174

K
KAMEZAWA Hiroyuki 已提交
4175 4176 4177
	if (!PageCgroupUsed(pc))
		goto unlock_out;

4178 4179
	anon = PageAnon(page);

K
KAMEZAWA Hiroyuki 已提交
4180
	switch (ctype) {
4181
	case MEM_CGROUP_CHARGE_TYPE_ANON:
4182 4183 4184 4185 4186
		/*
		 * Generally PageAnon tells if it's the anon statistics to be
		 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
		 * used before page reached the stage of being marked PageAnon.
		 */
4187 4188
		anon = true;
		/* fallthrough */
K
KAMEZAWA Hiroyuki 已提交
4189
	case MEM_CGROUP_CHARGE_TYPE_DROP:
4190
		/* See mem_cgroup_prepare_migration() */
4191 4192 4193 4194 4195 4196 4197 4198 4199 4200
		if (page_mapped(page))
			goto unlock_out;
		/*
		 * Pages under migration may not be uncharged.  But
		 * end_migration() /must/ be the one uncharging the
		 * unused post-migration page and so it has to call
		 * here with the migration bit still set.  See the
		 * res_counter handling below.
		 */
		if (!end_migration && PageCgroupMigration(pc))
K
KAMEZAWA Hiroyuki 已提交
4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211
			goto unlock_out;
		break;
	case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
		if (!PageAnon(page)) {	/* Shared memory */
			if (page->mapping && !page_is_file_cache(page))
				goto unlock_out;
		} else if (page_mapped(page)) /* Anon */
				goto unlock_out;
		break;
	default:
		break;
4212
	}
K
KAMEZAWA Hiroyuki 已提交
4213

4214
	mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
K
KAMEZAWA Hiroyuki 已提交
4215

4216
	ClearPageCgroupUsed(pc);
4217 4218 4219 4220 4221 4222
	/*
	 * pc->mem_cgroup is not cleared here. It will be accessed when it's
	 * freed from LRU. This is safe because uncharged page is expected not
	 * to be reused (freed soon). Exception is SwapCache, it's handled by
	 * special functions.
	 */
4223

4224
	unlock_page_cgroup(pc);
K
KAMEZAWA Hiroyuki 已提交
4225
	/*
4226
	 * even after unlock, we have memcg->res.usage here and this memcg
L
Li Zefan 已提交
4227
	 * will never be freed, so it's safe to call css_get().
K
KAMEZAWA Hiroyuki 已提交
4228
	 */
4229
	memcg_check_events(memcg, page);
K
KAMEZAWA Hiroyuki 已提交
4230
	if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
4231
		mem_cgroup_swap_statistics(memcg, true);
L
Li Zefan 已提交
4232
		css_get(&memcg->css);
K
KAMEZAWA Hiroyuki 已提交
4233
	}
4234 4235 4236 4237 4238 4239
	/*
	 * Migration does not charge the res_counter for the
	 * replacement page, so leave it alone when phasing out the
	 * page that is unused after the migration.
	 */
	if (!end_migration && !mem_cgroup_is_root(memcg))
4240
		mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
4241

4242
	return memcg;
K
KAMEZAWA Hiroyuki 已提交
4243 4244 4245

unlock_out:
	unlock_page_cgroup(pc);
4246
	return NULL;
4247 4248
}

4249 4250
void mem_cgroup_uncharge_page(struct page *page)
{
4251 4252 4253
	/* early check. */
	if (page_mapped(page))
		return;
4254
	VM_BUG_ON(page->mapping && !PageAnon(page));
4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266
	/*
	 * If the page is in swap cache, uncharge should be deferred
	 * to the swap path, which also properly accounts swap usage
	 * and handles memcg lifetime.
	 *
	 * Note that this check is not stable and reclaim may add the
	 * page to swap cache at any time after this.  However, if the
	 * page is not in swap cache by the time page->mapcount hits
	 * 0, there won't be any page table references to the swap
	 * slot, and reclaim will free it and not actually write the
	 * page to disk.
	 */
4267 4268
	if (PageSwapCache(page))
		return;
4269
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
4270 4271 4272 4273 4274
}

void mem_cgroup_uncharge_cache_page(struct page *page)
{
	VM_BUG_ON(page_mapped(page));
4275
	VM_BUG_ON(page->mapping);
4276
	__mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
4277 4278
}

4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292
/*
 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
 * In that cases, pages are freed continuously and we can expect pages
 * are in the same memcg. All these calls itself limits the number of
 * pages freed at once, then uncharge_start/end() is called properly.
 * This may be called prural(2) times in a context,
 */

void mem_cgroup_uncharge_start(void)
{
	current->memcg_batch.do_batch++;
	/* We can do nest. */
	if (current->memcg_batch.do_batch == 1) {
		current->memcg_batch.memcg = NULL;
4293 4294
		current->memcg_batch.nr_pages = 0;
		current->memcg_batch.memsw_nr_pages = 0;
4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314
	}
}

void mem_cgroup_uncharge_end(void)
{
	struct memcg_batch_info *batch = &current->memcg_batch;

	if (!batch->do_batch)
		return;

	batch->do_batch--;
	if (batch->do_batch) /* If stacked, do nothing. */
		return;

	if (!batch->memcg)
		return;
	/*
	 * This "batch->memcg" is valid without any css_get/put etc...
	 * bacause we hide charges behind us.
	 */
4315 4316 4317 4318 4319 4320
	if (batch->nr_pages)
		res_counter_uncharge(&batch->memcg->res,
				     batch->nr_pages * PAGE_SIZE);
	if (batch->memsw_nr_pages)
		res_counter_uncharge(&batch->memcg->memsw,
				     batch->memsw_nr_pages * PAGE_SIZE);
4321
	memcg_oom_recover(batch->memcg);
4322 4323 4324 4325
	/* forget this pointer (for sanity check) */
	batch->memcg = NULL;
}

4326
#ifdef CONFIG_SWAP
4327
/*
4328
 * called after __delete_from_swap_cache() and drop "page" account.
4329 4330
 * memcg information is recorded to swap_cgroup of "ent"
 */
K
KAMEZAWA Hiroyuki 已提交
4331 4332
void
mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
4333 4334
{
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
4335 4336 4337 4338 4339
	int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;

	if (!swapout) /* this was a swap cache but the swap is unused ! */
		ctype = MEM_CGROUP_CHARGE_TYPE_DROP;

4340
	memcg = __mem_cgroup_uncharge_common(page, ctype, false);
4341

K
KAMEZAWA Hiroyuki 已提交
4342 4343
	/*
	 * record memcg information,  if swapout && memcg != NULL,
L
Li Zefan 已提交
4344
	 * css_get() was called in uncharge().
K
KAMEZAWA Hiroyuki 已提交
4345 4346
	 */
	if (do_swap_account && swapout && memcg)
4347
		swap_cgroup_record(ent, css_id(&memcg->css));
4348
}
4349
#endif
4350

A
Andrew Morton 已提交
4351
#ifdef CONFIG_MEMCG_SWAP
4352 4353 4354 4355 4356
/*
 * called from swap_entry_free(). remove record in swap_cgroup and
 * uncharge "memsw" account.
 */
void mem_cgroup_uncharge_swap(swp_entry_t ent)
K
KAMEZAWA Hiroyuki 已提交
4357
{
4358
	struct mem_cgroup *memcg;
4359
	unsigned short id;
4360 4361 4362 4363

	if (!do_swap_account)
		return;

4364 4365 4366
	id = swap_cgroup_record(ent, 0);
	rcu_read_lock();
	memcg = mem_cgroup_lookup(id);
4367
	if (memcg) {
4368 4369 4370 4371
		/*
		 * We uncharge this because swap is freed.
		 * This memcg can be obsolete one. We avoid calling css_tryget
		 */
4372
		if (!mem_cgroup_is_root(memcg))
4373
			res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
4374
		mem_cgroup_swap_statistics(memcg, false);
L
Li Zefan 已提交
4375
		css_put(&memcg->css);
4376
	}
4377
	rcu_read_unlock();
K
KAMEZAWA Hiroyuki 已提交
4378
}
4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394

/**
 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
 * @entry: swap entry to be moved
 * @from:  mem_cgroup which the entry is moved from
 * @to:  mem_cgroup which the entry is moved to
 *
 * It succeeds only when the swap_cgroup's record for this entry is the same
 * as the mem_cgroup's id of @from.
 *
 * Returns 0 on success, -EINVAL on failure.
 *
 * The caller must have charged to @to, IOW, called res_counter_charge() about
 * both res and memsw, and called css_get().
 */
static int mem_cgroup_move_swap_account(swp_entry_t entry,
4395
				struct mem_cgroup *from, struct mem_cgroup *to)
4396 4397 4398 4399 4400 4401 4402 4403
{
	unsigned short old_id, new_id;

	old_id = css_id(&from->css);
	new_id = css_id(&to->css);

	if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
		mem_cgroup_swap_statistics(from, false);
4404
		mem_cgroup_swap_statistics(to, true);
4405
		/*
4406 4407 4408
		 * This function is only called from task migration context now.
		 * It postpones res_counter and refcount handling till the end
		 * of task migration(mem_cgroup_clear_mc()) for performance
L
Li Zefan 已提交
4409 4410 4411 4412 4413 4414
		 * improvement. But we cannot postpone css_get(to)  because if
		 * the process that has been moved to @to does swap-in, the
		 * refcount of @to might be decreased to 0.
		 *
		 * We are in attach() phase, so the cgroup is guaranteed to be
		 * alive, so we can just call css_get().
4415
		 */
L
Li Zefan 已提交
4416
		css_get(&to->css);
4417 4418 4419 4420 4421 4422
		return 0;
	}
	return -EINVAL;
}
#else
static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
4423
				struct mem_cgroup *from, struct mem_cgroup *to)
4424 4425 4426
{
	return -EINVAL;
}
4427
#endif
K
KAMEZAWA Hiroyuki 已提交
4428

4429
/*
4430 4431
 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
 * page belongs to.
4432
 */
4433 4434
void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
				  struct mem_cgroup **memcgp)
4435
{
4436
	struct mem_cgroup *memcg = NULL;
4437
	unsigned int nr_pages = 1;
4438
	struct page_cgroup *pc;
4439
	enum charge_type ctype;
4440

4441
	*memcgp = NULL;
4442

4443
	if (mem_cgroup_disabled())
4444
		return;
4445

4446 4447 4448
	if (PageTransHuge(page))
		nr_pages <<= compound_order(page);

4449 4450 4451
	pc = lookup_page_cgroup(page);
	lock_page_cgroup(pc);
	if (PageCgroupUsed(pc)) {
4452 4453
		memcg = pc->mem_cgroup;
		css_get(&memcg->css);
4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484
		/*
		 * At migrating an anonymous page, its mapcount goes down
		 * to 0 and uncharge() will be called. But, even if it's fully
		 * unmapped, migration may fail and this page has to be
		 * charged again. We set MIGRATION flag here and delay uncharge
		 * until end_migration() is called
		 *
		 * Corner Case Thinking
		 * A)
		 * When the old page was mapped as Anon and it's unmap-and-freed
		 * while migration was ongoing.
		 * If unmap finds the old page, uncharge() of it will be delayed
		 * until end_migration(). If unmap finds a new page, it's
		 * uncharged when it make mapcount to be 1->0. If unmap code
		 * finds swap_migration_entry, the new page will not be mapped
		 * and end_migration() will find it(mapcount==0).
		 *
		 * B)
		 * When the old page was mapped but migraion fails, the kernel
		 * remaps it. A charge for it is kept by MIGRATION flag even
		 * if mapcount goes down to 0. We can do remap successfully
		 * without charging it again.
		 *
		 * C)
		 * The "old" page is under lock_page() until the end of
		 * migration, so, the old page itself will not be swapped-out.
		 * If the new page is swapped out before end_migraton, our
		 * hook to usual swap-out path will catch the event.
		 */
		if (PageAnon(page))
			SetPageCgroupMigration(pc);
4485
	}
4486
	unlock_page_cgroup(pc);
4487 4488 4489 4490
	/*
	 * If the page is not charged at this point,
	 * we return here.
	 */
4491
	if (!memcg)
4492
		return;
4493

