intel_dp.c 127.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/*
 * Copyright © 2008 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 *
 * Authors:
 *    Keith Packard <keithp@keithp.com>
 *
 */

#include <linux/i2c.h>
29
#include <linux/slab.h>
30
#include <linux/export.h>
31 32 33 34
#include <drm/drmP.h>
#include <drm/drm_crtc.h>
#include <drm/drm_crtc_helper.h>
#include <drm/drm_edid.h>
35
#include "intel_drv.h"
36
#include <drm/i915_drm.h>
37 38 39 40
#include "i915_drv.h"

#define DP_LINK_CHECK_TIMEOUT	(10 * 1000)

41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
struct dp_link_dpll {
	int link_bw;
	struct dpll dpll;
};

static const struct dp_link_dpll gen4_dpll[] = {
	{ DP_LINK_BW_1_62,
		{ .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
	{ DP_LINK_BW_2_7,
		{ .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
};

static const struct dp_link_dpll pch_dpll[] = {
	{ DP_LINK_BW_1_62,
		{ .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
	{ DP_LINK_BW_2_7,
		{ .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
};

60 61
static const struct dp_link_dpll vlv_dpll[] = {
	{ DP_LINK_BW_1_62,
C
Chon Ming Lee 已提交
62
		{ .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
63 64 65 66
	{ DP_LINK_BW_2_7,
		{ .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
};

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
/*
 * CHV supports eDP 1.4 that have  more link rates.
 * Below only provides the fixed rate but exclude variable rate.
 */
static const struct dp_link_dpll chv_dpll[] = {
	/*
	 * CHV requires to program fractional division for m2.
	 * m2 is stored in fixed point format using formula below
	 * (m2_int << 22) | m2_fraction
	 */
	{ DP_LINK_BW_1_62,	/* m2_int = 32, m2_fraction = 1677722 */
		{ .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
	{ DP_LINK_BW_2_7,	/* m2_int = 27, m2_fraction = 0 */
		{ .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
	{ DP_LINK_BW_5_4,	/* m2_int = 27, m2_fraction = 0 */
		{ .p1 = 2, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } }
};

85 86 87 88 89 90 91 92 93
/**
 * is_edp - is the given port attached to an eDP panel (either CPU or PCH)
 * @intel_dp: DP struct
 *
 * If a CPU or PCH DP output is attached to an eDP panel, this function
 * will return true, and false otherwise.
 */
static bool is_edp(struct intel_dp *intel_dp)
{
94 95 96
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
97 98
}

99
static struct drm_device *intel_dp_to_dev(struct intel_dp *intel_dp)
100
{
101 102 103
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);

	return intel_dig_port->base.base.dev;
104 105
}

106 107
static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
{
108
	return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
109 110
}

C
Chris Wilson 已提交
111
static void intel_dp_link_down(struct intel_dp *intel_dp);
112
static bool _edp_panel_vdd_on(struct intel_dp *intel_dp);
113
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
114 115

static int
C
Chris Wilson 已提交
116
intel_dp_max_link_bw(struct intel_dp *intel_dp)
117
{
118
	int max_link_bw = intel_dp->dpcd[DP_MAX_LINK_RATE];
119
	struct drm_device *dev = intel_dp->attached_connector->base.dev;
120 121 122 123 124

	switch (max_link_bw) {
	case DP_LINK_BW_1_62:
	case DP_LINK_BW_2_7:
		break;
125
	case DP_LINK_BW_5_4: /* 1.2 capable displays may advertise higher bw */
126 127
		if (((IS_HASWELL(dev) && !IS_HSW_ULX(dev)) ||
		     INTEL_INFO(dev)->gen >= 8) &&
128 129 130 131
		    intel_dp->dpcd[DP_DPCD_REV] >= 0x12)
			max_link_bw = DP_LINK_BW_5_4;
		else
			max_link_bw = DP_LINK_BW_2_7;
132
		break;
133
	default:
134 135
		WARN(1, "invalid max DP link bw val %x, using 1.62Gbps\n",
		     max_link_bw);
136 137 138 139 140 141
		max_link_bw = DP_LINK_BW_1_62;
		break;
	}
	return max_link_bw;
}

142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
static u8 intel_dp_max_lane_count(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	u8 source_max, sink_max;

	source_max = 4;
	if (HAS_DDI(dev) && intel_dig_port->port == PORT_A &&
	    (intel_dig_port->saved_port_bits & DDI_A_4_LANES) == 0)
		source_max = 2;

	sink_max = drm_dp_max_lane_count(intel_dp->dpcd);

	return min(source_max, sink_max);
}

158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
/*
 * The units on the numbers in the next two are... bizarre.  Examples will
 * make it clearer; this one parallels an example in the eDP spec.
 *
 * intel_dp_max_data_rate for one lane of 2.7GHz evaluates as:
 *
 *     270000 * 1 * 8 / 10 == 216000
 *
 * The actual data capacity of that configuration is 2.16Gbit/s, so the
 * units are decakilobits.  ->clock in a drm_display_mode is in kilohertz -
 * or equivalently, kilopixels per second - so for 1680x1050R it'd be
 * 119000.  At 18bpp that's 2142000 kilobits per second.
 *
 * Thus the strange-looking division by 10 in intel_dp_link_required, to
 * get the result in decakilobits instead of kilobits.
 */

175
static int
176
intel_dp_link_required(int pixel_clock, int bpp)
177
{
178
	return (pixel_clock * bpp + 9) / 10;
179 180
}

