ef10.c 155.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/****************************************************************************
 * Driver for Solarflare network controllers and boards
 * Copyright 2012-2013 Solarflare Communications Inc.
 *
 * This program is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 as published
 * by the Free Software Foundation, incorporated herein by reference.
 */

#include "net_driver.h"
#include "ef10_regs.h"
#include "io.h"
#include "mcdi.h"
#include "mcdi_pcol.h"
#include "nic.h"
#include "workarounds.h"
17
#include "selftest.h"
18
#include "ef10_sriov.h"
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#include <linux/in.h>
#include <linux/jhash.h>
#include <linux/wait.h>
#include <linux/workqueue.h>

/* Hardware control for EF10 architecture including 'Huntington'. */

#define EFX_EF10_DRVGEN_EV		7
enum {
	EFX_EF10_TEST = 1,
	EFX_EF10_REFILL,
};

/* The reserved RSS context value */
#define EFX_EF10_RSS_CONTEXT_INVALID	0xffffffff
34 35 36
/* The maximum size of a shared RSS context */
/* TODO: this should really be from the mcdi protocol export */
#define EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE 64UL
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51

/* The filter table(s) are managed by firmware and we have write-only
 * access.  When removing filters we must identify them to the
 * firmware by a 64-bit handle, but this is too wide for Linux kernel
 * interfaces (32-bit for RX NFC, 16-bit for RFS).  Also, we need to
 * be able to tell in advance whether a requested insertion will
 * replace an existing filter.  Therefore we maintain a software hash
 * table, which should be at least as large as the hardware hash
 * table.
 *
 * Huntington has a single 8K filter table shared between all filter
 * types and both ports.
 */
#define HUNT_FILTER_TBL_ROWS 8192

52
#define EFX_EF10_FILTER_ID_INVALID 0xffff
53 54 55 56

#define EFX_EF10_FILTER_DEV_UC_MAX	32
#define EFX_EF10_FILTER_DEV_MC_MAX	256

57 58 59 60 61 62
/* VLAN list entry */
struct efx_ef10_vlan {
	struct list_head list;
	u16 vid;
};

63 64
/* Per-VLAN filters information */
struct efx_ef10_filter_vlan {
65
	struct list_head list;
66
	u16 vid;
67 68 69 70 71 72 73
	u16 uc[EFX_EF10_FILTER_DEV_UC_MAX];
	u16 mc[EFX_EF10_FILTER_DEV_MC_MAX];
	u16 ucdef;
	u16 bcast;
	u16 mcdef;
};

74 75 76 77
struct efx_ef10_dev_addr {
	u8 addr[ETH_ALEN];
};

78
struct efx_ef10_filter_table {
79 80
/* The MCDI match masks supported by this fw & hw, in order of priority */
	u32 rx_match_mcdi_flags[
81 82 83 84 85
		MC_CMD_GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES_MAXNUM];
	unsigned int rx_match_count;

	struct {
		unsigned long spec;	/* pointer to spec plus flag bits */
86 87
/* BUSY flag indicates that an update is in progress.  AUTO_OLD is
 * used to mark and sweep MAC filters for the device address lists.
88 89
 */
#define EFX_EF10_FILTER_FLAG_BUSY	1UL
90
#define EFX_EF10_FILTER_FLAG_AUTO_OLD	2UL
91 92 93 94 95
#define EFX_EF10_FILTER_FLAGS		3UL
		u64 handle;		/* firmware handle */
	} *entry;
	wait_queue_head_t waitq;
/* Shadow of net_device address lists, guarded by mac_lock */
96 97
	struct efx_ef10_dev_addr dev_uc_list[EFX_EF10_FILTER_DEV_UC_MAX];
	struct efx_ef10_dev_addr dev_mc_list[EFX_EF10_FILTER_DEV_MC_MAX];
98 99
	int dev_uc_count;
	int dev_mc_count;
100 101
	bool uc_promisc;
	bool mc_promisc;
102 103
/* Whether in multicast promiscuous mode when last changed */
	bool mc_promisc_last;
104
	bool vlan_filter;
105
	struct list_head vlan_list;
106 107 108 109 110 111 112
};

/* An arbitrary search limit for the software hash table */
#define EFX_EF10_FILTER_SEARCH_LIMIT 200

static void efx_ef10_rx_free_indir_table(struct efx_nic *efx);
static void efx_ef10_filter_table_remove(struct efx_nic *efx);
113 114 115 116
static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid);
static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
					      struct efx_ef10_filter_vlan *vlan);
static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid);
117 118 119 120 121 122 123 124 125 126 127 128

static int efx_ef10_get_warm_boot_count(struct efx_nic *efx)
{
	efx_dword_t reg;

	efx_readd(efx, &reg, ER_DZ_BIU_MC_SFT_STATUS);
	return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
		EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
}

static unsigned int efx_ef10_mem_map_size(struct efx_nic *efx)
{
129 130 131 132
	int bar;

	bar = efx->type->mem_bar;
	return resource_size(&efx->pci_dev->resource[bar]);
133 134
}

135 136 137 138 139
static bool efx_ef10_is_vf(struct efx_nic *efx)
{
	return efx->type->is_vf;
}

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
static int efx_ef10_get_pf_index(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
			  sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < sizeof(outbuf))
		return -EIO;

	nic_data->pf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_PF);
	return 0;
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_get_vf_index(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_FUNCTION_INFO_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_FUNCTION_INFO, NULL, 0, outbuf,
			  sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < sizeof(outbuf))
		return -EIO;

	nic_data->vf_index = MCDI_DWORD(outbuf, GET_FUNCTION_INFO_OUT_VF);
	return 0;
}
#endif

178
static int efx_ef10_init_datapath_caps(struct efx_nic *efx)
179 180 181 182 183 184 185 186 187 188 189 190
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
191 192 193 194 195 196 197 198
	if (outlen < sizeof(outbuf)) {
		netif_err(efx, drv, efx->net_dev,
			  "unable to read datapath firmware capabilities\n");
		return -EIO;
	}

	nic_data->datapath_caps =
		MCDI_DWORD(outbuf, GET_CAPABILITIES_OUT_FLAGS1);
199

200 201 202 203 204 205 206
	/* record the DPCPU firmware IDs to determine VEB vswitching support.
	 */
	nic_data->rx_dpcpu_fw_id =
		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_RX_DPCPU_FW_ID);
	nic_data->tx_dpcpu_fw_id =
		MCDI_WORD(outbuf, GET_CAPABILITIES_OUT_TX_DPCPU_FW_ID);

207 208 209 210 211
	if (!(nic_data->datapath_caps &
	      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_PREFIX_LEN_14_LBN))) {
		netif_err(efx, probe, efx->net_dev,
			  "current firmware does not support an RX prefix\n");
		return -ENODEV;
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
	}

	return 0;
}

static int efx_ef10_get_sysclk_freq(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CLOCK_OUT_LEN);
	int rc;

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_CLOCK, NULL, 0,
			  outbuf, sizeof(outbuf), NULL);
	if (rc)
		return rc;
	rc = MCDI_DWORD(outbuf, GET_CLOCK_OUT_SYS_FREQ);
	return rc > 0 ? rc : -ERANGE;
}

230
static int efx_ef10_get_mac_address_pf(struct efx_nic *efx, u8 *mac_address)
231 232 233 234 235 236 237 238 239 240 241 242 243 244
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
	size_t outlen;
	int rc;

	BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);

	rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
		return -EIO;

245 246
	ether_addr_copy(mac_address,
			MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
247 248 249
	return 0;
}

250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
static int efx_ef10_get_mac_address_vf(struct efx_nic *efx, u8 *mac_address)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMAX);
	size_t outlen;
	int num_addrs, rc;

	MCDI_SET_DWORD(inbuf, VPORT_GET_MAC_ADDRESSES_IN_VPORT_ID,
		       EVB_PORT_ID_ASSIGNED);
	rc = efx_mcdi_rpc(efx, MC_CMD_VPORT_GET_MAC_ADDRESSES, inbuf,
			  sizeof(inbuf), outbuf, sizeof(outbuf), &outlen);

	if (rc)
		return rc;
	if (outlen < MC_CMD_VPORT_GET_MAC_ADDRESSES_OUT_LENMIN)
		return -EIO;

	num_addrs = MCDI_DWORD(outbuf,
			       VPORT_GET_MAC_ADDRESSES_OUT_MACADDR_COUNT);

	WARN_ON(num_addrs != 1);

	ether_addr_copy(mac_address,
			MCDI_PTR(outbuf, VPORT_GET_MAC_ADDRESSES_OUT_MACADDR));

	return 0;
}

278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
static ssize_t efx_ef10_show_link_control_flag(struct device *dev,
					       struct device_attribute *attr,
					       char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	return sprintf(buf, "%d\n",
		       ((efx->mcdi->fn_flags) &
			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
		       ? 1 : 0);
}

static ssize_t efx_ef10_show_primary_flag(struct device *dev,
					  struct device_attribute *attr,
					  char *buf)
{
	struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));

	return sprintf(buf, "%d\n",
		       ((efx->mcdi->fn_flags) &
			(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_PRIMARY))
		       ? 1 : 0);
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
static struct efx_ef10_vlan *efx_ef10_find_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan;

	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));

	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
		if (vlan->vid == vid)
			return vlan;
	}

	return NULL;
}

static int efx_ef10_add_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan;
	int rc;

	mutex_lock(&nic_data->vlan_lock);

	vlan = efx_ef10_find_vlan(efx, vid);
	if (vlan) {
327 328 329 330 331
		/* We add VID 0 on init. 8021q adds it on module init
		 * for all interfaces with VLAN filtring feature.
		 */
		if (vid == 0)
			goto done_unlock;
332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
		netif_warn(efx, drv, efx->net_dev,
			   "VLAN %u already added\n", vid);
		rc = -EALREADY;
		goto fail_exist;
	}

	rc = -ENOMEM;
	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
	if (!vlan)
		goto fail_alloc;

	vlan->vid = vid;

	list_add_tail(&vlan->list, &nic_data->vlan_list);

	if (efx->filter_state) {
		mutex_lock(&efx->mac_lock);
		down_write(&efx->filter_sem);
		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
		up_write(&efx->filter_sem);
		mutex_unlock(&efx->mac_lock);
		if (rc)
			goto fail_filter_add_vlan;
	}

357
done_unlock:
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
	mutex_unlock(&nic_data->vlan_lock);
	return 0;

fail_filter_add_vlan:
	list_del(&vlan->list);
	kfree(vlan);
fail_alloc:
fail_exist:
	mutex_unlock(&nic_data->vlan_lock);
	return rc;
}

static void efx_ef10_del_vlan_internal(struct efx_nic *efx,
				       struct efx_ef10_vlan *vlan)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	WARN_ON(!mutex_is_locked(&nic_data->vlan_lock));

	if (efx->filter_state) {
		down_write(&efx->filter_sem);
		efx_ef10_filter_del_vlan(efx, vlan->vid);
		up_write(&efx->filter_sem);
	}

	list_del(&vlan->list);
	kfree(vlan);
}

387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
static int efx_ef10_del_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan;
	int rc = 0;

	/* 8021q removes VID 0 on module unload for all interfaces
	 * with VLAN filtering feature. We need to keep it to receive
	 * untagged traffic.
	 */
	if (vid == 0)
		return 0;

	mutex_lock(&nic_data->vlan_lock);

	vlan = efx_ef10_find_vlan(efx, vid);
	if (!vlan) {
		netif_err(efx, drv, efx->net_dev,
			  "VLAN %u to be deleted not found\n", vid);
		rc = -ENOENT;
	} else {
		efx_ef10_del_vlan_internal(efx, vlan);
	}

	mutex_unlock(&nic_data->vlan_lock);

	return rc;
}

416 417 418 419 420 421 422 423 424 425 426
static void efx_ef10_cleanup_vlans(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_ef10_vlan *vlan, *next_vlan;

	mutex_lock(&nic_data->vlan_lock);
	list_for_each_entry_safe(vlan, next_vlan, &nic_data->vlan_list, list)
		efx_ef10_del_vlan_internal(efx, vlan);
	mutex_unlock(&nic_data->vlan_lock);
}

427 428 429 430
static DEVICE_ATTR(link_control_flag, 0444, efx_ef10_show_link_control_flag,
		   NULL);
static DEVICE_ATTR(primary_flag, 0444, efx_ef10_show_primary_flag, NULL);

431 432 433
static int efx_ef10_probe(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data;
434
	struct net_device *net_dev = efx->net_dev;
435 436
	int i, rc;

437 438
	/* We can have one VI for each 8K region.  However, until we
	 * use TX option descriptors we need two TX queues per channel.
439
	 */
440 441 442 443 444
	efx->max_channels = min_t(unsigned int,
				  EFX_MAX_CHANNELS,
				  efx_ef10_mem_map_size(efx) /
				  (EFX_VI_PAGE_SIZE * EFX_TXQ_TYPES));
	efx->max_tx_channels = efx->max_channels;
445 446
	if (WARN_ON(efx->max_channels == 0))
		return -EIO;
447 448 449 450 451 452

	nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
	if (!nic_data)
		return -ENOMEM;
	efx->nic_data = nic_data;

E
Edward Cree 已提交
453 454 455
	/* we assume later that we can copy from this buffer in dwords */
	BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);

456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
	rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf,
				  8 + MCDI_CTL_SDU_LEN_MAX_V2, GFP_KERNEL);
	if (rc)
		goto fail1;

	/* Get the MC's warm boot count.  In case it's rebooting right
	 * now, be prepared to retry.
	 */
	i = 0;
	for (;;) {
		rc = efx_ef10_get_warm_boot_count(efx);
		if (rc >= 0)
			break;
		if (++i == 5)
			goto fail2;
		ssleep(1);
	}
	nic_data->warm_boot_count = rc;

	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;

477 478
	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
	/* In case we're recovering from a crash (kexec), we want to
	 * cancel any outstanding request by the previous user of this
	 * function.  We send a special message using the least
	 * significant bits of the 'high' (doorbell) register.
	 */
	_efx_writed(efx, cpu_to_le32(1), ER_DZ_MC_DB_HWRD);

	rc = efx_mcdi_init(efx);
	if (rc)
		goto fail2;

	/* Reset (most) configuration for this function */
	rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
	if (rc)
		goto fail3;

	/* Enable event logging */
	rc = efx_mcdi_log_ctrl(efx, true, false, 0);
	if (rc)
		goto fail3;

500 501
	rc = device_create_file(&efx->pci_dev->dev,
				&dev_attr_link_control_flag);
502 503 504
	if (rc)
		goto fail3;

505 506 507 508 509 510 511 512
	rc = device_create_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
	if (rc)
		goto fail4;

	rc = efx_ef10_get_pf_index(efx);
	if (rc)
		goto fail5;

513
	rc = efx_ef10_init_datapath_caps(efx);
514
	if (rc < 0)
515
		goto fail5;
516 517 518 519 520 521

	efx->rx_packet_len_offset =
		ES_DZ_RX_PREFIX_PKTLEN_OFST - ES_DZ_RX_PREFIX_SIZE;

	rc = efx_mcdi_port_get_number(efx);
	if (rc < 0)
522
		goto fail5;
523
	efx->port_num = rc;
524
	net_dev->dev_port = rc;
525

526
	rc = efx->type->get_mac_address(efx, efx->net_dev->perm_addr);
527
	if (rc)
528
		goto fail5;
529 530 531

	rc = efx_ef10_get_sysclk_freq(efx);
	if (rc < 0)
532
		goto fail5;
533 534
	efx->timer_quantum_ns = 1536000 / rc; /* 1536 cycles */

535 536 537 538
	/* Check whether firmware supports bug 35388 workaround.
	 * First try to enable it, then if we get EPERM, just
	 * ask if it's already enabled
	 */
539
	rc = efx_mcdi_set_workaround(efx, MC_CMD_WORKAROUND_BUG35388, true, NULL);
540
	if (rc == 0) {
541
		nic_data->workaround_35388 = true;
542
	} else if (rc == -EPERM) {
543 544 545 546 547 548 549
		unsigned int enabled;

		rc = efx_mcdi_get_workarounds(efx, NULL, &enabled);
		if (rc)
			goto fail3;
		nic_data->workaround_35388 = enabled &
			MC_CMD_GET_WORKAROUNDS_OUT_BUG35388;
550
	} else if (rc != -ENOSYS && rc != -ENOENT) {
551
		goto fail5;
552
	}
553 554 555 556 557
	netif_dbg(efx, probe, efx->net_dev,
		  "workaround for bug 35388 is %sabled\n",
		  nic_data->workaround_35388 ? "en" : "dis");

	rc = efx_mcdi_mon_probe(efx);
558
	if (rc && rc != -EPERM)
559
		goto fail5;
560

561 562
	efx_ptp_probe(efx, NULL);

563 564 565 566 567 568 569 570 571 572
#ifdef CONFIG_SFC_SRIOV
	if ((efx->pci_dev->physfn) && (!efx->pci_dev->is_physfn)) {
		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;
		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);

		efx_pf->type->get_mac_address(efx_pf, nic_data->port_id);
	} else
#endif
		ether_addr_copy(nic_data->port_id, efx->net_dev->perm_addr);

573 574 575 576 577 578 579 580
	INIT_LIST_HEAD(&nic_data->vlan_list);
	mutex_init(&nic_data->vlan_lock);

	/* Add unspecified VID to support VLAN filtering being disabled */
	rc = efx_ef10_add_vlan(efx, EFX_FILTER_VID_UNSPEC);
	if (rc)
		goto fail_add_vid_unspec;

581 582 583 584 585 586 587 588
	/* If VLAN filtering is enabled, we need VID 0 to get untagged
	 * traffic.  It is added automatically if 8021q module is loaded,
	 * but we can't rely on it since module may be not loaded.
	 */
	rc = efx_ef10_add_vlan(efx, 0);
	if (rc)
		goto fail_add_vid_0;

589 590
	return 0;

591 592
fail_add_vid_0:
	efx_ef10_cleanup_vlans(efx);
593 594 595 596
fail_add_vid_unspec:
	mutex_destroy(&nic_data->vlan_lock);
	efx_ptp_remove(efx);
	efx_mcdi_mon_remove(efx);
597 598 599 600
fail5:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
fail4:
	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);
601 602 603 604 605 606 607 608 609 610 611 612
fail3:
	efx_mcdi_fini(efx);
fail2:
	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
fail1:
	kfree(nic_data);
	efx->nic_data = NULL;
	return rc;
}

static int efx_ef10_free_vis(struct efx_nic *efx)
{
613
	MCDI_DECLARE_BUF_ERR(outbuf);
E
Edward Cree 已提交
614 615 616
	size_t outlen;
	int rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FREE_VIS, NULL, 0,
				    outbuf, sizeof(outbuf), &outlen);
617 618 619 620

	/* -EALREADY means nothing to free, so ignore */
	if (rc == -EALREADY)
		rc = 0;
E
Edward Cree 已提交
621 622 623
	if (rc)
		efx_mcdi_display_error(efx, MC_CMD_FREE_VIS, 0, outbuf, outlen,
				       rc);
624 625 626
	return rc;
}

627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
#ifdef EFX_USE_PIO

static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FREE_PIOBUF_IN_LEN);
	unsigned int i;
	int rc;

	BUILD_BUG_ON(MC_CMD_FREE_PIOBUF_OUT_LEN != 0);

	for (i = 0; i < nic_data->n_piobufs; i++) {
		MCDI_SET_DWORD(inbuf, FREE_PIOBUF_IN_PIOBUF_HANDLE,
			       nic_data->piobuf_handle[i]);
		rc = efx_mcdi_rpc(efx, MC_CMD_FREE_PIOBUF, inbuf, sizeof(inbuf),
				  NULL, 0, NULL);
		WARN_ON(rc);
	}

	nic_data->n_piobufs = 0;
}

static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_PIOBUF_OUT_LEN);
	unsigned int i;
	size_t outlen;
	int rc = 0;

	BUILD_BUG_ON(MC_CMD_ALLOC_PIOBUF_IN_LEN != 0);

	for (i = 0; i < n; i++) {
660 661 662 663 664 665 666 667 668
		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_ALLOC_PIOBUF, NULL, 0,
					outbuf, sizeof(outbuf), &outlen);
		if (rc) {
			/* Don't display the MC error if we didn't have space
			 * for a VF.
			 */
			if (!(efx_ef10_is_vf(efx) && rc == -ENOSPC))
				efx_mcdi_display_error(efx, MC_CMD_ALLOC_PIOBUF,
						       0, outbuf, outlen, rc);
669
			break;
670
		}
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690
		if (outlen < MC_CMD_ALLOC_PIOBUF_OUT_LEN) {
			rc = -EIO;
			break;
		}
		nic_data->piobuf_handle[i] =
			MCDI_DWORD(outbuf, ALLOC_PIOBUF_OUT_PIOBUF_HANDLE);
		netif_dbg(efx, probe, efx->net_dev,
			  "allocated PIO buffer %u handle %x\n", i,
			  nic_data->piobuf_handle[i]);
	}

	nic_data->n_piobufs = i;
	if (rc)
		efx_ef10_free_piobufs(efx);
	return rc;
}

static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
691 692 693
	_MCDI_DECLARE_BUF(inbuf,
			  max(MC_CMD_LINK_PIOBUF_IN_LEN,
			      MC_CMD_UNLINK_PIOBUF_IN_LEN));
694 695 696 697 698 699 700 701
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	unsigned int offset, index;
	int rc;

	BUILD_BUG_ON(MC_CMD_LINK_PIOBUF_OUT_LEN != 0);
	BUILD_BUG_ON(MC_CMD_UNLINK_PIOBUF_OUT_LEN != 0);

702 703
	memset(inbuf, 0, sizeof(inbuf));

704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
	/* Link a buffer to each VI in the write-combining mapping */
	for (index = 0; index < nic_data->n_piobufs; ++index) {
		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_PIOBUF_HANDLE,
			       nic_data->piobuf_handle[index]);
		MCDI_SET_DWORD(inbuf, LINK_PIOBUF_IN_TXQ_INSTANCE,
			       nic_data->pio_write_vi_base + index);
		rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
				  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
				  NULL, 0, NULL);
		if (rc) {
			netif_err(efx, drv, efx->net_dev,
				  "failed to link VI %u to PIO buffer %u (%d)\n",
				  nic_data->pio_write_vi_base + index, index,
				  rc);
			goto fail;
		}
		netif_dbg(efx, probe, efx->net_dev,
			  "linked VI %u to PIO buffer %u\n",
			  nic_data->pio_write_vi_base + index, index);
	}

	/* Link a buffer to each TX queue */
	efx_for_each_channel(channel, efx) {
		efx_for_each_channel_tx_queue(tx_queue, channel) {
			/* We assign the PIO buffers to queues in
			 * reverse order to allow for the following
			 * special case.
			 */
			offset = ((efx->tx_channel_offset + efx->n_tx_channels -
				   tx_queue->channel->channel - 1) *
				  efx_piobuf_size);
			index = offset / ER_DZ_TX_PIOBUF_SIZE;
			offset = offset % ER_DZ_TX_PIOBUF_SIZE;

			/* When the host page size is 4K, the first
			 * host page in the WC mapping may be within
			 * the same VI page as the last TX queue.  We
			 * can only link one buffer to each VI.
			 */
			if (tx_queue->queue == nic_data->pio_write_vi_base) {
				BUG_ON(index != 0);
				rc = 0;
			} else {
				MCDI_SET_DWORD(inbuf,
					       LINK_PIOBUF_IN_PIOBUF_HANDLE,
					       nic_data->piobuf_handle[index]);
				MCDI_SET_DWORD(inbuf,
					       LINK_PIOBUF_IN_TXQ_INSTANCE,
					       tx_queue->queue);
				rc = efx_mcdi_rpc(efx, MC_CMD_LINK_PIOBUF,
						  inbuf, MC_CMD_LINK_PIOBUF_IN_LEN,
						  NULL, 0, NULL);
			}

			if (rc) {
				/* This is non-fatal; the TX path just
				 * won't use PIO for this queue
				 */
				netif_err(efx, drv, efx->net_dev,
					  "failed to link VI %u to PIO buffer %u (%d)\n",
					  tx_queue->queue, index, rc);
				tx_queue->piobuf = NULL;
			} else {
				tx_queue->piobuf =
					nic_data->pio_write_base +
					index * EFX_VI_PAGE_SIZE + offset;
				tx_queue->piobuf_offset = offset;
				netif_dbg(efx, probe, efx->net_dev,
					  "linked VI %u to PIO buffer %u offset %x addr %p\n",
					  tx_queue->queue, index,
					  tx_queue->piobuf_offset,
					  tx_queue->piobuf);
			}
		}
	}

	return 0;

fail:
	while (index--) {
		MCDI_SET_DWORD(inbuf, UNLINK_PIOBUF_IN_TXQ_INSTANCE,
			       nic_data->pio_write_vi_base + index);
		efx_mcdi_rpc(efx, MC_CMD_UNLINK_PIOBUF,
			     inbuf, MC_CMD_UNLINK_PIOBUF_IN_LEN,
			     NULL, 0, NULL);
	}
	return rc;
}

793 794 795 796 797 798 799 800 801 802 803
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;

	/* All our existing PIO buffers went away */
	efx_for_each_channel(channel, efx)
		efx_for_each_channel_tx_queue(tx_queue, channel)
			tx_queue->piobuf = NULL;
}

804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819
#else /* !EFX_USE_PIO */

static int efx_ef10_alloc_piobufs(struct efx_nic *efx, unsigned int n)
{
	return n == 0 ? 0 : -ENOBUFS;
}

static int efx_ef10_link_piobufs(struct efx_nic *efx)
{
	return 0;
}

static void efx_ef10_free_piobufs(struct efx_nic *efx)
{
}

820 821 822 823
static void efx_ef10_forget_old_piobufs(struct efx_nic *efx)
{
}

824 825
#endif /* EFX_USE_PIO */

826 827 828 829 830
static void efx_ef10_remove(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;