4494
	*memcgp = memcg;
4495 4496 4497 4498 4499 4500 4501
	/*
	 * We charge new page before it's used/mapped. So, even if unlock_page()
	 * is called before end_migration, we can catch all events on this new
	 * page. In the case new page is migrated but not remapped, new page's
	 * mapcount will be finally 0 and we call uncharge in end_migration().
	 */
	if (PageAnon(page))
4502
		ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
4503
	else
4504
		ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
4505 4506 4507 4508 4509
	/*
	 * The page is committed to the memcg, but it's not actually
	 * charged to the res_counter since we plan on replacing the
	 * old one and only one page is going to be left afterwards.
	 */
4510
	__mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
4511
}
4512

4513
/* remove redundant charge if migration failed*/
4514
void mem_cgroup_end_migration(struct mem_cgroup *memcg,
4515
	struct page *oldpage, struct page *newpage, bool migration_ok)
4516
{
4517
	struct page *used, *unused;
4518
	struct page_cgroup *pc;
4519
	bool anon;
4520

4521
	if (!memcg)
4522
		return;
4523

4524
	if (!migration_ok) {
4525 4526
		used = oldpage;
		unused = newpage;
4527
	} else {
4528
		used = newpage;
4529 4530
		unused = oldpage;
	}
4531
	anon = PageAnon(used);
4532 4533 4534 4535
	__mem_cgroup_uncharge_common(unused,
				     anon ? MEM_CGROUP_CHARGE_TYPE_ANON
				     : MEM_CGROUP_CHARGE_TYPE_CACHE,
				     true);
4536
	css_put(&memcg->css);
4537
	/*
4538 4539 4540
	 * We disallowed uncharge of pages under migration because mapcount
	 * of the page goes down to zero, temporarly.
	 * Clear the flag and check the page should be charged.
4541
	 */
4542 4543 4544 4545 4546
	pc = lookup_page_cgroup(oldpage);
	lock_page_cgroup(pc);
	ClearPageCgroupMigration(pc);
	unlock_page_cgroup(pc);

4547
	/*
4548 4549 4550 4551 4552 4553
	 * If a page is a file cache, radix-tree replacement is very atomic
	 * and we can skip this check. When it was an Anon page, its mapcount
	 * goes down to 0. But because we added MIGRATION flage, it's not
	 * uncharged yet. There are several case but page->mapcount check
	 * and USED bit check in mem_cgroup_uncharge_page() will do enough
	 * check. (see prepare_charge() also)
4554
	 */
4555
	if (anon)
4556
		mem_cgroup_uncharge_page(used);
4557
}
4558

4559 4560 4561 4562 4563 4564 4565 4566
/*
 * At replace page cache, newpage is not under any memcg but it's on
 * LRU. So, this function doesn't touch res_counter but handles LRU
 * in correct way. Both pages are locked so we cannot race with uncharge.
 */
void mem_cgroup_replace_page_cache(struct page *oldpage,
				  struct page *newpage)
{
4567
	struct mem_cgroup *memcg = NULL;
4568 4569 4570 4571 4572 4573 4574 4575 4576
	struct page_cgroup *pc;
	enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;

	if (mem_cgroup_disabled())
		return;

	pc = lookup_page_cgroup(oldpage);
	/* fix accounting on old pages */
	lock_page_cgroup(pc);
4577 4578
	if (PageCgroupUsed(pc)) {
		memcg = pc->mem_cgroup;
4579
		mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
4580 4581
		ClearPageCgroupUsed(pc);
	}
4582 4583
	unlock_page_cgroup(pc);

4584 4585 4586 4587 4588 4589
	/*
	 * When called from shmem_replace_page(), in some cases the
	 * oldpage has already been charged, and in some cases not.
	 */
	if (!memcg)
		return;
4590 4591 4592 4593 4594
	/*
	 * Even if newpage->mapping was NULL before starting replacement,
	 * the newpage may be on LRU(or pagevec for LRU) already. We lock
	 * LRU while we overwrite pc->mem_cgroup.
	 */
4595
	__mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
4596 4597
}

4598 4599 4600 4601 4602 4603
#ifdef CONFIG_DEBUG_VM
static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup(page);
4604 4605 4606 4607 4608
	/*
	 * Can be NULL while feeding pages into the page allocator for
	 * the first time, i.e. during boot or memory hotplug;
	 * or when mem_cgroup_disabled().
	 */
4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627
	if (likely(pc) && PageCgroupUsed(pc))
		return pc;
	return NULL;
}

bool mem_cgroup_bad_page_check(struct page *page)
{
	if (mem_cgroup_disabled())
		return false;

	return lookup_page_cgroup_used(page) != NULL;
}

void mem_cgroup_print_bad_page(struct page *page)
{
	struct page_cgroup *pc;

	pc = lookup_page_cgroup_used(page);
	if (pc) {
4628 4629
		pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
			 pc, pc->flags, pc->mem_cgroup);
4630 4631 4632 4633
	}
}
#endif

4634
static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
4635
				unsigned long long val)
4636
{
4637
	int retry_count;
4638
	u64 memswlimit, memlimit;
4639
	int ret = 0;
4640 4641
	int children = mem_cgroup_count_children(memcg);
	u64 curusage, oldusage;
4642
	int enlarge;
4643 4644 4645 4646 4647 4648 4649 4650 4651

	/*
	 * For keeping hierarchical_reclaim simple, how long we should retry
	 * is depends on callers. We set our retry-count to be function
	 * of # of children which we should visit in this loop.
	 */
	retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;

	oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4652

4653
	enlarge = 0;
4654
	while (retry_count) {
4655 4656 4657 4658
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
4659 4660 4661
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4662
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4663 4664 4665 4666 4667 4668
		 */
		mutex_lock(&set_limit_mutex);
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
4669 4670
			break;
		}
4671 4672 4673 4674 4675

		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit < val)
			enlarge = 1;

4676
		ret = res_counter_set_limit(&memcg->res, val);
4677 4678 4679 4680 4681 4682
		if (!ret) {
			if (memswlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4683 4684 4685 4686 4687
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4688 4689
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_SHRINK);
4690 4691
		curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
		/* Usage is reduced ? */
A
Andrew Morton 已提交
4692
		if (curusage >= oldusage)
4693 4694 4695
			retry_count--;
		else
			oldusage = curusage;
4696
	}
4697 4698
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4699

4700 4701 4702
	return ret;
}

L
Li Zefan 已提交
4703 4704
static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
					unsigned long long val)
4705
{
4706
	int retry_count;
4707
	u64 memlimit, memswlimit, oldusage, curusage;
4708 4709
	int children = mem_cgroup_count_children(memcg);
	int ret = -EBUSY;
4710
	int enlarge = 0;
4711

4712
	/* see mem_cgroup_resize_res_limit */
A
Andrew Morton 已提交
4713
	retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4714
	oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4715 4716 4717 4718 4719 4720 4721 4722
	while (retry_count) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		/*
		 * Rather than hide all in some function, I do this in
		 * open coded manner. You see what this really does.
4723
		 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
4724 4725 4726 4727 4728 4729 4730 4731
		 */
		mutex_lock(&set_limit_mutex);
		memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
		if (memlimit > val) {
			ret = -EINVAL;
			mutex_unlock(&set_limit_mutex);
			break;
		}
4732 4733 4734
		memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		if (memswlimit < val)
			enlarge = 1;
4735
		ret = res_counter_set_limit(&memcg->memsw, val);
4736 4737 4738 4739 4740 4741
		if (!ret) {
			if (memlimit == val)
				memcg->memsw_is_minimum = true;
			else
				memcg->memsw_is_minimum = false;
		}
4742 4743 4744 4745 4746
		mutex_unlock(&set_limit_mutex);

		if (!ret)
			break;

4747 4748 4749
		mem_cgroup_reclaim(memcg, GFP_KERNEL,
				   MEM_CGROUP_RECLAIM_NOSWAP |
				   MEM_CGROUP_RECLAIM_SHRINK);
4750
		curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
4751
		/* Usage is reduced ? */
4752
		if (curusage >= oldusage)
4753
			retry_count--;
4754 4755
		else
			oldusage = curusage;
4756
	}
4757 4758
	if (!ret && enlarge)
		memcg_oom_recover(memcg);
4759 4760 4761
	return ret;
}

4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853
unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
					    gfp_t gfp_mask,
					    unsigned long *total_scanned)
{
	unsigned long nr_reclaimed = 0;
	struct mem_cgroup_per_zone *mz, *next_mz = NULL;
	unsigned long reclaimed;
	int loop = 0;
	struct mem_cgroup_tree_per_zone *mctz;
	unsigned long long excess;
	unsigned long nr_scanned;

	if (order > 0)
		return 0;

	mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
	/*
	 * This loop can run a while, specially if mem_cgroup's continuously
	 * keep exceeding their soft limit and putting the system under
	 * pressure
	 */
	do {
		if (next_mz)
			mz = next_mz;
		else
			mz = mem_cgroup_largest_soft_limit_node(mctz);
		if (!mz)
			break;

		nr_scanned = 0;
		reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
						    gfp_mask, &nr_scanned);
		nr_reclaimed += reclaimed;
		*total_scanned += nr_scanned;
		spin_lock(&mctz->lock);

		/*
		 * If we failed to reclaim anything from this memory cgroup
		 * it is time to move on to the next cgroup
		 */
		next_mz = NULL;
		if (!reclaimed) {
			do {
				/*
				 * Loop until we find yet another one.
				 *
				 * By the time we get the soft_limit lock
				 * again, someone might have aded the
				 * group back on the RB tree. Iterate to
				 * make sure we get a different mem.
				 * mem_cgroup_largest_soft_limit_node returns
				 * NULL if no other cgroup is present on
				 * the tree
				 */
				next_mz =
				__mem_cgroup_largest_soft_limit_node(mctz);
				if (next_mz == mz)
					css_put(&next_mz->memcg->css);
				else /* next_mz == NULL or other memcg */
					break;
			} while (1);
		}
		__mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
		excess = res_counter_soft_limit_excess(&mz->memcg->res);
		/*
		 * One school of thought says that we should not add
		 * back the node to the tree if reclaim returns 0.
		 * But our reclaim could return 0, simply because due
		 * to priority we are exposing a smaller subset of
		 * memory to reclaim from. Consider this as a longer
		 * term TODO.
		 */
		/* If excess == 0, no tree ops */
		__mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
		spin_unlock(&mctz->lock);
		css_put(&mz->memcg->css);
		loop++;
		/*
		 * Could not reclaim anything and there are no more
		 * mem cgroups to try or we seem to be looping without
		 * reclaiming anything.
		 */
		if (!nr_reclaimed &&
			(next_mz == NULL ||
			loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
			break;
	} while (!nr_reclaimed);
	if (next_mz)
		css_put(&next_mz->memcg->css);
	return nr_reclaimed;
}

4854 4855 4856 4857 4858 4859 4860
/**
 * mem_cgroup_force_empty_list - clears LRU of a group
 * @memcg: group to clear
 * @node: NUMA node
 * @zid: zone id
 * @lru: lru to to clear
 *
4861
 * Traverse a specified page_cgroup list and try to drop them all.  This doesn't
4862 4863
 * reclaim the pages page themselves - pages are moved to the parent (or root)
 * group.
4864
 */
4865
static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
K
KAMEZAWA Hiroyuki 已提交
4866
				int node, int zid, enum lru_list lru)
4867
{
4868
	struct lruvec *lruvec;
4869
	unsigned long flags;
4870
	struct list_head *list;
4871 4872
	struct page *busy;
	struct zone *zone;
4873