181 182 183 184 185 186
static int
intel_dp_max_data_rate(int max_link_clock, int max_lanes)
{
	return (max_link_clock * max_lanes * 8) / 10;
}

187
static enum drm_mode_status
188 189 190
intel_dp_mode_valid(struct drm_connector *connector,
		    struct drm_display_mode *mode)
{
191
	struct intel_dp *intel_dp = intel_attached_dp(connector);
192 193
	struct intel_connector *intel_connector = to_intel_connector(connector);
	struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
194 195
	int target_clock = mode->clock;
	int max_rate, mode_rate, max_lanes, max_link_clock;
196

197 198
	if (is_edp(intel_dp) && fixed_mode) {
		if (mode->hdisplay > fixed_mode->hdisplay)
199 200
			return MODE_PANEL;

201
		if (mode->vdisplay > fixed_mode->vdisplay)
202
			return MODE_PANEL;
203 204

		target_clock = fixed_mode->clock;
205 206
	}

207
	max_link_clock = drm_dp_bw_code_to_link_rate(intel_dp_max_link_bw(intel_dp));
208
	max_lanes = intel_dp_max_lane_count(intel_dp);
209 210 211 212 213

	max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
	mode_rate = intel_dp_link_required(target_clock, 18);

	if (mode_rate > max_rate)
214
		return MODE_CLOCK_HIGH;
215 216 217 218

	if (mode->clock < 10000)
		return MODE_CLOCK_LOW;

219 220 221
	if (mode->flags & DRM_MODE_FLAG_DBLCLK)
		return MODE_H_ILLEGAL;

222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
	return MODE_OK;
}

static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
	int	i;
	uint32_t v = 0;

	if (src_bytes > 4)
		src_bytes = 4;
	for (i = 0; i < src_bytes; i++)
		v |= ((uint32_t) src[i]) << ((3-i) * 8);
	return v;
}

static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
	int i;
	if (dst_bytes > 4)
		dst_bytes = 4;
	for (i = 0; i < dst_bytes; i++)
		dst[i] = src >> ((3-i) * 8);
}

248 249 250 251 252 253 254
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t clkcfg;

255 256 257 258
	/* There is no CLKCFG reg in Valleyview. VLV hrawclk is 200 MHz */
	if (IS_VALLEYVIEW(dev))
		return 200;

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
	clkcfg = I915_READ(CLKCFG);
	switch (clkcfg & CLKCFG_FSB_MASK) {
	case CLKCFG_FSB_400:
		return 100;
	case CLKCFG_FSB_533:
		return 133;
	case CLKCFG_FSB_667:
		return 166;
	case CLKCFG_FSB_800:
		return 200;
	case CLKCFG_FSB_1067:
		return 266;
	case CLKCFG_FSB_1333:
		return 333;
	/* these two are just a guess; one of them might be right */
	case CLKCFG_FSB_1600:
	case CLKCFG_FSB_1600_ALT:
		return 400;
	default:
		return 133;
	}
}

282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
				    struct intel_dp *intel_dp,
				    struct edp_power_seq *out);
static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
					      struct intel_dp *intel_dp,
					      struct edp_power_seq *out);

static enum pipe
vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum port port = intel_dig_port->port;
	enum pipe pipe;

	/* modeset should have pipe */
	if (crtc)
		return to_intel_crtc(crtc)->pipe;

	/* init time, try to find a pipe with this port selected */
	for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
		u32 port_sel = I915_READ(VLV_PIPE_PP_ON_DELAYS(pipe)) &
			PANEL_PORT_SELECT_MASK;
		if (port_sel == PANEL_PORT_SELECT_DPB_VLV && port == PORT_B)
			return pipe;
		if (port_sel == PANEL_PORT_SELECT_DPC_VLV && port == PORT_C)
			return pipe;
	}

	/* shrug */
	return PIPE_A;
}

static u32 _pp_ctrl_reg(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);

	if (HAS_PCH_SPLIT(dev))
		return PCH_PP_CONTROL;
	else
		return VLV_PIPE_PP_CONTROL(vlv_power_sequencer_pipe(intel_dp));
}

static u32 _pp_stat_reg(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);

	if (HAS_PCH_SPLIT(dev))
		return PCH_PP_STATUS;
	else
		return VLV_PIPE_PP_STATUS(vlv_power_sequencer_pipe(intel_dp));
}

339
static bool edp_have_panel_power(struct intel_dp *intel_dp)
340
{
341
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
342 343
	struct drm_i915_private *dev_priv = dev->dev_private;

344
	return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
345 346
}

347
static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
348
{
349
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
350
	struct drm_i915_private *dev_priv = dev->dev_private;
351 352 353
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	enum intel_display_power_domain power_domain;
354

355 356
	power_domain = intel_display_port_power_domain(intel_encoder);
	return intel_display_power_enabled(dev_priv, power_domain) &&
357
	       (I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD) != 0;
358 359
}

360 361 362
static void
intel_dp_check_edp(struct intel_dp *intel_dp)
{
363
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
364
	struct drm_i915_private *dev_priv = dev->dev_private;
365

366 367
	if (!is_edp(intel_dp))
		return;
368

369
	if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
370 371
		WARN(1, "eDP powered off while attempting aux channel communication.\n");
		DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
372 373
			      I915_READ(_pp_stat_reg(intel_dp)),
			      I915_READ(_pp_ctrl_reg(intel_dp)));
374 375 376
	}
}