831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849
#ifdef CONFIG_SFC_SRIOV
	struct efx_ef10_nic_data *nic_data_pf;
	struct pci_dev *pci_dev_pf;
	struct efx_nic *efx_pf;
	struct ef10_vf *vf;

	if (efx->pci_dev->is_virtfn) {
		pci_dev_pf = efx->pci_dev->physfn;
		if (pci_dev_pf) {
			efx_pf = pci_get_drvdata(pci_dev_pf);
			nic_data_pf = efx_pf->nic_data;
			vf = nic_data_pf->vf + nic_data->vf_index;
			vf->efx = NULL;
		} else
			netif_info(efx, drv, efx->net_dev,
				   "Could not get the PF id from VF\n");
	}
#endif

850 851 852
	efx_ef10_cleanup_vlans(efx);
	mutex_destroy(&nic_data->vlan_lock);

853 854
	efx_ptp_remove(efx);

855 856 857 858
	efx_mcdi_mon_remove(efx);

	efx_ef10_rx_free_indir_table(efx);

859 860 861
	if (nic_data->wc_membase)
		iounmap(nic_data->wc_membase);

862 863 864
	rc = efx_ef10_free_vis(efx);
	WARN_ON(rc != 0);

865 866 867
	if (!nic_data->must_restore_piobufs)
		efx_ef10_free_piobufs(efx);

868 869 870
	device_remove_file(&efx->pci_dev->dev, &dev_attr_primary_flag);
	device_remove_file(&efx->pci_dev->dev, &dev_attr_link_control_flag);

871 872 873 874 875
	efx_mcdi_fini(efx);
	efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
	kfree(nic_data);
}

876 877 878 879 880
static int efx_ef10_probe_pf(struct efx_nic *efx)
{
	return efx_ef10_probe(efx);
}

881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
int efx_ef10_vadaptor_query(struct efx_nic *efx, unsigned int port_id,
			    u32 *port_flags, u32 *vadaptor_flags,
			    unsigned int *vlan_tags)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_QUERY_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_VADAPTOR_QUERY_OUT_LEN);
	size_t outlen;
	int rc;

	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_VADAPTOR_QUERY_LBN)) {
		MCDI_SET_DWORD(inbuf, VADAPTOR_QUERY_IN_UPSTREAM_PORT_ID,
			       port_id);

		rc = efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_QUERY, inbuf, sizeof(inbuf),
				  outbuf, sizeof(outbuf), &outlen);
		if (rc)
			return rc;

		if (outlen < sizeof(outbuf)) {
			rc = -EIO;
			return rc;
		}
	}

	if (port_flags)
		*port_flags = MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_PORT_FLAGS);
	if (vadaptor_flags)
		*vadaptor_flags =
			MCDI_DWORD(outbuf, VADAPTOR_QUERY_OUT_VADAPTOR_FLAGS);
	if (vlan_tags)
		*vlan_tags =
			MCDI_DWORD(outbuf,
				   VADAPTOR_QUERY_OUT_NUM_AVAILABLE_VLAN_TAGS);

	return 0;
}

920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961
int efx_ef10_vadaptor_alloc(struct efx_nic *efx, unsigned int port_id)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_ALLOC_IN_LEN);

	MCDI_SET_DWORD(inbuf, VADAPTOR_ALLOC_IN_UPSTREAM_PORT_ID, port_id);
	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_ALLOC, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

int efx_ef10_vadaptor_free(struct efx_nic *efx, unsigned int port_id)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_FREE_IN_LEN);

	MCDI_SET_DWORD(inbuf, VADAPTOR_FREE_IN_UPSTREAM_PORT_ID, port_id);
	return efx_mcdi_rpc(efx, MC_CMD_VADAPTOR_FREE, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

int efx_ef10_vport_add_mac(struct efx_nic *efx,
			   unsigned int port_id, u8 *mac)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_ADD_MAC_ADDRESS_IN_LEN);

	MCDI_SET_DWORD(inbuf, VPORT_ADD_MAC_ADDRESS_IN_VPORT_ID, port_id);
	ether_addr_copy(MCDI_PTR(inbuf, VPORT_ADD_MAC_ADDRESS_IN_MACADDR), mac);

	return efx_mcdi_rpc(efx, MC_CMD_VPORT_ADD_MAC_ADDRESS, inbuf,
			    sizeof(inbuf), NULL, 0, NULL);
}

int efx_ef10_vport_del_mac(struct efx_nic *efx,
			   unsigned int port_id, u8 *mac)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VPORT_DEL_MAC_ADDRESS_IN_LEN);

	MCDI_SET_DWORD(inbuf, VPORT_DEL_MAC_ADDRESS_IN_VPORT_ID, port_id);
	ether_addr_copy(MCDI_PTR(inbuf, VPORT_DEL_MAC_ADDRESS_IN_MACADDR), mac);

	return efx_mcdi_rpc(efx, MC_CMD_VPORT_DEL_MAC_ADDRESS, inbuf,
			    sizeof(inbuf), NULL, 0, NULL);
}

962 963 964 965
#ifdef CONFIG_SFC_SRIOV
static int efx_ef10_probe_vf(struct efx_nic *efx)
{
	int rc;
966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983
	struct pci_dev *pci_dev_pf;

	/* If the parent PF has no VF data structure, it doesn't know about this
	 * VF so fail probe.  The VF needs to be re-created.  This can happen
	 * if the PF driver is unloaded while the VF is assigned to a guest.
	 */
	pci_dev_pf = efx->pci_dev->physfn;
	if (pci_dev_pf) {
		struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
		struct efx_ef10_nic_data *nic_data_pf = efx_pf->nic_data;

		if (!nic_data_pf->vf) {
			netif_info(efx, drv, efx->net_dev,
				   "The VF cannot link to its parent PF; "
				   "please destroy and re-create the VF\n");
			return -EBUSY;
		}
	}
984 985 986 987 988 989 990 991 992

	rc = efx_ef10_probe(efx);
	if (rc)
		return rc;

	rc = efx_ef10_get_vf_index(efx);
	if (rc)
		goto fail;

993 994 995 996 997 998 999 1000
	if (efx->pci_dev->is_virtfn) {
		if (efx->pci_dev->physfn) {
			struct efx_nic *efx_pf =
				pci_get_drvdata(efx->pci_dev->physfn);
			struct efx_ef10_nic_data *nic_data_p = efx_pf->nic_data;
			struct efx_ef10_nic_data *nic_data = efx->nic_data;

			nic_data_p->vf[nic_data->vf_index].efx = efx;
1001 1002
			nic_data_p->vf[nic_data->vf_index].pci_dev =
				efx->pci_dev;
1003 1004 1005 1006 1007
		} else
			netif_info(efx, drv, efx->net_dev,
				   "Could not get the PF id from VF\n");
	}

1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
	return 0;

fail:
	efx_ef10_remove(efx);
	return rc;
}
#else
static int efx_ef10_probe_vf(struct efx_nic *efx __attribute__ ((unused)))
{
	return 0;
}
#endif

1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047
static int efx_ef10_alloc_vis(struct efx_nic *efx,
			      unsigned int min_vis, unsigned int max_vis)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_ALLOC_VIS_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_ALLOC_VIS_OUT_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MIN_VI_COUNT, min_vis);
	MCDI_SET_DWORD(inbuf, ALLOC_VIS_IN_MAX_VI_COUNT, max_vis);
	rc = efx_mcdi_rpc(efx, MC_CMD_ALLOC_VIS, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);
	if (rc != 0)
		return rc;

	if (outlen < MC_CMD_ALLOC_VIS_OUT_LEN)
		return -EIO;

	netif_dbg(efx, drv, efx->net_dev, "base VI is A0x%03x\n",
		  MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE));

	nic_data->vi_base = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_BASE);
	nic_data->n_allocated_vis = MCDI_DWORD(outbuf, ALLOC_VIS_OUT_VI_COUNT);
	return 0;
}

1048 1049 1050
/* Note that the failure path of this function does not free
 * resources, as this will be done by efx_ef10_remove().
 */
1051 1052
static int efx_ef10_dimension_resources(struct efx_nic *efx)
{
1053 1054
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	unsigned int uc_mem_map_size, wc_mem_map_size;
1055 1056 1057
	unsigned int min_vis = max(EFX_TXQ_TYPES,
				   efx_separate_tx_channels ? 2 : 1);
	unsigned int channel_vis, pio_write_vi_base, max_vis;
1058 1059 1060
	void __iomem *membase;
	int rc;

1061
	channel_vis = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1062

1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
#ifdef EFX_USE_PIO
	/* Try to allocate PIO buffers if wanted and if the full
	 * number of PIO buffers would be sufficient to allocate one
	 * copy-buffer per TX channel.  Failure is non-fatal, as there
	 * are only a small number of PIO buffers shared between all
	 * functions of the controller.
	 */
	if (efx_piobuf_size != 0 &&
	    ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size * EF10_TX_PIOBUF_COUNT >=
	    efx->n_tx_channels) {
		unsigned int n_piobufs =
			DIV_ROUND_UP(efx->n_tx_channels,
				     ER_DZ_TX_PIOBUF_SIZE / efx_piobuf_size);

		rc = efx_ef10_alloc_piobufs(efx, n_piobufs);
		if (rc)
			netif_err(efx, probe, efx->net_dev,
				  "failed to allocate PIO buffers (%d)\n", rc);
		else
			netif_dbg(efx, probe, efx->net_dev,
				  "allocated %u PIO buffers\n", n_piobufs);
	}
#else
	nic_data->n_piobufs = 0;
#endif

	/* PIO buffers should be mapped with write-combining enabled,
	 * and we want to make single UC and WC mappings rather than
	 * several of each (in fact that's the only option if host
	 * page size is >4K).  So we may allocate some extra VIs just
	 * for writing PIO buffers through.
1094
	 *
1095
	 * The UC mapping contains (channel_vis - 1) complete VIs and the
1096 1097
	 * first half of the next VI.  Then the WC mapping begins with
	 * the second half of this last VI.
1098
	 */
1099
	uc_mem_map_size = PAGE_ALIGN((channel_vis - 1) * EFX_VI_PAGE_SIZE +
1100 1101
				     ER_DZ_TX_PIOBUF);
	if (nic_data->n_piobufs) {
1102 1103 1104
		/* pio_write_vi_base rounds down to give the number of complete
		 * VIs inside the UC mapping.
		 */
1105 1106 1107 1108 1109 1110 1111 1112 1113
		pio_write_vi_base = uc_mem_map_size / EFX_VI_PAGE_SIZE;
		wc_mem_map_size = (PAGE_ALIGN((pio_write_vi_base +
					       nic_data->n_piobufs) *
					      EFX_VI_PAGE_SIZE) -
				   uc_mem_map_size);
		max_vis = pio_write_vi_base + nic_data->n_piobufs;
	} else {
		pio_write_vi_base = 0;
		wc_mem_map_size = 0;
1114
		max_vis = channel_vis;
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125
	}

	/* In case the last attached driver failed to free VIs, do it now */
	rc = efx_ef10_free_vis(efx);
	if (rc != 0)
		return rc;

	rc = efx_ef10_alloc_vis(efx, min_vis, max_vis);
	if (rc != 0)
		return rc;

1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142
	if (nic_data->n_allocated_vis < channel_vis) {
		netif_info(efx, drv, efx->net_dev,
			   "Could not allocate enough VIs to satisfy RSS"
			   " requirements. Performance may not be optimal.\n");
		/* We didn't get the VIs to populate our channels.
		 * We could keep what we got but then we'd have more
		 * interrupts than we need.
		 * Instead calculate new max_channels and restart
		 */
		efx->max_channels = nic_data->n_allocated_vis;
		efx->max_tx_channels =
			nic_data->n_allocated_vis / EFX_TXQ_TYPES;

		efx_ef10_free_vis(efx);
		return -EAGAIN;
	}

1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193
	/* If we didn't get enough VIs to map all the PIO buffers, free the
	 * PIO buffers
	 */
	if (nic_data->n_piobufs &&
	    nic_data->n_allocated_vis <
	    pio_write_vi_base + nic_data->n_piobufs) {
		netif_dbg(efx, probe, efx->net_dev,
			  "%u VIs are not sufficient to map %u PIO buffers\n",
			  nic_data->n_allocated_vis, nic_data->n_piobufs);
		efx_ef10_free_piobufs(efx);
	}

	/* Shrink the original UC mapping of the memory BAR */
	membase = ioremap_nocache(efx->membase_phys, uc_mem_map_size);
	if (!membase) {
		netif_err(efx, probe, efx->net_dev,
			  "could not shrink memory BAR to %x\n",
			  uc_mem_map_size);
		return -ENOMEM;
	}
	iounmap(efx->membase);
	efx->membase = membase;

	/* Set up the WC mapping if needed */
	if (wc_mem_map_size) {
		nic_data->wc_membase = ioremap_wc(efx->membase_phys +
						  uc_mem_map_size,
						  wc_mem_map_size);
		if (!nic_data->wc_membase) {
			netif_err(efx, probe, efx->net_dev,
				  "could not allocate WC mapping of size %x\n",
				  wc_mem_map_size);
			return -ENOMEM;
		}
		nic_data->pio_write_vi_base = pio_write_vi_base;
		nic_data->pio_write_base =
			nic_data->wc_membase +
			(pio_write_vi_base * EFX_VI_PAGE_SIZE + ER_DZ_TX_PIOBUF -
			 uc_mem_map_size);

		rc = efx_ef10_link_piobufs(efx);
		if (rc)
			efx_ef10_free_piobufs(efx);
	}

	netif_dbg(efx, probe, efx->net_dev,
		  "memory BAR at %pa (virtual %p+%x UC, %p+%x WC)\n",
		  &efx->membase_phys, efx->membase, uc_mem_map_size,
		  nic_data->wc_membase, wc_mem_map_size);

	return 0;
1194 1195 1196 1197 1198 1199 1200
}

static int efx_ef10_init_nic(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;

1201 1202 1203 1204 1205 1206 1207
	if (nic_data->must_check_datapath_caps) {
		rc = efx_ef10_init_datapath_caps(efx);
		if (rc)
			return rc;
		nic_data->must_check_datapath_caps = false;
	}

1208 1209 1210 1211 1212 1213 1214 1215 1216
	if (nic_data->must_realloc_vis) {
		/* We cannot let the number of VIs change now */
		rc = efx_ef10_alloc_vis(efx, nic_data->n_allocated_vis,
					nic_data->n_allocated_vis);
		if (rc)
			return rc;
		nic_data->must_realloc_vis = false;
	}

1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231
	if (nic_data->must_restore_piobufs && nic_data->n_piobufs) {
		rc = efx_ef10_alloc_piobufs(efx, nic_data->n_piobufs);
		if (rc == 0) {
			rc = efx_ef10_link_piobufs(efx);
			if (rc)
				efx_ef10_free_piobufs(efx);
		}

		/* Log an error on failure, but this is non-fatal */
		if (rc)
			netif_err(efx, drv, efx->net_dev,
				  "failed to restore PIO buffers (%d)\n", rc);
		nic_data->must_restore_piobufs = false;
	}

1232 1233 1234
	/* don't fail init if RSS setup doesn't work */
	efx->type->rx_push_rss_config(efx, false, efx->rx_indir_table);

1235 1236 1237
	return 0;
}

1238 1239 1240
static void efx_ef10_reset_mc_allocations(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1241 1242 1243
#ifdef CONFIG_SFC_SRIOV
	unsigned int i;
#endif
1244 1245 1246 1247 1248

	/* All our allocations have been reset */
	nic_data->must_realloc_vis = true;
	nic_data->must_restore_filters = true;
	nic_data->must_restore_piobufs = true;
1249
	efx_ef10_forget_old_piobufs(efx);
1250
	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
1251 1252 1253 1254 1255 1256 1257 1258 1259

	/* Driver-created vswitches and vports must be re-created */
	nic_data->must_probe_vswitching = true;
	nic_data->vport_id = EVB_PORT_ID_ASSIGNED;
#ifdef CONFIG_SFC_SRIOV
	if (nic_data->vf)
		for (i = 0; i < efx->vf_count; i++)
			nic_data->vf[i].vport_id = 0;
#endif
1260 1261
}

1262 1263 1264 1265 1266 1267 1268 1269
static enum reset_type efx_ef10_map_reset_reason(enum reset_type reason)
{
	if (reason == RESET_TYPE_MC_FAILURE)
		return RESET_TYPE_DATAPATH;

	return efx_mcdi_map_reset_reason(reason);
}

1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299
static int efx_ef10_map_reset_flags(u32 *flags)
{
	enum {
		EF10_RESET_PORT = ((ETH_RESET_MAC | ETH_RESET_PHY) <<
				   ETH_RESET_SHARED_SHIFT),
		EF10_RESET_MC = ((ETH_RESET_DMA | ETH_RESET_FILTER |
				  ETH_RESET_OFFLOAD | ETH_RESET_MAC |
				  ETH_RESET_PHY | ETH_RESET_MGMT) <<
				 ETH_RESET_SHARED_SHIFT)
	};

	/* We assume for now that our PCI function is permitted to
	 * reset everything.
	 */

	if ((*flags & EF10_RESET_MC) == EF10_RESET_MC) {
		*flags &= ~EF10_RESET_MC;
		return RESET_TYPE_WORLD;
	}

	if ((*flags & EF10_RESET_PORT) == EF10_RESET_PORT) {
		*flags &= ~EF10_RESET_PORT;
		return RESET_TYPE_ALL;
	}

	/* no invisible reset implemented */

	return -EINVAL;
}

1300 1301 1302 1303
static int efx_ef10_reset(struct efx_nic *efx, enum reset_type reset_type)
{
	int rc = efx_mcdi_reset(efx, reset_type);

1304 1305 1306 1307 1308 1309
	/* Unprivileged functions return -EPERM, but need to return success
	 * here so that the datapath is brought back up.
	 */
	if (reset_type == RESET_TYPE_WORLD && rc == -EPERM)
		rc = 0;

1310 1311 1312
	/* If it was a port reset, trigger reallocation of MC resources.
	 * Note that on an MC reset nothing needs to be done now because we'll
	 * detect the MC reset later and handle it then.
1313 1314
	 * For an FLR, we never get an MC reset event, but the MC has reset all
	 * resources assigned to us, so we have to trigger reallocation now.
1315
	 */
1316 1317
	if ((reset_type == RESET_TYPE_ALL ||
	     reset_type == RESET_TYPE_MCDI_TIMEOUT) && !rc)
1318 1319 1320 1321
		efx_ef10_reset_mc_allocations(efx);
	return rc;
}

1322 1323 1324 1325 1326 1327 1328 1329
#define EF10_DMA_STAT(ext_name, mcdi_name)			\
	[EF10_STAT_ ## ext_name] =				\
	{ #ext_name, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_DMA_INVIS_STAT(int_name, mcdi_name)		\
	[EF10_STAT_ ## int_name] =				\
	{ NULL, 64, 8 * MC_CMD_MAC_ ## mcdi_name }
#define EF10_OTHER_STAT(ext_name)				\
	[EF10_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1330 1331
#define GENERIC_SW_STAT(ext_name)				\
	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
1332 1333

static const struct efx_hw_stat_desc efx_ef10_stat_desc[EF10_STAT_COUNT] = {
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374
	EF10_DMA_STAT(port_tx_bytes, TX_BYTES),
	EF10_DMA_STAT(port_tx_packets, TX_PKTS),
	EF10_DMA_STAT(port_tx_pause, TX_PAUSE_PKTS),
	EF10_DMA_STAT(port_tx_control, TX_CONTROL_PKTS),
	EF10_DMA_STAT(port_tx_unicast, TX_UNICAST_PKTS),
	EF10_DMA_STAT(port_tx_multicast, TX_MULTICAST_PKTS),
	EF10_DMA_STAT(port_tx_broadcast, TX_BROADCAST_PKTS),
	EF10_DMA_STAT(port_tx_lt64, TX_LT64_PKTS),
	EF10_DMA_STAT(port_tx_64, TX_64_PKTS),
	EF10_DMA_STAT(port_tx_65_to_127, TX_65_TO_127_PKTS),
	EF10_DMA_STAT(port_tx_128_to_255, TX_128_TO_255_PKTS),
	EF10_DMA_STAT(port_tx_256_to_511, TX_256_TO_511_PKTS),
	EF10_DMA_STAT(port_tx_512_to_1023, TX_512_TO_1023_PKTS),
	EF10_DMA_STAT(port_tx_1024_to_15xx, TX_1024_TO_15XX_PKTS),
	EF10_DMA_STAT(port_tx_15xx_to_jumbo, TX_15XX_TO_JUMBO_PKTS),
	EF10_DMA_STAT(port_rx_bytes, RX_BYTES),
	EF10_DMA_INVIS_STAT(port_rx_bytes_minus_good_bytes, RX_BAD_BYTES),
	EF10_OTHER_STAT(port_rx_good_bytes),
	EF10_OTHER_STAT(port_rx_bad_bytes),
	EF10_DMA_STAT(port_rx_packets, RX_PKTS),
	EF10_DMA_STAT(port_rx_good, RX_GOOD_PKTS),
	EF10_DMA_STAT(port_rx_bad, RX_BAD_FCS_PKTS),
	EF10_DMA_STAT(port_rx_pause, RX_PAUSE_PKTS),
	EF10_DMA_STAT(port_rx_control, RX_CONTROL_PKTS),
	EF10_DMA_STAT(port_rx_unicast, RX_UNICAST_PKTS),
	EF10_DMA_STAT(port_rx_multicast, RX_MULTICAST_PKTS),
	EF10_DMA_STAT(port_rx_broadcast, RX_BROADCAST_PKTS),
	EF10_DMA_STAT(port_rx_lt64, RX_UNDERSIZE_PKTS),
	EF10_DMA_STAT(port_rx_64, RX_64_PKTS),
	EF10_DMA_STAT(port_rx_65_to_127, RX_65_TO_127_PKTS),
	EF10_DMA_STAT(port_rx_128_to_255, RX_128_TO_255_PKTS),
	EF10_DMA_STAT(port_rx_256_to_511, RX_256_TO_511_PKTS),
	EF10_DMA_STAT(port_rx_512_to_1023, RX_512_TO_1023_PKTS),
	EF10_DMA_STAT(port_rx_1024_to_15xx, RX_1024_TO_15XX_PKTS),
	EF10_DMA_STAT(port_rx_15xx_to_jumbo, RX_15XX_TO_JUMBO_PKTS),
	EF10_DMA_STAT(port_rx_gtjumbo, RX_GTJUMBO_PKTS),
	EF10_DMA_STAT(port_rx_bad_gtjumbo, RX_JABBER_PKTS),
	EF10_DMA_STAT(port_rx_overflow, RX_OVERFLOW_PKTS),
	EF10_DMA_STAT(port_rx_align_error, RX_ALIGN_ERROR_PKTS),
	EF10_DMA_STAT(port_rx_length_error, RX_LENGTH_ERROR_PKTS),
	EF10_DMA_STAT(port_rx_nodesc_drops, RX_NODESC_DROPS),
1375 1376
	GENERIC_SW_STAT(rx_nodesc_trunc),
	GENERIC_SW_STAT(rx_noskb_drops),
1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
	EF10_DMA_STAT(port_rx_pm_trunc_bb_overflow, PM_TRUNC_BB_OVERFLOW),
	EF10_DMA_STAT(port_rx_pm_discard_bb_overflow, PM_DISCARD_BB_OVERFLOW),
	EF10_DMA_STAT(port_rx_pm_trunc_vfifo_full, PM_TRUNC_VFIFO_FULL),
	EF10_DMA_STAT(port_rx_pm_discard_vfifo_full, PM_DISCARD_VFIFO_FULL),
	EF10_DMA_STAT(port_rx_pm_trunc_qbb, PM_TRUNC_QBB),
	EF10_DMA_STAT(port_rx_pm_discard_qbb, PM_DISCARD_QBB),
	EF10_DMA_STAT(port_rx_pm_discard_mapping, PM_DISCARD_MAPPING),
	EF10_DMA_STAT(port_rx_dp_q_disabled_packets, RXDP_Q_DISABLED_PKTS),
	EF10_DMA_STAT(port_rx_dp_di_dropped_packets, RXDP_DI_DROPPED_PKTS),
	EF10_DMA_STAT(port_rx_dp_streaming_packets, RXDP_STREAMING_PKTS),
	EF10_DMA_STAT(port_rx_dp_hlb_fetch, RXDP_HLB_FETCH_CONDITIONS),
	EF10_DMA_STAT(port_rx_dp_hlb_wait, RXDP_HLB_WAIT_CONDITIONS),
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
	EF10_DMA_STAT(rx_unicast, VADAPTER_RX_UNICAST_PACKETS),
	EF10_DMA_STAT(rx_unicast_bytes, VADAPTER_RX_UNICAST_BYTES),
	EF10_DMA_STAT(rx_multicast, VADAPTER_RX_MULTICAST_PACKETS),
	EF10_DMA_STAT(rx_multicast_bytes, VADAPTER_RX_MULTICAST_BYTES),
	EF10_DMA_STAT(rx_broadcast, VADAPTER_RX_BROADCAST_PACKETS),
	EF10_DMA_STAT(rx_broadcast_bytes, VADAPTER_RX_BROADCAST_BYTES),
	EF10_DMA_STAT(rx_bad, VADAPTER_RX_BAD_PACKETS),
	EF10_DMA_STAT(rx_bad_bytes, VADAPTER_RX_BAD_BYTES),
	EF10_DMA_STAT(rx_overflow, VADAPTER_RX_OVERFLOW),
	EF10_DMA_STAT(tx_unicast, VADAPTER_TX_UNICAST_PACKETS),
	EF10_DMA_STAT(tx_unicast_bytes, VADAPTER_TX_UNICAST_BYTES),
	EF10_DMA_STAT(tx_multicast, VADAPTER_TX_MULTICAST_PACKETS),
	EF10_DMA_STAT(tx_multicast_bytes, VADAPTER_TX_MULTICAST_BYTES),
	EF10_DMA_STAT(tx_broadcast, VADAPTER_TX_BROADCAST_PACKETS),
	EF10_DMA_STAT(tx_broadcast_bytes, VADAPTER_TX_BROADCAST_BYTES),
	EF10_DMA_STAT(tx_bad, VADAPTER_TX_BAD_PACKETS),
	EF10_DMA_STAT(tx_bad_bytes, VADAPTER_TX_BAD_BYTES),
	EF10_DMA_STAT(tx_overflow, VADAPTER_TX_OVERFLOW),
1407 1408
};