K
KAMEZAWA Hiroyuki 已提交
4874
	zone = &NODE_DATA(node)->node_zones[zid];
4875 4876
	lruvec = mem_cgroup_zone_lruvec(zone, memcg);
	list = &lruvec->lists[lru];
4877

4878
	busy = NULL;
4879
	do {
4880
		struct page_cgroup *pc;
4881 4882
		struct page *page;

K
KAMEZAWA Hiroyuki 已提交
4883
		spin_lock_irqsave(&zone->lru_lock, flags);
4884
		if (list_empty(list)) {
K
KAMEZAWA Hiroyuki 已提交
4885
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4886
			break;
4887
		}
4888 4889 4890
		page = list_entry(list->prev, struct page, lru);
		if (busy == page) {
			list_move(&page->lru, list);
4891
			busy = NULL;
K
KAMEZAWA Hiroyuki 已提交
4892
			spin_unlock_irqrestore(&zone->lru_lock, flags);
4893 4894
			continue;
		}
K
KAMEZAWA Hiroyuki 已提交
4895
		spin_unlock_irqrestore(&zone->lru_lock, flags);
4896

4897
		pc = lookup_page_cgroup(page);
4898

4899
		if (mem_cgroup_move_parent(page, pc, memcg)) {
4900
			/* found lock contention or "pc" is obsolete. */
4901
			busy = page;
4902 4903 4904
			cond_resched();
		} else
			busy = NULL;
4905
	} while (!list_empty(list));
4906 4907 4908
}

/*
4909 4910
 * make mem_cgroup's charge to be 0 if there is no task by moving
 * all the charges and pages to the parent.
4911
 * This enables deleting this mem_cgroup.
4912 4913
 *
 * Caller is responsible for holding css reference on the memcg.
4914
 */
4915
static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
4916
{
4917
	int node, zid;
4918
	u64 usage;
4919

4920
	do {
4921 4922
		/* This is for making all *used* pages to be on LRU. */
		lru_add_drain_all();
4923 4924
		drain_all_stock_sync(memcg);
		mem_cgroup_start_move(memcg);
4925
		for_each_node_state(node, N_MEMORY) {
4926
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
H
Hugh Dickins 已提交
4927 4928
				enum lru_list lru;
				for_each_lru(lru) {
4929
					mem_cgroup_force_empty_list(memcg,
H
Hugh Dickins 已提交
4930
							node, zid, lru);
4931
				}
4932
			}
4933
		}
4934 4935
		mem_cgroup_end_move(memcg);
		memcg_oom_recover(memcg);
4936
		cond_resched();
4937

4938
		/*
4939 4940 4941 4942 4943
		 * Kernel memory may not necessarily be trackable to a specific
		 * process. So they are not migrated, and therefore we can't
		 * expect their value to drop to 0 here.
		 * Having res filled up with kmem only is enough.
		 *
4944 4945 4946 4947 4948 4949
		 * This is a safety check because mem_cgroup_force_empty_list
		 * could have raced with mem_cgroup_replace_page_cache callers
		 * so the lru seemed empty but the page could have been added
		 * right after the check. RES_USAGE should be safe as we always
		 * charge before adding to the LRU.
		 */
4950 4951 4952
		usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
			res_counter_read_u64(&memcg->kmem, RES_USAGE);
	} while (usage > 0);
4953 4954
}

4955 4956
static inline bool memcg_has_children(struct mem_cgroup *memcg)
{
4957 4958 4959 4960 4961 4962 4963 4964 4965 4966
	lockdep_assert_held(&memcg_create_mutex);
	/*
	 * The lock does not prevent addition or deletion to the list
	 * of children, but it prevents a new child from being
	 * initialized based on this parent in css_online(), so it's
	 * enough to decide whether hierarchically inherited
	 * attributes can still be changed or not.
	 */
	return memcg->use_hierarchy &&
		!list_empty(&memcg->css.cgroup->children);
4967 4968
}

4969 4970 4971 4972 4973 4974 4975 4976 4977 4978
/*
 * Reclaims as many pages from the given memcg as possible and moves
 * the rest to the parent.
 *
 * Caller is responsible for holding css reference for memcg.
 */
static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
{
	int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
	struct cgroup *cgrp = memcg->css.cgroup;
4979

4980
	/* returns EBUSY if there is a task or if we come here twice. */
4981 4982 4983
	if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
		return -EBUSY;

4984 4985
	/* we call try-to-free pages for make this cgroup empty */
	lru_add_drain_all();
4986
	/* try to free all pages in this cgroup */
4987
	while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
4988
		int progress;
4989

4990 4991 4992
		if (signal_pending(current))
			return -EINTR;

4993
		progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
4994
						false);
4995
		if (!progress) {
4996
			nr_retries--;
4997
			/* maybe some writeback is necessary */
4998
			congestion_wait(BLK_RW_ASYNC, HZ/10);
4999
		}
5000 5001

	}
K
KAMEZAWA Hiroyuki 已提交
5002
	lru_add_drain();
5003 5004 5005
	mem_cgroup_reparent_charges(memcg);

	return 0;
5006 5007
}

5008 5009
static int mem_cgroup_force_empty_write(struct cgroup_subsys_state *css,
					unsigned int event)
5010
{
5011
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5012

5013 5014
	if (mem_cgroup_is_root(memcg))
		return -EINVAL;
5015
	return mem_cgroup_force_empty(memcg);
5016 5017
}

5018 5019
static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
				     struct cftype *cft)
5020
{
5021
	return mem_cgroup_from_css(css)->use_hierarchy;
5022 5023
}

5024 5025
static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
				      struct cftype *cft, u64 val)
5026 5027
{
	int retval = 0;
5028
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5029
	struct mem_cgroup *parent_memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5030

5031
	mutex_lock(&memcg_create_mutex);
5032 5033 5034 5035

	if (memcg->use_hierarchy == val)
		goto out;

5036
	/*
5037
	 * If parent's use_hierarchy is set, we can't make any modifications
5038 5039 5040 5041 5042 5043
	 * in the child subtrees. If it is unset, then the change can
	 * occur, provided the current cgroup has no children.
	 *
	 * For the root cgroup, parent_mem is NULL, we allow value to be
	 * set if there are no children.
	 */
5044
	if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
5045
				(val == 1 || val == 0)) {
5046
		if (list_empty(&memcg->css.cgroup->children))
5047
			memcg->use_hierarchy = val;
5048 5049 5050 5051
		else
			retval = -EBUSY;
	} else
		retval = -EINVAL;
5052 5053

out:
5054
	mutex_unlock(&memcg_create_mutex);
5055 5056 5057 5058

	return retval;
}

5059

5060
static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
5061
					       enum mem_cgroup_stat_index idx)
5062
{
K
KAMEZAWA Hiroyuki 已提交
5063
	struct mem_cgroup *iter;
5064
	long val = 0;
5065

5066
	/* Per-cpu values can be negative, use a signed accumulator */
5067
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5068 5069 5070 5071 5072
		val += mem_cgroup_read_stat(iter, idx);

	if (val < 0) /* race ? */
		val = 0;
	return val;
5073 5074
}

5075
static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
5076
{
K
KAMEZAWA Hiroyuki 已提交
5077
	u64 val;
5078

5079
	if (!mem_cgroup_is_root(memcg)) {
5080
		if (!swap)
5081
			return res_counter_read_u64(&memcg->res, RES_USAGE);
5082
		else
5083
			return res_counter_read_u64(&memcg->memsw, RES_USAGE);
5084 5085
	}

5086 5087 5088 5089
	/*
	 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
	 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
	 */
5090 5091
	val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
	val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
5092

K
KAMEZAWA Hiroyuki 已提交
5093
	if (swap)
5094
		val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
5095 5096 5097 5098

	return val << PAGE_SHIFT;
}

5099 5100 5101
static ssize_t mem_cgroup_read(struct cgroup_subsys_state *css,
			       struct cftype *cft, struct file *file,
			       char __user *buf, size_t nbytes, loff_t *ppos)
B
Balbir Singh 已提交
5102
{
5103
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5104
	char str[64];
5105
	u64 val;
G
Glauber Costa 已提交
5106 5107
	int name, len;
	enum res_type type;
5108 5109 5110

	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5111

5112 5113
	switch (type) {
	case _MEM:
5114
		if (name == RES_USAGE)
5115
			val = mem_cgroup_usage(memcg, false);
5116
		else
5117
			val = res_counter_read_u64(&memcg->res, name);
5118 5119
		break;
	case _MEMSWAP:
5120
		if (name == RES_USAGE)
5121
			val = mem_cgroup_usage(memcg, true);
5122
		else
5123
			val = res_counter_read_u64(&memcg->memsw, name);
5124
		break;
5125 5126 5127
	case _KMEM:
		val = res_counter_read_u64(&memcg->kmem, name);
		break;
5128 5129 5130
	default:
		BUG();
	}
5131 5132 5133

	len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
	return simple_read_from_buffer(buf, nbytes, ppos, str, len);
B
Balbir Singh 已提交
5134
}
5135

5136
static int memcg_update_kmem_limit(struct cgroup_subsys_state *css, u64 val)
5137 5138 5139
{
	int ret = -EINVAL;
#ifdef CONFIG_MEMCG_KMEM
5140
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152
	/*
	 * For simplicity, we won't allow this to be disabled.  It also can't
	 * be changed if the cgroup has children already, or if tasks had
	 * already joined.
	 *
	 * If tasks join before we set the limit, a person looking at
	 * kmem.usage_in_bytes will have no way to determine when it took
	 * place, which makes the value quite meaningless.
	 *
	 * After it first became limited, changes in the value of the limit are
	 * of course permitted.
	 */
5153
	mutex_lock(&memcg_create_mutex);
5154
	mutex_lock(&set_limit_mutex);
5155
	if (!memcg->kmem_account_flags && val != RES_COUNTER_MAX) {
5156
		if (cgroup_task_count(css->cgroup) || memcg_has_children(memcg)) {
5157 5158 5159 5160 5161 5162
			ret = -EBUSY;
			goto out;
		}
		ret = res_counter_set_limit(&memcg->kmem, val);
		VM_BUG_ON(ret);

5163 5164
		ret = memcg_update_cache_sizes(memcg);
		if (ret) {
5165
			res_counter_set_limit(&memcg->kmem, RES_COUNTER_MAX);
5166 5167
			goto out;
		}
5168 5169 5170 5171 5172 5173
		static_key_slow_inc(&memcg_kmem_enabled_key);
		/*
		 * setting the active bit after the inc will guarantee no one
		 * starts accounting before all call sites are patched
		 */
		memcg_kmem_set_active(memcg);
5174 5175 5176 5177
	} else
		ret = res_counter_set_limit(&memcg->kmem, val);
out:
	mutex_unlock(&set_limit_mutex);
5178
	mutex_unlock(&memcg_create_mutex);
5179 5180 5181 5182
#endif
	return ret;
}

5183
#ifdef CONFIG_MEMCG_KMEM
5184
static int memcg_propagate_kmem(struct mem_cgroup *memcg)
5185
{
5186
	int ret = 0;
5187 5188
	struct mem_cgroup *parent = parent_mem_cgroup(memcg);
	if (!parent)
5189 5190
		goto out;

5191
	memcg->kmem_account_flags = parent->kmem_account_flags;
5192 5193 5194 5195 5196 5197 5198 5199 5200 5201
	/*
	 * When that happen, we need to disable the static branch only on those
	 * memcgs that enabled it. To achieve this, we would be forced to
	 * complicate the code by keeping track of which memcgs were the ones
	 * that actually enabled limits, and which ones got it from its
	 * parents.
	 *
	 * It is a lot simpler just to do static_key_slow_inc() on every child
	 * that is accounted.
	 */
5202 5203 5204 5205
	if (!memcg_kmem_is_active(memcg))
		goto out;