377 378 379 380 381 382
static uint32_t
intel_dp_aux_wait_done(struct intel_dp *intel_dp, bool has_aux_irq)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
383
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
384 385 386
	uint32_t status;
	bool done;

387
#define C (((status = I915_READ_NOTRACE(ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
388
	if (has_aux_irq)
389
		done = wait_event_timeout(dev_priv->gmbus_wait_queue, C,
390
					  msecs_to_jiffies_timeout(10));
391 392 393 394 395 396 397 398 399 400
	else
		done = wait_for_atomic(C, 10) == 0;
	if (!done)
		DRM_ERROR("dp aux hw did not signal timeout (has irq: %i)!\n",
			  has_aux_irq);
#undef C

	return status;
}

401
static uint32_t i9xx_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
402
{
403 404
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
405

406 407 408
	/*
	 * The clock divider is based off the hrawclk, and would like to run at
	 * 2MHz.  So, take the hrawclk value and divide by 2 and use that
409
	 */
410 411 412 413 414 415 416 417 418 419 420 421 422
	return index ? 0 : intel_hrawclk(dev) / 2;
}

static uint32_t ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;

	if (index)
		return 0;

	if (intel_dig_port->port == PORT_A) {
		if (IS_GEN6(dev) || IS_GEN7(dev))
423
			return 200; /* SNB & IVB eDP input clock at 400Mhz */
424
		else
425
			return 225; /* eDP input clock at 450Mhz */
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
	} else {
		return DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
	}
}

static uint32_t hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (intel_dig_port->port == PORT_A) {
		if (index)
			return 0;
		return DIV_ROUND_CLOSEST(intel_ddi_get_cdclk_freq(dev_priv), 2000);
441 442
	} else if (dev_priv->pch_id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
		/* Workaround for non-ULT HSW */
443 444 445 446 447
		switch (index) {
		case 0: return 63;
		case 1: return 72;
		default: return 0;
		}
448
	} else  {
449
		return index ? 0 : DIV_ROUND_UP(intel_pch_rawclk(dev), 2);
450
	}
451 452
}

453 454 455 456 457
static uint32_t vlv_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
{
	return index ? 0 : 100;
}

458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477
static uint32_t i9xx_get_aux_send_ctl(struct intel_dp *intel_dp,
				      bool has_aux_irq,
				      int send_bytes,
				      uint32_t aux_clock_divider)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	uint32_t precharge, timeout;

	if (IS_GEN6(dev))
		precharge = 3;
	else
		precharge = 5;

	if (IS_BROADWELL(dev) && intel_dp->aux_ch_ctl_reg == DPA_AUX_CH_CTL)
		timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
	else
		timeout = DP_AUX_CH_CTL_TIME_OUT_400us;

	return DP_AUX_CH_CTL_SEND_BUSY |
478
	       DP_AUX_CH_CTL_DONE |
479
	       (has_aux_irq ? DP_AUX_CH_CTL_INTERRUPT : 0) |
480
	       DP_AUX_CH_CTL_TIME_OUT_ERROR |
481
	       timeout |
482
	       DP_AUX_CH_CTL_RECEIVE_ERROR |
483 484
	       (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
	       (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
485
	       (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
486 487
}

488 489 490 491 492 493 494 495 496 497
static int
intel_dp_aux_ch(struct intel_dp *intel_dp,
		uint8_t *send, int send_bytes,
		uint8_t *recv, int recv_size)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t ch_ctl = intel_dp->aux_ch_ctl_reg;
	uint32_t ch_data = ch_ctl + 4;
498
	uint32_t aux_clock_divider;
499 500
	int i, ret, recv_bytes;
	uint32_t status;
501
	int try, clock = 0;
502
	bool has_aux_irq = HAS_AUX_IRQ(dev);
503 504 505
	bool vdd;

	vdd = _edp_panel_vdd_on(intel_dp);
506 507 508 509 510 511 512 513

	/* dp aux is extremely sensitive to irq latency, hence request the
	 * lowest possible wakeup latency and so prevent the cpu from going into
	 * deep sleep states.
	 */
	pm_qos_update_request(&dev_priv->pm_qos, 0);

	intel_dp_check_edp(intel_dp);
514

515 516
	intel_aux_display_runtime_get(dev_priv);

517 518
	/* Try to wait for any previous AUX channel activity */
	for (try = 0; try < 3; try++) {
519
		status = I915_READ_NOTRACE(ch_ctl);
520 521 522 523 524 525 526 527
		if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
			break;
		msleep(1);
	}

	if (try == 3) {
		WARN(1, "dp_aux_ch not started status 0x%08x\n",
		     I915_READ(ch_ctl));
528 529
		ret = -EBUSY;
		goto out;
530 531
	}

532 533 534 535 536 537
	/* Only 5 data registers! */
	if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
		ret = -E2BIG;
		goto out;
	}

538
	while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
539 540 541 542
		u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
							  has_aux_irq,
							  send_bytes,
							  aux_clock_divider);
543

544 545 546 547 548 549 550 551
		/* Must try at least 3 times according to DP spec */
		for (try = 0; try < 5; try++) {
			/* Load the send data into the aux channel data registers */
			for (i = 0; i < send_bytes; i += 4)
				I915_WRITE(ch_data + i,
					   pack_aux(send + i, send_bytes - i));