1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439
#define HUNT_COMMON_STAT_MASK ((1ULL << EF10_STAT_port_tx_bytes) |	\
			       (1ULL << EF10_STAT_port_tx_packets) |	\
			       (1ULL << EF10_STAT_port_tx_pause) |	\
			       (1ULL << EF10_STAT_port_tx_unicast) |	\
			       (1ULL << EF10_STAT_port_tx_multicast) |	\
			       (1ULL << EF10_STAT_port_tx_broadcast) |	\
			       (1ULL << EF10_STAT_port_rx_bytes) |	\
			       (1ULL <<                                 \
				EF10_STAT_port_rx_bytes_minus_good_bytes) | \
			       (1ULL << EF10_STAT_port_rx_good_bytes) |	\
			       (1ULL << EF10_STAT_port_rx_bad_bytes) |	\
			       (1ULL << EF10_STAT_port_rx_packets) |	\
			       (1ULL << EF10_STAT_port_rx_good) |	\
			       (1ULL << EF10_STAT_port_rx_bad) |	\
			       (1ULL << EF10_STAT_port_rx_pause) |	\
			       (1ULL << EF10_STAT_port_rx_control) |	\
			       (1ULL << EF10_STAT_port_rx_unicast) |	\
			       (1ULL << EF10_STAT_port_rx_multicast) |	\
			       (1ULL << EF10_STAT_port_rx_broadcast) |	\
			       (1ULL << EF10_STAT_port_rx_lt64) |	\
			       (1ULL << EF10_STAT_port_rx_64) |		\
			       (1ULL << EF10_STAT_port_rx_65_to_127) |	\
			       (1ULL << EF10_STAT_port_rx_128_to_255) |	\
			       (1ULL << EF10_STAT_port_rx_256_to_511) |	\
			       (1ULL << EF10_STAT_port_rx_512_to_1023) |\
			       (1ULL << EF10_STAT_port_rx_1024_to_15xx) |\
			       (1ULL << EF10_STAT_port_rx_15xx_to_jumbo) |\
			       (1ULL << EF10_STAT_port_rx_gtjumbo) |	\
			       (1ULL << EF10_STAT_port_rx_bad_gtjumbo) |\
			       (1ULL << EF10_STAT_port_rx_overflow) |	\
			       (1ULL << EF10_STAT_port_rx_nodesc_drops) |\
1440 1441
			       (1ULL << GENERIC_STAT_rx_nodesc_trunc) |	\
			       (1ULL << GENERIC_STAT_rx_noskb_drops))
1442 1443 1444 1445 1446

/* These statistics are only provided by the 10G MAC.  For a 10G/40G
 * switchable port we do not expose these because they might not
 * include all the packets they should.
 */
1447 1448 1449 1450 1451 1452 1453 1454 1455
#define HUNT_10G_ONLY_STAT_MASK ((1ULL << EF10_STAT_port_tx_control) |	\
				 (1ULL << EF10_STAT_port_tx_lt64) |	\
				 (1ULL << EF10_STAT_port_tx_64) |	\
				 (1ULL << EF10_STAT_port_tx_65_to_127) |\
				 (1ULL << EF10_STAT_port_tx_128_to_255) |\
				 (1ULL << EF10_STAT_port_tx_256_to_511) |\
				 (1ULL << EF10_STAT_port_tx_512_to_1023) |\
				 (1ULL << EF10_STAT_port_tx_1024_to_15xx) |\
				 (1ULL << EF10_STAT_port_tx_15xx_to_jumbo))
1456 1457 1458 1459 1460

/* These statistics are only provided by the 40G MAC.  For a 10G/40G
 * switchable port we do expose these because the errors will otherwise
 * be silent.
 */
1461 1462
#define HUNT_40G_EXTRA_STAT_MASK ((1ULL << EF10_STAT_port_rx_align_error) |\
				  (1ULL << EF10_STAT_port_rx_length_error))
1463

1464 1465 1466 1467
/* These statistics are only provided if the firmware supports the
 * capability PM_AND_RXDP_COUNTERS.
 */
#define HUNT_PM_AND_RXDP_STAT_MASK (					\
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479
	(1ULL << EF10_STAT_port_rx_pm_trunc_bb_overflow) |		\
	(1ULL << EF10_STAT_port_rx_pm_discard_bb_overflow) |		\
	(1ULL << EF10_STAT_port_rx_pm_trunc_vfifo_full) |		\
	(1ULL << EF10_STAT_port_rx_pm_discard_vfifo_full) |		\
	(1ULL << EF10_STAT_port_rx_pm_trunc_qbb) |			\
	(1ULL << EF10_STAT_port_rx_pm_discard_qbb) |			\
	(1ULL << EF10_STAT_port_rx_pm_discard_mapping) |		\
	(1ULL << EF10_STAT_port_rx_dp_q_disabled_packets) |		\
	(1ULL << EF10_STAT_port_rx_dp_di_dropped_packets) |		\
	(1ULL << EF10_STAT_port_rx_dp_streaming_packets) |		\
	(1ULL << EF10_STAT_port_rx_dp_hlb_fetch) |			\
	(1ULL << EF10_STAT_port_rx_dp_hlb_wait))
1480

1481
static u64 efx_ef10_raw_stat_mask(struct efx_nic *efx)
1482
{
1483
	u64 raw_mask = HUNT_COMMON_STAT_MASK;
1484
	u32 port_caps = efx_mcdi_phy_get_caps(efx);
1485
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1486

1487 1488 1489 1490
	if (!(efx->mcdi->fn_flags &
	      1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_LINKCTRL))
		return 0;

1491
	if (port_caps & (1 << MC_CMD_PHY_CAP_40000FDX_LBN))
1492
		raw_mask |= HUNT_40G_EXTRA_STAT_MASK;
1493
	else
1494
		raw_mask |= HUNT_10G_ONLY_STAT_MASK;
1495 1496 1497 1498 1499

	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_PM_AND_RXDP_COUNTERS_LBN))
		raw_mask |= HUNT_PM_AND_RXDP_STAT_MASK;

1500 1501 1502 1503 1504
	return raw_mask;
}

static void efx_ef10_get_stat_mask(struct efx_nic *efx, unsigned long *mask)
{
1505
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1506 1507 1508 1509
	u64 raw_mask[2];

	raw_mask[0] = efx_ef10_raw_stat_mask(efx);

1510 1511 1512 1513 1514 1515 1516 1517
	/* Only show vadaptor stats when EVB capability is present */
	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN)) {
		raw_mask[0] |= ~((1ULL << EF10_STAT_rx_unicast) - 1);
		raw_mask[1] = (1ULL << (EF10_STAT_COUNT - 63)) - 1;
	} else {
		raw_mask[1] = 0;
	}
1518 1519

#if BITS_PER_LONG == 64
1520 1521
	mask[0] = raw_mask[0];
	mask[1] = raw_mask[1];
1522
#else
1523 1524 1525 1526
	mask[0] = raw_mask[0] & 0xffffffff;
	mask[1] = raw_mask[0] >> 32;
	mask[2] = raw_mask[1] & 0xffffffff;
	mask[3] = raw_mask[1] >> 32;
1527
#endif
1528 1529 1530 1531
}

static size_t efx_ef10_describe_stats(struct efx_nic *efx, u8 *names)
{
1532 1533 1534
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);

	efx_ef10_get_stat_mask(efx, mask);
1535
	return efx_nic_describe_stats(efx_ef10_stat_desc, EF10_STAT_COUNT,
1536
				      mask, names);
1537 1538
}

1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557
static size_t efx_ef10_update_stats_common(struct efx_nic *efx, u64 *full_stats,
					   struct rtnl_link_stats64 *core_stats)
{
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u64 *stats = nic_data->stats;
	size_t stats_count = 0, index;

	efx_ef10_get_stat_mask(efx, mask);

	if (full_stats) {
		for_each_set_bit(index, mask, EF10_STAT_COUNT) {
			if (efx_ef10_stat_desc[index].name) {
				*full_stats++ = stats[index];
				++stats_count;
			}
		}
	}

1558 1559 1560 1561 1562 1563
	if (!core_stats)
		return stats_count;

	if (nic_data->datapath_caps &
			1 << MC_CMD_GET_CAPABILITIES_OUT_EVB_LBN) {
		/* Use vadaptor stats. */
1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576
		core_stats->rx_packets = stats[EF10_STAT_rx_unicast] +
					 stats[EF10_STAT_rx_multicast] +
					 stats[EF10_STAT_rx_broadcast];
		core_stats->tx_packets = stats[EF10_STAT_tx_unicast] +
					 stats[EF10_STAT_tx_multicast] +
					 stats[EF10_STAT_tx_broadcast];
		core_stats->rx_bytes = stats[EF10_STAT_rx_unicast_bytes] +
				       stats[EF10_STAT_rx_multicast_bytes] +
				       stats[EF10_STAT_rx_broadcast_bytes];
		core_stats->tx_bytes = stats[EF10_STAT_tx_unicast_bytes] +
				       stats[EF10_STAT_tx_multicast_bytes] +
				       stats[EF10_STAT_tx_broadcast_bytes];
		core_stats->rx_dropped = stats[GENERIC_STAT_rx_nodesc_trunc] +
1577
					 stats[GENERIC_STAT_rx_noskb_drops];
1578 1579 1580 1581 1582
		core_stats->multicast = stats[EF10_STAT_rx_multicast];
		core_stats->rx_crc_errors = stats[EF10_STAT_rx_bad];
		core_stats->rx_fifo_errors = stats[EF10_STAT_rx_overflow];
		core_stats->rx_errors = core_stats->rx_crc_errors;
		core_stats->tx_errors = stats[EF10_STAT_tx_bad];
1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602
	} else {
		/* Use port stats. */
		core_stats->rx_packets = stats[EF10_STAT_port_rx_packets];
		core_stats->tx_packets = stats[EF10_STAT_port_tx_packets];
		core_stats->rx_bytes = stats[EF10_STAT_port_rx_bytes];
		core_stats->tx_bytes = stats[EF10_STAT_port_tx_bytes];
		core_stats->rx_dropped = stats[EF10_STAT_port_rx_nodesc_drops] +
					 stats[GENERIC_STAT_rx_nodesc_trunc] +
					 stats[GENERIC_STAT_rx_noskb_drops];
		core_stats->multicast = stats[EF10_STAT_port_rx_multicast];
		core_stats->rx_length_errors =
				stats[EF10_STAT_port_rx_gtjumbo] +
				stats[EF10_STAT_port_rx_length_error];
		core_stats->rx_crc_errors = stats[EF10_STAT_port_rx_bad];
		core_stats->rx_frame_errors =
				stats[EF10_STAT_port_rx_align_error];
		core_stats->rx_fifo_errors = stats[EF10_STAT_port_rx_overflow];
		core_stats->rx_errors = (core_stats->rx_length_errors +
					 core_stats->rx_crc_errors +
					 core_stats->rx_frame_errors);
1603 1604 1605 1606 1607 1608
	}

	return stats_count;
}

static int efx_ef10_try_update_nic_stats_pf(struct efx_nic *efx)
1609 1610
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1611
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
1612 1613 1614 1615
	__le64 generation_start, generation_end;
	u64 *stats = nic_data->stats;
	__le64 *dma_stats;

1616 1617
	efx_ef10_get_stat_mask(efx, mask);

1618 1619 1620 1621 1622 1623 1624
	dma_stats = efx->stats_buffer.addr;
	nic_data = efx->nic_data;

	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
	if (generation_end == EFX_MC_STATS_GENERATION_INVALID)
		return 0;
	rmb();
1625
	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
1626
			     stats, efx->stats_buffer.addr, false);
1627
	rmb();
1628 1629 1630 1631 1632
	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
	if (generation_end != generation_start)
		return -EAGAIN;

	/* Update derived statistics */
1633 1634 1635 1636 1637 1638 1639
	efx_nic_fix_nodesc_drop_stat(efx,
				     &stats[EF10_STAT_port_rx_nodesc_drops]);
	stats[EF10_STAT_port_rx_good_bytes] =
		stats[EF10_STAT_port_rx_bytes] -
		stats[EF10_STAT_port_rx_bytes_minus_good_bytes];
	efx_update_diff_stat(&stats[EF10_STAT_port_rx_bad_bytes],
			     stats[EF10_STAT_port_rx_bytes_minus_good_bytes]);
1640
	efx_update_sw_stats(efx, stats);
1641 1642 1643 1644
	return 0;
}


1645 1646
static size_t efx_ef10_update_stats_pf(struct efx_nic *efx, u64 *full_stats,
				       struct rtnl_link_stats64 *core_stats)
1647 1648 1649 1650 1651 1652 1653
{
	int retry;

	/* If we're unlucky enough to read statistics during the DMA, wait
	 * up to 10ms for it to finish (typically takes <500us)
	 */
	for (retry = 0; retry < 100; ++retry) {
1654
		if (efx_ef10_try_update_nic_stats_pf(efx) == 0)
1655 1656 1657 1658
			break;
		udelay(100);
	}

1659 1660
	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
}
1661

1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673
static int efx_ef10_try_update_nic_stats_vf(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_MAC_STATS_IN_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	DECLARE_BITMAP(mask, EF10_STAT_COUNT);
	__le64 generation_start, generation_end;
	u64 *stats = nic_data->stats;
	u32 dma_len = MC_CMD_MAC_NSTATS * sizeof(u64);
	struct efx_buffer stats_buf;
	__le64 *dma_stats;
	int rc;

1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684
	spin_unlock_bh(&efx->stats_lock);

	if (in_interrupt()) {
		/* If in atomic context, cannot update stats.  Just update the
		 * software stats and return so the caller can continue.
		 */
		spin_lock_bh(&efx->stats_lock);
		efx_update_sw_stats(efx, stats);
		return 0;
	}

1685 1686 1687
	efx_ef10_get_stat_mask(efx, mask);

	rc = efx_nic_alloc_buffer(efx, &stats_buf, dma_len, GFP_ATOMIC);
1688 1689
	if (rc) {
		spin_lock_bh(&efx->stats_lock);
1690
		return rc;
1691
	}
1692 1693 1694 1695 1696 1697

	dma_stats = stats_buf.addr;
	dma_stats[MC_CMD_MAC_GENERATION_END] = EFX_MC_STATS_GENERATION_INVALID;

	MCDI_SET_QWORD(inbuf, MAC_STATS_IN_DMA_ADDR, stats_buf.dma_addr);
	MCDI_POPULATE_DWORD_1(inbuf, MAC_STATS_IN_CMD,
1698
			      MAC_STATS_IN_DMA, 1);
1699 1700 1701
	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_DMA_LEN, dma_len);
	MCDI_SET_DWORD(inbuf, MAC_STATS_IN_PORT_ID, EVB_PORT_ID_ASSIGNED);

1702 1703
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_MAC_STATS, inbuf, sizeof(inbuf),
				NULL, 0, NULL);
1704
	spin_lock_bh(&efx->stats_lock);
1705 1706 1707 1708 1709
	if (rc) {
		/* Expect ENOENT if DMA queues have not been set up */
		if (rc != -ENOENT || atomic_read(&efx->active_queues))
			efx_mcdi_display_error(efx, MC_CMD_MAC_STATS,
					       sizeof(inbuf), NULL, 0, rc);
1710
		goto out;
1711
	}
1712 1713

	generation_end = dma_stats[MC_CMD_MAC_GENERATION_END];
1714 1715
	if (generation_end == EFX_MC_STATS_GENERATION_INVALID) {
		WARN_ON_ONCE(1);
1716
		goto out;
1717
	}
1718 1719 1720 1721 1722 1723 1724 1725
	rmb();
	efx_nic_update_stats(efx_ef10_stat_desc, EF10_STAT_COUNT, mask,
			     stats, stats_buf.addr, false);
	rmb();
	generation_start = dma_stats[MC_CMD_MAC_GENERATION_START];
	if (generation_end != generation_start) {
		rc = -EAGAIN;
		goto out;
1726 1727
	}

1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740
	efx_update_sw_stats(efx, stats);
out:
	efx_nic_free_buffer(efx, &stats_buf);
	return rc;
}

static size_t efx_ef10_update_stats_vf(struct efx_nic *efx, u64 *full_stats,
				       struct rtnl_link_stats64 *core_stats)
{
	if (efx_ef10_try_update_nic_stats_vf(efx))
		return 0;

	return efx_ef10_update_stats_common(efx, full_stats, core_stats);
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771
}

static void efx_ef10_push_irq_moderation(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	unsigned int mode, value;
	efx_dword_t timer_cmd;

	if (channel->irq_moderation) {
		mode = 3;
		value = channel->irq_moderation - 1;
	} else {
		mode = 0;
		value = 0;
	}

	if (EFX_EF10_WORKAROUND_35388(efx)) {
		EFX_POPULATE_DWORD_3(timer_cmd, ERF_DD_EVQ_IND_TIMER_FLAGS,
				     EFE_DD_EVQ_IND_TIMER_FLAGS,
				     ERF_DD_EVQ_IND_TIMER_MODE, mode,
				     ERF_DD_EVQ_IND_TIMER_VAL, value);
		efx_writed_page(efx, &timer_cmd, ER_DD_EVQ_INDIRECT,
				channel->channel);
	} else {
		EFX_POPULATE_DWORD_2(timer_cmd, ERF_DZ_TC_TIMER_MODE, mode,
				     ERF_DZ_TC_TIMER_VAL, value);
		efx_writed_page(efx, &timer_cmd, ER_DZ_EVQ_TMR,
				channel->channel);
	}
}

1772 1773 1774 1775 1776 1777 1778 1779
static void efx_ef10_get_wol_vf(struct efx_nic *efx,
				struct ethtool_wolinfo *wol) {}

static int efx_ef10_set_wol_vf(struct efx_nic *efx, u32 type)
{
	return -EOPNOTSUPP;
}

1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835
static void efx_ef10_get_wol(struct efx_nic *efx, struct ethtool_wolinfo *wol)
{
	wol->supported = 0;
	wol->wolopts = 0;
	memset(&wol->sopass, 0, sizeof(wol->sopass));
}

static int efx_ef10_set_wol(struct efx_nic *efx, u32 type)
{
	if (type != 0)
		return -EINVAL;
	return 0;
}

static void efx_ef10_mcdi_request(struct efx_nic *efx,
				  const efx_dword_t *hdr, size_t hdr_len,
				  const efx_dword_t *sdu, size_t sdu_len)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u8 *pdu = nic_data->mcdi_buf.addr;

	memcpy(pdu, hdr, hdr_len);
	memcpy(pdu + hdr_len, sdu, sdu_len);
	wmb();

	/* The hardware provides 'low' and 'high' (doorbell) registers
	 * for passing the 64-bit address of an MCDI request to
	 * firmware.  However the dwords are swapped by firmware.  The
	 * least significant bits of the doorbell are then 0 for all
	 * MCDI requests due to alignment.
	 */
	_efx_writed(efx, cpu_to_le32((u64)nic_data->mcdi_buf.dma_addr >> 32),
		    ER_DZ_MC_DB_LWRD);
	_efx_writed(efx, cpu_to_le32((u32)nic_data->mcdi_buf.dma_addr),
		    ER_DZ_MC_DB_HWRD);
}

static bool efx_ef10_mcdi_poll_response(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	const efx_dword_t hdr = *(const efx_dword_t *)nic_data->mcdi_buf.addr;

	rmb();
	return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
}

static void
efx_ef10_mcdi_read_response(struct efx_nic *efx, efx_dword_t *outbuf,
			    size_t offset, size_t outlen)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	const u8 *pdu = nic_data->mcdi_buf.addr;

	memcpy(outbuf, pdu + offset, outlen);
}

1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851
static void efx_ef10_mcdi_reboot_detected(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	/* All our allocations have been reset */
	efx_ef10_reset_mc_allocations(efx);

	/* The datapath firmware might have been changed */
	nic_data->must_check_datapath_caps = true;

	/* MAC statistics have been cleared on the NIC; clear the local
	 * statistic that we update with efx_update_diff_stat().
	 */
	nic_data->stats[EF10_STAT_port_rx_bad_bytes] = 0;
}

1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870
static int efx_ef10_mcdi_poll_reboot(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;

	rc = efx_ef10_get_warm_boot_count(efx);
	if (rc < 0) {
		/* The firmware is presumably in the process of
		 * rebooting.  However, we are supposed to report each
		 * reboot just once, so we must only do that once we
		 * can read and store the updated warm boot count.
		 */
		return 0;
	}

	if (rc == nic_data->warm_boot_count)
		return 0;

	nic_data->warm_boot_count = rc;
1871
	efx_ef10_mcdi_reboot_detected(efx);
1872

1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977
	return -EIO;
}

/* Handle an MSI interrupt
 *
 * Handle an MSI hardware interrupt.  This routine schedules event
 * queue processing.  No interrupt acknowledgement cycle is necessary.
 * Also, we never need to check that the interrupt is for us, since
 * MSI interrupts cannot be shared.
 */
static irqreturn_t efx_ef10_msi_interrupt(int irq, void *dev_id)
{
	struct efx_msi_context *context = dev_id;
	struct efx_nic *efx = context->efx;

	netif_vdbg(efx, intr, efx->net_dev,
		   "IRQ %d on CPU %d\n", irq, raw_smp_processor_id());

	if (likely(ACCESS_ONCE(efx->irq_soft_enabled))) {
		/* Note test interrupts */
		if (context->index == efx->irq_level)
			efx->last_irq_cpu = raw_smp_processor_id();

		/* Schedule processing of the channel */
		efx_schedule_channel_irq(efx->channel[context->index]);
	}

	return IRQ_HANDLED;
}

static irqreturn_t efx_ef10_legacy_interrupt(int irq, void *dev_id)
{
	struct efx_nic *efx = dev_id;
	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
	struct efx_channel *channel;
	efx_dword_t reg;
	u32 queues;

	/* Read the ISR which also ACKs the interrupts */
	efx_readd(efx, &reg, ER_DZ_BIU_INT_ISR);
	queues = EFX_DWORD_FIELD(reg, ERF_DZ_ISR_REG);

	if (queues == 0)
		return IRQ_NONE;

	if (likely(soft_enabled)) {
		/* Note test interrupts */
		if (queues & (1U << efx->irq_level))
			efx->last_irq_cpu = raw_smp_processor_id();

		efx_for_each_channel(channel, efx) {
			if (queues & 1)
				efx_schedule_channel_irq(channel);
			queues >>= 1;
		}
	}

	netif_vdbg(efx, intr, efx->net_dev,
		   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
		   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));

	return IRQ_HANDLED;
}

static void efx_ef10_irq_test_generate(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_TRIGGER_INTERRUPT_IN_LEN);

	BUILD_BUG_ON(MC_CMD_TRIGGER_INTERRUPT_OUT_LEN != 0);

	MCDI_SET_DWORD(inbuf, TRIGGER_INTERRUPT_IN_INTR_LEVEL, efx->irq_level);
	(void) efx_mcdi_rpc(efx, MC_CMD_TRIGGER_INTERRUPT,
			    inbuf, sizeof(inbuf), NULL, 0, NULL);
}

static int efx_ef10_tx_probe(struct efx_tx_queue *tx_queue)
{
	return efx_nic_alloc_buffer(tx_queue->efx, &tx_queue->txd.buf,
				    (tx_queue->ptr_mask + 1) *
				    sizeof(efx_qword_t),
				    GFP_KERNEL);
}

/* This writes to the TX_DESC_WPTR and also pushes data */
static inline void efx_ef10_push_tx_desc(struct efx_tx_queue *tx_queue,
					 const efx_qword_t *txd)
{
	unsigned int write_ptr;
	efx_oword_t reg;

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_OWORD_1(reg, ERF_DZ_TX_DESC_WPTR, write_ptr);
	reg.qword[0] = *txd;
	efx_writeo_page(tx_queue->efx, &reg,
			ER_DZ_TX_DESC_UPD, tx_queue->queue);
}

static void efx_ef10_tx_init(struct efx_tx_queue *tx_queue)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_INIT_TXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
						       EFX_BUF_SIZE));
	bool csum_offload = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
	size_t entries = tx_queue->txd.buf.len / EFX_BUF_SIZE;
	struct efx_channel *channel = tx_queue->channel;
	struct efx_nic *efx = tx_queue->efx;
1978
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
1979
	size_t inlen;
1980 1981 1982 1983
	dma_addr_t dma_addr;
	efx_qword_t *txd;
	int rc;
	int i;
1984
	BUILD_BUG_ON(MC_CMD_INIT_TXQ_OUT_LEN != 0);
1985 1986 1987 1988 1989 1990 1991 1992 1993

	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_SIZE, tx_queue->ptr_mask + 1);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_TARGET_EVQ, channel->channel);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_LABEL, tx_queue->queue);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_INSTANCE, tx_queue->queue);
	MCDI_POPULATE_DWORD_2(inbuf, INIT_TXQ_IN_FLAGS,
			      INIT_TXQ_IN_FLAG_IP_CSUM_DIS, !csum_offload,
			      INIT_TXQ_IN_FLAG_TCP_CSUM_DIS, !csum_offload);
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_OWNER_ID, 0);
1994
	MCDI_SET_DWORD(inbuf, INIT_TXQ_IN_PORT_ID, nic_data->vport_id);
1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

	dma_addr = tx_queue->txd.buf.dma_addr;

	netif_dbg(efx, hw, efx->net_dev, "pushing TXQ %d. %zu entries (%llx)\n",
		  tx_queue->queue, entries, (u64)dma_addr);

	for (i = 0; i < entries; ++i) {
		MCDI_SET_ARRAY_QWORD(inbuf, INIT_TXQ_IN_DMA_ADDR, i, dma_addr);
		dma_addr += EFX_BUF_SIZE;
	}

	inlen = MC_CMD_INIT_TXQ_IN_LEN(entries);