	/*
5206 5207 5208
	 * __mem_cgroup_free() will issue static_key_slow_dec() because this
	 * memcg is active already. If the later initialization fails then the
	 * cgroup core triggers the cleanup so we do not have to do it here.
5209 5210 5211 5212
	 */
	static_key_slow_inc(&memcg_kmem_enabled_key);

	mutex_lock(&set_limit_mutex);
5213
	memcg_stop_kmem_account();
5214
	ret = memcg_update_cache_sizes(memcg);
5215
	memcg_resume_kmem_account();
5216 5217 5218
	mutex_unlock(&set_limit_mutex);
out:
	return ret;
5219
}
5220
#endif /* CONFIG_MEMCG_KMEM */
5221

5222 5223 5224 5225
/*
 * The user of this function is...
 * RES_LIMIT.
 */
5226
static int mem_cgroup_write(struct cgroup_subsys_state *css, struct cftype *cft,
5227
			    const char *buffer)
B
Balbir Singh 已提交
5228
{
5229
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5230 5231
	enum res_type type;
	int name;
5232 5233 5234
	unsigned long long val;
	int ret;

5235 5236
	type = MEMFILE_TYPE(cft->private);
	name = MEMFILE_ATTR(cft->private);
5237

5238
	switch (name) {
5239
	case RES_LIMIT:
5240 5241 5242 5243
		if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
			ret = -EINVAL;
			break;
		}
5244 5245
		/* This function does all necessary parse...reuse it */
		ret = res_counter_memparse_write_strategy(buffer, &val);
5246 5247 5248
		if (ret)
			break;
		if (type == _MEM)
5249
			ret = mem_cgroup_resize_limit(memcg, val);
5250
		else if (type == _MEMSWAP)
5251
			ret = mem_cgroup_resize_memsw_limit(memcg, val);
5252
		else if (type == _KMEM)
5253
			ret = memcg_update_kmem_limit(css, val);
5254 5255
		else
			return -EINVAL;
5256
		break;
5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270
	case RES_SOFT_LIMIT:
		ret = res_counter_memparse_write_strategy(buffer, &val);
		if (ret)
			break;
		/*
		 * For memsw, soft limits are hard to implement in terms
		 * of semantics, for now, we support soft limits for
		 * control without swap
		 */
		if (type == _MEM)
			ret = res_counter_set_soft_limit(&memcg->res, val);
		else
			ret = -EINVAL;
		break;
5271 5272 5273 5274 5275
	default:
		ret = -EINVAL; /* should be BUG() ? */
		break;
	}
	return ret;
B
Balbir Singh 已提交
5276 5277
}

5278 5279 5280 5281 5282 5283 5284 5285 5286 5287
static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
		unsigned long long *mem_limit, unsigned long long *memsw_limit)
{
	unsigned long long min_limit, min_memsw_limit, tmp;

	min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
	min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
	if (!memcg->use_hierarchy)
		goto out;

T
Tejun Heo 已提交
5288 5289
	while (css_parent(&memcg->css)) {
		memcg = mem_cgroup_from_css(css_parent(&memcg->css));
5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301
		if (!memcg->use_hierarchy)
			break;
		tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
		min_limit = min(min_limit, tmp);
		tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
		min_memsw_limit = min(min_memsw_limit, tmp);
	}
out:
	*mem_limit = min_limit;
	*memsw_limit = min_memsw_limit;
}

5302
static int mem_cgroup_reset(struct cgroup_subsys_state *css, unsigned int event)
5303
{
5304
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
G
Glauber Costa 已提交
5305 5306
	int name;
	enum res_type type;
5307

5308 5309
	type = MEMFILE_TYPE(event);
	name = MEMFILE_ATTR(event);
5310

5311
	switch (name) {
5312
	case RES_MAX_USAGE:
5313
		if (type == _MEM)
5314
			res_counter_reset_max(&memcg->res);
5315
		else if (type == _MEMSWAP)
5316
			res_counter_reset_max(&memcg->memsw);
5317 5318 5319 5320
		else if (type == _KMEM)
			res_counter_reset_max(&memcg->kmem);
		else
			return -EINVAL;
5321 5322
		break;
	case RES_FAILCNT:
5323
		if (type == _MEM)
5324
			res_counter_reset_failcnt(&memcg->res);
5325
		else if (type == _MEMSWAP)
5326
			res_counter_reset_failcnt(&memcg->memsw);
5327 5328 5329 5330
		else if (type == _KMEM)
			res_counter_reset_failcnt(&memcg->kmem);
		else
			return -EINVAL;
5331 5332
		break;
	}
5333

5334
	return 0;
5335 5336
}

5337
static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
5338 5339
					struct cftype *cft)
{
5340
	return mem_cgroup_from_css(css)->move_charge_at_immigrate;
5341 5342
}

5343
#ifdef CONFIG_MMU
5344
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5345 5346
					struct cftype *cft, u64 val)
{
5347
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5348 5349 5350

	if (val >= (1 << NR_MOVE_TYPE))
		return -EINVAL;
5351

5352
	/*
5353 5354 5355 5356
	 * No kind of locking is needed in here, because ->can_attach() will
	 * check this value once in the beginning of the process, and then carry
	 * on with stale data. This means that changes to this value will only
	 * affect task migrations starting after the change.
5357
	 */
5358
	memcg->move_charge_at_immigrate = val;
5359 5360
	return 0;
}
5361
#else
5362
static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
5363 5364 5365 5366 5367
					struct cftype *cft, u64 val)
{
	return -ENOSYS;
}
#endif
5368

5369
#ifdef CONFIG_NUMA
5370 5371
static int memcg_numa_stat_show(struct cgroup_subsys_state *css,
				struct cftype *cft, struct seq_file *m)
5372
{
5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384
	struct numa_stat {
		const char *name;
		unsigned int lru_mask;
	};

	static const struct numa_stat stats[] = {
		{ "total", LRU_ALL },
		{ "file", LRU_ALL_FILE },
		{ "anon", LRU_ALL_ANON },
		{ "unevictable", BIT(LRU_UNEVICTABLE) },
	};
	const struct numa_stat *stat;
5385
	int nid;
5386
	unsigned long nr;
5387
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5388

5389 5390 5391 5392 5393 5394 5395 5396 5397
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
		seq_printf(m, "%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
							  stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
5398 5399
	}

5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416
	for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
		struct mem_cgroup *iter;

		nr = 0;
		for_each_mem_cgroup_tree(iter, memcg)
			nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
		seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
		for_each_node_state(nid, N_MEMORY) {
			nr = 0;
			for_each_mem_cgroup_tree(iter, memcg)
				nr += mem_cgroup_node_nr_lru_pages(
					iter, nid, stat->lru_mask);
			seq_printf(m, " N%d=%lu", nid, nr);
		}
		seq_putc(m, '\n');
	}

5417 5418 5419 5420
	return 0;
}
#endif /* CONFIG_NUMA */

5421 5422 5423 5424 5425
static inline void mem_cgroup_lru_names_not_uptodate(void)
{
	BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
}

5426
static int memcg_stat_show(struct cgroup_subsys_state *css, struct cftype *cft,
5427
				 struct seq_file *m)
5428
{
5429
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5430 5431
	struct mem_cgroup *mi;
	unsigned int i;
5432

5433
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5434
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5435
			continue;
5436 5437
		seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
			   mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
5438
	}
L
Lee Schermerhorn 已提交
5439

5440 5441 5442 5443 5444 5445 5446 5447
	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
			   mem_cgroup_read_events(memcg, i));

	for (i = 0; i < NR_LRU_LISTS; i++)
		seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
			   mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);

K
KAMEZAWA Hiroyuki 已提交
5448
	/* Hierarchical information */
5449 5450
	{
		unsigned long long limit, memsw_limit;
5451
		memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
5452
		seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
5453
		if (do_swap_account)
5454 5455
			seq_printf(m, "hierarchical_memsw_limit %llu\n",
				   memsw_limit);
5456
	}
K
KOSAKI Motohiro 已提交
5457

5458 5459 5460
	for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
		long long val = 0;

5461
		if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
5462
			continue;
5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482
		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
		seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
	}

	for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_read_events(mi, i);
		seq_printf(m, "total_%s %llu\n",
			   mem_cgroup_events_names[i], val);
	}

	for (i = 0; i < NR_LRU_LISTS; i++) {
		unsigned long long val = 0;

		for_each_mem_cgroup_tree(mi, memcg)
			val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
		seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
5483
	}
K
KAMEZAWA Hiroyuki 已提交
5484

K
KOSAKI Motohiro 已提交
5485 5486 5487 5488
#ifdef CONFIG_DEBUG_VM
	{
		int nid, zid;
		struct mem_cgroup_per_zone *mz;
5489
		struct zone_reclaim_stat *rstat;
K
KOSAKI Motohiro 已提交
5490 5491 5492 5493 5494
		unsigned long recent_rotated[2] = {0, 0};
		unsigned long recent_scanned[2] = {0, 0};

		for_each_online_node(nid)
			for (zid = 0; zid < MAX_NR_ZONES; zid++) {
5495
				mz = mem_cgroup_zoneinfo(memcg, nid, zid);
5496
				rstat = &mz->lruvec.reclaim_stat;
K
KOSAKI Motohiro 已提交
5497

5498 5499 5500 5501
				recent_rotated[0] += rstat->recent_rotated[0];
				recent_rotated[1] += rstat->recent_rotated[1];
				recent_scanned[0] += rstat->recent_scanned[0];
				recent_scanned[1] += rstat->recent_scanned[1];
K
KOSAKI Motohiro 已提交
5502
			}
5503 5504 5505 5506
		seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
		seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
		seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
		seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
K
KOSAKI Motohiro 已提交
5507 5508 5509
	}
#endif

5510 5511 5512
	return 0;
}

5513 5514
static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
				      struct cftype *cft)
K
KOSAKI Motohiro 已提交
5515
{
5516
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KOSAKI Motohiro 已提交
5517

5518
	return mem_cgroup_swappiness(memcg);
K
KOSAKI Motohiro 已提交
5519 5520
}

5521 5522
static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
				       struct cftype *cft, u64 val)
K
KOSAKI Motohiro 已提交
5523
{
5524
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5525
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
K
KOSAKI Motohiro 已提交
5526

T
Tejun Heo 已提交
5527
	if (val > 100 || !parent)
K
KOSAKI Motohiro 已提交
5528 5529
		return -EINVAL;

5530
	mutex_lock(&memcg_create_mutex);
5531

K
KOSAKI Motohiro 已提交
5532
	/* If under hierarchy, only empty-root can set this value */
5533
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5534
		mutex_unlock(&memcg_create_mutex);
K
KOSAKI Motohiro 已提交
5535
		return -EINVAL;
5536
	}
K
KOSAKI Motohiro 已提交
5537 5538 5539

	memcg->swappiness = val;

5540
	mutex_unlock(&memcg_create_mutex);
5541

K
KOSAKI Motohiro 已提交
5542 5543 5544
	return 0;
}

5545 5546 5547 5548 5549 5550 5551 5552
static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
{
	struct mem_cgroup_threshold_ary *t;
	u64 usage;
	int i;

	rcu_read_lock();
	if (!swap)
5553
		t = rcu_dereference(memcg->thresholds.primary);
5554
	else
5555
		t = rcu_dereference(memcg->memsw_thresholds.primary);
5556 5557 5558 5559 5560 5561 5562

	if (!t)
		goto unlock;

	usage = mem_cgroup_usage(memcg, swap);

	/*
5563
	 * current_threshold points to threshold just below or equal to usage.
5564 5565 5566
	 * If it's not true, a threshold was crossed after last
	 * call of __mem_cgroup_threshold().
	 */
5567
	i = t->current_threshold;
5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590

	/*
	 * Iterate backward over array of thresholds starting from
	 * current_threshold and check if a threshold is crossed.
	 * If none of thresholds below usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* i = current_threshold + 1 */
	i++;

	/*
	 * Iterate forward over array of thresholds starting from
	 * current_threshold+1 and check if a threshold is crossed.
	 * If none of thresholds above usage is crossed, we read
	 * only one element of the array here.
	 */
	for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
		eventfd_signal(t->entries[i].eventfd, 1);