			/* Send the command and wait for it to complete */
552
			I915_WRITE(ch_ctl, send_ctl);
553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568

			status = intel_dp_aux_wait_done(intel_dp, has_aux_irq);

			/* Clear done status and any errors */
			I915_WRITE(ch_ctl,
				   status |
				   DP_AUX_CH_CTL_DONE |
				   DP_AUX_CH_CTL_TIME_OUT_ERROR |
				   DP_AUX_CH_CTL_RECEIVE_ERROR);

			if (status & (DP_AUX_CH_CTL_TIME_OUT_ERROR |
				      DP_AUX_CH_CTL_RECEIVE_ERROR))
				continue;
			if (status & DP_AUX_CH_CTL_DONE)
				break;
		}
569
		if (status & DP_AUX_CH_CTL_DONE)
570 571 572 573
			break;
	}

	if ((status & DP_AUX_CH_CTL_DONE) == 0) {
574
		DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
575 576
		ret = -EBUSY;
		goto out;
577 578 579 580 581
	}

	/* Check for timeout or receive error.
	 * Timeouts occur when the sink is not connected
	 */
582
	if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
583
		DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
584 585
		ret = -EIO;
		goto out;
586
	}
587 588 589

	/* Timeouts occur when the device isn't connected, so they're
	 * "normal" -- don't fill the kernel log with these */
590
	if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
591
		DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
592 593
		ret = -ETIMEDOUT;
		goto out;
594 595 596 597 598 599 600
	}

	/* Unload any bytes sent back from the other side */
	recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
		      DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
	if (recv_bytes > recv_size)
		recv_bytes = recv_size;
601

602 603 604
	for (i = 0; i < recv_bytes; i += 4)
		unpack_aux(I915_READ(ch_data + i),
			   recv + i, recv_bytes - i);
605

606 607 608
	ret = recv_bytes;
out:
	pm_qos_update_request(&dev_priv->pm_qos, PM_QOS_DEFAULT_VALUE);
609
	intel_aux_display_runtime_put(dev_priv);
610

611 612 613
	if (vdd)
		edp_panel_vdd_off(intel_dp, false);

614
	return ret;
615 616
}

617 618
#define BARE_ADDRESS_SIZE	3
#define HEADER_SIZE		(BARE_ADDRESS_SIZE + 1)
619 620
static ssize_t
intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
621
{
622 623 624
	struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
	uint8_t txbuf[20], rxbuf[20];
	size_t txsize, rxsize;
625 626
	int ret;

627 628 629 630
	txbuf[0] = msg->request << 4;
	txbuf[1] = msg->address >> 8;
	txbuf[2] = msg->address & 0xff;
	txbuf[3] = msg->size - 1;
631

632 633 634
	switch (msg->request & ~DP_AUX_I2C_MOT) {
	case DP_AUX_NATIVE_WRITE:
	case DP_AUX_I2C_WRITE:
635
		txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
636
		rxsize = 1;
637

638 639
		if (WARN_ON(txsize > 20))
			return -E2BIG;
640

641
		memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
642

643 644 645
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
646

647 648 649 650
			/* Return payload size. */
			ret = msg->size;
		}
		break;
651

652 653
	case DP_AUX_NATIVE_READ:
	case DP_AUX_I2C_READ:
654
		txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
655
		rxsize = msg->size + 1;
656

657 658
		if (WARN_ON(rxsize > 20))
			return -E2BIG;
659

660 661 662 663 664 665 666 667 668 669 670
		ret = intel_dp_aux_ch(intel_dp, txbuf, txsize, rxbuf, rxsize);
		if (ret > 0) {
			msg->reply = rxbuf[0] >> 4;
			/*
			 * Assume happy day, and copy the data. The caller is
			 * expected to check msg->reply before touching it.
			 *
			 * Return payload size.
			 */
			ret--;
			memcpy(msg->buffer, rxbuf + 1, ret);
671
		}
672 673 674 675 676
		break;

	default:
		ret = -EINVAL;
		break;
677
	}
678

679
	return ret;
680 681
}

682 683 684 685
static void
intel_dp_aux_init(struct intel_dp *intel_dp, struct intel_connector *connector)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
686 687
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	enum port port = intel_dig_port->port;
688
	const char *name = NULL;
689 690
	int ret;

691 692 693
	switch (port) {
	case PORT_A:
		intel_dp->aux_ch_ctl_reg = DPA_AUX_CH_CTL;
694
		name = "DPDDC-A";
695
		break;
696 697
	case PORT_B:
		intel_dp->aux_ch_ctl_reg = PCH_DPB_AUX_CH_CTL;
698
		name = "DPDDC-B";
699
		break;
700 701
	case PORT_C:
		intel_dp->aux_ch_ctl_reg = PCH_DPC_AUX_CH_CTL;
702
		name = "DPDDC-C";
703
		break;
704 705
	case PORT_D:
		intel_dp->aux_ch_ctl_reg = PCH_DPD_AUX_CH_CTL;
706
		name = "DPDDC-D";
707 708 709
		break;
	default:
		BUG();
710 711
	}

712 713
	if (!HAS_DDI(dev))
		intel_dp->aux_ch_ctl_reg = intel_dp->output_reg + 0x10;
714

715
	intel_dp->aux.name = name;
716 717
	intel_dp->aux.dev = dev->dev;
	intel_dp->aux.transfer = intel_dp_aux_transfer;
718