	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_TXQ, inbuf, inlen,
2009
			  NULL, 0, NULL);
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028
	if (rc)
		goto fail;

	/* A previous user of this TX queue might have set us up the
	 * bomb by writing a descriptor to the TX push collector but
	 * not the doorbell.  (Each collector belongs to a port, not a
	 * queue or function, so cannot easily be reset.)  We must
	 * attempt to push a no-op descriptor in its place.
	 */
	tx_queue->buffer[0].flags = EFX_TX_BUF_OPTION;
	tx_queue->insert_count = 1;
	txd = efx_tx_desc(tx_queue, 0);
	EFX_POPULATE_QWORD_4(*txd,
			     ESF_DZ_TX_DESC_IS_OPT, true,
			     ESF_DZ_TX_OPTION_TYPE,
			     ESE_DZ_TX_OPTION_DESC_CRC_CSUM,
			     ESF_DZ_TX_OPTION_UDP_TCP_CSUM, csum_offload,
			     ESF_DZ_TX_OPTION_IP_CSUM, csum_offload);
	tx_queue->write_count = 1;
2029 2030 2031 2032 2033 2034

	if (nic_data->datapath_caps &
	    (1 << MC_CMD_GET_CAPABILITIES_OUT_TX_TSO_LBN)) {
		tx_queue->tso_version = 1;
	}

2035 2036 2037 2038 2039 2040
	wmb();
	efx_ef10_push_tx_desc(tx_queue, txd);

	return;

fail:
2041 2042
	netdev_WARN(efx->net_dev, "failed to initialise TXQ %d\n",
		    tx_queue->queue);
2043 2044 2045 2046 2047
}

static void efx_ef10_tx_fini(struct efx_tx_queue *tx_queue)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_TXQ_IN_LEN);
2048
	MCDI_DECLARE_BUF_ERR(outbuf);
2049 2050 2051 2052 2053 2054 2055
	struct efx_nic *efx = tx_queue->efx;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, FINI_TXQ_IN_INSTANCE,
		       tx_queue->queue);

E
Edward Cree 已提交
2056
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_TXQ, inbuf, sizeof(inbuf),
2057 2058 2059 2060 2061 2062 2063 2064
			  outbuf, sizeof(outbuf), &outlen);

	if (rc && rc != -EALREADY)
		goto fail;

	return;

fail:
E
Edward Cree 已提交
2065 2066
	efx_mcdi_display_error(efx, MC_CMD_FINI_TXQ, MC_CMD_FINI_TXQ_IN_LEN,
			       outbuf, outlen, rc);
2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092
}

static void efx_ef10_tx_remove(struct efx_tx_queue *tx_queue)
{
	efx_nic_free_buffer(tx_queue->efx, &tx_queue->txd.buf);
}

/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
static inline void efx_ef10_notify_tx_desc(struct efx_tx_queue *tx_queue)
{
	unsigned int write_ptr;
	efx_dword_t reg;

	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
	EFX_POPULATE_DWORD_1(reg, ERF_DZ_TX_DESC_WPTR_DWORD, write_ptr);
	efx_writed_page(tx_queue->efx, &reg,
			ER_DZ_TX_DESC_UPD_DWORD, tx_queue->queue);
}

static void efx_ef10_tx_write(struct efx_tx_queue *tx_queue)
{
	unsigned int old_write_count = tx_queue->write_count;
	struct efx_tx_buffer *buffer;
	unsigned int write_ptr;
	efx_qword_t *txd;

2093 2094 2095
	tx_queue->xmit_more_available = false;
	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
		return;
2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128

	do {
		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
		buffer = &tx_queue->buffer[write_ptr];
		txd = efx_tx_desc(tx_queue, write_ptr);
		++tx_queue->write_count;

		/* Create TX descriptor ring entry */
		if (buffer->flags & EFX_TX_BUF_OPTION) {
			*txd = buffer->option;
		} else {
			BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
			EFX_POPULATE_QWORD_3(
				*txd,
				ESF_DZ_TX_KER_CONT,
				buffer->flags & EFX_TX_BUF_CONT,
				ESF_DZ_TX_KER_BYTE_CNT, buffer->len,
				ESF_DZ_TX_KER_BUF_ADDR, buffer->dma_addr);
		}
	} while (tx_queue->write_count != tx_queue->insert_count);

	wmb(); /* Ensure descriptors are written before they are fetched */

	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
		txd = efx_tx_desc(tx_queue,
				  old_write_count & tx_queue->ptr_mask);
		efx_ef10_push_tx_desc(tx_queue, txd);
		++tx_queue->pushes;
	} else {
		efx_ef10_notify_tx_desc(tx_queue);
	}
}

2129 2130
static int efx_ef10_alloc_rss_context(struct efx_nic *efx, u32 *context,
				      bool exclusive, unsigned *context_size)
2131 2132 2133
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_ALLOC_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN);
2134
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2135 2136
	size_t outlen;
	int rc;
2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150
	u32 alloc_type = exclusive ?
				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_EXCLUSIVE :
				MC_CMD_RSS_CONTEXT_ALLOC_IN_TYPE_SHARED;
	unsigned rss_spread = exclusive ?
				efx->rss_spread :
				min(rounddown_pow_of_two(efx->rss_spread),
				    EFX_EF10_MAX_SHARED_RSS_CONTEXT_SIZE);

	if (!exclusive && rss_spread == 1) {
		*context = EFX_EF10_RSS_CONTEXT_INVALID;
		if (context_size)
			*context_size = 1;
		return 0;
	}
2151

J
Jon Cooper 已提交
2152 2153 2154 2155
	if (nic_data->datapath_caps &
	    1 << MC_CMD_GET_CAPABILITIES_OUT_RX_RSS_LIMITED_LBN)
		return -EOPNOTSUPP;

2156
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_UPSTREAM_PORT_ID,
2157
		       nic_data->vport_id);
2158 2159
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_TYPE, alloc_type);
	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_ALLOC_IN_NUM_QUEUES, rss_spread);
2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170

	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_ALLOC, inbuf, sizeof(inbuf),
		outbuf, sizeof(outbuf), &outlen);
	if (rc != 0)
		return rc;

	if (outlen < MC_CMD_RSS_CONTEXT_ALLOC_OUT_LEN)
		return -EIO;

	*context = MCDI_DWORD(outbuf, RSS_CONTEXT_ALLOC_OUT_RSS_CONTEXT_ID);

2171 2172 2173
	if (context_size)
		*context_size = rss_spread;

2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189
	return 0;
}

static void efx_ef10_free_rss_context(struct efx_nic *efx, u32 context)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_RSS_CONTEXT_FREE_IN_LEN);
	int rc;

	MCDI_SET_DWORD(inbuf, RSS_CONTEXT_FREE_IN_RSS_CONTEXT_ID,
		       context);

	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_FREE, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
	WARN_ON(rc != 0);
}

2190 2191
static int efx_ef10_populate_rss_table(struct efx_nic *efx, u32 context,
				       const u32 *rx_indir_table)
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204
{
	MCDI_DECLARE_BUF(tablebuf, MC_CMD_RSS_CONTEXT_SET_TABLE_IN_LEN);
	MCDI_DECLARE_BUF(keybuf, MC_CMD_RSS_CONTEXT_SET_KEY_IN_LEN);
	int i, rc;

	MCDI_SET_DWORD(tablebuf, RSS_CONTEXT_SET_TABLE_IN_RSS_CONTEXT_ID,
		       context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
		     MC_CMD_RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE_LEN);

	for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table); ++i)
		MCDI_PTR(tablebuf,
			 RSS_CONTEXT_SET_TABLE_IN_INDIRECTION_TABLE)[i] =
2205
				(u8) rx_indir_table[i];
2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232

	rc = efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_TABLE, tablebuf,
			  sizeof(tablebuf), NULL, 0, NULL);
	if (rc != 0)
		return rc;

	MCDI_SET_DWORD(keybuf, RSS_CONTEXT_SET_KEY_IN_RSS_CONTEXT_ID,
		       context);
	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_hash_key) !=
		     MC_CMD_RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY_LEN);
	for (i = 0; i < ARRAY_SIZE(efx->rx_hash_key); ++i)
		MCDI_PTR(keybuf, RSS_CONTEXT_SET_KEY_IN_TOEPLITZ_KEY)[i] =
			efx->rx_hash_key[i];

	return efx_mcdi_rpc(efx, MC_CMD_RSS_CONTEXT_SET_KEY, keybuf,
			    sizeof(keybuf), NULL, 0, NULL);
}

static void efx_ef10_rx_free_indir_table(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
		efx_ef10_free_rss_context(efx, nic_data->rx_rss_context);
	nic_data->rx_rss_context = EFX_EF10_RSS_CONTEXT_INVALID;
}

2233 2234
static int efx_ef10_rx_push_shared_rss_config(struct efx_nic *efx,
					      unsigned *context_size)
2235
{
2236
	u32 new_rx_rss_context;
2237
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2238 2239 2240 2241 2242
	int rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
					    false, context_size);

	if (rc != 0)
		return rc;
2243

2244 2245 2246 2247 2248
	nic_data->rx_rss_context = new_rx_rss_context;
	nic_data->rx_rss_context_exclusive = false;
	efx_set_default_rx_indir_table(efx);
	return 0;
}
2249

2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266
static int efx_ef10_rx_push_exclusive_rss_config(struct efx_nic *efx,
						 const u32 *rx_indir_table)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	int rc;
	u32 new_rx_rss_context;

	if (nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID ||
	    !nic_data->rx_rss_context_exclusive) {
		rc = efx_ef10_alloc_rss_context(efx, &new_rx_rss_context,
						true, NULL);
		if (rc == -EOPNOTSUPP)
			return rc;
		else if (rc != 0)
			goto fail1;
	} else {
		new_rx_rss_context = nic_data->rx_rss_context;
2267 2268
	}

2269 2270
	rc = efx_ef10_populate_rss_table(efx, new_rx_rss_context,
					 rx_indir_table);
2271
	if (rc != 0)
2272
		goto fail2;
2273

2274 2275 2276 2277 2278 2279 2280 2281
	if (nic_data->rx_rss_context != new_rx_rss_context)
		efx_ef10_rx_free_indir_table(efx);
	nic_data->rx_rss_context = new_rx_rss_context;
	nic_data->rx_rss_context_exclusive = true;
	if (rx_indir_table != efx->rx_indir_table)
		memcpy(efx->rx_indir_table, rx_indir_table,
		       sizeof(efx->rx_indir_table));
	return 0;
2282

2283 2284 2285 2286
fail2:
	if (new_rx_rss_context != nic_data->rx_rss_context)
		efx_ef10_free_rss_context(efx, new_rx_rss_context);
fail1:
2287
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345
	return rc;
}

static int efx_ef10_pf_rx_push_rss_config(struct efx_nic *efx, bool user,
					  const u32 *rx_indir_table)
{
	int rc;

	if (efx->rss_spread == 1)
		return 0;

	rc = efx_ef10_rx_push_exclusive_rss_config(efx, rx_indir_table);

	if (rc == -ENOBUFS && !user) {
		unsigned context_size;
		bool mismatch = false;
		size_t i;

		for (i = 0; i < ARRAY_SIZE(efx->rx_indir_table) && !mismatch;
		     i++)
			mismatch = rx_indir_table[i] !=
				ethtool_rxfh_indir_default(i, efx->rss_spread);

		rc = efx_ef10_rx_push_shared_rss_config(efx, &context_size);
		if (rc == 0) {
			if (context_size != efx->rss_spread)
				netif_warn(efx, probe, efx->net_dev,
					   "Could not allocate an exclusive RSS"
					   " context; allocated a shared one of"
					   " different size."
					   " Wanted %u, got %u.\n",
					   efx->rss_spread, context_size);
			else if (mismatch)
				netif_warn(efx, probe, efx->net_dev,
					   "Could not allocate an exclusive RSS"
					   " context; allocated a shared one but"
					   " could not apply custom"
					   " indirection.\n");
			else
				netif_info(efx, probe, efx->net_dev,
					   "Could not allocate an exclusive RSS"
					   " context; allocated a shared one.\n");
		}
	}
	return rc;
}

static int efx_ef10_vf_rx_push_rss_config(struct efx_nic *efx, bool user,
					  const u32 *rx_indir_table
					  __attribute__ ((unused)))
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;

	if (user)
		return -EOPNOTSUPP;
	if (nic_data->rx_rss_context != EFX_EF10_RSS_CONTEXT_INVALID)
		return 0;
	return efx_ef10_rx_push_shared_rss_config(efx, NULL);
2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363
}

static int efx_ef10_rx_probe(struct efx_rx_queue *rx_queue)
{
	return efx_nic_alloc_buffer(rx_queue->efx, &rx_queue->rxd.buf,
				    (rx_queue->ptr_mask + 1) *
				    sizeof(efx_qword_t),
				    GFP_KERNEL);
}

static void efx_ef10_rx_init(struct efx_rx_queue *rx_queue)
{
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_INIT_RXQ_IN_LEN(EFX_MAX_DMAQ_SIZE * 8 /
						EFX_BUF_SIZE));
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
	size_t entries = rx_queue->rxd.buf.len / EFX_BUF_SIZE;
	struct efx_nic *efx = rx_queue->efx;
2364
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
2365
	size_t inlen;
2366 2367 2368
	dma_addr_t dma_addr;
	int rc;
	int i;
2369
	BUILD_BUG_ON(MC_CMD_INIT_RXQ_OUT_LEN != 0);
2370 2371 2372 2373 2374 2375 2376 2377 2378

	rx_queue->scatter_n = 0;
	rx_queue->scatter_len = 0;

	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_SIZE, rx_queue->ptr_mask + 1);
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_TARGET_EVQ, channel->channel);
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_LABEL, efx_rx_queue_index(rx_queue));
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_INSTANCE,
		       efx_rx_queue_index(rx_queue));
2379 2380 2381
	MCDI_POPULATE_DWORD_2(inbuf, INIT_RXQ_IN_FLAGS,
			      INIT_RXQ_IN_FLAG_PREFIX, 1,
			      INIT_RXQ_IN_FLAG_TIMESTAMP, 1);
2382
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_OWNER_ID, 0);
2383
	MCDI_SET_DWORD(inbuf, INIT_RXQ_IN_PORT_ID, nic_data->vport_id);
2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397

	dma_addr = rx_queue->rxd.buf.dma_addr;

	netif_dbg(efx, hw, efx->net_dev, "pushing RXQ %d. %zu entries (%llx)\n",
		  efx_rx_queue_index(rx_queue), entries, (u64)dma_addr);

	for (i = 0; i < entries; ++i) {
		MCDI_SET_ARRAY_QWORD(inbuf, INIT_RXQ_IN_DMA_ADDR, i, dma_addr);
		dma_addr += EFX_BUF_SIZE;
	}

	inlen = MC_CMD_INIT_RXQ_IN_LEN(entries);

	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_RXQ, inbuf, inlen,
2398
			  NULL, 0, NULL);
2399 2400 2401
	if (rc)
		netdev_WARN(efx->net_dev, "failed to initialise RXQ %d\n",
			    efx_rx_queue_index(rx_queue));
2402 2403 2404 2405 2406
}

static void efx_ef10_rx_fini(struct efx_rx_queue *rx_queue)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_RXQ_IN_LEN);
2407
	MCDI_DECLARE_BUF_ERR(outbuf);
2408 2409 2410 2411 2412 2413 2414
	struct efx_nic *efx = rx_queue->efx;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, FINI_RXQ_IN_INSTANCE,
		       efx_rx_queue_index(rx_queue));

E
Edward Cree 已提交
2415
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_RXQ, inbuf, sizeof(inbuf),
2416 2417 2418 2419 2420 2421 2422 2423
			  outbuf, sizeof(outbuf), &outlen);

	if (rc && rc != -EALREADY)
		goto fail;

	return;

fail:
E
Edward Cree 已提交
2424 2425
	efx_mcdi_display_error(efx, MC_CMD_FINI_RXQ, MC_CMD_FINI_RXQ_IN_LEN,
			       outbuf, outlen, rc);
2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511
}

static void efx_ef10_rx_remove(struct efx_rx_queue *rx_queue)
{
	efx_nic_free_buffer(rx_queue->efx, &rx_queue->rxd.buf);
}

/* This creates an entry in the RX descriptor queue */
static inline void
efx_ef10_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
{
	struct efx_rx_buffer *rx_buf;
	efx_qword_t *rxd;

	rxd = efx_rx_desc(rx_queue, index);
	rx_buf = efx_rx_buffer(rx_queue, index);
	EFX_POPULATE_QWORD_2(*rxd,
			     ESF_DZ_RX_KER_BYTE_CNT, rx_buf->len,
			     ESF_DZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
}

static void efx_ef10_rx_write(struct efx_rx_queue *rx_queue)
{
	struct efx_nic *efx = rx_queue->efx;
	unsigned int write_count;
	efx_dword_t reg;

	/* Firmware requires that RX_DESC_WPTR be a multiple of 8 */
	write_count = rx_queue->added_count & ~7;
	if (rx_queue->notified_count == write_count)
		return;

	do
		efx_ef10_build_rx_desc(
			rx_queue,
			rx_queue->notified_count & rx_queue->ptr_mask);
	while (++rx_queue->notified_count != write_count);

	wmb();
	EFX_POPULATE_DWORD_1(reg, ERF_DZ_RX_DESC_WPTR,
			     write_count & rx_queue->ptr_mask);
	efx_writed_page(efx, &reg, ER_DZ_RX_DESC_UPD,
			efx_rx_queue_index(rx_queue));
}

static efx_mcdi_async_completer efx_ef10_rx_defer_refill_complete;

static void efx_ef10_rx_defer_refill(struct efx_rx_queue *rx_queue)
{
	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
	efx_qword_t event;

	EFX_POPULATE_QWORD_2(event,
			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
			     ESF_DZ_EV_DATA, EFX_EF10_REFILL);

	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);

	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
	 * already swapped the data to little-endian order.
	 */
	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
	       sizeof(efx_qword_t));

	efx_mcdi_rpc_async(channel->efx, MC_CMD_DRIVER_EVENT,
			   inbuf, sizeof(inbuf), 0,
			   efx_ef10_rx_defer_refill_complete, 0);
}

static void
efx_ef10_rx_defer_refill_complete(struct efx_nic *efx, unsigned long cookie,
				  int rc, efx_dword_t *outbuf,
				  size_t outlen_actual)
{
	/* nothing to do */
}

static int efx_ef10_ev_probe(struct efx_channel *channel)
{
	return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
				    (channel->eventq_mask + 1) *
				    sizeof(efx_qword_t),
				    GFP_KERNEL);
}

2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534
static void efx_ef10_ev_fini(struct efx_channel *channel)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FINI_EVQ_IN_LEN);
	MCDI_DECLARE_BUF_ERR(outbuf);
	struct efx_nic *efx = channel->efx;
	size_t outlen;
	int rc;

	MCDI_SET_DWORD(inbuf, FINI_EVQ_IN_INSTANCE, channel->channel);

	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FINI_EVQ, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);

	if (rc && rc != -EALREADY)
		goto fail;

	return;

fail:
	efx_mcdi_display_error(efx, MC_CMD_FINI_EVQ, MC_CMD_FINI_EVQ_IN_LEN,
			       outbuf, outlen, rc);
}

2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545
static int efx_ef10_ev_init(struct efx_channel *channel)
{
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_INIT_EVQ_IN_LEN(EFX_MAX_EVQ_SIZE * 8 /
						EFX_BUF_SIZE));
	MCDI_DECLARE_BUF(outbuf, MC_CMD_INIT_EVQ_OUT_LEN);
	size_t entries = channel->eventq.buf.len / EFX_BUF_SIZE;
	struct efx_nic *efx = channel->efx;
	struct efx_ef10_nic_data *nic_data;
	bool supports_rx_merge;
	size_t inlen, outlen;
2546
	unsigned int enabled, implemented;
2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586
	dma_addr_t dma_addr;
	int rc;
	int i;

	nic_data = efx->nic_data;
	supports_rx_merge =
		!!(nic_data->datapath_caps &
		   1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN);

	/* Fill event queue with all ones (i.e. empty events) */
	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);

	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_SIZE, channel->eventq_mask + 1);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_INSTANCE, channel->channel);
	/* INIT_EVQ expects index in vector table, not absolute */
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_IRQ_NUM, channel->channel);
	MCDI_POPULATE_DWORD_4(inbuf, INIT_EVQ_IN_FLAGS,
			      INIT_EVQ_IN_FLAG_INTERRUPTING, 1,
			      INIT_EVQ_IN_FLAG_RX_MERGE, 1,
			      INIT_EVQ_IN_FLAG_TX_MERGE, 1,
			      INIT_EVQ_IN_FLAG_CUT_THRU, !supports_rx_merge);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_MODE,
		       MC_CMD_INIT_EVQ_IN_TMR_MODE_DIS);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_LOAD, 0);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_TMR_RELOAD, 0);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_MODE,
		       MC_CMD_INIT_EVQ_IN_COUNT_MODE_DIS);
	MCDI_SET_DWORD(inbuf, INIT_EVQ_IN_COUNT_THRSHLD, 0);

	dma_addr = channel->eventq.buf.dma_addr;
	for (i = 0; i < entries; ++i) {
		MCDI_SET_ARRAY_QWORD(inbuf, INIT_EVQ_IN_DMA_ADDR, i, dma_addr);
		dma_addr += EFX_BUF_SIZE;
	}

	inlen = MC_CMD_INIT_EVQ_IN_LEN(entries);

	rc = efx_mcdi_rpc(efx, MC_CMD_INIT_EVQ, inbuf, inlen,
			  outbuf, sizeof(outbuf), &outlen);
	/* IRQ return is ignored */
2587 2588
	if (channel->channel || rc)
		return rc;
2589

2590 2591
	/* Successfully created event queue on channel 0 */
	rc = efx_mcdi_get_workarounds(efx, &implemented, &enabled);
2592 2593 2594 2595 2596 2597 2598
	if (rc == -ENOSYS) {
		/* GET_WORKAROUNDS was implemented before the bug26807
		 * workaround, thus the latter must be unavailable in this fw
		 */
		nic_data->workaround_26807 = false;
		rc = 0;
	} else if (rc) {
2599
		goto fail;
2600 2601 2602 2603 2604 2605
	} else {
		nic_data->workaround_26807 =
			!!(enabled & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807);

		if (implemented & MC_CMD_GET_WORKAROUNDS_OUT_BUG26807 &&
		    !nic_data->workaround_26807) {
2606 2607
			unsigned int flags;

2608 2609
			rc = efx_mcdi_set_workaround(efx,
						     MC_CMD_WORKAROUND_BUG26807,
2610 2611 2612 2613 2614 2615 2616
						     true, &flags);

			if (!rc) {
				if (flags &
				    1 << MC_CMD_WORKAROUND_EXT_OUT_FLR_DONE_LBN) {
					netif_info(efx, drv, efx->net_dev,
						   "other functions on NIC have been reset\n");
2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629

					/* With MCFW v4.6.x and earlier, the
					 * boot count will have incremented,
					 * so re-read the warm_boot_count
					 * value now to ensure this function
					 * doesn't think it has changed next
					 * time it checks.
					 */
					rc = efx_ef10_get_warm_boot_count(efx);
					if (rc >= 0) {
						nic_data->warm_boot_count = rc;
						rc = 0;
					}
2630
				}
2631
				nic_data->workaround_26807 = true;
2632
			} else if (rc == -EPERM) {
2633
				rc = 0;
2634
			}
2635
		}
2636 2637 2638 2639
	}

	if (!rc)
		return 0;
2640 2641

fail:
2642 2643
	efx_ef10_ev_fini(channel);
	return rc;
2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716
}

static void efx_ef10_ev_remove(struct efx_channel *channel)
{
	efx_nic_free_buffer(channel->efx, &channel->eventq.buf);
}

static void efx_ef10_handle_rx_wrong_queue(struct efx_rx_queue *rx_queue,
					   unsigned int rx_queue_label)
{
	struct efx_nic *efx = rx_queue->efx;

	netif_info(efx, hw, efx->net_dev,
		   "rx event arrived on queue %d labeled as queue %u\n",
		   efx_rx_queue_index(rx_queue), rx_queue_label);

	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}

static void
efx_ef10_handle_rx_bad_lbits(struct efx_rx_queue *rx_queue,
			     unsigned int actual, unsigned int expected)
{
	unsigned int dropped = (actual - expected) & rx_queue->ptr_mask;
	struct efx_nic *efx = rx_queue->efx;

	netif_info(efx, hw, efx->net_dev,
		   "dropped %d events (index=%d expected=%d)\n",
		   dropped, actual, expected);

	efx_schedule_reset(efx, RESET_TYPE_DISABLE);
}

/* partially received RX was aborted. clean up. */
static void efx_ef10_handle_rx_abort(struct efx_rx_queue *rx_queue)
{
	unsigned int rx_desc_ptr;

	netif_dbg(rx_queue->efx, hw, rx_queue->efx->net_dev,
		  "scattered RX aborted (dropping %u buffers)\n",
		  rx_queue->scatter_n);

	rx_desc_ptr = rx_queue->removed_count & rx_queue->ptr_mask;

	efx_rx_packet(rx_queue, rx_desc_ptr, rx_queue->scatter_n,
		      0, EFX_RX_PKT_DISCARD);

	rx_queue->removed_count += rx_queue->scatter_n;
	rx_queue->scatter_n = 0;
	rx_queue->scatter_len = 0;
	++efx_rx_queue_channel(rx_queue)->n_rx_nodesc_trunc;
}

static int efx_ef10_handle_rx_event(struct efx_channel *channel,
				    const efx_qword_t *event)
{
	unsigned int rx_bytes, next_ptr_lbits, rx_queue_label, rx_l4_class;
	unsigned int n_descs, n_packets, i;
	struct efx_nic *efx = channel->efx;
	struct efx_rx_queue *rx_queue;
	bool rx_cont;
	u16 flags = 0;

	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
		return 0;