	/* Update current_threshold */
5591
	t->current_threshold = i - 1;
5592 5593 5594 5595 5596 5597
unlock:
	rcu_read_unlock();
}

static void mem_cgroup_threshold(struct mem_cgroup *memcg)
{
5598 5599 5600 5601 5602 5603 5604
	while (memcg) {
		__mem_cgroup_threshold(memcg, false);
		if (do_swap_account)
			__mem_cgroup_threshold(memcg, true);

		memcg = parent_mem_cgroup(memcg);
	}
5605 5606 5607 5608 5609 5610 5611
}

static int compare_thresholds(const void *a, const void *b)
{
	const struct mem_cgroup_threshold *_a = a;
	const struct mem_cgroup_threshold *_b = b;

5612 5613 5614 5615 5616 5617 5618
	if (_a->threshold > _b->threshold)
		return 1;

	if (_a->threshold < _b->threshold)
		return -1;

	return 0;
5619 5620
}

5621
static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5622 5623 5624
{
	struct mem_cgroup_eventfd_list *ev;

5625
	list_for_each_entry(ev, &memcg->oom_notify, list)
K
KAMEZAWA Hiroyuki 已提交
5626 5627 5628 5629
		eventfd_signal(ev->eventfd, 1);
	return 0;
}

5630
static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
K
KAMEZAWA Hiroyuki 已提交
5631
{
K
KAMEZAWA Hiroyuki 已提交
5632 5633
	struct mem_cgroup *iter;

5634
	for_each_mem_cgroup_tree(iter, memcg)
K
KAMEZAWA Hiroyuki 已提交
5635
		mem_cgroup_oom_notify_cb(iter);
K
KAMEZAWA Hiroyuki 已提交
5636 5637
}

5638
static int mem_cgroup_usage_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5639
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5640
{
5641
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5642 5643
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5644
	enum res_type type = MEMFILE_TYPE(cft->private);
5645
	u64 threshold, usage;
5646
	int i, size, ret;
5647 5648 5649 5650 5651 5652

	ret = res_counter_memparse_write_strategy(args, &threshold);
	if (ret)
		return ret;

	mutex_lock(&memcg->thresholds_lock);
5653

5654
	if (type == _MEM)
5655
		thresholds = &memcg->thresholds;
5656
	else if (type == _MEMSWAP)
5657
		thresholds = &memcg->memsw_thresholds;
5658 5659 5660 5661 5662 5663
	else
		BUG();

	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before adding a new one */
5664
	if (thresholds->primary)
5665 5666
		__mem_cgroup_threshold(memcg, type == _MEMSWAP);

5667
	size = thresholds->primary ? thresholds->primary->size + 1 : 1;
5668 5669

	/* Allocate memory for new array of thresholds */
5670
	new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
5671
			GFP_KERNEL);
5672
	if (!new) {
5673 5674 5675
		ret = -ENOMEM;
		goto unlock;
	}
5676
	new->size = size;
5677 5678

	/* Copy thresholds (if any) to new array */
5679 5680
	if (thresholds->primary) {
		memcpy(new->entries, thresholds->primary->entries, (size - 1) *
5681
				sizeof(struct mem_cgroup_threshold));
5682 5683
	}

5684
	/* Add new threshold */
5685 5686
	new->entries[size - 1].eventfd = eventfd;
	new->entries[size - 1].threshold = threshold;
5687 5688

	/* Sort thresholds. Registering of new threshold isn't time-critical */
5689
	sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
5690 5691 5692
			compare_thresholds, NULL);

	/* Find current threshold */
5693
	new->current_threshold = -1;
5694
	for (i = 0; i < size; i++) {
5695
		if (new->entries[i].threshold <= usage) {
5696
			/*
5697 5698
			 * new->current_threshold will not be used until
			 * rcu_assign_pointer(), so it's safe to increment
5699 5700
			 * it here.
			 */
5701
			++new->current_threshold;
5702 5703
		} else
			break;
5704 5705
	}

5706 5707 5708 5709 5710
	/* Free old spare buffer and save old primary buffer as spare */
	kfree(thresholds->spare);
	thresholds->spare = thresholds->primary;

	rcu_assign_pointer(thresholds->primary, new);
5711

5712
	/* To be sure that nobody uses thresholds */
5713 5714 5715 5716 5717 5718 5719 5720
	synchronize_rcu();

unlock:
	mutex_unlock(&memcg->thresholds_lock);

	return ret;
}

5721
static void mem_cgroup_usage_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5722
	struct cftype *cft, struct eventfd_ctx *eventfd)
5723
{
5724
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5725 5726
	struct mem_cgroup_thresholds *thresholds;
	struct mem_cgroup_threshold_ary *new;
G
Glauber Costa 已提交
5727
	enum res_type type = MEMFILE_TYPE(cft->private);
5728
	u64 usage;
5729
	int i, j, size;
5730 5731 5732

	mutex_lock(&memcg->thresholds_lock);
	if (type == _MEM)
5733
		thresholds = &memcg->thresholds;
5734
	else if (type == _MEMSWAP)
5735
		thresholds = &memcg->memsw_thresholds;
5736 5737 5738
	else
		BUG();

5739 5740 5741
	if (!thresholds->primary)
		goto unlock;

5742 5743 5744 5745 5746 5747
	usage = mem_cgroup_usage(memcg, type == _MEMSWAP);

	/* Check if a threshold crossed before removing */
	__mem_cgroup_threshold(memcg, type == _MEMSWAP);

	/* Calculate new number of threshold */
5748 5749 5750
	size = 0;
	for (i = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd != eventfd)
5751 5752 5753
			size++;
	}

5754
	new = thresholds->spare;
5755

5756 5757
	/* Set thresholds array to NULL if we don't have thresholds */
	if (!size) {
5758 5759
		kfree(new);
		new = NULL;
5760
		goto swap_buffers;
5761 5762
	}

5763
	new->size = size;
5764 5765

	/* Copy thresholds and find current threshold */
5766 5767 5768
	new->current_threshold = -1;
	for (i = 0, j = 0; i < thresholds->primary->size; i++) {
		if (thresholds->primary->entries[i].eventfd == eventfd)
5769 5770
			continue;

5771
		new->entries[j] = thresholds->primary->entries[i];
5772
		if (new->entries[j].threshold <= usage) {
5773
			/*
5774
			 * new->current_threshold will not be used
5775 5776 5777
			 * until rcu_assign_pointer(), so it's safe to increment
			 * it here.
			 */
5778
			++new->current_threshold;
5779 5780 5781 5782
		}
		j++;
	}

5783
swap_buffers:
5784 5785
	/* Swap primary and spare array */
	thresholds->spare = thresholds->primary;
5786 5787 5788 5789 5790 5791
	/* If all events are unregistered, free the spare array */
	if (!new) {
		kfree(thresholds->spare);
		thresholds->spare = NULL;
	}

5792
	rcu_assign_pointer(thresholds->primary, new);
5793

5794
	/* To be sure that nobody uses thresholds */
5795
	synchronize_rcu();
5796
unlock:
5797 5798
	mutex_unlock(&memcg->thresholds_lock);
}
5799

5800
static int mem_cgroup_oom_register_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5801 5802
	struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
{
5803
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5804
	struct mem_cgroup_eventfd_list *event;
G
Glauber Costa 已提交
5805
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5806 5807 5808 5809 5810 5811

	BUG_ON(type != _OOM_TYPE);
	event = kmalloc(sizeof(*event),	GFP_KERNEL);
	if (!event)
		return -ENOMEM;

5812
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5813 5814 5815 5816 5817

	event->eventfd = eventfd;
	list_add(&event->list, &memcg->oom_notify);

	/* already in OOM ? */
5818
	if (atomic_read(&memcg->under_oom))
K
KAMEZAWA Hiroyuki 已提交
5819
		eventfd_signal(eventfd, 1);
5820
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5821 5822 5823 5824

	return 0;
}

5825
static void mem_cgroup_oom_unregister_event(struct cgroup_subsys_state *css,
K
KAMEZAWA Hiroyuki 已提交
5826 5827
	struct cftype *cft, struct eventfd_ctx *eventfd)
{
5828
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
K
KAMEZAWA Hiroyuki 已提交
5829
	struct mem_cgroup_eventfd_list *ev, *tmp;
G
Glauber Costa 已提交
5830
	enum res_type type = MEMFILE_TYPE(cft->private);
K
KAMEZAWA Hiroyuki 已提交
5831 5832 5833

	BUG_ON(type != _OOM_TYPE);

5834
	spin_lock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5835

5836
	list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
K
KAMEZAWA Hiroyuki 已提交
5837 5838 5839 5840 5841 5842
		if (ev->eventfd == eventfd) {
			list_del(&ev->list);
			kfree(ev);
		}
	}

5843
	spin_unlock(&memcg_oom_lock);
K
KAMEZAWA Hiroyuki 已提交
5844 5845
}

5846
static int mem_cgroup_oom_control_read(struct cgroup_subsys_state *css,
5847 5848
	struct cftype *cft,  struct cgroup_map_cb *cb)
{
5849
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5850

5851
	cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
5852

5853
	if (atomic_read(&memcg->under_oom))
5854 5855 5856 5857 5858 5859
		cb->fill(cb, "under_oom", 1);
	else
		cb->fill(cb, "under_oom", 0);
	return 0;
}

5860
static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
5861 5862
	struct cftype *cft, u64 val)
{
5863
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
T
Tejun Heo 已提交
5864
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(&memcg->css));
5865 5866

	/* cannot set to root cgroup and only 0 and 1 are allowed */
T
Tejun Heo 已提交
5867
	if (!parent || !((val == 0) || (val == 1)))
5868 5869
		return -EINVAL;

5870
	mutex_lock(&memcg_create_mutex);
5871
	/* oom-kill-disable is a flag for subhierarchy. */
5872
	if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
5873
		mutex_unlock(&memcg_create_mutex);
5874 5875
		return -EINVAL;
	}
5876
	memcg->oom_kill_disable = val;
5877
	if (!val)
5878
		memcg_oom_recover(memcg);
5879
	mutex_unlock(&memcg_create_mutex);
5880 5881 5882
	return 0;
}

A
Andrew Morton 已提交
5883
#ifdef CONFIG_MEMCG_KMEM
5884
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5885
{
5886 5887
	int ret;

5888
	memcg->kmemcg_id = -1;
5889 5890 5891
	ret = memcg_propagate_kmem(memcg);
	if (ret)
		return ret;
5892

5893
	return mem_cgroup_sockets_init(memcg, ss);
5894
}
5895

5896
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5897
{
5898
	mem_cgroup_sockets_destroy(memcg);
5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
{
	if (!memcg_kmem_is_active(memcg))
		return;

	/*
	 * kmem charges can outlive the cgroup. In the case of slab
	 * pages, for instance, a page contain objects from various
	 * processes. As we prevent from taking a reference for every
	 * such allocation we have to be careful when doing uncharge
	 * (see memcg_uncharge_kmem) and here during offlining.
	 *
	 * The idea is that that only the _last_ uncharge which sees
	 * the dead memcg will drop the last reference. An additional
	 * reference is taken here before the group is marked dead
	 * which is then paired with css_put during uncharge resp. here.
	 *
	 * Although this might sound strange as this path is called from
	 * css_offline() when the referencemight have dropped down to 0
	 * and shouldn't be incremented anymore (css_tryget would fail)
	 * we do not have other options because of the kmem allocations
	 * lifetime.
	 */
	css_get(&memcg->css);
5925 5926 5927 5928 5929 5930 5931

	memcg_kmem_mark_dead(memcg);

	if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
		return;

	if (memcg_kmem_test_and_clear_dead(memcg))
5932
		css_put(&memcg->css);
G
Glauber Costa 已提交
5933
}
5934
#else
5935
static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
5936 5937 5938
{
	return 0;
}
G
Glauber Costa 已提交
5939