719 720
	DRM_DEBUG_KMS("registering %s bus for %s\n", name,
		      connector->base.kdev->kobj.name);
721

722
	ret = drm_dp_aux_register(&intel_dp->aux);
723
	if (ret < 0) {
724
		DRM_ERROR("drm_dp_aux_register() for %s failed (%d)\n",
725 726
			  name, ret);
		return;
727
	}
728

729 730 731 732 733
	ret = sysfs_create_link(&connector->base.kdev->kobj,
				&intel_dp->aux.ddc.dev.kobj,
				intel_dp->aux.ddc.dev.kobj.name);
	if (ret < 0) {
		DRM_ERROR("sysfs_create_link() for %s failed (%d)\n", name, ret);
734
		drm_dp_aux_unregister(&intel_dp->aux);
735
	}
736 737
}

738 739 740 741 742 743
static void
intel_dp_connector_unregister(struct intel_connector *intel_connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(&intel_connector->base);

	sysfs_remove_link(&intel_connector->base.kdev->kobj,
744
			  intel_dp->aux.ddc.dev.kobj.name);
745 746 747
	intel_connector_unregister(intel_connector);
}

748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
static void
hsw_dp_set_ddi_pll_sel(struct intel_crtc_config *pipe_config, int link_bw)
{
	switch (link_bw) {
	case DP_LINK_BW_1_62:
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_810;
		break;
	case DP_LINK_BW_2_7:
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_1350;
		break;
	case DP_LINK_BW_5_4:
		pipe_config->ddi_pll_sel = PORT_CLK_SEL_LCPLL_2700;
		break;
	}
}

764 765 766 767 768
static void
intel_dp_set_clock(struct intel_encoder *encoder,
		   struct intel_crtc_config *pipe_config, int link_bw)
{
	struct drm_device *dev = encoder->base.dev;
769 770
	const struct dp_link_dpll *divisor = NULL;
	int i, count = 0;
771 772

	if (IS_G4X(dev)) {
773 774
		divisor = gen4_dpll;
		count = ARRAY_SIZE(gen4_dpll);
775
	} else if (HAS_PCH_SPLIT(dev)) {
776 777
		divisor = pch_dpll;
		count = ARRAY_SIZE(pch_dpll);
778 779 780
	} else if (IS_CHERRYVIEW(dev)) {
		divisor = chv_dpll;
		count = ARRAY_SIZE(chv_dpll);
781
	} else if (IS_VALLEYVIEW(dev)) {
782 783
		divisor = vlv_dpll;
		count = ARRAY_SIZE(vlv_dpll);
784
	}
785 786 787 788 789 790 791 792 793

	if (divisor && count) {
		for (i = 0; i < count; i++) {
			if (link_bw == divisor[i].link_bw) {
				pipe_config->dpll = divisor[i].dpll;
				pipe_config->clock_set = true;
				break;
			}
		}
794 795 796
	}
}

797 798 799 800 801 802 803 804 805 806 807 808 809 810
static void
intel_dp_set_m2_n2(struct intel_crtc *crtc, struct intel_link_m_n *m_n)
{
	struct drm_device *dev = crtc->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum transcoder transcoder = crtc->config.cpu_transcoder;

	I915_WRITE(PIPE_DATA_M2(transcoder),
		TU_SIZE(m_n->tu) | m_n->gmch_m);
	I915_WRITE(PIPE_DATA_N2(transcoder), m_n->gmch_n);
	I915_WRITE(PIPE_LINK_M2(transcoder), m_n->link_m);
	I915_WRITE(PIPE_LINK_N2(transcoder), m_n->link_n);
}

P
Paulo Zanoni 已提交
811
bool
812 813
intel_dp_compute_config(struct intel_encoder *encoder,
			struct intel_crtc_config *pipe_config)
814
{
815
	struct drm_device *dev = encoder->base.dev;
816
	struct drm_i915_private *dev_priv = dev->dev_private;
817 818
	struct drm_display_mode *adjusted_mode = &pipe_config->adjusted_mode;
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
819
	enum port port = dp_to_dig_port(intel_dp)->port;
820
	struct intel_crtc *intel_crtc = encoder->new_crtc;
821
	struct intel_connector *intel_connector = intel_dp->attached_connector;
822
	int lane_count, clock;
823
	int min_lane_count = 1;
824
	int max_lane_count = intel_dp_max_lane_count(intel_dp);
825
	/* Conveniently, the link BW constants become indices with a shift...*/
826
	int min_clock = 0;
827
	int max_clock = intel_dp_max_link_bw(intel_dp) >> 3;
828
	int bpp, mode_rate;
829
	static int bws[] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7, DP_LINK_BW_5_4 };
830
	int link_avail, link_clock;
831

832
	if (HAS_PCH_SPLIT(dev) && !HAS_DDI(dev) && port != PORT_A)
833 834
		pipe_config->has_pch_encoder = true;

835
	pipe_config->has_dp_encoder = true;
836
	pipe_config->has_audio = intel_dp->has_audio;
837

838 839 840
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
		intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
				       adjusted_mode);
841 842 843 844
		if (!HAS_PCH_SPLIT(dev))
			intel_gmch_panel_fitting(intel_crtc, pipe_config,
						 intel_connector->panel.fitting_mode);
		else
845 846
			intel_pch_panel_fitting(intel_crtc, pipe_config,
						intel_connector->panel.fitting_mode);
847 848
	}

849
	if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
850 851
		return false;