	/* Basic packet information */
	rx_bytes = EFX_QWORD_FIELD(*event, ESF_DZ_RX_BYTES);
	next_ptr_lbits = EFX_QWORD_FIELD(*event, ESF_DZ_RX_DSC_PTR_LBITS);
	rx_queue_label = EFX_QWORD_FIELD(*event, ESF_DZ_RX_QLABEL);
	rx_l4_class = EFX_QWORD_FIELD(*event, ESF_DZ_RX_L4_CLASS);
	rx_cont = EFX_QWORD_FIELD(*event, ESF_DZ_RX_CONT);

2717 2718 2719 2720
	if (EFX_QWORD_FIELD(*event, ESF_DZ_RX_DROP_EVENT))
		netdev_WARN(efx->net_dev, "saw RX_DROP_EVENT: event="
			    EFX_QWORD_FMT "\n",
			    EFX_QWORD_VAL(*event));
2721 2722 2723 2724 2725 2726 2727 2728 2729 2730

	rx_queue = efx_channel_get_rx_queue(channel);

	if (unlikely(rx_queue_label != efx_rx_queue_index(rx_queue)))
		efx_ef10_handle_rx_wrong_queue(rx_queue, rx_queue_label);

	n_descs = ((next_ptr_lbits - rx_queue->removed_count) &
		   ((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));

	if (n_descs != rx_queue->scatter_n + 1) {
2731 2732
		struct efx_ef10_nic_data *nic_data = efx->nic_data;

2733 2734
		/* detect rx abort */
		if (unlikely(n_descs == rx_queue->scatter_n)) {
2735 2736 2737 2738 2739 2740
			if (rx_queue->scatter_n == 0 || rx_bytes != 0)
				netdev_WARN(efx->net_dev,
					    "invalid RX abort: scatter_n=%u event="
					    EFX_QWORD_FMT "\n",
					    rx_queue->scatter_n,
					    EFX_QWORD_VAL(*event));
2741 2742 2743 2744
			efx_ef10_handle_rx_abort(rx_queue);
			return 0;
		}

2745 2746 2747 2748 2749 2750 2751
		/* Check that RX completion merging is valid, i.e.
		 * the current firmware supports it and this is a
		 * non-scattered packet.
		 */
		if (!(nic_data->datapath_caps &
		      (1 << MC_CMD_GET_CAPABILITIES_OUT_RX_BATCHING_LBN)) ||
		    rx_queue->scatter_n != 0 || rx_cont) {
2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876
			efx_ef10_handle_rx_bad_lbits(
				rx_queue, next_ptr_lbits,
				(rx_queue->removed_count +
				 rx_queue->scatter_n + 1) &
				((1 << ESF_DZ_RX_DSC_PTR_LBITS_WIDTH) - 1));
			return 0;
		}

		/* Merged completion for multiple non-scattered packets */
		rx_queue->scatter_n = 1;
		rx_queue->scatter_len = 0;
		n_packets = n_descs;
		++channel->n_rx_merge_events;
		channel->n_rx_merge_packets += n_packets;
		flags |= EFX_RX_PKT_PREFIX_LEN;
	} else {
		++rx_queue->scatter_n;
		rx_queue->scatter_len += rx_bytes;
		if (rx_cont)
			return 0;
		n_packets = 1;
	}

	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_ECRC_ERR)))
		flags |= EFX_RX_PKT_DISCARD;

	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_RX_IPCKSUM_ERR))) {
		channel->n_rx_ip_hdr_chksum_err += n_packets;
	} else if (unlikely(EFX_QWORD_FIELD(*event,
					    ESF_DZ_RX_TCPUDP_CKSUM_ERR))) {
		channel->n_rx_tcp_udp_chksum_err += n_packets;
	} else if (rx_l4_class == ESE_DZ_L4_CLASS_TCP ||
		   rx_l4_class == ESE_DZ_L4_CLASS_UDP) {
		flags |= EFX_RX_PKT_CSUMMED;
	}

	if (rx_l4_class == ESE_DZ_L4_CLASS_TCP)
		flags |= EFX_RX_PKT_TCP;

	channel->irq_mod_score += 2 * n_packets;

	/* Handle received packet(s) */
	for (i = 0; i < n_packets; i++) {
		efx_rx_packet(rx_queue,
			      rx_queue->removed_count & rx_queue->ptr_mask,
			      rx_queue->scatter_n, rx_queue->scatter_len,
			      flags);
		rx_queue->removed_count += rx_queue->scatter_n;
	}

	rx_queue->scatter_n = 0;
	rx_queue->scatter_len = 0;

	return n_packets;
}

static int
efx_ef10_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	struct efx_tx_queue *tx_queue;
	unsigned int tx_ev_desc_ptr;
	unsigned int tx_ev_q_label;
	int tx_descs = 0;

	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
		return 0;

	if (unlikely(EFX_QWORD_FIELD(*event, ESF_DZ_TX_DROP_EVENT)))
		return 0;

	/* Transmit completion */
	tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, ESF_DZ_TX_DESCR_INDX);
	tx_ev_q_label = EFX_QWORD_FIELD(*event, ESF_DZ_TX_QLABEL);
	tx_queue = efx_channel_get_tx_queue(channel,
					    tx_ev_q_label % EFX_TXQ_TYPES);
	tx_descs = ((tx_ev_desc_ptr + 1 - tx_queue->read_count) &
		    tx_queue->ptr_mask);
	efx_xmit_done(tx_queue, tx_ev_desc_ptr & tx_queue->ptr_mask);

	return tx_descs;
}

static void
efx_ef10_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	int subcode;

	subcode = EFX_QWORD_FIELD(*event, ESF_DZ_DRV_SUB_CODE);

	switch (subcode) {
	case ESE_DZ_DRV_TIMER_EV:
	case ESE_DZ_DRV_WAKE_UP_EV:
		break;
	case ESE_DZ_DRV_START_UP_EV:
		/* event queue init complete. ok. */
		break;
	default:
		netif_err(efx, hw, efx->net_dev,
			  "channel %d unknown driver event type %d"
			  " (data " EFX_QWORD_FMT ")\n",
			  channel->channel, subcode,
			  EFX_QWORD_VAL(*event));

	}
}

static void efx_ef10_handle_driver_generated_event(struct efx_channel *channel,
						   efx_qword_t *event)
{
	struct efx_nic *efx = channel->efx;
	u32 subcode;

	subcode = EFX_QWORD_FIELD(*event, EFX_DWORD_0);

	switch (subcode) {
	case EFX_EF10_TEST:
		channel->event_test_cpu = raw_smp_processor_id();
		break;
	case EFX_EF10_REFILL:
		/* The queue must be empty, so we won't receive any rx
		 * events, so efx_process_channel() won't refill the
		 * queue. Refill it here
		 */
2877
		efx_fast_push_rx_descriptors(&channel->rx_queue, true);
2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896
		break;
	default:
		netif_err(efx, hw, efx->net_dev,
			  "channel %d unknown driver event type %u"
			  " (data " EFX_QWORD_FMT ")\n",
			  channel->channel, (unsigned) subcode,
			  EFX_QWORD_VAL(*event));
	}
}

static int efx_ef10_ev_process(struct efx_channel *channel, int quota)
{
	struct efx_nic *efx = channel->efx;
	efx_qword_t event, *p_event;
	unsigned int read_ptr;
	int ev_code;
	int tx_descs = 0;
	int spent = 0;

2897 2898 2899
	if (quota <= 0)
		return spent;

2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075
	read_ptr = channel->eventq_read_ptr;

	for (;;) {
		p_event = efx_event(channel, read_ptr);
		event = *p_event;

		if (!efx_event_present(&event))
			break;

		EFX_SET_QWORD(*p_event);

		++read_ptr;

		ev_code = EFX_QWORD_FIELD(event, ESF_DZ_EV_CODE);

		netif_vdbg(efx, drv, efx->net_dev,
			   "processing event on %d " EFX_QWORD_FMT "\n",
			   channel->channel, EFX_QWORD_VAL(event));

		switch (ev_code) {
		case ESE_DZ_EV_CODE_MCDI_EV:
			efx_mcdi_process_event(channel, &event);
			break;
		case ESE_DZ_EV_CODE_RX_EV:
			spent += efx_ef10_handle_rx_event(channel, &event);
			if (spent >= quota) {
				/* XXX can we split a merged event to
				 * avoid going over-quota?
				 */
				spent = quota;
				goto out;
			}
			break;
		case ESE_DZ_EV_CODE_TX_EV:
			tx_descs += efx_ef10_handle_tx_event(channel, &event);
			if (tx_descs > efx->txq_entries) {
				spent = quota;
				goto out;
			} else if (++spent == quota) {
				goto out;
			}
			break;
		case ESE_DZ_EV_CODE_DRIVER_EV:
			efx_ef10_handle_driver_event(channel, &event);
			if (++spent == quota)
				goto out;
			break;
		case EFX_EF10_DRVGEN_EV:
			efx_ef10_handle_driver_generated_event(channel, &event);
			break;
		default:
			netif_err(efx, hw, efx->net_dev,
				  "channel %d unknown event type %d"
				  " (data " EFX_QWORD_FMT ")\n",
				  channel->channel, ev_code,
				  EFX_QWORD_VAL(event));
		}
	}

out:
	channel->eventq_read_ptr = read_ptr;
	return spent;
}

static void efx_ef10_ev_read_ack(struct efx_channel *channel)
{
	struct efx_nic *efx = channel->efx;
	efx_dword_t rptr;

	if (EFX_EF10_WORKAROUND_35388(efx)) {
		BUILD_BUG_ON(EFX_MIN_EVQ_SIZE <
			     (1 << ERF_DD_EVQ_IND_RPTR_WIDTH));
		BUILD_BUG_ON(EFX_MAX_EVQ_SIZE >
			     (1 << 2 * ERF_DD_EVQ_IND_RPTR_WIDTH));

		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
				     EFE_DD_EVQ_IND_RPTR_FLAGS_HIGH,
				     ERF_DD_EVQ_IND_RPTR,
				     (channel->eventq_read_ptr &
				      channel->eventq_mask) >>
				     ERF_DD_EVQ_IND_RPTR_WIDTH);
		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
				channel->channel);
		EFX_POPULATE_DWORD_2(rptr, ERF_DD_EVQ_IND_RPTR_FLAGS,
				     EFE_DD_EVQ_IND_RPTR_FLAGS_LOW,
				     ERF_DD_EVQ_IND_RPTR,
				     channel->eventq_read_ptr &
				     ((1 << ERF_DD_EVQ_IND_RPTR_WIDTH) - 1));
		efx_writed_page(efx, &rptr, ER_DD_EVQ_INDIRECT,
				channel->channel);
	} else {
		EFX_POPULATE_DWORD_1(rptr, ERF_DZ_EVQ_RPTR,
				     channel->eventq_read_ptr &
				     channel->eventq_mask);
		efx_writed_page(efx, &rptr, ER_DZ_EVQ_RPTR, channel->channel);
	}
}

static void efx_ef10_ev_test_generate(struct efx_channel *channel)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_DRIVER_EVENT_IN_LEN);
	struct efx_nic *efx = channel->efx;
	efx_qword_t event;
	int rc;

	EFX_POPULATE_QWORD_2(event,
			     ESF_DZ_EV_CODE, EFX_EF10_DRVGEN_EV,
			     ESF_DZ_EV_DATA, EFX_EF10_TEST);

	MCDI_SET_DWORD(inbuf, DRIVER_EVENT_IN_EVQ, channel->channel);

	/* MCDI_SET_QWORD is not appropriate here since EFX_POPULATE_* has
	 * already swapped the data to little-endian order.
	 */
	memcpy(MCDI_PTR(inbuf, DRIVER_EVENT_IN_DATA), &event.u64[0],
	       sizeof(efx_qword_t));

	rc = efx_mcdi_rpc(efx, MC_CMD_DRIVER_EVENT, inbuf, sizeof(inbuf),
			  NULL, 0, NULL);
	if (rc != 0)
		goto fail;

	return;

fail:
	WARN_ON(true);
	netif_err(efx, hw, efx->net_dev, "%s: failed rc=%d\n", __func__, rc);
}

void efx_ef10_handle_drain_event(struct efx_nic *efx)
{
	if (atomic_dec_and_test(&efx->active_queues))
		wake_up(&efx->flush_wq);

	WARN_ON(atomic_read(&efx->active_queues) < 0);
}

static int efx_ef10_fini_dmaq(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_channel *channel;
	struct efx_tx_queue *tx_queue;
	struct efx_rx_queue *rx_queue;
	int pending;

	/* If the MC has just rebooted, the TX/RX queues will have already been
	 * torn down, but efx->active_queues needs to be set to zero.
	 */
	if (nic_data->must_realloc_vis) {
		atomic_set(&efx->active_queues, 0);
		return 0;
	}

	/* Do not attempt to write to the NIC during EEH recovery */
	if (efx->state != STATE_RECOVERY) {
		efx_for_each_channel(channel, efx) {
			efx_for_each_channel_rx_queue(rx_queue, channel)
				efx_ef10_rx_fini(rx_queue);
			efx_for_each_channel_tx_queue(tx_queue, channel)
				efx_ef10_tx_fini(tx_queue);
		}

		wait_event_timeout(efx->flush_wq,
				   atomic_read(&efx->active_queues) == 0,
				   msecs_to_jiffies(EFX_MAX_FLUSH_TIME));
		pending = atomic_read(&efx->active_queues);
		if (pending) {
			netif_err(efx, hw, efx->net_dev, "failed to flush %d queues\n",
				  pending);
			return -ETIMEDOUT;
		}
	}

	return 0;
}

3076 3077 3078 3079 3080
static void efx_ef10_prepare_flr(struct efx_nic *efx)
{
	atomic_set(&efx->active_queues, 0);
}

3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158
static bool efx_ef10_filter_equal(const struct efx_filter_spec *left,
				  const struct efx_filter_spec *right)
{
	if ((left->match_flags ^ right->match_flags) |
	    ((left->flags ^ right->flags) &
	     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)))
		return false;

	return memcmp(&left->outer_vid, &right->outer_vid,
		      sizeof(struct efx_filter_spec) -
		      offsetof(struct efx_filter_spec, outer_vid)) == 0;
}

static unsigned int efx_ef10_filter_hash(const struct efx_filter_spec *spec)
{
	BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3);
	return jhash2((const u32 *)&spec->outer_vid,
		      (sizeof(struct efx_filter_spec) -
		       offsetof(struct efx_filter_spec, outer_vid)) / 4,
		      0);
	/* XXX should we randomise the initval? */
}

/* Decide whether a filter should be exclusive or else should allow
 * delivery to additional recipients.  Currently we decide that
 * filters for specific local unicast MAC and IP addresses are
 * exclusive.
 */
static bool efx_ef10_filter_is_exclusive(const struct efx_filter_spec *spec)
{
	if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC &&
	    !is_multicast_ether_addr(spec->loc_mac))
		return true;

	if ((spec->match_flags &
	     (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) ==
	    (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_LOC_HOST)) {
		if (spec->ether_type == htons(ETH_P_IP) &&
		    !ipv4_is_multicast(spec->loc_host[0]))
			return true;
		if (spec->ether_type == htons(ETH_P_IPV6) &&
		    ((const u8 *)spec->loc_host)[0] != 0xff)
			return true;
	}

	return false;
}

static struct efx_filter_spec *
efx_ef10_filter_entry_spec(const struct efx_ef10_filter_table *table,
			   unsigned int filter_idx)
{
	return (struct efx_filter_spec *)(table->entry[filter_idx].spec &
					  ~EFX_EF10_FILTER_FLAGS);
}

static unsigned int
efx_ef10_filter_entry_flags(const struct efx_ef10_filter_table *table,
			   unsigned int filter_idx)
{
	return table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAGS;
}

static void
efx_ef10_filter_set_entry(struct efx_ef10_filter_table *table,
			  unsigned int filter_idx,
			  const struct efx_filter_spec *spec,
			  unsigned int flags)
{
	table->entry[filter_idx].spec =	(unsigned long)spec | flags;
}

static void efx_ef10_filter_push_prep(struct efx_nic *efx,
				      const struct efx_filter_spec *spec,
				      efx_dword_t *inbuf, u64 handle,
				      bool replacing)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
J
Jon Cooper 已提交
3159
	u32 flags = spec->flags;
3160 3161 3162

	memset(inbuf, 0, MC_CMD_FILTER_OP_IN_LEN);

J
Jon Cooper 已提交
3163 3164 3165 3166 3167 3168
	/* Remove RSS flag if we don't have an RSS context. */
	if (flags & EFX_FILTER_FLAG_RX_RSS &&
	    spec->rss_context == EFX_FILTER_RSS_CONTEXT_DEFAULT &&
	    nic_data->rx_rss_context == EFX_EF10_RSS_CONTEXT_INVALID)
		flags &= ~EFX_FILTER_FLAG_RX_RSS;

3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215
	if (replacing) {
		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       MC_CMD_FILTER_OP_IN_OP_REPLACE);
		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE, handle);
	} else {
		u32 match_fields = 0;

		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       efx_ef10_filter_is_exclusive(spec) ?
			       MC_CMD_FILTER_OP_IN_OP_INSERT :
			       MC_CMD_FILTER_OP_IN_OP_SUBSCRIBE);

		/* Convert match flags and values.  Unlike almost
		 * everything else in MCDI, these fields are in
		 * network byte order.
		 */
		if (spec->match_flags & EFX_FILTER_MATCH_LOC_MAC_IG)
			match_fields |=
				is_multicast_ether_addr(spec->loc_mac) ?
				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN :
				1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN;
#define COPY_FIELD(gen_flag, gen_field, mcdi_field)			     \
		if (spec->match_flags & EFX_FILTER_MATCH_ ## gen_flag) {     \
			match_fields |=					     \
				1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	     \
				mcdi_field ## _LBN;			     \
			BUILD_BUG_ON(					     \
				MC_CMD_FILTER_OP_IN_ ## mcdi_field ## _LEN < \
				sizeof(spec->gen_field));		     \
			memcpy(MCDI_PTR(inbuf, FILTER_OP_IN_ ##	mcdi_field), \
			       &spec->gen_field, sizeof(spec->gen_field));   \
		}
		COPY_FIELD(REM_HOST, rem_host, SRC_IP);
		COPY_FIELD(LOC_HOST, loc_host, DST_IP);
		COPY_FIELD(REM_MAC, rem_mac, SRC_MAC);
		COPY_FIELD(REM_PORT, rem_port, SRC_PORT);
		COPY_FIELD(LOC_MAC, loc_mac, DST_MAC);
		COPY_FIELD(LOC_PORT, loc_port, DST_PORT);
		COPY_FIELD(ETHER_TYPE, ether_type, ETHER_TYPE);
		COPY_FIELD(INNER_VID, inner_vid, INNER_VLAN);
		COPY_FIELD(OUTER_VID, outer_vid, OUTER_VLAN);
		COPY_FIELD(IP_PROTO, ip_proto, IP_PROTO);
#undef COPY_FIELD
		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_MATCH_FIELDS,
			       match_fields);
	}

3216
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_PORT_ID, nic_data->vport_id);
3217 3218 3219 3220
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_DEST,
		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
		       MC_CMD_FILTER_OP_IN_RX_DEST_DROP :
		       MC_CMD_FILTER_OP_IN_RX_DEST_HOST);
3221
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DOMAIN, 0);
3222 3223
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_TX_DEST,
		       MC_CMD_FILTER_OP_IN_TX_DEST_DEFAULT);
B
Ben Hutchings 已提交
3224 3225 3226
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_QUEUE,
		       spec->dmaq_id == EFX_FILTER_RX_DMAQ_ID_DROP ?
		       0 : spec->dmaq_id);
3227
	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_MODE,
J
Jon Cooper 已提交
3228
		       (flags & EFX_FILTER_FLAG_RX_RSS) ?
3229 3230
		       MC_CMD_FILTER_OP_IN_RX_MODE_RSS :
		       MC_CMD_FILTER_OP_IN_RX_MODE_SIMPLE);
J
Jon Cooper 已提交
3231
	if (flags & EFX_FILTER_FLAG_RX_RSS)
3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250
		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_RX_CONTEXT,
			       spec->rss_context !=
			       EFX_FILTER_RSS_CONTEXT_DEFAULT ?
			       spec->rss_context : nic_data->rx_rss_context);
}

static int efx_ef10_filter_push(struct efx_nic *efx,
				const struct efx_filter_spec *spec,
				u64 *handle, bool replacing)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_FILTER_OP_OUT_LEN);
	int rc;

	efx_ef10_filter_push_prep(efx, spec, inbuf, *handle, replacing);
	rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), NULL);
	if (rc == 0)
		*handle = MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
3251 3252
	if (rc == -ENOSPC)
		rc = -EBUSY; /* to match efx_farch_filter_insert() */
3253 3254 3255
	return rc;
}

3256
static u32 efx_ef10_filter_mcdi_flags_from_spec(const struct efx_filter_spec *spec)
3257
{
3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298
	unsigned int match_flags = spec->match_flags;
	u32 mcdi_flags = 0;

	if (match_flags & EFX_FILTER_MATCH_LOC_MAC_IG) {
		match_flags &= ~EFX_FILTER_MATCH_LOC_MAC_IG;
		mcdi_flags |=
			is_multicast_ether_addr(spec->loc_mac) ?
			(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_MCAST_DST_LBN) :
			(1 << MC_CMD_FILTER_OP_IN_MATCH_UNKNOWN_UCAST_DST_LBN);
	}

#define MAP_FILTER_TO_MCDI_FLAG(gen_flag, mcdi_field) {			\
		unsigned int old_match_flags = match_flags;		\
		match_flags &= ~EFX_FILTER_MATCH_ ## gen_flag;		\
		if (match_flags != old_match_flags)			\
			mcdi_flags |=					\
				(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
				 mcdi_field ## _LBN);			\
	}
	MAP_FILTER_TO_MCDI_FLAG(REM_HOST, SRC_IP);
	MAP_FILTER_TO_MCDI_FLAG(LOC_HOST, DST_IP);
	MAP_FILTER_TO_MCDI_FLAG(REM_MAC, SRC_MAC);
	MAP_FILTER_TO_MCDI_FLAG(REM_PORT, SRC_PORT);
	MAP_FILTER_TO_MCDI_FLAG(LOC_MAC, DST_MAC);
	MAP_FILTER_TO_MCDI_FLAG(LOC_PORT, DST_PORT);
	MAP_FILTER_TO_MCDI_FLAG(ETHER_TYPE, ETHER_TYPE);
	MAP_FILTER_TO_MCDI_FLAG(INNER_VID, INNER_VLAN);
	MAP_FILTER_TO_MCDI_FLAG(OUTER_VID, OUTER_VLAN);
	MAP_FILTER_TO_MCDI_FLAG(IP_PROTO, IP_PROTO);
#undef MAP_FILTER_TO_MCDI_FLAG

	/* Did we map them all? */
	WARN_ON_ONCE(match_flags);

	return mcdi_flags;
}

static int efx_ef10_filter_pri(struct efx_ef10_filter_table *table,
			       const struct efx_filter_spec *spec)
{
	u32 mcdi_flags = efx_ef10_filter_mcdi_flags_from_spec(spec);
3299 3300 3301 3302 3303
	unsigned int match_pri;

	for (match_pri = 0;
	     match_pri < table->rx_match_count;
	     match_pri++)
3304
		if (table->rx_match_mcdi_flags[match_pri] == mcdi_flags)
3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329
			return match_pri;

	return -EPROTONOSUPPORT;
}

static s32 efx_ef10_filter_insert(struct efx_nic *efx,
				  struct efx_filter_spec *spec,
				  bool replace_equal)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	DECLARE_BITMAP(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);
	struct efx_filter_spec *saved_spec;
	unsigned int match_pri, hash;
	unsigned int priv_flags;
	bool replacing = false;
	int ins_index = -1;
	DEFINE_WAIT(wait);
	bool is_mc_recip;
	s32 rc;

	/* For now, only support RX filters */
	if ((spec->flags & (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX)) !=
	    EFX_FILTER_FLAG_RX)
		return -EINVAL;

3330
	rc = efx_ef10_filter_pri(table, spec);
3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361
	if (rc < 0)
		return rc;
	match_pri = rc;

	hash = efx_ef10_filter_hash(spec);
	is_mc_recip = efx_filter_is_mc_recipient(spec);
	if (is_mc_recip)
		bitmap_zero(mc_rem_map, EFX_EF10_FILTER_SEARCH_LIMIT);

	/* Find any existing filters with the same match tuple or
	 * else a free slot to insert at.  If any of them are busy,
	 * we have to wait and retry.
	 */
	for (;;) {
		unsigned int depth = 1;
		unsigned int i;

		spin_lock_bh(&efx->filter_lock);

		for (;;) {
			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
			saved_spec = efx_ef10_filter_entry_spec(table, i);

			if (!saved_spec) {
				if (ins_index < 0)
					ins_index = i;
			} else if (efx_ef10_filter_equal(spec, saved_spec)) {
				if (table->entry[i].spec &
				    EFX_EF10_FILTER_FLAG_BUSY)
					break;
				if (spec->priority < saved_spec->priority &&
3362
				    spec->priority != EFX_FILTER_PRI_AUTO) {
3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415
					rc = -EPERM;
					goto out_unlock;
				}
				if (!is_mc_recip) {
					/* This is the only one */
					if (spec->priority ==
					    saved_spec->priority &&
					    !replace_equal) {
						rc = -EEXIST;
						goto out_unlock;
					}
					ins_index = i;
					goto found;
				} else if (spec->priority >
					   saved_spec->priority ||
					   (spec->priority ==
					    saved_spec->priority &&
					    replace_equal)) {
					if (ins_index < 0)
						ins_index = i;
					else
						__set_bit(depth, mc_rem_map);
				}
			}

			/* Once we reach the maximum search depth, use
			 * the first suitable slot or return -EBUSY if
			 * there was none
			 */
			if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
				if (ins_index < 0) {
					rc = -EBUSY;
					goto out_unlock;
				}
				goto found;
			}