5940 5941 5942 5943 5944
static void memcg_destroy_kmem(struct mem_cgroup *memcg)
{
}

static void kmem_cgroup_css_offline(struct mem_cgroup *memcg)
G
Glauber Costa 已提交
5945 5946
{
}
5947 5948
#endif

B
Balbir Singh 已提交
5949 5950
static struct cftype mem_cgroup_files[] = {
	{
5951
		.name = "usage_in_bytes",
5952
		.private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5953
		.read = mem_cgroup_read,
K
KAMEZAWA Hiroyuki 已提交
5954 5955
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
B
Balbir Singh 已提交
5956
	},
5957 5958
	{
		.name = "max_usage_in_bytes",
5959
		.private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5960
		.trigger = mem_cgroup_reset,
5961
		.read = mem_cgroup_read,
5962
	},
B
Balbir Singh 已提交
5963
	{
5964
		.name = "limit_in_bytes",
5965
		.private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5966
		.write_string = mem_cgroup_write,
5967
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5968
	},
5969 5970 5971 5972
	{
		.name = "soft_limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
		.write_string = mem_cgroup_write,
5973
		.read = mem_cgroup_read,
5974
	},
B
Balbir Singh 已提交
5975 5976
	{
		.name = "failcnt",
5977
		.private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5978
		.trigger = mem_cgroup_reset,
5979
		.read = mem_cgroup_read,
B
Balbir Singh 已提交
5980
	},
5981 5982
	{
		.name = "stat",
5983
		.read_seq_string = memcg_stat_show,
5984
	},
5985 5986 5987 5988
	{
		.name = "force_empty",
		.trigger = mem_cgroup_force_empty_write,
	},
5989 5990
	{
		.name = "use_hierarchy",
5991
		.flags = CFTYPE_INSANE,
5992 5993 5994
		.write_u64 = mem_cgroup_hierarchy_write,
		.read_u64 = mem_cgroup_hierarchy_read,
	},
K
KOSAKI Motohiro 已提交
5995 5996 5997 5998 5999
	{
		.name = "swappiness",
		.read_u64 = mem_cgroup_swappiness_read,
		.write_u64 = mem_cgroup_swappiness_write,
	},
6000 6001 6002 6003 6004
	{
		.name = "move_charge_at_immigrate",
		.read_u64 = mem_cgroup_move_charge_read,
		.write_u64 = mem_cgroup_move_charge_write,
	},
K
KAMEZAWA Hiroyuki 已提交
6005 6006
	{
		.name = "oom_control",
6007 6008
		.read_map = mem_cgroup_oom_control_read,
		.write_u64 = mem_cgroup_oom_control_write,
K
KAMEZAWA Hiroyuki 已提交
6009 6010 6011 6012
		.register_event = mem_cgroup_oom_register_event,
		.unregister_event = mem_cgroup_oom_unregister_event,
		.private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
	},
6013 6014 6015 6016 6017
	{
		.name = "pressure_level",
		.register_event = vmpressure_register_event,
		.unregister_event = vmpressure_unregister_event,
	},
6018 6019 6020
#ifdef CONFIG_NUMA
	{
		.name = "numa_stat",
6021
		.read_seq_string = memcg_numa_stat_show,
6022 6023
	},
#endif
6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047
#ifdef CONFIG_MEMCG_KMEM
	{
		.name = "kmem.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.failcnt",
		.private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "kmem.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
6048 6049 6050 6051 6052 6053
#ifdef CONFIG_SLABINFO
	{
		.name = "kmem.slabinfo",
		.read_seq_string = mem_cgroup_slabinfo_read,
	},
#endif
6054
#endif
6055
	{ },	/* terminate */
6056
};
6057

6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087
#ifdef CONFIG_MEMCG_SWAP
static struct cftype memsw_cgroup_files[] = {
	{
		.name = "memsw.usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
		.read = mem_cgroup_read,
		.register_event = mem_cgroup_usage_register_event,
		.unregister_event = mem_cgroup_usage_unregister_event,
	},
	{
		.name = "memsw.max_usage_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.limit_in_bytes",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
		.write_string = mem_cgroup_write,
		.read = mem_cgroup_read,
	},
	{
		.name = "memsw.failcnt",
		.private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
		.trigger = mem_cgroup_reset,
		.read = mem_cgroup_read,
	},
	{ },	/* terminate */
};
#endif
6088
static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6089 6090
{
	struct mem_cgroup_per_node *pn;
6091
	struct mem_cgroup_per_zone *mz;
6092
	int zone, tmp = node;
6093 6094 6095 6096 6097 6098 6099 6100
	/*
	 * This routine is called against possible nodes.
	 * But it's BUG to call kmalloc() against offline node.
	 *
	 * TODO: this routine can waste much memory for nodes which will
	 *       never be onlined. It's better to use memory hotplug callback
	 *       function.
	 */
6101 6102
	if (!node_state(node, N_NORMAL_MEMORY))
		tmp = -1;
6103
	pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6104 6105
	if (!pn)
		return 1;
6106 6107 6108

	for (zone = 0; zone < MAX_NR_ZONES; zone++) {
		mz = &pn->zoneinfo[zone];
6109
		lruvec_init(&mz->lruvec);
6110 6111
		mz->usage_in_excess = 0;
		mz->on_tree = false;
6112
		mz->memcg = memcg;
6113
	}
6114
	memcg->nodeinfo[node] = pn;
6115 6116 6117
	return 0;
}

6118
static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6119
{
6120
	kfree(memcg->nodeinfo[node]);
6121 6122
}

6123 6124
static struct mem_cgroup *mem_cgroup_alloc(void)
{
6125
	struct mem_cgroup *memcg;
6126
	size_t size = memcg_size();
6127

6128
	/* Can be very big if nr_node_ids is very big */
6129
	if (size < PAGE_SIZE)
6130
		memcg = kzalloc(size, GFP_KERNEL);
6131
	else
6132
		memcg = vzalloc(size);
6133

6134
	if (!memcg)
6135 6136
		return NULL;

6137 6138
	memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
	if (!memcg->stat)
6139
		goto out_free;
6140 6141
	spin_lock_init(&memcg->pcp_counter_lock);
	return memcg;
6142 6143 6144

out_free:
	if (size < PAGE_SIZE)
6145
		kfree(memcg);
6146
	else
6147
		vfree(memcg);
6148
	return NULL;
6149 6150
}

6151
/*
6152 6153 6154 6155 6156 6157 6158 6159
 * At destroying mem_cgroup, references from swap_cgroup can remain.
 * (scanning all at force_empty is too costly...)
 *
 * Instead of clearing all references at force_empty, we remember
 * the number of reference from swap_cgroup and free mem_cgroup when
 * it goes down to 0.
 *
 * Removal of cgroup itself succeeds regardless of refs from swap.
6160
 */
6161 6162

static void __mem_cgroup_free(struct mem_cgroup *memcg)
6163
{
6164
	int node;
6165
	size_t size = memcg_size();
6166

6167
	mem_cgroup_remove_from_trees(memcg);
6168 6169 6170 6171 6172 6173 6174
	free_css_id(&mem_cgroup_subsys, &memcg->css);

	for_each_node(node)
		free_mem_cgroup_per_zone_info(memcg, node);

	free_percpu(memcg->stat);

6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185
	/*
	 * We need to make sure that (at least for now), the jump label
	 * destruction code runs outside of the cgroup lock. This is because
	 * get_online_cpus(), which is called from the static_branch update,
	 * can't be called inside the cgroup_lock. cpusets are the ones
	 * enforcing this dependency, so if they ever change, we might as well.
	 *
	 * schedule_work() will guarantee this happens. Be careful if you need
	 * to move this code around, and make sure it is outside
	 * the cgroup_lock.
	 */
6186
	disarm_static_keys(memcg);
6187 6188 6189 6190
	if (size < PAGE_SIZE)
		kfree(memcg);
	else
		vfree(memcg);
6191
}
6192

6193 6194 6195
/*
 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
 */
G
Glauber Costa 已提交
6196
struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
6197
{
6198
	if (!memcg->res.parent)
6199
		return NULL;
6200
	return mem_cgroup_from_res_counter(memcg->res.parent, res);
6201
}
G
Glauber Costa 已提交
6202
EXPORT_SYMBOL(parent_mem_cgroup);
6203

6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226
static void __init mem_cgroup_soft_limit_tree_init(void)
{
	struct mem_cgroup_tree_per_node *rtpn;
	struct mem_cgroup_tree_per_zone *rtpz;
	int tmp, node, zone;

	for_each_node(node) {
		tmp = node;
		if (!node_state(node, N_NORMAL_MEMORY))
			tmp = -1;
		rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
		BUG_ON(!rtpn);

		soft_limit_tree.rb_tree_per_node[node] = rtpn;

		for (zone = 0; zone < MAX_NR_ZONES; zone++) {
			rtpz = &rtpn->rb_tree_per_zone[zone];
			rtpz->rb_root = RB_ROOT;
			spin_lock_init(&rtpz->lock);
		}
	}
}

L
Li Zefan 已提交
6227
static struct cgroup_subsys_state * __ref
6228
mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
B
Balbir Singh 已提交
6229
{
6230
	struct mem_cgroup *memcg;
K
KAMEZAWA Hiroyuki 已提交
6231
	long error = -ENOMEM;
6232
	int node;
B
Balbir Singh 已提交
6233

6234 6235
	memcg = mem_cgroup_alloc();
	if (!memcg)
K
KAMEZAWA Hiroyuki 已提交
6236
		return ERR_PTR(error);
6237

B
Bob Liu 已提交
6238
	for_each_node(node)
6239
		if (alloc_mem_cgroup_per_zone_info(memcg, node))
6240
			goto free_out;
6241

6242
	/* root ? */
6243
	if (parent_css == NULL) {
6244
		root_mem_cgroup = memcg;
6245 6246 6247
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
		res_counter_init(&memcg->kmem, NULL);
6248
	}
6249

6250 6251 6252 6253 6254
	memcg->last_scanned_node = MAX_NUMNODES;
	INIT_LIST_HEAD(&memcg->oom_notify);
	memcg->move_charge_at_immigrate = 0;
	mutex_init(&memcg->thresholds_lock);
	spin_lock_init(&memcg->move_lock);
6255
	vmpressure_init(&memcg->vmpressure);
6256 6257 6258 6259 6260 6261 6262 6263 6264

	return &memcg->css;

free_out:
	__mem_cgroup_free(memcg);
	return ERR_PTR(error);
}

static int
6265
mem_cgroup_css_online(struct cgroup_subsys_state *css)
6266
{
6267 6268
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
	struct mem_cgroup *parent = mem_cgroup_from_css(css_parent(css));
6269 6270
	int error = 0;

T
Tejun Heo 已提交
6271
	if (!parent)
6272 6273
		return 0;

6274
	mutex_lock(&memcg_create_mutex);
6275 6276 6277 6278 6279 6280

	memcg->use_hierarchy = parent->use_hierarchy;
	memcg->oom_kill_disable = parent->oom_kill_disable;
	memcg->swappiness = mem_cgroup_swappiness(parent);

	if (parent->use_hierarchy) {
6281 6282
		res_counter_init(&memcg->res, &parent->res);
		res_counter_init(&memcg->memsw, &parent->memsw);
6283
		res_counter_init(&memcg->kmem, &parent->kmem);
6284

6285
		/*
6286 6287
		 * No need to take a reference to the parent because cgroup
		 * core guarantees its existence.
6288
		 */
6289
	} else {
6290 6291
		res_counter_init(&memcg->res, NULL);
		res_counter_init(&memcg->memsw, NULL);
6292
		res_counter_init(&memcg->kmem, NULL);
6293 6294 6295 6296 6297
		/*
		 * Deeper hierachy with use_hierarchy == false doesn't make
		 * much sense so let cgroup subsystem know about this
		 * unfortunate state in our controller.
		 */
6298
		if (parent != root_mem_cgroup)
6299
			mem_cgroup_subsys.broken_hierarchy = true;
6300
	}
6301 6302

	error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
6303
	mutex_unlock(&memcg_create_mutex);
6304
	return error;
B
Balbir Singh 已提交
6305 6306
}