852 853
	DRM_DEBUG_KMS("DP link computation with max lane count %i "
		      "max bw %02x pixel clock %iKHz\n",
854 855
		      max_lane_count, bws[max_clock],
		      adjusted_mode->crtc_clock);
856

857 858
	/* Walk through all bpp values. Luckily they're all nicely spaced with 2
	 * bpc in between. */
859
	bpp = pipe_config->pipe_bpp;
860 861 862 863 864 865 866
	if (is_edp(intel_dp)) {
		if (dev_priv->vbt.edp_bpp && dev_priv->vbt.edp_bpp < bpp) {
			DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
				      dev_priv->vbt.edp_bpp);
			bpp = dev_priv->vbt.edp_bpp;
		}

867 868 869 870 871 872
		if (IS_BROADWELL(dev)) {
			/* Yes, it's an ugly hack. */
			min_lane_count = max_lane_count;
			DRM_DEBUG_KMS("forcing lane count to max (%u) on BDW\n",
				      min_lane_count);
		} else if (dev_priv->vbt.edp_lanes) {
873 874 875 876 877 878 879 880 881 882 883
			min_lane_count = min(dev_priv->vbt.edp_lanes,
					     max_lane_count);
			DRM_DEBUG_KMS("using min %u lanes per VBT\n",
				      min_lane_count);
		}

		if (dev_priv->vbt.edp_rate) {
			min_clock = min(dev_priv->vbt.edp_rate >> 3, max_clock);
			DRM_DEBUG_KMS("using min %02x link bw per VBT\n",
				      bws[min_clock]);
		}
884
	}
885

886
	for (; bpp >= 6*3; bpp -= 2*3) {
887 888
		mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
						   bpp);
889

890 891
		for (lane_count = min_lane_count; lane_count <= max_lane_count; lane_count <<= 1) {
			for (clock = min_clock; clock <= max_clock; clock++) {
892 893 894 895 896 897 898 899 900 901
				link_clock = drm_dp_bw_code_to_link_rate(bws[clock]);
				link_avail = intel_dp_max_data_rate(link_clock,
								    lane_count);

				if (mode_rate <= link_avail) {
					goto found;
				}
			}
		}
	}
902

903
	return false;
904

905
found:
906 907 908 909 910 911
	if (intel_dp->color_range_auto) {
		/*
		 * See:
		 * CEA-861-E - 5.1 Default Encoding Parameters
		 * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
		 */
912
		if (bpp != 18 && drm_match_cea_mode(adjusted_mode) > 1)
913 914 915 916 917
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
		else
			intel_dp->color_range = 0;
	}

918
	if (intel_dp->color_range)
919
		pipe_config->limited_color_range = true;
920

921 922
	intel_dp->link_bw = bws[clock];
	intel_dp->lane_count = lane_count;
923
	pipe_config->pipe_bpp = bpp;
924
	pipe_config->port_clock = drm_dp_bw_code_to_link_rate(intel_dp->link_bw);
925

926 927
	DRM_DEBUG_KMS("DP link bw %02x lane count %d clock %d bpp %d\n",
		      intel_dp->link_bw, intel_dp->lane_count,
928
		      pipe_config->port_clock, bpp);
929 930
	DRM_DEBUG_KMS("DP link bw required %i available %i\n",
		      mode_rate, link_avail);
931

932
	intel_link_compute_m_n(bpp, lane_count,
933 934
			       adjusted_mode->crtc_clock,
			       pipe_config->port_clock,
935
			       &pipe_config->dp_m_n);
936

937 938 939 940 941 942 943 944
	if (intel_connector->panel.downclock_mode != NULL &&
		intel_dp->drrs_state.type == SEAMLESS_DRRS_SUPPORT) {
			intel_link_compute_m_n(bpp, lane_count,
				intel_connector->panel.downclock_mode->clock,
				pipe_config->port_clock,
				&pipe_config->dp_m2_n2);
	}

945 946 947 948
	if (HAS_DDI(dev))
		hsw_dp_set_ddi_pll_sel(pipe_config, intel_dp->link_bw);
	else
		intel_dp_set_clock(encoder, pipe_config, intel_dp->link_bw);
949

950
	return true;
951 952
}

953
static void ironlake_set_pll_cpu_edp(struct intel_dp *intel_dp)
954
{
955 956 957
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
	struct drm_device *dev = crtc->base.dev;
958 959 960
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpa_ctl;

961
	DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", crtc->config.port_clock);
962 963 964
	dpa_ctl = I915_READ(DP_A);
	dpa_ctl &= ~DP_PLL_FREQ_MASK;

965
	if (crtc->config.port_clock == 162000) {
966 967 968 969
		/* For a long time we've carried around a ILK-DevA w/a for the
		 * 160MHz clock. If we're really unlucky, it's still required.
		 */
		DRM_DEBUG_KMS("160MHz cpu eDP clock, might need ilk devA w/a\n");
970
		dpa_ctl |= DP_PLL_FREQ_160MHZ;
971
		intel_dp->DP |= DP_PLL_FREQ_160MHZ;
972 973
	} else {
		dpa_ctl |= DP_PLL_FREQ_270MHZ;
974
		intel_dp->DP |= DP_PLL_FREQ_270MHZ;
975
	}
976

977 978 979 980 981 982
	I915_WRITE(DP_A, dpa_ctl);