			++depth;
		}

		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
		spin_unlock_bh(&efx->filter_lock);
		schedule();
	}

found:
	/* Create a software table entry if necessary, and mark it
	 * busy.  We might yet fail to insert, but any attempt to
	 * insert a conflicting filter while we're waiting for the
	 * firmware must find the busy entry.
	 */
	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
	if (saved_spec) {
3416 3417
		if (spec->priority == EFX_FILTER_PRI_AUTO &&
		    saved_spec->priority >= EFX_FILTER_PRI_AUTO) {
3418
			/* Just make sure it won't be removed */
3419 3420
			if (saved_spec->priority > EFX_FILTER_PRI_AUTO)
				saved_spec->flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
3421
			table->entry[ins_index].spec &=
3422
				~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461
			rc = ins_index;
			goto out_unlock;
		}
		replacing = true;
		priv_flags = efx_ef10_filter_entry_flags(table, ins_index);
	} else {
		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
		if (!saved_spec) {
			rc = -ENOMEM;
			goto out_unlock;
		}
		*saved_spec = *spec;
		priv_flags = 0;
	}
	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
				  priv_flags | EFX_EF10_FILTER_FLAG_BUSY);

	/* Mark lower-priority multicast recipients busy prior to removal */
	if (is_mc_recip) {
		unsigned int depth, i;

		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
			if (test_bit(depth, mc_rem_map))
				table->entry[i].spec |=
					EFX_EF10_FILTER_FLAG_BUSY;
		}
	}

	spin_unlock_bh(&efx->filter_lock);

	rc = efx_ef10_filter_push(efx, spec, &table->entry[ins_index].handle,
				  replacing);

	/* Finalise the software table entry */
	spin_lock_bh(&efx->filter_lock);
	if (rc == 0) {
		if (replacing) {
			/* Update the fields that may differ */
3462 3463 3464
			if (saved_spec->priority == EFX_FILTER_PRI_AUTO)
				saved_spec->flags |=
					EFX_FILTER_FLAG_RX_OVER_AUTO;
3465
			saved_spec->priority = spec->priority;
3466
			saved_spec->flags &= EFX_FILTER_FLAG_RX_OVER_AUTO;
3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528
			saved_spec->flags |= spec->flags;
			saved_spec->rss_context = spec->rss_context;
			saved_spec->dmaq_id = spec->dmaq_id;
		}
	} else if (!replacing) {
		kfree(saved_spec);
		saved_spec = NULL;
	}
	efx_ef10_filter_set_entry(table, ins_index, saved_spec, priv_flags);

	/* Remove and finalise entries for lower-priority multicast
	 * recipients
	 */
	if (is_mc_recip) {
		MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
		unsigned int depth, i;

		memset(inbuf, 0, sizeof(inbuf));

		for (depth = 0; depth < EFX_EF10_FILTER_SEARCH_LIMIT; depth++) {
			if (!test_bit(depth, mc_rem_map))
				continue;

			i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
			saved_spec = efx_ef10_filter_entry_spec(table, i);
			priv_flags = efx_ef10_filter_entry_flags(table, i);

			if (rc == 0) {
				spin_unlock_bh(&efx->filter_lock);
				MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
					       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
				MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
					       table->entry[i].handle);
				rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
						  inbuf, sizeof(inbuf),
						  NULL, 0, NULL);
				spin_lock_bh(&efx->filter_lock);
			}

			if (rc == 0) {
				kfree(saved_spec);
				saved_spec = NULL;
				priv_flags = 0;
			} else {
				priv_flags &= ~EFX_EF10_FILTER_FLAG_BUSY;
			}
			efx_ef10_filter_set_entry(table, i, saved_spec,
						  priv_flags);
		}
	}

	/* If successful, return the inserted filter ID */
	if (rc == 0)
		rc = match_pri * HUNT_FILTER_TBL_ROWS + ins_index;

	wake_up_all(&table->waitq);
out_unlock:
	spin_unlock_bh(&efx->filter_lock);
	finish_wait(&table->waitq, &wait);
	return rc;
}

3529
static void efx_ef10_filter_update_rx_scatter(struct efx_nic *efx)
3530 3531 3532 3533 3534
{
	/* no need to do anything here on EF10 */
}

/* Remove a filter.
3535 3536
 * If !by_index, remove by ID
 * If by_index, remove by index
3537 3538 3539
 * Filter ID may come from userland and must be range-checked.
 */
static int efx_ef10_filter_remove_internal(struct efx_nic *efx,
3540
					   unsigned int priority_mask,
3541
					   u32 filter_id, bool by_index)
3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564
{
	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
	struct efx_ef10_filter_table *table = efx->filter_state;
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);
	struct efx_filter_spec *spec;
	DEFINE_WAIT(wait);
	int rc;

	/* Find the software table entry and mark it busy.  Don't
	 * remove it yet; any attempt to update while we're waiting
	 * for the firmware must find the busy entry.
	 */
	for (;;) {
		spin_lock_bh(&efx->filter_lock);
		if (!(table->entry[filter_idx].spec &
		      EFX_EF10_FILTER_FLAG_BUSY))
			break;
		prepare_to_wait(&table->waitq, &wait, TASK_UNINTERRUPTIBLE);
		spin_unlock_bh(&efx->filter_lock);
		schedule();
	}
3565

3566
	spec = efx_ef10_filter_entry_spec(table, filter_idx);
3567
	if (!spec ||
3568
	    (!by_index &&
3569
	     efx_ef10_filter_pri(table, spec) !=
3570 3571 3572 3573
	     filter_id / HUNT_FILTER_TBL_ROWS)) {
		rc = -ENOENT;
		goto out_unlock;
	}
3574 3575

	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO &&
3576
	    priority_mask == (1U << EFX_FILTER_PRI_AUTO)) {
3577 3578
		/* Just remove flags */
		spec->flags &= ~EFX_FILTER_FLAG_RX_OVER_AUTO;
3579
		table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_AUTO_OLD;
3580 3581 3582 3583
		rc = 0;
		goto out_unlock;
	}

3584
	if (!(priority_mask & (1U << spec->priority))) {
3585 3586 3587 3588
		rc = -ENOENT;
		goto out_unlock;
	}

3589 3590 3591
	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
	spin_unlock_bh(&efx->filter_lock);

3592
	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
3593
		/* Reset to an automatic filter */
3594 3595 3596

		struct efx_filter_spec new_spec = *spec;

3597
		new_spec.priority = EFX_FILTER_PRI_AUTO;
3598
		new_spec.flags = (EFX_FILTER_FLAG_RX |
3599 3600
				  (efx_rss_enabled(efx) ?
				   EFX_FILTER_FLAG_RX_RSS : 0));
3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627
		new_spec.dmaq_id = 0;
		new_spec.rss_context = EFX_FILTER_RSS_CONTEXT_DEFAULT;
		rc = efx_ef10_filter_push(efx, &new_spec,
					  &table->entry[filter_idx].handle,
					  true);

		spin_lock_bh(&efx->filter_lock);
		if (rc == 0)
			*spec = new_spec;
	} else {
		/* Really remove the filter */

		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       efx_ef10_filter_is_exclusive(spec) ?
			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
			       table->entry[filter_idx].handle);
		rc = efx_mcdi_rpc(efx, MC_CMD_FILTER_OP,
				  inbuf, sizeof(inbuf), NULL, 0, NULL);

		spin_lock_bh(&efx->filter_lock);
		if (rc == 0) {
			kfree(spec);
			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
		}
	}
3628

3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640
	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
	wake_up_all(&table->waitq);
out_unlock:
	spin_unlock_bh(&efx->filter_lock);
	finish_wait(&table->waitq, &wait);
	return rc;
}

static int efx_ef10_filter_remove_safe(struct efx_nic *efx,
				       enum efx_filter_priority priority,
				       u32 filter_id)
{
3641 3642
	return efx_ef10_filter_remove_internal(efx, 1U << priority,
					       filter_id, false);
3643 3644
}

3645 3646 3647 3648 3649
static u32 efx_ef10_filter_get_unsafe_id(struct efx_nic *efx, u32 filter_id)
{
	return filter_id % HUNT_FILTER_TBL_ROWS;
}

3650 3651 3652
static void efx_ef10_filter_remove_unsafe(struct efx_nic *efx,
					  enum efx_filter_priority priority,
					  u32 filter_id)
3653
{
3654 3655 3656
	if (filter_id == EFX_EF10_FILTER_ID_INVALID)
		return;
	efx_ef10_filter_remove_internal(efx, 1U << priority, filter_id, true);
3657 3658
}

3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670
static int efx_ef10_filter_get_safe(struct efx_nic *efx,
				    enum efx_filter_priority priority,
				    u32 filter_id, struct efx_filter_spec *spec)
{
	unsigned int filter_idx = filter_id % HUNT_FILTER_TBL_ROWS;
	struct efx_ef10_filter_table *table = efx->filter_state;
	const struct efx_filter_spec *saved_spec;
	int rc;

	spin_lock_bh(&efx->filter_lock);
	saved_spec = efx_ef10_filter_entry_spec(table, filter_idx);
	if (saved_spec && saved_spec->priority == priority &&
3671
	    efx_ef10_filter_pri(table, saved_spec) ==
3672 3673 3674 3675 3676 3677 3678 3679 3680 3681
	    filter_id / HUNT_FILTER_TBL_ROWS) {
		*spec = *saved_spec;
		rc = 0;
	} else {
		rc = -ENOENT;
	}
	spin_unlock_bh(&efx->filter_lock);
	return rc;
}

3682
static int efx_ef10_filter_clear_rx(struct efx_nic *efx,
3683 3684
				     enum efx_filter_priority priority)
{
3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699
	unsigned int priority_mask;
	unsigned int i;
	int rc;

	priority_mask = (((1U << (priority + 1)) - 1) &
			 ~(1U << EFX_FILTER_PRI_AUTO));

	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
		rc = efx_ef10_filter_remove_internal(efx, priority_mask,
						     i, true);
		if (rc && rc != -ENOENT)
			return rc;
	}

	return 0;
3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743
}

static u32 efx_ef10_filter_count_rx_used(struct efx_nic *efx,
					 enum efx_filter_priority priority)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	unsigned int filter_idx;
	s32 count = 0;

	spin_lock_bh(&efx->filter_lock);
	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		if (table->entry[filter_idx].spec &&
		    efx_ef10_filter_entry_spec(table, filter_idx)->priority ==
		    priority)
			++count;
	}
	spin_unlock_bh(&efx->filter_lock);
	return count;
}

static u32 efx_ef10_filter_get_rx_id_limit(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;

	return table->rx_match_count * HUNT_FILTER_TBL_ROWS;
}

static s32 efx_ef10_filter_get_rx_ids(struct efx_nic *efx,
				      enum efx_filter_priority priority,
				      u32 *buf, u32 size)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_filter_spec *spec;
	unsigned int filter_idx;
	s32 count = 0;

	spin_lock_bh(&efx->filter_lock);
	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		spec = efx_ef10_filter_entry_spec(table, filter_idx);
		if (spec && spec->priority == priority) {
			if (count == size) {
				count = -EMSGSIZE;
				break;
			}
3744
			buf[count++] = (efx_ef10_filter_pri(table, spec) *
3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979
					HUNT_FILTER_TBL_ROWS +
					filter_idx);
		}
	}
	spin_unlock_bh(&efx->filter_lock);
	return count;
}

#ifdef CONFIG_RFS_ACCEL

static efx_mcdi_async_completer efx_ef10_filter_rfs_insert_complete;

static s32 efx_ef10_filter_rfs_insert(struct efx_nic *efx,
				      struct efx_filter_spec *spec)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
	struct efx_filter_spec *saved_spec;
	unsigned int hash, i, depth = 1;
	bool replacing = false;
	int ins_index = -1;
	u64 cookie;
	s32 rc;

	/* Must be an RX filter without RSS and not for a multicast
	 * destination address (RFS only works for connected sockets).
	 * These restrictions allow us to pass only a tiny amount of
	 * data through to the completion function.
	 */
	EFX_WARN_ON_PARANOID(spec->flags !=
			     (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_RX_SCATTER));
	EFX_WARN_ON_PARANOID(spec->priority != EFX_FILTER_PRI_HINT);
	EFX_WARN_ON_PARANOID(efx_filter_is_mc_recipient(spec));

	hash = efx_ef10_filter_hash(spec);

	spin_lock_bh(&efx->filter_lock);

	/* Find any existing filter with the same match tuple or else
	 * a free slot to insert at.  If an existing filter is busy,
	 * we have to give up.
	 */
	for (;;) {
		i = (hash + depth) & (HUNT_FILTER_TBL_ROWS - 1);
		saved_spec = efx_ef10_filter_entry_spec(table, i);

		if (!saved_spec) {
			if (ins_index < 0)
				ins_index = i;
		} else if (efx_ef10_filter_equal(spec, saved_spec)) {
			if (table->entry[i].spec & EFX_EF10_FILTER_FLAG_BUSY) {
				rc = -EBUSY;
				goto fail_unlock;
			}
			if (spec->priority < saved_spec->priority) {
				rc = -EPERM;
				goto fail_unlock;
			}
			ins_index = i;
			break;
		}

		/* Once we reach the maximum search depth, use the
		 * first suitable slot or return -EBUSY if there was
		 * none
		 */
		if (depth == EFX_EF10_FILTER_SEARCH_LIMIT) {
			if (ins_index < 0) {
				rc = -EBUSY;
				goto fail_unlock;
			}
			break;
		}

		++depth;
	}

	/* Create a software table entry if necessary, and mark it
	 * busy.  We might yet fail to insert, but any attempt to
	 * insert a conflicting filter while we're waiting for the
	 * firmware must find the busy entry.
	 */
	saved_spec = efx_ef10_filter_entry_spec(table, ins_index);
	if (saved_spec) {
		replacing = true;
	} else {
		saved_spec = kmalloc(sizeof(*spec), GFP_ATOMIC);
		if (!saved_spec) {
			rc = -ENOMEM;
			goto fail_unlock;
		}
		*saved_spec = *spec;
	}
	efx_ef10_filter_set_entry(table, ins_index, saved_spec,
				  EFX_EF10_FILTER_FLAG_BUSY);

	spin_unlock_bh(&efx->filter_lock);

	/* Pack up the variables needed on completion */
	cookie = replacing << 31 | ins_index << 16 | spec->dmaq_id;

	efx_ef10_filter_push_prep(efx, spec, inbuf,
				  table->entry[ins_index].handle, replacing);
	efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf),
			   MC_CMD_FILTER_OP_OUT_LEN,
			   efx_ef10_filter_rfs_insert_complete, cookie);

	return ins_index;

fail_unlock:
	spin_unlock_bh(&efx->filter_lock);
	return rc;
}

static void
efx_ef10_filter_rfs_insert_complete(struct efx_nic *efx, unsigned long cookie,
				    int rc, efx_dword_t *outbuf,
				    size_t outlen_actual)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	unsigned int ins_index, dmaq_id;
	struct efx_filter_spec *spec;
	bool replacing;

	/* Unpack the cookie */
	replacing = cookie >> 31;
	ins_index = (cookie >> 16) & (HUNT_FILTER_TBL_ROWS - 1);
	dmaq_id = cookie & 0xffff;

	spin_lock_bh(&efx->filter_lock);
	spec = efx_ef10_filter_entry_spec(table, ins_index);
	if (rc == 0) {
		table->entry[ins_index].handle =
			MCDI_QWORD(outbuf, FILTER_OP_OUT_HANDLE);
		if (replacing)
			spec->dmaq_id = dmaq_id;
	} else if (!replacing) {
		kfree(spec);
		spec = NULL;
	}
	efx_ef10_filter_set_entry(table, ins_index, spec, 0);
	spin_unlock_bh(&efx->filter_lock);

	wake_up_all(&table->waitq);
}

static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
				    unsigned long filter_idx,
				    int rc, efx_dword_t *outbuf,
				    size_t outlen_actual);

static bool efx_ef10_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
					   unsigned int filter_idx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_filter_spec *spec =
		efx_ef10_filter_entry_spec(table, filter_idx);
	MCDI_DECLARE_BUF(inbuf,
			 MC_CMD_FILTER_OP_IN_HANDLE_OFST +
			 MC_CMD_FILTER_OP_IN_HANDLE_LEN);

	if (!spec ||
	    (table->entry[filter_idx].spec & EFX_EF10_FILTER_FLAG_BUSY) ||
	    spec->priority != EFX_FILTER_PRI_HINT ||
	    !rps_may_expire_flow(efx->net_dev, spec->dmaq_id,
				 flow_id, filter_idx))
		return false;

	MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
		       MC_CMD_FILTER_OP_IN_OP_REMOVE);
	MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
		       table->entry[filter_idx].handle);
	if (efx_mcdi_rpc_async(efx, MC_CMD_FILTER_OP, inbuf, sizeof(inbuf), 0,
			       efx_ef10_filter_rfs_expire_complete, filter_idx))
		return false;

	table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
	return true;
}

static void
efx_ef10_filter_rfs_expire_complete(struct efx_nic *efx,
				    unsigned long filter_idx,
				    int rc, efx_dword_t *outbuf,
				    size_t outlen_actual)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_filter_spec *spec =
		efx_ef10_filter_entry_spec(table, filter_idx);

	spin_lock_bh(&efx->filter_lock);
	if (rc == 0) {
		kfree(spec);
		efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
	}
	table->entry[filter_idx].spec &= ~EFX_EF10_FILTER_FLAG_BUSY;
	wake_up_all(&table->waitq);
	spin_unlock_bh(&efx->filter_lock);
}

#endif /* CONFIG_RFS_ACCEL */

static int efx_ef10_filter_match_flags_from_mcdi(u32 mcdi_flags)
{
	int match_flags = 0;

#define MAP_FLAG(gen_flag, mcdi_field) {				\
		u32 old_mcdi_flags = mcdi_flags;			\
		mcdi_flags &= ~(1 << MC_CMD_FILTER_OP_IN_MATCH_ ##	\
				mcdi_field ## _LBN);			\
		if (mcdi_flags != old_mcdi_flags)			\
			match_flags |= EFX_FILTER_MATCH_ ## gen_flag;	\
	}
	MAP_FLAG(LOC_MAC_IG, UNKNOWN_UCAST_DST);
	MAP_FLAG(LOC_MAC_IG, UNKNOWN_MCAST_DST);
	MAP_FLAG(REM_HOST, SRC_IP);
	MAP_FLAG(LOC_HOST, DST_IP);
	MAP_FLAG(REM_MAC, SRC_MAC);
	MAP_FLAG(REM_PORT, SRC_PORT);
	MAP_FLAG(LOC_MAC, DST_MAC);
	MAP_FLAG(LOC_PORT, DST_PORT);
	MAP_FLAG(ETHER_TYPE, ETHER_TYPE);
	MAP_FLAG(INNER_VID, INNER_VLAN);
	MAP_FLAG(OUTER_VID, OUTER_VLAN);
	MAP_FLAG(IP_PROTO, IP_PROTO);
#undef MAP_FLAG

	/* Did we map them all? */
	if (mcdi_flags)
		return -EINVAL;

	return match_flags;
}

3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995
static void efx_ef10_filter_cleanup_vlans(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_filter_vlan *vlan, *next_vlan;

	/* See comment in efx_ef10_filter_table_remove() */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

	if (!table)
		return;

	list_for_each_entry_safe(vlan, next_vlan, &table->vlan_list, list)
		efx_ef10_filter_del_vlan_internal(efx, vlan);
}

3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013
static bool efx_ef10_filter_match_supported(struct efx_ef10_filter_table *table,
					    enum efx_filter_match_flags match_flags)
{
	unsigned int match_pri;
	int mf;

	for (match_pri = 0;
	     match_pri < table->rx_match_count;
	     match_pri++) {
		mf = efx_ef10_filter_match_flags_from_mcdi(
				table->rx_match_mcdi_flags[match_pri]);
		if (mf == match_flags)
			return true;
	}

	return false;
}

4014 4015 4016 4017
static int efx_ef10_filter_table_probe(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_GET_PARSER_DISP_INFO_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_PARSER_DISP_INFO_OUT_LENMAX);
4018
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4019
	struct net_device *net_dev = efx->net_dev;
4020 4021
	unsigned int pd_match_pri, pd_match_count;
	struct efx_ef10_filter_table *table;
4022
	struct efx_ef10_vlan *vlan;
4023 4024 4025
	size_t outlen;
	int rc;

4026 4027 4028 4029 4030 4031
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return -EINVAL;

	if (efx->filter_state) /* already probed */
		return 0;

4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063
	table = kzalloc(sizeof(*table), GFP_KERNEL);
	if (!table)
		return -ENOMEM;

	/* Find out which RX filter types are supported, and their priorities */
	MCDI_SET_DWORD(inbuf, GET_PARSER_DISP_INFO_IN_OP,
		       MC_CMD_GET_PARSER_DISP_INFO_IN_OP_GET_SUPPORTED_RX_MATCHES);
	rc = efx_mcdi_rpc(efx, MC_CMD_GET_PARSER_DISP_INFO,
			  inbuf, sizeof(inbuf), outbuf, sizeof(outbuf),
			  &outlen);
	if (rc)
		goto fail;
	pd_match_count = MCDI_VAR_ARRAY_LEN(
		outlen, GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES);
	table->rx_match_count = 0;

	for (pd_match_pri = 0; pd_match_pri < pd_match_count; pd_match_pri++) {
		u32 mcdi_flags =
			MCDI_ARRAY_DWORD(
				outbuf,
				GET_PARSER_DISP_INFO_OUT_SUPPORTED_MATCHES,
				pd_match_pri);
		rc = efx_ef10_filter_match_flags_from_mcdi(mcdi_flags);
		if (rc < 0) {
			netif_dbg(efx, probe, efx->net_dev,
				  "%s: fw flags %#x pri %u not supported in driver\n",
				  __func__, mcdi_flags, pd_match_pri);
		} else {
			netif_dbg(efx, probe, efx->net_dev,
				  "%s: fw flags %#x pri %u supported as driver flags %#x pri %u\n",
				  __func__, mcdi_flags, pd_match_pri,
				  rc, table->rx_match_count);
4064 4065
			table->rx_match_mcdi_flags[table->rx_match_count] = mcdi_flags;
			table->rx_match_count++;
4066 4067 4068
		}
	}

4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080
	if ((efx_supported_features(efx) & NETIF_F_HW_VLAN_CTAG_FILTER) &&
	    !(efx_ef10_filter_match_supported(table,
		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC)) &&
	      efx_ef10_filter_match_supported(table,
		(EFX_FILTER_MATCH_OUTER_VID | EFX_FILTER_MATCH_LOC_MAC_IG)))) {
		netif_info(efx, probe, net_dev,
			   "VLAN filters are not supported in this firmware variant\n");
		net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
		efx->fixed_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
		net_dev->hw_features &= ~NETIF_F_HW_VLAN_CTAG_FILTER;
	}

4081 4082 4083 4084 4085 4086
	table->entry = vzalloc(HUNT_FILTER_TBL_ROWS * sizeof(*table->entry));
	if (!table->entry) {
		rc = -ENOMEM;
		goto fail;
	}

4087
	table->mc_promisc_last = false;
4088 4089
	table->vlan_filter =
		!!(efx->net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
4090
	INIT_LIST_HEAD(&table->vlan_list);
4091

4092 4093
	efx->filter_state = table;
	init_waitqueue_head(&table->waitq);
4094 4095 4096 4097 4098 4099 4100

	list_for_each_entry(vlan, &nic_data->vlan_list, list) {
		rc = efx_ef10_filter_add_vlan(efx, vlan->vid);
		if (rc)
			goto fail_add_vlan;
	}

4101 4102
	return 0;

4103 4104 4105
fail_add_vlan:
	efx_ef10_filter_cleanup_vlans(efx);
	efx->filter_state = NULL;
4106 4107 4108 4109 4110
fail:
	kfree(table);
	return rc;
}

4111 4112 4113
/* Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
4114 4115 4116 4117 4118 4119 4120 4121 4122
static void efx_ef10_filter_table_restore(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	struct efx_filter_spec *spec;
	unsigned int filter_idx;
	bool failed = false;
	int rc;

4123 4124
	WARN_ON(!rwsem_is_locked(&efx->filter_sem));

4125 4126 4127
	if (!nic_data->must_restore_filters)
		return;

4128 4129 4130
	if (!table)
		return;

4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173
	spin_lock_bh(&efx->filter_lock);

	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		spec = efx_ef10_filter_entry_spec(table, filter_idx);
		if (!spec)
			continue;

		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_BUSY;
		spin_unlock_bh(&efx->filter_lock);

		rc = efx_ef10_filter_push(efx, spec,
					  &table->entry[filter_idx].handle,
					  false);
		if (rc)
			failed = true;

		spin_lock_bh(&efx->filter_lock);
		if (rc) {
			kfree(spec);
			efx_ef10_filter_set_entry(table, filter_idx, NULL, 0);
		} else {
			table->entry[filter_idx].spec &=
				~EFX_EF10_FILTER_FLAG_BUSY;
		}
	}

	spin_unlock_bh(&efx->filter_lock);

	if (failed)
		netif_err(efx, hw, efx->net_dev,
			  "unable to restore all filters\n");
	else
		nic_data->must_restore_filters = false;
}

static void efx_ef10_filter_table_remove(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	MCDI_DECLARE_BUF(inbuf, MC_CMD_FILTER_OP_IN_LEN);
	struct efx_filter_spec *spec;
	unsigned int filter_idx;
	int rc;

4174
	efx_ef10_filter_cleanup_vlans(efx);
4175
	efx->filter_state = NULL;
4176 4177 4178 4179 4180 4181 4182 4183 4184
	/* If we were called without locking, then it's not safe to free
	 * the table as others might be using it.  So we just WARN, leak
	 * the memory, and potentially get an inconsistent filter table
	 * state.
	 * This should never actually happen.
	 */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

4185 4186 4187
	if (!table)
		return;

4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198
	for (filter_idx = 0; filter_idx < HUNT_FILTER_TBL_ROWS; filter_idx++) {
		spec = efx_ef10_filter_entry_spec(table, filter_idx);
		if (!spec)
			continue;