M
Michal Hocko 已提交
6307 6308 6309 6310 6311 6312 6313 6314
/*
 * Announce all parents that a group from their hierarchy is gone.
 */
static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
{
	struct mem_cgroup *parent = memcg;

	while ((parent = parent_mem_cgroup(parent)))
6315
		mem_cgroup_iter_invalidate(parent);
M
Michal Hocko 已提交
6316 6317 6318 6319 6320 6321

	/*
	 * if the root memcg is not hierarchical we have to check it
	 * explicitely.
	 */
	if (!root_mem_cgroup->use_hierarchy)
6322
		mem_cgroup_iter_invalidate(root_mem_cgroup);
M
Michal Hocko 已提交
6323 6324
}

6325
static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
6326
{
6327
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6328

6329 6330
	kmem_cgroup_css_offline(memcg);

M
Michal Hocko 已提交
6331
	mem_cgroup_invalidate_reclaim_iterators(memcg);
6332
	mem_cgroup_reparent_charges(memcg);
G
Glauber Costa 已提交
6333
	mem_cgroup_destroy_all_caches(memcg);
6334
	vmpressure_cleanup(&memcg->vmpressure);
6335 6336
}

6337
static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
B
Balbir Singh 已提交
6338
{
6339
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6340

6341
	memcg_destroy_kmem(memcg);
6342
	__mem_cgroup_free(memcg);
B
Balbir Singh 已提交
6343 6344
}

6345
#ifdef CONFIG_MMU
6346
/* Handlers for move charge at task migration. */
6347 6348
#define PRECHARGE_COUNT_AT_ONCE	256
static int mem_cgroup_do_precharge(unsigned long count)
6349
{
6350 6351
	int ret = 0;
	int batch_count = PRECHARGE_COUNT_AT_ONCE;
6352
	struct mem_cgroup *memcg = mc.to;
6353

6354
	if (mem_cgroup_is_root(memcg)) {
6355 6356 6357 6358 6359 6360 6361 6362
		mc.precharge += count;
		/* we don't need css_get for root */
		return ret;
	}
	/* try to charge at once */
	if (count > 1) {
		struct res_counter *dummy;
		/*
6363
		 * "memcg" cannot be under rmdir() because we've already checked
6364 6365 6366 6367
		 * by cgroup_lock_live_cgroup() that it is not removed and we
		 * are still under the same cgroup_mutex. So we can postpone
		 * css_get().
		 */
6368
		if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
6369
			goto one_by_one;
6370
		if (do_swap_account && res_counter_charge(&memcg->memsw,
6371
						PAGE_SIZE * count, &dummy)) {
6372
			res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388
			goto one_by_one;
		}
		mc.precharge += count;
		return ret;
	}
one_by_one:
	/* fall back to one by one charge */
	while (count--) {
		if (signal_pending(current)) {
			ret = -EINTR;
			break;
		}
		if (!batch_count--) {
			batch_count = PRECHARGE_COUNT_AT_ONCE;
			cond_resched();
		}
6389 6390
		ret = __mem_cgroup_try_charge(NULL,
					GFP_KERNEL, 1, &memcg, false);
6391
		if (ret)
6392
			/* mem_cgroup_clear_mc() will do uncharge later */
6393
			return ret;
6394 6395
		mc.precharge++;
	}
6396 6397 6398 6399
	return ret;
}

/**
6400
 * get_mctgt_type - get target type of moving charge
6401 6402 6403
 * @vma: the vma the pte to be checked belongs
 * @addr: the address corresponding to the pte to be checked
 * @ptent: the pte to be checked
6404
 * @target: the pointer the target page or swap ent will be stored(can be NULL)
6405 6406 6407 6408 6409 6410
 *
 * Returns
 *   0(MC_TARGET_NONE): if the pte is not a target for move charge.
 *   1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
 *     move charge. if @target is not NULL, the page is stored in target->page
 *     with extra refcnt got(Callers should handle it).
6411 6412 6413
 *   2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
 *     target for charge migration. if @target is not NULL, the entry is stored
 *     in target->ent.
6414 6415 6416 6417 6418
 *
 * Called with pte lock held.
 */
union mc_target {
	struct page	*page;
6419
	swp_entry_t	ent;
6420 6421 6422
};

enum mc_target_type {
6423
	MC_TARGET_NONE = 0,
6424
	MC_TARGET_PAGE,
6425
	MC_TARGET_SWAP,
6426 6427
};

D
Daisuke Nishimura 已提交
6428 6429
static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
						unsigned long addr, pte_t ptent)
6430
{
D
Daisuke Nishimura 已提交
6431
	struct page *page = vm_normal_page(vma, addr, ptent);
6432

D
Daisuke Nishimura 已提交
6433 6434 6435 6436
	if (!page || !page_mapped(page))
		return NULL;
	if (PageAnon(page)) {
		/* we don't move shared anon */
6437
		if (!move_anon())
D
Daisuke Nishimura 已提交
6438
			return NULL;
6439 6440
	} else if (!move_file())
		/* we ignore mapcount for file pages */
D
Daisuke Nishimura 已提交
6441 6442 6443 6444 6445 6446 6447
		return NULL;
	if (!get_page_unless_zero(page))
		return NULL;

	return page;
}

6448
#ifdef CONFIG_SWAP
D
Daisuke Nishimura 已提交
6449 6450 6451 6452 6453 6454 6455 6456
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	swp_entry_t ent = pte_to_swp_entry(ptent);

	if (!move_anon() || non_swap_entry(ent))
		return NULL;
6457 6458 6459 6460
	/*
	 * Because lookup_swap_cache() updates some statistics counter,
	 * we call find_get_page() with swapper_space directly.
	 */
6461
	page = find_get_page(swap_address_space(ent), ent.val);
D
Daisuke Nishimura 已提交
6462 6463 6464 6465 6466
	if (do_swap_account)
		entry->val = ent.val;

	return page;
}
6467 6468 6469 6470 6471 6472 6473
#else
static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	return NULL;
}
#endif
D
Daisuke Nishimura 已提交
6474

6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493
static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
			unsigned long addr, pte_t ptent, swp_entry_t *entry)
{
	struct page *page = NULL;
	struct address_space *mapping;
	pgoff_t pgoff;

	if (!vma->vm_file) /* anonymous vma */
		return NULL;
	if (!move_file())
		return NULL;

	mapping = vma->vm_file->f_mapping;
	if (pte_none(ptent))
		pgoff = linear_page_index(vma, addr);
	else /* pte_file(ptent) is true */
		pgoff = pte_to_pgoff(ptent);

	/* page is moved even if it's not RSS of this task(page-faulted). */
6494 6495 6496 6497 6498 6499
	page = find_get_page(mapping, pgoff);

#ifdef CONFIG_SWAP
	/* shmem/tmpfs may report page out on swap: account for that too. */
	if (radix_tree_exceptional_entry(page)) {
		swp_entry_t swap = radix_to_swp_entry(page);
6500
		if (do_swap_account)
6501
			*entry = swap;
6502
		page = find_get_page(swap_address_space(swap), swap.val);
6503
	}
6504
#endif
6505 6506 6507
	return page;
}

6508
static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
D
Daisuke Nishimura 已提交
6509 6510 6511 6512
		unsigned long addr, pte_t ptent, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
6513
	enum mc_target_type ret = MC_TARGET_NONE;
D
Daisuke Nishimura 已提交
6514 6515 6516 6517 6518 6519
	swp_entry_t ent = { .val = 0 };

	if (pte_present(ptent))
		page = mc_handle_present_pte(vma, addr, ptent);
	else if (is_swap_pte(ptent))
		page = mc_handle_swap_pte(vma, addr, ptent, &ent);
6520 6521
	else if (pte_none(ptent) || pte_file(ptent))
		page = mc_handle_file_pte(vma, addr, ptent, &ent);
D
Daisuke Nishimura 已提交
6522 6523

	if (!page && !ent.val)
6524
		return ret;
6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539
	if (page) {
		pc = lookup_page_cgroup(page);
		/*
		 * Do only loose check w/o page_cgroup lock.
		 * mem_cgroup_move_account() checks the pc is valid or not under
		 * the lock.
		 */
		if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
			ret = MC_TARGET_PAGE;
			if (target)
				target->page = page;
		}
		if (!ret || !target)
			put_page(page);
	}
D
Daisuke Nishimura 已提交
6540 6541
	/* There is a swap entry and a page doesn't exist or isn't charged */
	if (ent.val && !ret &&
6542
			css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
6543 6544 6545
		ret = MC_TARGET_SWAP;
		if (target)
			target->ent = ent;
6546 6547 6548 6549
	}
	return ret;
}

6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
/*
 * We don't consider swapping or file mapped pages because THP does not
 * support them for now.
 * Caller should make sure that pmd_trans_huge(pmd) is true.
 */
static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	struct page *page = NULL;
	struct page_cgroup *pc;
	enum mc_target_type ret = MC_TARGET_NONE;

	page = pmd_page(pmd);
	VM_BUG_ON(!page || !PageHead(page));
	if (!move_anon())
		return ret;
	pc = lookup_page_cgroup(page);
	if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
		ret = MC_TARGET_PAGE;
		if (target) {
			get_page(page);
			target->page = page;
		}
	}
	return ret;
}
#else
static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
		unsigned long addr, pmd_t pmd, union mc_target *target)
{
	return MC_TARGET_NONE;
}
#endif

6585 6586 6587 6588 6589 6590 6591 6592
static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
					unsigned long addr, unsigned long end,
					struct mm_walk *walk)
{
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;

6593 6594 6595 6596
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
		if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
			mc.precharge += HPAGE_PMD_NR;
		spin_unlock(&vma->vm_mm->page_table_lock);
6597
		return 0;
6598
	}
6599

6600 6601
	if (pmd_trans_unstable(pmd))
		return 0;
6602 6603
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; pte++, addr += PAGE_SIZE)
6604
		if (get_mctgt_type(vma, addr, *pte, NULL))
6605 6606 6607 6608
			mc.precharge++;	/* increment precharge temporarily */
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

6609 6610 6611
	return 0;
}

6612 6613 6614 6615 6616
static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
{
	unsigned long precharge;
	struct vm_area_struct *vma;

6617
	down_read(&mm->mmap_sem);
6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		struct mm_walk mem_cgroup_count_precharge_walk = {
			.pmd_entry = mem_cgroup_count_precharge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		walk_page_range(vma->vm_start, vma->vm_end,
					&mem_cgroup_count_precharge_walk);
	}
6629
	up_read(&mm->mmap_sem);
6630 6631 6632 6633 6634 6635 6636 6637 6638

	precharge = mc.precharge;
	mc.precharge = 0;

	return precharge;
}

static int mem_cgroup_precharge_mc(struct mm_struct *mm)
{
6639 6640 6641 6642 6643
	unsigned long precharge = mem_cgroup_count_precharge(mm);

	VM_BUG_ON(mc.moving_task);
	mc.moving_task = current;
	return mem_cgroup_do_precharge(precharge);
6644 6645
}

6646 6647
/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
static void __mem_cgroup_clear_mc(void)
6648
{
6649 6650
	struct mem_cgroup *from = mc.from;
	struct mem_cgroup *to = mc.to;
L
Li Zefan 已提交
6651
	int i;
6652