	POSTING_READ(DP_A);
	udelay(500);
}

983
static void intel_dp_prepare(struct intel_encoder *encoder)
984
{
985
	struct drm_device *dev = encoder->base.dev;
986
	struct drm_i915_private *dev_priv = dev->dev_private;
987
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
988
	enum port port = dp_to_dig_port(intel_dp)->port;
989 990
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
	struct drm_display_mode *adjusted_mode = &crtc->config.adjusted_mode;
991

992
	/*
K
Keith Packard 已提交
993
	 * There are four kinds of DP registers:
994 995
	 *
	 * 	IBX PCH
K
Keith Packard 已提交
996 997
	 * 	SNB CPU
	 *	IVB CPU
998 999 1000 1001 1002 1003 1004 1005 1006 1007
	 * 	CPT PCH
	 *
	 * IBX PCH and CPU are the same for almost everything,
	 * except that the CPU DP PLL is configured in this
	 * register
	 *
	 * CPT PCH is quite different, having many bits moved
	 * to the TRANS_DP_CTL register instead. That
	 * configuration happens (oddly) in ironlake_pch_enable
	 */
1008

1009 1010 1011 1012
	/* Preserve the BIOS-computed detected bit. This is
	 * supposed to be read-only.
	 */
	intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
1013

1014 1015
	/* Handle DP bits in common between all three register formats */
	intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
1016
	intel_dp->DP |= DP_PORT_WIDTH(intel_dp->lane_count);
1017

1018
	if (crtc->config.has_audio) {
1019
		DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
1020
				 pipe_name(crtc->pipe));
C
Chris Wilson 已提交
1021
		intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
1022
		intel_write_eld(&encoder->base, adjusted_mode);
1023
	}
1024

1025
	/* Split out the IBX/CPU vs CPT settings */
1026

1027
	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
K
Keith Packard 已提交
1028 1029 1030 1031 1032 1033
		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;

1034
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
K
Keith Packard 已提交
1035 1036
			intel_dp->DP |= DP_ENHANCED_FRAMING;

1037
		intel_dp->DP |= crtc->pipe << 29;
1038
	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1039
		if (!HAS_PCH_SPLIT(dev) && !IS_VALLEYVIEW(dev))
1040
			intel_dp->DP |= intel_dp->color_range;
1041 1042 1043 1044 1045 1046 1047

		if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
			intel_dp->DP |= DP_SYNC_HS_HIGH;
		if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
			intel_dp->DP |= DP_SYNC_VS_HIGH;
		intel_dp->DP |= DP_LINK_TRAIN_OFF;

1048
		if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
1049 1050
			intel_dp->DP |= DP_ENHANCED_FRAMING;

1051 1052 1053 1054 1055 1056
		if (!IS_CHERRYVIEW(dev)) {
			if (crtc->pipe == 1)
				intel_dp->DP |= DP_PIPEB_SELECT;
		} else {
			intel_dp->DP |= DP_PIPE_SELECT_CHV(crtc->pipe);
		}
1057 1058
	} else {
		intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
1059
	}
1060 1061
}

1062 1063
#define IDLE_ON_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
#define IDLE_ON_VALUE   	(PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
1064

1065 1066
#define IDLE_OFF_MASK		(PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
#define IDLE_OFF_VALUE		(0     | PP_SEQUENCE_NONE | 0                     | 0)
1067

1068 1069
#define IDLE_CYCLE_MASK		(PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
#define IDLE_CYCLE_VALUE	(0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
1070

1071
static void wait_panel_status(struct intel_dp *intel_dp,
1072 1073
				       u32 mask,
				       u32 value)
1074
{
1075
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1076
	struct drm_i915_private *dev_priv = dev->dev_private;
1077 1078
	u32 pp_stat_reg, pp_ctrl_reg;

1079 1080
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1081

1082
	DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
1083 1084 1085
			mask, value,
			I915_READ(pp_stat_reg),
			I915_READ(pp_ctrl_reg));
1086

1087
	if (_wait_for((I915_READ(pp_stat_reg) & mask) == value, 5000, 10)) {
1088
		DRM_ERROR("Panel status timeout: status %08x control %08x\n",
1089 1090
				I915_READ(pp_stat_reg),
				I915_READ(pp_ctrl_reg));
1091
	}
1092 1093

	DRM_DEBUG_KMS("Wait complete\n");
1094
}
1095

1096
static void wait_panel_on(struct intel_dp *intel_dp)
1097 1098
{
	DRM_DEBUG_KMS("Wait for panel power on\n");
1099
	wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
1100 1101
}

1102
static void wait_panel_off(struct intel_dp *intel_dp)
1103 1104
{
	DRM_DEBUG_KMS("Wait for panel power off time\n");
1105
	wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
1106 1107
}

1108
static void wait_panel_power_cycle(struct intel_dp *intel_dp)
1109 1110
{
	DRM_DEBUG_KMS("Wait for panel power cycle\n");
1111 1112 1113 1114 1115 1116

	/* When we disable the VDD override bit last we have to do the manual
	 * wait. */
	wait_remaining_ms_from_jiffies(intel_dp->last_power_cycle,
				       intel_dp->panel_power_cycle_delay);

1117
	wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
1118 1119
}

1120
static void wait_backlight_on(struct intel_dp *intel_dp)
1121 1122 1123 1124 1125
{
	wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
				       intel_dp->backlight_on_delay);
}

1126
static void edp_wait_backlight_off(struct intel_dp *intel_dp)
1127 1128 1129 1130
{
	wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
				       intel_dp->backlight_off_delay);
}
1131