		MCDI_SET_DWORD(inbuf, FILTER_OP_IN_OP,
			       efx_ef10_filter_is_exclusive(spec) ?
			       MC_CMD_FILTER_OP_IN_OP_REMOVE :
			       MC_CMD_FILTER_OP_IN_OP_UNSUBSCRIBE);
		MCDI_SET_QWORD(inbuf, FILTER_OP_IN_HANDLE,
			       table->entry[filter_idx].handle);
4199 4200
		rc = efx_mcdi_rpc_quiet(efx, MC_CMD_FILTER_OP, inbuf,
					sizeof(inbuf), NULL, 0, NULL);
4201
		if (rc)
4202 4203 4204
			netif_info(efx, drv, efx->net_dev,
				   "%s: filter %04x remove failed\n",
				   __func__, filter_idx);
4205 4206 4207 4208 4209 4210 4211
		kfree(spec);
	}

	vfree(table->entry);
	kfree(table);
}

4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224
static void efx_ef10_filter_mark_one_old(struct efx_nic *efx, uint16_t *id)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	unsigned int filter_idx;

	if (*id != EFX_EF10_FILTER_ID_INVALID) {
		filter_idx = efx_ef10_filter_get_unsafe_id(efx, *id);
		if (!table->entry[filter_idx].spec)
			netif_dbg(efx, drv, efx->net_dev,
				  "marked null spec old %04x:%04x\n", *id,
				  filter_idx);
		table->entry[filter_idx].spec |= EFX_EF10_FILTER_FLAG_AUTO_OLD;
		*id = EFX_EF10_FILTER_ID_INVALID;
4225
	}
4226 4227
}

4228 4229 4230
/* Mark old per-VLAN filters that may need to be removed */
static void _efx_ef10_filter_vlan_mark_old(struct efx_nic *efx,
					   struct efx_ef10_filter_vlan *vlan)
4231 4232
{
	struct efx_ef10_filter_table *table = efx->filter_state;
4233
	unsigned int i;
4234

4235
	for (i = 0; i < table->dev_uc_count; i++)
4236
		efx_ef10_filter_mark_one_old(efx, &vlan->uc[i]);
4237
	for (i = 0; i < table->dev_mc_count; i++)
4238 4239 4240 4241
		efx_ef10_filter_mark_one_old(efx, &vlan->mc[i]);
	efx_ef10_filter_mark_one_old(efx, &vlan->ucdef);
	efx_ef10_filter_mark_one_old(efx, &vlan->bcast);
	efx_ef10_filter_mark_one_old(efx, &vlan->mcdef);
4242 4243
}

4244 4245 4246 4247
/* Mark old filters that may need to be removed.
 * Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
4248 4249 4250
static void efx_ef10_filter_mark_old(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
4251
	struct efx_ef10_filter_vlan *vlan;
4252 4253

	spin_lock_bh(&efx->filter_lock);
4254 4255
	list_for_each_entry(vlan, &table->vlan_list, list)
		_efx_ef10_filter_vlan_mark_old(efx, vlan);
4256
	spin_unlock_bh(&efx->filter_lock);
4257 4258
}

4259
static void efx_ef10_filter_uc_addr_list(struct efx_nic *efx)
4260 4261 4262 4263
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct net_device *net_dev = efx->net_dev;
	struct netdev_hw_addr *uc;
4264
	int addr_count;
4265
	unsigned int i;
4266

4267
	addr_count = netdev_uc_count(net_dev);
4268
	table->uc_promisc = !!(net_dev->flags & IFF_PROMISC);
4269
	table->dev_uc_count = 1 + addr_count;
4270 4271 4272
	ether_addr_copy(table->dev_uc_list[0].addr, net_dev->dev_addr);
	i = 1;
	netdev_for_each_uc_addr(uc, net_dev) {
4273
		if (i >= EFX_EF10_FILTER_DEV_UC_MAX) {
4274
			table->uc_promisc = true;
4275 4276
			break;
		}
4277 4278 4279 4280 4281
		ether_addr_copy(table->dev_uc_list[i].addr, uc->addr);
		i++;
	}
}

4282
static void efx_ef10_filter_mc_addr_list(struct efx_nic *efx)
4283 4284 4285 4286
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct net_device *net_dev = efx->net_dev;
	struct netdev_hw_addr *mc;
4287
	unsigned int i, addr_count;
4288

4289
	table->mc_promisc = !!(net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI));
4290

4291 4292
	addr_count = netdev_mc_count(net_dev);
	i = 0;
4293
	netdev_for_each_mc_addr(mc, net_dev) {
4294
		if (i >= EFX_EF10_FILTER_DEV_MC_MAX) {
4295
			table->mc_promisc = true;
4296 4297
			break;
		}
4298 4299
		ether_addr_copy(table->dev_mc_list[i].addr, mc->addr);
		i++;
4300
	}
4301 4302

	table->dev_mc_count = i;
4303
}
4304

4305
static int efx_ef10_filter_insert_addr_list(struct efx_nic *efx,
4306 4307
					    struct efx_ef10_filter_vlan *vlan,
					    bool multicast, bool rollback)
4308 4309 4310
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_dev_addr *addr_list;
4311
	enum efx_filter_flags filter_flags;
4312
	struct efx_filter_spec spec;
4313 4314 4315
	u8 baddr[ETH_ALEN];
	unsigned int i, j;
	int addr_count;
4316
	u16 *ids;
4317 4318 4319 4320
	int rc;

	if (multicast) {
		addr_list = table->dev_mc_list;
4321
		addr_count = table->dev_mc_count;
4322
		ids = vlan->mc;
4323 4324
	} else {
		addr_list = table->dev_uc_list;
4325
		addr_count = table->dev_uc_count;
4326
		ids = vlan->uc;
4327 4328
	}

4329 4330
	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;

4331
	/* Insert/renew filters */
4332
	for (i = 0; i < addr_count; i++) {
4333
		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4334
		efx_filter_set_eth_local(&spec, vlan->vid, addr_list[i].addr);
4335 4336
		rc = efx_ef10_filter_insert(efx, &spec, true);
		if (rc < 0) {
4337 4338 4339 4340 4341 4342 4343 4344
			if (rollback) {
				netif_info(efx, drv, efx->net_dev,
					   "efx_ef10_filter_insert failed rc=%d\n",
					   rc);
				/* Fall back to promiscuous */
				for (j = 0; j < i; j++) {
					efx_ef10_filter_remove_unsafe(
						efx, EFX_FILTER_PRI_AUTO,
4345 4346
						ids[j]);
					ids[j] = EFX_EF10_FILTER_ID_INVALID;
4347 4348 4349 4350 4351
				}
				return rc;
			} else {
				/* mark as not inserted, and carry on */
				rc = EFX_EF10_FILTER_ID_INVALID;
4352
			}
4353
		}
4354
		ids[i] = efx_ef10_filter_get_unsafe_id(efx, rc);
4355
	}
4356

4357 4358
	if (multicast && rollback) {
		/* Also need an Ethernet broadcast filter */
4359
		efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4360
		eth_broadcast_addr(baddr);
4361
		efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4362
		rc = efx_ef10_filter_insert(efx, &spec, true);
4363
		if (rc < 0) {
4364
			netif_warn(efx, drv, efx->net_dev,
4365 4366 4367 4368 4369
				   "Broadcast filter insert failed rc=%d\n", rc);
			/* Fall back to promiscuous */
			for (j = 0; j < i; j++) {
				efx_ef10_filter_remove_unsafe(
					efx, EFX_FILTER_PRI_AUTO,
4370 4371
					ids[j]);
				ids[j] = EFX_EF10_FILTER_ID_INVALID;
4372 4373 4374
			}
			return rc;
		} else {
4375
			EFX_WARN_ON_PARANOID(vlan->bcast !=
4376
					     EFX_EF10_FILTER_ID_INVALID);
4377
			vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4378
		}
4379
	}
4380 4381 4382 4383

	return 0;
}

4384 4385 4386
static int efx_ef10_filter_insert_def(struct efx_nic *efx,
				      struct efx_ef10_filter_vlan *vlan,
				      bool multicast, bool rollback)
4387 4388
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4389
	enum efx_filter_flags filter_flags;
4390 4391 4392 4393
	struct efx_filter_spec spec;
	u8 baddr[ETH_ALEN];
	int rc;

4394 4395 4396
	filter_flags = efx_rss_enabled(efx) ? EFX_FILTER_FLAG_RX_RSS : 0;

	efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO, filter_flags, 0);
4397 4398 4399 4400 4401 4402

	if (multicast)
		efx_filter_set_mc_def(&spec);
	else
		efx_filter_set_uc_def(&spec);

4403 4404 4405
	if (vlan->vid != EFX_FILTER_VID_UNSPEC)
		efx_filter_set_eth_local(&spec, vlan->vid, NULL);

4406 4407
	rc = efx_ef10_filter_insert(efx, &spec, true);
	if (rc < 0) {
4408 4409 4410 4411
		netif_printk(efx, drv, rc == -EPERM ? KERN_DEBUG : KERN_WARNING,
			     efx->net_dev,
			     "%scast mismatch filter insert failed rc=%d\n",
			     multicast ? "Multi" : "Uni", rc);
4412
	} else if (multicast) {
4413 4414
		EFX_WARN_ON_PARANOID(vlan->mcdef != EFX_EF10_FILTER_ID_INVALID);
		vlan->mcdef = efx_ef10_filter_get_unsafe_id(efx, rc);
4415 4416 4417
		if (!nic_data->workaround_26807) {
			/* Also need an Ethernet broadcast filter */
			efx_filter_init_rx(&spec, EFX_FILTER_PRI_AUTO,
4418
					   filter_flags, 0);
4419
			eth_broadcast_addr(baddr);
4420
			efx_filter_set_eth_local(&spec, vlan->vid, baddr);
4421 4422 4423 4424 4425 4426 4427 4428 4429
			rc = efx_ef10_filter_insert(efx, &spec, true);
			if (rc < 0) {
				netif_warn(efx, drv, efx->net_dev,
					   "Broadcast filter insert failed rc=%d\n",
					   rc);
				if (rollback) {
					/* Roll back the mc_def filter */
					efx_ef10_filter_remove_unsafe(
							efx, EFX_FILTER_PRI_AUTO,
4430 4431
							vlan->mcdef);
					vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;
4432 4433 4434
					return rc;
				}
			} else {
4435
				EFX_WARN_ON_PARANOID(vlan->bcast !=
4436
						     EFX_EF10_FILTER_ID_INVALID);
4437
				vlan->bcast = efx_ef10_filter_get_unsafe_id(efx, rc);
4438 4439 4440 4441
			}
		}
		rc = 0;
	} else {
4442 4443
		EFX_WARN_ON_PARANOID(vlan->ucdef != EFX_EF10_FILTER_ID_INVALID);
		vlan->ucdef = rc;
4444 4445 4446
		rc = 0;
	}
	return rc;
4447 4448 4449 4450 4451 4452 4453 4454 4455
}

/* Remove filters that weren't renewed.  Since nothing else changes the AUTO_OLD
 * flag or removes these filters, we don't need to hold the filter_lock while
 * scanning for these filters.
 */
static void efx_ef10_filter_remove_old(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
4456 4457 4458
	int remove_failed = 0;
	int remove_noent = 0;
	int rc;
4459
	int i;
4460 4461 4462

	for (i = 0; i < HUNT_FILTER_TBL_ROWS; i++) {
		if (ACCESS_ONCE(table->entry[i].spec) &
4463
		    EFX_EF10_FILTER_FLAG_AUTO_OLD) {
4464 4465 4466 4467 4468 4469
			rc = efx_ef10_filter_remove_internal(efx,
					1U << EFX_FILTER_PRI_AUTO, i, true);
			if (rc == -ENOENT)
				remove_noent++;
			else if (rc)
				remove_failed++;
4470 4471
		}
	}
4472 4473 4474 4475 4476 4477 4478 4479 4480

	if (remove_failed)
		netif_info(efx, drv, efx->net_dev,
			   "%s: failed to remove %d filters\n",
			   __func__, remove_failed);
	if (remove_noent)
		netif_info(efx, drv, efx->net_dev,
			   "%s: failed to remove %d non-existent filters\n",
			   __func__, remove_noent);
4481 4482
}

4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548
static int efx_ef10_vport_set_mac_address(struct efx_nic *efx)
{
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	u8 mac_old[ETH_ALEN];
	int rc, rc2;

	/* Only reconfigure a PF-created vport */
	if (is_zero_ether_addr(nic_data->vport_mac))
		return 0;

	efx_device_detach_sync(efx);
	efx_net_stop(efx->net_dev);
	down_write(&efx->filter_sem);
	efx_ef10_filter_table_remove(efx);
	up_write(&efx->filter_sem);

	rc = efx_ef10_vadaptor_free(efx, nic_data->vport_id);
	if (rc)
		goto restore_filters;

	ether_addr_copy(mac_old, nic_data->vport_mac);
	rc = efx_ef10_vport_del_mac(efx, nic_data->vport_id,
				    nic_data->vport_mac);
	if (rc)
		goto restore_vadaptor;

	rc = efx_ef10_vport_add_mac(efx, nic_data->vport_id,
				    efx->net_dev->dev_addr);
	if (!rc) {
		ether_addr_copy(nic_data->vport_mac, efx->net_dev->dev_addr);
	} else {
		rc2 = efx_ef10_vport_add_mac(efx, nic_data->vport_id, mac_old);
		if (rc2) {
			/* Failed to add original MAC, so clear vport_mac */
			eth_zero_addr(nic_data->vport_mac);
			goto reset_nic;
		}
	}

restore_vadaptor:
	rc2 = efx_ef10_vadaptor_alloc(efx, nic_data->vport_id);
	if (rc2)
		goto reset_nic;
restore_filters:
	down_write(&efx->filter_sem);
	rc2 = efx_ef10_filter_table_probe(efx);
	up_write(&efx->filter_sem);
	if (rc2)
		goto reset_nic;

	rc2 = efx_net_open(efx->net_dev);
	if (rc2)
		goto reset_nic;

	netif_device_attach(efx->net_dev);

	return rc;

reset_nic:
	netif_err(efx, drv, efx->net_dev,
		  "Failed to restore when changing MAC address - scheduling reset\n");
	efx_schedule_reset(efx, RESET_TYPE_DATAPATH);

	return rc ? rc : rc2;
}

4549 4550 4551
/* Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
4552 4553
static void efx_ef10_filter_vlan_sync_rx_mode(struct efx_nic *efx,
					      struct efx_ef10_filter_vlan *vlan)
4554 4555
{
	struct efx_ef10_filter_table *table = efx->filter_state;
4556
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
4557

4558 4559 4560 4561 4562 4563
	/* Do not install unspecified VID if VLAN filtering is enabled.
	 * Do not install all specified VIDs if VLAN filtering is disabled.
	 */
	if ((vlan->vid == EFX_FILTER_VID_UNSPEC) == table->vlan_filter)
		return;

4564
	/* Insert/renew unicast filters */
4565
	if (table->uc_promisc) {
4566 4567
		efx_ef10_filter_insert_def(efx, vlan, false, false);
		efx_ef10_filter_insert_addr_list(efx, vlan, false, false);
4568 4569 4570 4571 4572
	} else {
		/* If any of the filters failed to insert, fall back to
		 * promiscuous mode - add in the uc_def filter.  But keep
		 * our individual unicast filters.
		 */
4573 4574
		if (efx_ef10_filter_insert_addr_list(efx, vlan, false, false))
			efx_ef10_filter_insert_def(efx, vlan, false, false);
4575
	}
4576

4577
	/* Insert/renew multicast filters */
4578 4579 4580
	/* If changing promiscuous state with cascaded multicast filters, remove
	 * old filters first, so that packets are dropped rather than duplicated
	 */
4581 4582
	if (nic_data->workaround_26807 &&
	    table->mc_promisc_last != table->mc_promisc)
4583
		efx_ef10_filter_remove_old(efx);
4584
	if (table->mc_promisc) {
4585 4586 4587 4588
		if (nic_data->workaround_26807) {
			/* If we failed to insert promiscuous filters, rollback
			 * and fall back to individual multicast filters
			 */
4589
			if (efx_ef10_filter_insert_def(efx, vlan, true, true)) {
4590 4591
				/* Changing promisc state, so remove old filters */
				efx_ef10_filter_remove_old(efx);
4592 4593
				efx_ef10_filter_insert_addr_list(efx, vlan,
								 true, false);
4594 4595 4596 4597 4598
			}
		} else {
			/* If we failed to insert promiscuous filters, don't
			 * rollback.  Regardless, also insert the mc_list
			 */
4599 4600
			efx_ef10_filter_insert_def(efx, vlan, true, false);
			efx_ef10_filter_insert_addr_list(efx, vlan, true, false);
4601 4602 4603 4604 4605 4606 4607
		}
	} else {
		/* If any filters failed to insert, rollback and fall back to
		 * promiscuous mode - mc_def filter and maybe broadcast.  If
		 * that fails, roll back again and insert as many of our
		 * individual multicast filters as we can.
		 */
4608
		if (efx_ef10_filter_insert_addr_list(efx, vlan, true, true)) {
4609 4610 4611
			/* Changing promisc state, so remove old filters */
			if (nic_data->workaround_26807)
				efx_ef10_filter_remove_old(efx);
4612 4613 4614
			if (efx_ef10_filter_insert_def(efx, vlan, true, true))
				efx_ef10_filter_insert_addr_list(efx, vlan,
								 true, false);
4615 4616
		}
	}
4617 4618 4619 4620 4621 4622 4623 4624 4625 4626
}

/* Caller must hold efx->filter_sem for read if race against
 * efx_ef10_filter_table_remove() is possible
 */
static void efx_ef10_filter_sync_rx_mode(struct efx_nic *efx)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct net_device *net_dev = efx->net_dev;
	struct efx_ef10_filter_vlan *vlan;
4627
	bool vlan_filter;
4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644

	if (!efx_dev_registered(efx))
		return;

	if (!table)
		return;

	efx_ef10_filter_mark_old(efx);

	/* Copy/convert the address lists; add the primary station
	 * address and broadcast address
	 */
	netif_addr_lock_bh(net_dev);
	efx_ef10_filter_uc_addr_list(efx);
	efx_ef10_filter_mc_addr_list(efx);
	netif_addr_unlock_bh(net_dev);

4645 4646 4647 4648 4649 4650 4651 4652 4653 4654
	/* If VLAN filtering changes, all old filters are finally removed.
	 * Do it in advance to avoid conflicts for unicast untagged and
	 * VLAN 0 tagged filters.
	 */
	vlan_filter = !!(net_dev->features & NETIF_F_HW_VLAN_CTAG_FILTER);
	if (table->vlan_filter != vlan_filter) {
		table->vlan_filter = vlan_filter;
		efx_ef10_filter_remove_old(efx);
	}

4655 4656
	list_for_each_entry(vlan, &table->vlan_list, list)
		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);
4657 4658

	efx_ef10_filter_remove_old(efx);
4659
	table->mc_promisc_last = table->mc_promisc;
4660 4661
}

4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725
static struct efx_ef10_filter_vlan *efx_ef10_filter_find_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_filter_vlan *vlan;

	WARN_ON(!rwsem_is_locked(&efx->filter_sem));

	list_for_each_entry(vlan, &table->vlan_list, list) {
		if (vlan->vid == vid)
			return vlan;
	}

	return NULL;
}

static int efx_ef10_filter_add_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_filter_table *table = efx->filter_state;
	struct efx_ef10_filter_vlan *vlan;
	unsigned int i;

	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return -EINVAL;

	vlan = efx_ef10_filter_find_vlan(efx, vid);
	if (WARN_ON(vlan)) {
		netif_err(efx, drv, efx->net_dev,
			  "VLAN %u already added\n", vid);
		return -EALREADY;
	}

	vlan = kzalloc(sizeof(*vlan), GFP_KERNEL);
	if (!vlan)
		return -ENOMEM;

	vlan->vid = vid;

	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
		vlan->uc[i] = EFX_EF10_FILTER_ID_INVALID;
	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
		vlan->mc[i] = EFX_EF10_FILTER_ID_INVALID;
	vlan->ucdef = EFX_EF10_FILTER_ID_INVALID;
	vlan->bcast = EFX_EF10_FILTER_ID_INVALID;
	vlan->mcdef = EFX_EF10_FILTER_ID_INVALID;

	list_add_tail(&vlan->list, &table->vlan_list);

	if (efx_dev_registered(efx))
		efx_ef10_filter_vlan_sync_rx_mode(efx, vlan);

	return 0;
}

static void efx_ef10_filter_del_vlan_internal(struct efx_nic *efx,
					      struct efx_ef10_filter_vlan *vlan)
{
	unsigned int i;

	/* See comment in efx_ef10_filter_table_remove() */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

	list_del(&vlan->list);

4726
	for (i = 0; i < ARRAY_SIZE(vlan->uc); i++)
4727
		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
4728 4729
					      vlan->uc[i]);
	for (i = 0; i < ARRAY_SIZE(vlan->mc); i++)
4730
		efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO,
4731 4732 4733 4734
					      vlan->mc[i]);
	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->ucdef);
	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->bcast);
	efx_ef10_filter_remove_unsafe(efx, EFX_FILTER_PRI_AUTO, vlan->mcdef);
4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756

	kfree(vlan);
}

static void efx_ef10_filter_del_vlan(struct efx_nic *efx, u16 vid)
{
	struct efx_ef10_filter_vlan *vlan;

	/* See comment in efx_ef10_filter_table_remove() */
	if (!efx_rwsem_assert_write_locked(&efx->filter_sem))
		return;

	vlan = efx_ef10_filter_find_vlan(efx, vid);
	if (!vlan) {
		netif_err(efx, drv, efx->net_dev,
			  "VLAN %u not found in filter state\n", vid);
		return;
	}

	efx_ef10_filter_del_vlan_internal(efx, vlan);
}

4757 4758 4759 4760 4761 4762 4763 4764 4765
static int efx_ef10_set_mac_address(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_VADAPTOR_SET_MAC_IN_LEN);
	struct efx_ef10_nic_data *nic_data = efx->nic_data;
	bool was_enabled = efx->port_enabled;
	int rc;

	efx_device_detach_sync(efx);
	efx_net_stop(efx->net_dev);
4766 4767

	mutex_lock(&efx->mac_lock);
4768 4769 4770 4771 4772 4773 4774
	down_write(&efx->filter_sem);
	efx_ef10_filter_table_remove(efx);

	ether_addr_copy(MCDI_PTR(inbuf, VADAPTOR_SET_MAC_IN_MACADDR),
			efx->net_dev->dev_addr);
	MCDI_SET_DWORD(inbuf, VADAPTOR_SET_MAC_IN_UPSTREAM_PORT_ID,
		       nic_data->vport_id);
4775 4776
	rc = efx_mcdi_rpc_quiet(efx, MC_CMD_VADAPTOR_SET_MAC, inbuf,
				sizeof(inbuf), NULL, 0, NULL);
4777 4778 4779

	efx_ef10_filter_table_probe(efx);
	up_write(&efx->filter_sem);
4780 4781
	mutex_unlock(&efx->mac_lock);

4782 4783 4784 4785
	if (was_enabled)
		efx_net_open(efx->net_dev);
	netif_device_attach(efx->net_dev);

4786 4787
#ifdef CONFIG_SFC_SRIOV
	if (efx->pci_dev->is_virtfn && efx->pci_dev->physfn) {
4788 4789
		struct pci_dev *pci_dev_pf = efx->pci_dev->physfn;

4790 4791
		if (rc == -EPERM) {
			struct efx_nic *efx_pf;
4792

4793 4794
			/* Switch to PF and change MAC address on vport */
			efx_pf = pci_get_drvdata(pci_dev_pf);
4795

4796 4797 4798 4799
			rc = efx_ef10_sriov_set_vf_mac(efx_pf,
						       nic_data->vf_index,
						       efx->net_dev->dev_addr);
		} else if (!rc) {
4800 4801 4802 4803
			struct efx_nic *efx_pf = pci_get_drvdata(pci_dev_pf);
			struct efx_ef10_nic_data *nic_data = efx_pf->nic_data;
			unsigned int i;

4804 4805 4806
			/* MAC address successfully changed by VF (with MAC
			 * spoofing) so update the parent PF if possible.
			 */
4807 4808 4809 4810 4811 4812 4813 4814 4815 4816
			for (i = 0; i < efx_pf->vf_count; ++i) {
				struct ef10_vf *vf = nic_data->vf + i;

				if (vf->efx == efx) {
					ether_addr_copy(vf->mac,
							efx->net_dev->dev_addr);
					return 0;
				}
			}
		}
4817
	} else
4818
#endif
4819 4820 4821 4822
	if (rc == -EPERM) {
		netif_err(efx, drv, efx->net_dev,
			  "Cannot change MAC address; use sfboot to enable"
			  " mac-spoofing on this interface\n");
4823 4824 4825 4826 4827 4828 4829
	} else if (rc == -ENOSYS && !efx_ef10_is_vf(efx)) {
		/* If the active MCFW does not support MC_CMD_VADAPTOR_SET_MAC
		 * fall-back to the method of changing the MAC address on the
		 * vport.  This only applies to PFs because such versions of
		 * MCFW do not support VFs.
		 */
		rc = efx_ef10_vport_set_mac_address(efx);
4830 4831 4832
	} else {
		efx_mcdi_display_error(efx, MC_CMD_VADAPTOR_SET_MAC,
				       sizeof(inbuf), NULL, 0, rc);
4833 4834
	}

4835 4836 4837
	return rc;
}

4838 4839 4840 4841 4842 4843 4844
static int efx_ef10_mac_reconfigure(struct efx_nic *efx)
{
	efx_ef10_filter_sync_rx_mode(efx);

	return efx_mcdi_set_mac(efx);
}

4845 4846 4847 4848 4849 4850 4851
static int efx_ef10_mac_reconfigure_vf(struct efx_nic *efx)
{
	efx_ef10_filter_sync_rx_mode(efx);

	return 0;
}

4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928
static int efx_ef10_start_bist(struct efx_nic *efx, u32 bist_type)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_START_BIST_IN_LEN);