6653
	/* we must uncharge all the leftover precharges from mc.to */
6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664
	if (mc.precharge) {
		__mem_cgroup_cancel_charge(mc.to, mc.precharge);
		mc.precharge = 0;
	}
	/*
	 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
	 * we must uncharge here.
	 */
	if (mc.moved_charge) {
		__mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
		mc.moved_charge = 0;
6665
	}
6666 6667 6668 6669 6670 6671
	/* we must fixup refcnts and charges */
	if (mc.moved_swap) {
		/* uncharge swap account from the old cgroup */
		if (!mem_cgroup_is_root(mc.from))
			res_counter_uncharge(&mc.from->memsw,
						PAGE_SIZE * mc.moved_swap);
L
Li Zefan 已提交
6672 6673 6674

		for (i = 0; i < mc.moved_swap; i++)
			css_put(&mc.from->css);
6675 6676 6677 6678 6679 6680 6681 6682 6683

		if (!mem_cgroup_is_root(mc.to)) {
			/*
			 * we charged both to->res and to->memsw, so we should
			 * uncharge to->res.
			 */
			res_counter_uncharge(&mc.to->res,
						PAGE_SIZE * mc.moved_swap);
		}
L
Li Zefan 已提交
6684
		/* we've already done css_get(mc.to) */
6685 6686
		mc.moved_swap = 0;
	}
6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701
	memcg_oom_recover(from);
	memcg_oom_recover(to);
	wake_up_all(&mc.waitq);
}

static void mem_cgroup_clear_mc(void)
{
	struct mem_cgroup *from = mc.from;

	/*
	 * we must clear moving_task before waking up waiters at the end of
	 * task migration.
	 */
	mc.moving_task = NULL;
	__mem_cgroup_clear_mc();
6702
	spin_lock(&mc.lock);
6703 6704
	mc.from = NULL;
	mc.to = NULL;
6705
	spin_unlock(&mc.lock);
6706
	mem_cgroup_end_move(from);
6707 6708
}

6709
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6710
				 struct cgroup_taskset *tset)
6711
{
6712
	struct task_struct *p = cgroup_taskset_first(tset);
6713
	int ret = 0;
6714
	struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6715
	unsigned long move_charge_at_immigrate;
6716

6717 6718 6719 6720 6721 6722 6723
	/*
	 * We are now commited to this value whatever it is. Changes in this
	 * tunable will only affect upcoming migrations, not the current one.
	 * So we need to save it, and keep it going.
	 */
	move_charge_at_immigrate  = memcg->move_charge_at_immigrate;
	if (move_charge_at_immigrate) {
6724 6725 6726
		struct mm_struct *mm;
		struct mem_cgroup *from = mem_cgroup_from_task(p);

6727
		VM_BUG_ON(from == memcg);
6728 6729 6730 6731 6732

		mm = get_task_mm(p);
		if (!mm)
			return 0;
		/* We move charges only when we move a owner of the mm */
6733 6734 6735 6736
		if (mm->owner == p) {
			VM_BUG_ON(mc.from);
			VM_BUG_ON(mc.to);
			VM_BUG_ON(mc.precharge);
6737
			VM_BUG_ON(mc.moved_charge);
6738
			VM_BUG_ON(mc.moved_swap);
6739
			mem_cgroup_start_move(from);
6740
			spin_lock(&mc.lock);
6741
			mc.from = from;
6742
			mc.to = memcg;
6743
			mc.immigrate_flags = move_charge_at_immigrate;
6744
			spin_unlock(&mc.lock);
6745
			/* We set mc.moving_task later */
6746 6747 6748 6749

			ret = mem_cgroup_precharge_mc(mm);
			if (ret)
				mem_cgroup_clear_mc();
6750 6751
		}
		mmput(mm);
6752 6753 6754 6755
	}
	return ret;
}

6756
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6757
				     struct cgroup_taskset *tset)
6758
{
6759
	mem_cgroup_clear_mc();
6760 6761
}

6762 6763 6764
static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
				unsigned long addr, unsigned long end,
				struct mm_walk *walk)
6765
{
6766 6767 6768 6769
	int ret = 0;
	struct vm_area_struct *vma = walk->private;
	pte_t *pte;
	spinlock_t *ptl;
6770 6771 6772 6773
	enum mc_target_type target_type;
	union mc_target target;
	struct page *page;
	struct page_cgroup *pc;
6774

6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785
	/*
	 * We don't take compound_lock() here but no race with splitting thp
	 * happens because:
	 *  - if pmd_trans_huge_lock() returns 1, the relevant thp is not
	 *    under splitting, which means there's no concurrent thp split,
	 *  - if another thread runs into split_huge_page() just after we
	 *    entered this if-block, the thread must wait for page table lock
	 *    to be unlocked in __split_huge_page_splitting(), where the main
	 *    part of thp split is not executed yet.
	 */
	if (pmd_trans_huge_lock(pmd, vma) == 1) {
6786
		if (mc.precharge < HPAGE_PMD_NR) {
6787 6788 6789 6790 6791 6792 6793 6794 6795
			spin_unlock(&vma->vm_mm->page_table_lock);
			return 0;
		}
		target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
		if (target_type == MC_TARGET_PAGE) {
			page = target.page;
			if (!isolate_lru_page(page)) {
				pc = lookup_page_cgroup(page);
				if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
6796
							pc, mc.from, mc.to)) {
6797 6798 6799 6800 6801 6802 6803 6804
					mc.precharge -= HPAGE_PMD_NR;
					mc.moved_charge += HPAGE_PMD_NR;
				}
				putback_lru_page(page);
			}
			put_page(page);
		}
		spin_unlock(&vma->vm_mm->page_table_lock);
6805
		return 0;
6806 6807
	}

6808 6809
	if (pmd_trans_unstable(pmd))
		return 0;
6810 6811 6812 6813
retry:
	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
	for (; addr != end; addr += PAGE_SIZE) {
		pte_t ptent = *(pte++);
6814
		swp_entry_t ent;
6815 6816 6817 6818

		if (!mc.precharge)
			break;

6819
		switch (get_mctgt_type(vma, addr, ptent, &target)) {
6820 6821 6822 6823 6824
		case MC_TARGET_PAGE:
			page = target.page;
			if (isolate_lru_page(page))
				goto put;
			pc = lookup_page_cgroup(page);
6825
			if (!mem_cgroup_move_account(page, 1, pc,
6826
						     mc.from, mc.to)) {
6827
				mc.precharge--;
6828 6829
				/* we uncharge from mc.from later. */
				mc.moved_charge++;
6830 6831
			}
			putback_lru_page(page);
6832
put:			/* get_mctgt_type() gets the page */
6833 6834
			put_page(page);
			break;
6835 6836
		case MC_TARGET_SWAP:
			ent = target.ent;
6837
			if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6838
				mc.precharge--;
6839 6840 6841
				/* we fixup refcnts and charges later. */
				mc.moved_swap++;
			}
6842
			break;
6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856
		default:
			break;
		}
	}
	pte_unmap_unlock(pte - 1, ptl);
	cond_resched();

	if (addr != end) {
		/*
		 * We have consumed all precharges we got in can_attach().
		 * We try charge one by one, but don't do any additional
		 * charges to mc.to if we have failed in charge once in attach()
		 * phase.
		 */
6857
		ret = mem_cgroup_do_precharge(1);
6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869
		if (!ret)
			goto retry;
	}

	return ret;
}

static void mem_cgroup_move_charge(struct mm_struct *mm)
{
	struct vm_area_struct *vma;

	lru_add_drain_all();
6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882
retry:
	if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
		/*
		 * Someone who are holding the mmap_sem might be waiting in
		 * waitq. So we cancel all extra charges, wake up all waiters,
		 * and retry. Because we cancel precharges, we might not be able
		 * to move enough charges, but moving charge is a best-effort
		 * feature anyway, so it wouldn't be a big problem.
		 */
		__mem_cgroup_clear_mc();
		cond_resched();
		goto retry;
	}
6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900
	for (vma = mm->mmap; vma; vma = vma->vm_next) {
		int ret;
		struct mm_walk mem_cgroup_move_charge_walk = {
			.pmd_entry = mem_cgroup_move_charge_pte_range,
			.mm = mm,
			.private = vma,
		};
		if (is_vm_hugetlb_page(vma))
			continue;
		ret = walk_page_range(vma->vm_start, vma->vm_end,
						&mem_cgroup_move_charge_walk);
		if (ret)
			/*
			 * means we have consumed all precharges and failed in
			 * doing additional charge. Just abandon here.
			 */
			break;
	}
6901
	up_read(&mm->mmap_sem);
6902 6903
}

6904
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6905
				 struct cgroup_taskset *tset)
B
Balbir Singh 已提交
6906
{
6907
	struct task_struct *p = cgroup_taskset_first(tset);
6908
	struct mm_struct *mm = get_task_mm(p);
6909 6910

	if (mm) {
6911 6912
		if (mc.to)
			mem_cgroup_move_charge(mm);
6913 6914
		mmput(mm);
	}
6915 6916
	if (mc.to)
		mem_cgroup_clear_mc();
B
Balbir Singh 已提交
6917
}
6918
#else	/* !CONFIG_MMU */
6919
static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
6920
				 struct cgroup_taskset *tset)
6921 6922 6923
{
	return 0;
}
6924
static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
6925
				     struct cgroup_taskset *tset)
6926 6927
{
}
6928
static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
6929
				 struct cgroup_taskset *tset)
6930 6931 6932
{
}
#endif
B
Balbir Singh 已提交
6933

6934 6935 6936 6937
/*
 * Cgroup retains root cgroups across [un]mount cycles making it necessary
 * to verify sane_behavior flag on each mount attempt.
 */
6938
static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
6939 6940 6941 6942 6943 6944
{
	/*
	 * use_hierarchy is forced with sane_behavior.  cgroup core
	 * guarantees that @root doesn't have any children, so turning it
	 * on for the root memcg is enough.
	 */
6945 6946
	if (cgroup_sane_behavior(root_css->cgroup))
		mem_cgroup_from_css(root_css)->use_hierarchy = true;
6947 6948
}

B
Balbir Singh 已提交
6949 6950 6951
struct cgroup_subsys mem_cgroup_subsys = {
	.name = "memory",
	.subsys_id = mem_cgroup_subsys_id,
6952
	.css_alloc = mem_cgroup_css_alloc,
6953
	.css_online = mem_cgroup_css_online,
6954 6955
	.css_offline = mem_cgroup_css_offline,
	.css_free = mem_cgroup_css_free,
6956 6957
	.can_attach = mem_cgroup_can_attach,
	.cancel_attach = mem_cgroup_cancel_attach,
B
Balbir Singh 已提交
6958
	.attach = mem_cgroup_move_task,
6959
	.bind = mem_cgroup_bind,
6960
	.base_cftypes = mem_cgroup_files,
6961
	.early_init = 0,
K
KAMEZAWA Hiroyuki 已提交
6962
	.use_id = 1,
B
Balbir Singh 已提交
6963
};
6964

A
Andrew Morton 已提交
6965
#ifdef CONFIG_MEMCG_SWAP
6966 6967
static int __init enable_swap_account(char *s)
{
6968
	if (!strcmp(s, "1"))
6969
		really_do_swap_account = 1;
6970
	else if (!strcmp(s, "0"))
6971 6972 6973
		really_do_swap_account = 0;
	return 1;
}
6974
__setup("swapaccount=", enable_swap_account);
6975

6976 6977
static void __init memsw_file_init(void)
{
6978 6979 6980 6981 6982 6983 6984 6985 6986
	WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
}

static void __init enable_swap_cgroup(void)
{
	if (!mem_cgroup_disabled() && really_do_swap_account) {
		do_swap_account = 1;
		memsw_file_init();
	}
6987
}
6988

6989
#else
6990
static void __init enable_swap_cgroup(void)
6991 6992
{
}
6993
#endif
6994 6995

/*
6996 6997 6998 6999 7000 7001
 * subsys_initcall() for memory controller.
 *
 * Some parts like hotcpu_notifier() have to be initialized from this context
 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
 * everything that doesn't depend on a specific mem_cgroup structure should
 * be initialized from here.
7002 7003 7004 7005
 */
static int __init mem_cgroup_init(void)
{
	hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
7006
	enable_swap_cgroup();
7007
	mem_cgroup_soft_limit_tree_init();
7008
	memcg_stock_init();
7009 7010 7011
	return 0;
}
subsys_initcall(mem_cgroup_init);