	MCDI_SET_DWORD(inbuf, START_BIST_IN_TYPE, bist_type);
	return efx_mcdi_rpc(efx, MC_CMD_START_BIST, inbuf, sizeof(inbuf),
			    NULL, 0, NULL);
}

/* MC BISTs follow a different poll mechanism to phy BISTs.
 * The BIST is done in the poll handler on the MC, and the MCDI command
 * will block until the BIST is done.
 */
static int efx_ef10_poll_bist(struct efx_nic *efx)
{
	int rc;
	MCDI_DECLARE_BUF(outbuf, MC_CMD_POLL_BIST_OUT_LEN);
	size_t outlen;
	u32 result;

	rc = efx_mcdi_rpc(efx, MC_CMD_POLL_BIST, NULL, 0,
			   outbuf, sizeof(outbuf), &outlen);
	if (rc != 0)
		return rc;

	if (outlen < MC_CMD_POLL_BIST_OUT_LEN)
		return -EIO;

	result = MCDI_DWORD(outbuf, POLL_BIST_OUT_RESULT);
	switch (result) {
	case MC_CMD_POLL_BIST_PASSED:
		netif_dbg(efx, hw, efx->net_dev, "BIST passed.\n");
		return 0;
	case MC_CMD_POLL_BIST_TIMEOUT:
		netif_err(efx, hw, efx->net_dev, "BIST timed out\n");
		return -EIO;
	case MC_CMD_POLL_BIST_FAILED:
		netif_err(efx, hw, efx->net_dev, "BIST failed.\n");
		return -EIO;
	default:
		netif_err(efx, hw, efx->net_dev,
			  "BIST returned unknown result %u", result);
		return -EIO;
	}
}

static int efx_ef10_run_bist(struct efx_nic *efx, u32 bist_type)
{
	int rc;

	netif_dbg(efx, drv, efx->net_dev, "starting BIST type %u\n", bist_type);

	rc = efx_ef10_start_bist(efx, bist_type);
	if (rc != 0)
		return rc;

	return efx_ef10_poll_bist(efx);
}

static int
efx_ef10_test_chip(struct efx_nic *efx, struct efx_self_tests *tests)
{
	int rc, rc2;

	efx_reset_down(efx, RESET_TYPE_WORLD);

	rc = efx_mcdi_rpc(efx, MC_CMD_ENABLE_OFFLINE_BIST,
			  NULL, 0, NULL, 0, NULL);
	if (rc != 0)
		goto out;

	tests->memory = efx_ef10_run_bist(efx, MC_CMD_MC_MEM_BIST) ? -1 : 1;
	tests->registers = efx_ef10_run_bist(efx, MC_CMD_REG_BIST) ? -1 : 1;

	rc = efx_mcdi_reset(efx, RESET_TYPE_WORLD);

out:
4929 4930
	if (rc == -EPERM)
		rc = 0;
4931 4932 4933 4934
	rc2 = efx_reset_up(efx, RESET_TYPE_WORLD, rc == 0);
	return rc ? rc : rc2;
}

4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952
#ifdef CONFIG_SFC_MTD

struct efx_ef10_nvram_type_info {
	u16 type, type_mask;
	u8 port;
	const char *name;
};

static const struct efx_ef10_nvram_type_info efx_ef10_nvram_types[] = {
	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE,	   0,    0, "sfc_mcfw" },
	{ NVRAM_PARTITION_TYPE_MC_FIRMWARE_BACKUP, 0,    0, "sfc_mcfw_backup" },
	{ NVRAM_PARTITION_TYPE_EXPANSION_ROM,	   0,    0, "sfc_exp_rom" },
	{ NVRAM_PARTITION_TYPE_STATIC_CONFIG,	   0,    0, "sfc_static_cfg" },
	{ NVRAM_PARTITION_TYPE_DYNAMIC_CONFIG,	   0,    0, "sfc_dynamic_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT0, 0,   0, "sfc_exp_rom_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT1, 0,   1, "sfc_exp_rom_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT2, 0,   2, "sfc_exp_rom_cfg" },
	{ NVRAM_PARTITION_TYPE_EXPROM_CONFIG_PORT3, 0,   3, "sfc_exp_rom_cfg" },
4953
	{ NVRAM_PARTITION_TYPE_LICENSE,		   0,    0, "sfc_license" },
4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060
	{ NVRAM_PARTITION_TYPE_PHY_MIN,		   0xff, 0, "sfc_phy_fw" },
};

static int efx_ef10_mtd_probe_partition(struct efx_nic *efx,
					struct efx_mcdi_mtd_partition *part,
					unsigned int type)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_NVRAM_METADATA_IN_LEN);
	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_METADATA_OUT_LENMAX);
	const struct efx_ef10_nvram_type_info *info;
	size_t size, erase_size, outlen;
	bool protected;
	int rc;

	for (info = efx_ef10_nvram_types; ; info++) {
		if (info ==
		    efx_ef10_nvram_types + ARRAY_SIZE(efx_ef10_nvram_types))
			return -ENODEV;
		if ((type & ~info->type_mask) == info->type)
			break;
	}
	if (info->port != efx_port_num(efx))
		return -ENODEV;

	rc = efx_mcdi_nvram_info(efx, type, &size, &erase_size, &protected);
	if (rc)
		return rc;
	if (protected)
		return -ENODEV; /* hide it */

	part->nvram_type = type;

	MCDI_SET_DWORD(inbuf, NVRAM_METADATA_IN_TYPE, type);
	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_METADATA, inbuf, sizeof(inbuf),
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_NVRAM_METADATA_OUT_LENMIN)
		return -EIO;
	if (MCDI_DWORD(outbuf, NVRAM_METADATA_OUT_FLAGS) &
	    (1 << MC_CMD_NVRAM_METADATA_OUT_SUBTYPE_VALID_LBN))
		part->fw_subtype = MCDI_DWORD(outbuf,
					      NVRAM_METADATA_OUT_SUBTYPE);

	part->common.dev_type_name = "EF10 NVRAM manager";
	part->common.type_name = info->name;

	part->common.mtd.type = MTD_NORFLASH;
	part->common.mtd.flags = MTD_CAP_NORFLASH;
	part->common.mtd.size = size;
	part->common.mtd.erasesize = erase_size;

	return 0;
}

static int efx_ef10_mtd_probe(struct efx_nic *efx)
{
	MCDI_DECLARE_BUF(outbuf, MC_CMD_NVRAM_PARTITIONS_OUT_LENMAX);
	struct efx_mcdi_mtd_partition *parts;
	size_t outlen, n_parts_total, i, n_parts;
	unsigned int type;
	int rc;

	ASSERT_RTNL();

	BUILD_BUG_ON(MC_CMD_NVRAM_PARTITIONS_IN_LEN != 0);
	rc = efx_mcdi_rpc(efx, MC_CMD_NVRAM_PARTITIONS, NULL, 0,
			  outbuf, sizeof(outbuf), &outlen);
	if (rc)
		return rc;
	if (outlen < MC_CMD_NVRAM_PARTITIONS_OUT_LENMIN)
		return -EIO;

	n_parts_total = MCDI_DWORD(outbuf, NVRAM_PARTITIONS_OUT_NUM_PARTITIONS);
	if (n_parts_total >
	    MCDI_VAR_ARRAY_LEN(outlen, NVRAM_PARTITIONS_OUT_TYPE_ID))
		return -EIO;

	parts = kcalloc(n_parts_total, sizeof(*parts), GFP_KERNEL);
	if (!parts)
		return -ENOMEM;

	n_parts = 0;
	for (i = 0; i < n_parts_total; i++) {
		type = MCDI_ARRAY_DWORD(outbuf, NVRAM_PARTITIONS_OUT_TYPE_ID,
					i);
		rc = efx_ef10_mtd_probe_partition(efx, &parts[n_parts], type);
		if (rc == 0)
			n_parts++;
		else if (rc != -ENODEV)
			goto fail;
	}

	rc = efx_mtd_add(efx, &parts[0].common, n_parts, sizeof(*parts));
fail:
	if (rc)
		kfree(parts);
	return rc;
}

#endif /* CONFIG_SFC_MTD */

static void efx_ef10_ptp_write_host_time(struct efx_nic *efx, u32 host_time)
{
	_efx_writed(efx, cpu_to_le32(host_time), ER_DZ_MC_DB_LWRD);
}

5061 5062 5063
static void efx_ef10_ptp_write_host_time_vf(struct efx_nic *efx,
					    u32 host_time) {}

5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140
static int efx_ef10_rx_enable_timestamping(struct efx_channel *channel,
					   bool temp)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_SUBSCRIBE_LEN);
	int rc;

	if (channel->sync_events_state == SYNC_EVENTS_REQUESTED ||
	    channel->sync_events_state == SYNC_EVENTS_VALID ||
	    (temp && channel->sync_events_state == SYNC_EVENTS_DISABLED))
		return 0;
	channel->sync_events_state = SYNC_EVENTS_REQUESTED;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_SUBSCRIBE);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_SUBSCRIBE_QUEUE,
		       channel->channel);

	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
			  inbuf, sizeof(inbuf), NULL, 0, NULL);

	if (rc != 0)
		channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
						    SYNC_EVENTS_DISABLED;

	return rc;
}

static int efx_ef10_rx_disable_timestamping(struct efx_channel *channel,
					    bool temp)
{
	MCDI_DECLARE_BUF(inbuf, MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_LEN);
	int rc;

	if (channel->sync_events_state == SYNC_EVENTS_DISABLED ||
	    (temp && channel->sync_events_state == SYNC_EVENTS_QUIESCENT))
		return 0;
	if (channel->sync_events_state == SYNC_EVENTS_QUIESCENT) {
		channel->sync_events_state = SYNC_EVENTS_DISABLED;
		return 0;
	}
	channel->sync_events_state = temp ? SYNC_EVENTS_QUIESCENT :
					    SYNC_EVENTS_DISABLED;

	MCDI_SET_DWORD(inbuf, PTP_IN_OP, MC_CMD_PTP_OP_TIME_EVENT_UNSUBSCRIBE);
	MCDI_SET_DWORD(inbuf, PTP_IN_PERIPH_ID, 0);
	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_CONTROL,
		       MC_CMD_PTP_IN_TIME_EVENT_UNSUBSCRIBE_SINGLE);
	MCDI_SET_DWORD(inbuf, PTP_IN_TIME_EVENT_UNSUBSCRIBE_QUEUE,
		       channel->channel);

	rc = efx_mcdi_rpc(channel->efx, MC_CMD_PTP,
			  inbuf, sizeof(inbuf), NULL, 0, NULL);

	return rc;
}

static int efx_ef10_ptp_set_ts_sync_events(struct efx_nic *efx, bool en,
					   bool temp)
{
	int (*set)(struct efx_channel *channel, bool temp);
	struct efx_channel *channel;

	set = en ?
	      efx_ef10_rx_enable_timestamping :
	      efx_ef10_rx_disable_timestamping;

	efx_for_each_channel(channel, efx) {
		int rc = set(channel, temp);
		if (en && rc != 0) {
			efx_ef10_ptp_set_ts_sync_events(efx, false, temp);
			return rc;
		}
	}

	return 0;
}

5141 5142 5143 5144 5145 5146
static int efx_ef10_ptp_set_ts_config_vf(struct efx_nic *efx,
					 struct hwtstamp_config *init)
{
	return -EOPNOTSUPP;
}

5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182
static int efx_ef10_ptp_set_ts_config(struct efx_nic *efx,
				      struct hwtstamp_config *init)
{
	int rc;

	switch (init->rx_filter) {
	case HWTSTAMP_FILTER_NONE:
		efx_ef10_ptp_set_ts_sync_events(efx, false, false);
		/* if TX timestamping is still requested then leave PTP on */
		return efx_ptp_change_mode(efx,
					   init->tx_type != HWTSTAMP_TX_OFF, 0);
	case HWTSTAMP_FILTER_ALL:
	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
	case HWTSTAMP_FILTER_PTP_V2_EVENT:
	case HWTSTAMP_FILTER_PTP_V2_SYNC:
	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
		init->rx_filter = HWTSTAMP_FILTER_ALL;
		rc = efx_ptp_change_mode(efx, true, 0);
		if (!rc)
			rc = efx_ef10_ptp_set_ts_sync_events(efx, true, false);
		if (rc)
			efx_ptp_change_mode(efx, false, 0);
		return rc;
	default:
		return -ERANGE;
	}
}

5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198
static int efx_ef10_vlan_rx_add_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
	if (proto != htons(ETH_P_8021Q))
		return -EINVAL;

	return efx_ef10_add_vlan(efx, vid);
}

static int efx_ef10_vlan_rx_kill_vid(struct efx_nic *efx, __be16 proto, u16 vid)
{
	if (proto != htons(ETH_P_8021Q))
		return -EINVAL;

	return efx_ef10_del_vlan(efx, vid);
}

5199 5200
#define EF10_OFFLOAD_FEATURES		\
	(NETIF_F_IP_CSUM |		\
5201
	 NETIF_F_HW_VLAN_CTAG_FILTER |	\
5202 5203 5204 5205
	 NETIF_F_IPV6_CSUM |		\
	 NETIF_F_RXHASH |		\
	 NETIF_F_NTUPLE)

5206
const struct efx_nic_type efx_hunt_a0_vf_nic_type = {
5207
	.is_vf = true,
5208 5209 5210 5211 5212 5213 5214
	.mem_bar = EFX_MEM_VF_BAR,
	.mem_map_size = efx_ef10_mem_map_size,
	.probe = efx_ef10_probe_vf,
	.remove = efx_ef10_remove,
	.dimension_resources = efx_ef10_dimension_resources,
	.init = efx_ef10_init_nic,
	.fini = efx_port_dummy_op_void,
5215
	.map_reset_reason = efx_ef10_map_reset_reason,
5216 5217 5218 5219 5220 5221 5222 5223
	.map_reset_flags = efx_ef10_map_reset_flags,
	.reset = efx_ef10_reset,
	.probe_port = efx_mcdi_port_probe,
	.remove_port = efx_mcdi_port_remove,
	.fini_dmaq = efx_ef10_fini_dmaq,
	.prepare_flr = efx_ef10_prepare_flr,
	.finish_flr = efx_port_dummy_op_void,
	.describe_stats = efx_ef10_describe_stats,
5224
	.update_stats = efx_ef10_update_stats_vf,
5225 5226 5227 5228 5229
	.start_stats = efx_port_dummy_op_void,
	.pull_stats = efx_port_dummy_op_void,
	.stop_stats = efx_port_dummy_op_void,
	.set_id_led = efx_mcdi_set_id_led,
	.push_irq_moderation = efx_ef10_push_irq_moderation,
5230
	.reconfigure_mac = efx_ef10_mac_reconfigure_vf,
5231 5232 5233 5234 5235 5236 5237 5238 5239
	.check_mac_fault = efx_mcdi_mac_check_fault,
	.reconfigure_port = efx_mcdi_port_reconfigure,
	.get_wol = efx_ef10_get_wol_vf,
	.set_wol = efx_ef10_set_wol_vf,
	.resume_wol = efx_port_dummy_op_void,
	.mcdi_request = efx_ef10_mcdi_request,
	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
	.mcdi_read_response = efx_ef10_mcdi_read_response,
	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5240
	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5241 5242 5243 5244 5245 5246 5247 5248 5249
	.irq_enable_master = efx_port_dummy_op_void,
	.irq_test_generate = efx_ef10_irq_test_generate,
	.irq_disable_non_ev = efx_port_dummy_op_void,
	.irq_handle_msi = efx_ef10_msi_interrupt,
	.irq_handle_legacy = efx_ef10_legacy_interrupt,
	.tx_probe = efx_ef10_tx_probe,
	.tx_init = efx_ef10_tx_init,
	.tx_remove = efx_ef10_tx_remove,
	.tx_write = efx_ef10_tx_write,
5250
	.rx_push_rss_config = efx_ef10_vf_rx_push_rss_config,
5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282
	.rx_probe = efx_ef10_rx_probe,
	.rx_init = efx_ef10_rx_init,
	.rx_remove = efx_ef10_rx_remove,
	.rx_write = efx_ef10_rx_write,
	.rx_defer_refill = efx_ef10_rx_defer_refill,
	.ev_probe = efx_ef10_ev_probe,
	.ev_init = efx_ef10_ev_init,
	.ev_fini = efx_ef10_ev_fini,
	.ev_remove = efx_ef10_ev_remove,
	.ev_process = efx_ef10_ev_process,
	.ev_read_ack = efx_ef10_ev_read_ack,
	.ev_test_generate = efx_ef10_ev_test_generate,
	.filter_table_probe = efx_ef10_filter_table_probe,
	.filter_table_restore = efx_ef10_filter_table_restore,
	.filter_table_remove = efx_ef10_filter_table_remove,
	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
	.filter_insert = efx_ef10_filter_insert,
	.filter_remove_safe = efx_ef10_filter_remove_safe,
	.filter_get_safe = efx_ef10_filter_get_safe,
	.filter_clear_rx = efx_ef10_filter_clear_rx,
	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
	.mtd_probe = efx_port_dummy_op_int,
#endif
	.ptp_write_host_time = efx_ef10_ptp_write_host_time_vf,
	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config_vf,
5283 5284
	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5285
#ifdef CONFIG_SFC_SRIOV
5286 5287 5288
	.vswitching_probe = efx_ef10_vswitching_probe_vf,
	.vswitching_restore = efx_ef10_vswitching_restore_vf,
	.vswitching_remove = efx_ef10_vswitching_remove_vf,
5289
	.sriov_get_phys_port_id = efx_ef10_sriov_get_phys_port_id,
5290
#endif
5291
	.get_mac_address = efx_ef10_get_mac_address_vf,
5292
	.set_mac_address = efx_ef10_set_mac_address,
5293

5294 5295 5296 5297 5298 5299 5300 5301 5302
	.revision = EFX_REV_HUNT_A0,
	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
	.can_rx_scatter = true,
	.always_rx_scatter = true,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5303
	.offload_features = EF10_OFFLOAD_FEATURES,
5304 5305 5306 5307 5308 5309
	.mcdi_max_ver = 2,
	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
			    1 << HWTSTAMP_FILTER_ALL,
};

5310
const struct efx_nic_type efx_hunt_a0_nic_type = {
5311
	.is_vf = false,
5312
	.mem_bar = EFX_MEM_BAR,
5313
	.mem_map_size = efx_ef10_mem_map_size,
5314
	.probe = efx_ef10_probe_pf,
5315 5316 5317 5318
	.remove = efx_ef10_remove,
	.dimension_resources = efx_ef10_dimension_resources,
	.init = efx_ef10_init_nic,
	.fini = efx_port_dummy_op_void,
5319
	.map_reset_reason = efx_ef10_map_reset_reason,
5320
	.map_reset_flags = efx_ef10_map_reset_flags,
5321
	.reset = efx_ef10_reset,
5322 5323 5324
	.probe_port = efx_mcdi_port_probe,
	.remove_port = efx_mcdi_port_remove,
	.fini_dmaq = efx_ef10_fini_dmaq,
5325 5326
	.prepare_flr = efx_ef10_prepare_flr,
	.finish_flr = efx_port_dummy_op_void,
5327
	.describe_stats = efx_ef10_describe_stats,
5328
	.update_stats = efx_ef10_update_stats_pf,
5329
	.start_stats = efx_mcdi_mac_start_stats,
5330
	.pull_stats = efx_mcdi_mac_pull_stats,
5331 5332 5333 5334 5335 5336 5337 5338 5339
	.stop_stats = efx_mcdi_mac_stop_stats,
	.set_id_led = efx_mcdi_set_id_led,
	.push_irq_moderation = efx_ef10_push_irq_moderation,
	.reconfigure_mac = efx_ef10_mac_reconfigure,
	.check_mac_fault = efx_mcdi_mac_check_fault,
	.reconfigure_port = efx_mcdi_port_reconfigure,
	.get_wol = efx_ef10_get_wol,
	.set_wol = efx_ef10_set_wol,
	.resume_wol = efx_port_dummy_op_void,
5340
	.test_chip = efx_ef10_test_chip,
5341 5342 5343 5344 5345
	.test_nvram = efx_mcdi_nvram_test_all,
	.mcdi_request = efx_ef10_mcdi_request,
	.mcdi_poll_response = efx_ef10_mcdi_poll_response,
	.mcdi_read_response = efx_ef10_mcdi_read_response,
	.mcdi_poll_reboot = efx_ef10_mcdi_poll_reboot,
5346
	.mcdi_reboot_detected = efx_ef10_mcdi_reboot_detected,
5347 5348 5349 5350 5351 5352 5353 5354 5355
	.irq_enable_master = efx_port_dummy_op_void,
	.irq_test_generate = efx_ef10_irq_test_generate,
	.irq_disable_non_ev = efx_port_dummy_op_void,
	.irq_handle_msi = efx_ef10_msi_interrupt,
	.irq_handle_legacy = efx_ef10_legacy_interrupt,
	.tx_probe = efx_ef10_tx_probe,
	.tx_init = efx_ef10_tx_init,
	.tx_remove = efx_ef10_tx_remove,
	.tx_write = efx_ef10_tx_write,
5356
	.rx_push_rss_config = efx_ef10_pf_rx_push_rss_config,
5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392
	.rx_probe = efx_ef10_rx_probe,
	.rx_init = efx_ef10_rx_init,
	.rx_remove = efx_ef10_rx_remove,
	.rx_write = efx_ef10_rx_write,
	.rx_defer_refill = efx_ef10_rx_defer_refill,
	.ev_probe = efx_ef10_ev_probe,
	.ev_init = efx_ef10_ev_init,
	.ev_fini = efx_ef10_ev_fini,
	.ev_remove = efx_ef10_ev_remove,
	.ev_process = efx_ef10_ev_process,
	.ev_read_ack = efx_ef10_ev_read_ack,
	.ev_test_generate = efx_ef10_ev_test_generate,
	.filter_table_probe = efx_ef10_filter_table_probe,
	.filter_table_restore = efx_ef10_filter_table_restore,
	.filter_table_remove = efx_ef10_filter_table_remove,
	.filter_update_rx_scatter = efx_ef10_filter_update_rx_scatter,
	.filter_insert = efx_ef10_filter_insert,
	.filter_remove_safe = efx_ef10_filter_remove_safe,
	.filter_get_safe = efx_ef10_filter_get_safe,
	.filter_clear_rx = efx_ef10_filter_clear_rx,
	.filter_count_rx_used = efx_ef10_filter_count_rx_used,
	.filter_get_rx_id_limit = efx_ef10_filter_get_rx_id_limit,
	.filter_get_rx_ids = efx_ef10_filter_get_rx_ids,
#ifdef CONFIG_RFS_ACCEL
	.filter_rfs_insert = efx_ef10_filter_rfs_insert,
	.filter_rfs_expire_one = efx_ef10_filter_rfs_expire_one,
#endif
#ifdef CONFIG_SFC_MTD
	.mtd_probe = efx_ef10_mtd_probe,
	.mtd_rename = efx_mcdi_mtd_rename,
	.mtd_read = efx_mcdi_mtd_read,
	.mtd_erase = efx_mcdi_mtd_erase,
	.mtd_write = efx_mcdi_mtd_write,
	.mtd_sync = efx_mcdi_mtd_sync,
#endif
	.ptp_write_host_time = efx_ef10_ptp_write_host_time,
5393 5394
	.ptp_set_ts_sync_events = efx_ef10_ptp_set_ts_sync_events,
	.ptp_set_ts_config = efx_ef10_ptp_set_ts_config,
5395 5396
	.vlan_rx_add_vid = efx_ef10_vlan_rx_add_vid,
	.vlan_rx_kill_vid = efx_ef10_vlan_rx_kill_vid,
5397
#ifdef CONFIG_SFC_SRIOV
5398
	.sriov_configure = efx_ef10_sriov_configure,
5399 5400 5401 5402
	.sriov_init = efx_ef10_sriov_init,
	.sriov_fini = efx_ef10_sriov_fini,
	.sriov_wanted = efx_ef10_sriov_wanted,
	.sriov_reset = efx_ef10_sriov_reset,
5403 5404 5405 5406 5407
	.sriov_flr = efx_ef10_sriov_flr,
	.sriov_set_vf_mac = efx_ef10_sriov_set_vf_mac,
	.sriov_set_vf_vlan = efx_ef10_sriov_set_vf_vlan,
	.sriov_set_vf_spoofchk = efx_ef10_sriov_set_vf_spoofchk,
	.sriov_get_vf_config = efx_ef10_sriov_get_vf_config,
5408
	.sriov_set_vf_link_state = efx_ef10_sriov_set_vf_link_state,
5409 5410 5411
	.vswitching_probe = efx_ef10_vswitching_probe_pf,
	.vswitching_restore = efx_ef10_vswitching_restore_pf,
	.vswitching_remove = efx_ef10_vswitching_remove_pf,
5412
#endif
5413
	.get_mac_address = efx_ef10_get_mac_address_pf,
5414
	.set_mac_address = efx_ef10_set_mac_address,
5415 5416 5417 5418 5419

	.revision = EFX_REV_HUNT_A0,
	.max_dma_mask = DMA_BIT_MASK(ESF_DZ_TX_KER_BUF_ADDR_WIDTH),
	.rx_prefix_size = ES_DZ_RX_PREFIX_SIZE,
	.rx_hash_offset = ES_DZ_RX_PREFIX_HASH_OFST,
5420
	.rx_ts_offset = ES_DZ_RX_PREFIX_TSTAMP_OFST,
5421 5422 5423 5424
	.can_rx_scatter = true,
	.always_rx_scatter = true,
	.max_interrupt_mode = EFX_INT_MODE_MSIX,
	.timer_period_max = 1 << ERF_DD_EVQ_IND_TIMER_VAL_WIDTH,
5425
	.offload_features = EF10_OFFLOAD_FEATURES,
5426 5427
	.mcdi_max_ver = 2,
	.max_rx_ip_filters = HUNT_FILTER_TBL_ROWS,
5428 5429
	.hwtstamp_filters = 1 << HWTSTAMP_FILTER_NONE |
			    1 << HWTSTAMP_FILTER_ALL,
5430
};