1132 1133 1134 1135
/* Read the current pp_control value, unlocking the register if it
 * is locked
 */

1136
static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
1137
{
1138 1139 1140
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 control;
1141

1142
	control = I915_READ(_pp_ctrl_reg(intel_dp));
1143 1144 1145
	control &= ~PANEL_UNLOCK_MASK;
	control |= PANEL_UNLOCK_REGS;
	return control;
1146 1147
}

1148
static bool _edp_panel_vdd_on(struct intel_dp *intel_dp)
1149
{
1150
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1151 1152
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1153
	struct drm_i915_private *dev_priv = dev->dev_private;
1154
	enum intel_display_power_domain power_domain;
1155
	u32 pp;
1156
	u32 pp_stat_reg, pp_ctrl_reg;
1157
	bool need_to_disable = !intel_dp->want_panel_vdd;
1158

1159
	if (!is_edp(intel_dp))
1160
		return false;
1161 1162

	intel_dp->want_panel_vdd = true;
1163

1164
	if (edp_have_panel_vdd(intel_dp))
1165
		return need_to_disable;
1166

1167 1168
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_get(dev_priv, power_domain);
1169

1170
	DRM_DEBUG_KMS("Turning eDP VDD on\n");
1171

1172 1173
	if (!edp_have_panel_power(intel_dp))
		wait_panel_power_cycle(intel_dp);
1174

1175
	pp = ironlake_get_pp_control(intel_dp);
1176
	pp |= EDP_FORCE_VDD;
1177

1178 1179
	pp_stat_reg = _pp_stat_reg(intel_dp);
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1180 1181 1182 1183 1184

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
	DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
			I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
1185 1186 1187
	/*
	 * If the panel wasn't on, delay before accessing aux channel
	 */
1188
	if (!edp_have_panel_power(intel_dp)) {
1189
		DRM_DEBUG_KMS("eDP was not running\n");
1190 1191
		msleep(intel_dp->panel_power_up_delay);
	}
1192 1193 1194 1195

	return need_to_disable;
}

1196
void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
1197 1198 1199 1200 1201 1202
{
	if (is_edp(intel_dp)) {
		bool vdd = _edp_panel_vdd_on(intel_dp);

		WARN(!vdd, "eDP VDD already requested on\n");
	}
1203 1204
}

1205
static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
1206
{
1207
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1208 1209
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;
1210
	u32 pp_stat_reg, pp_ctrl_reg;
1211

1212
	WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
1213

1214
	if (!intel_dp->want_panel_vdd && edp_have_panel_vdd(intel_dp)) {
1215 1216 1217 1218 1219
		struct intel_digital_port *intel_dig_port =
						dp_to_dig_port(intel_dp);
		struct intel_encoder *intel_encoder = &intel_dig_port->base;
		enum intel_display_power_domain power_domain;

1220 1221
		DRM_DEBUG_KMS("Turning eDP VDD off\n");

1222
		pp = ironlake_get_pp_control(intel_dp);
1223 1224
		pp &= ~EDP_FORCE_VDD;

1225 1226
		pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
		pp_stat_reg = _pp_stat_reg(intel_dp);
1227 1228 1229

		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
1230

1231 1232 1233
		/* Make sure sequencer is idle before allowing subsequent activity */
		DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
		I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
P
Paulo Zanoni 已提交
1234 1235

		if ((pp & POWER_TARGET_ON) == 0)
1236
			intel_dp->last_power_cycle = jiffies;
1237

1238 1239
		power_domain = intel_display_port_power_domain(intel_encoder);
		intel_display_power_put(dev_priv, power_domain);
1240 1241
	}
}
1242

1243
static void edp_panel_vdd_work(struct work_struct *__work)
1244 1245 1246
{
	struct intel_dp *intel_dp = container_of(to_delayed_work(__work),
						 struct intel_dp, panel_vdd_work);
1247
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1248

1249
	drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
1250
	edp_panel_vdd_off_sync(intel_dp);
1251
	drm_modeset_unlock(&dev->mode_config.connection_mutex);
1252 1253
}

1254
static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
1255
{
1256 1257
	if (!is_edp(intel_dp))
		return;
1258

1259
	WARN(!intel_dp->want_panel_vdd, "eDP VDD not forced on");
1260

1261 1262 1263
	intel_dp->want_panel_vdd = false;

	if (sync) {
1264
		edp_panel_vdd_off_sync(intel_dp);
1265 1266 1267 1268 1269 1270 1271 1272 1273
	} else {
		/*
		 * Queue the timer to fire a long
		 * time from now (relative to the power down delay)
		 * to keep the panel power up across a sequence of operations
		 */
		schedule_delayed_work(&intel_dp->panel_vdd_work,
				      msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5));
	}
1274 1275
}

1276
void intel_edp_panel_on(struct intel_dp *intel_dp)
1277
{
1278
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1279
	struct drm_i915_private *dev_priv = dev->dev_private;
1280
	u32 pp;
1281
	u32 pp_ctrl_reg;
1282

1283
	if (!is_edp(intel_dp))
1284
		return;
1285 1286 1287

	DRM_DEBUG_KMS("Turn eDP power on\n");

1288
	if (edp_have_panel_power(intel_dp)) {
1289
		DRM_DEBUG_KMS("eDP power already on\n");
1290
		return;
1291
	}
1292

1293
	wait_panel_power_cycle(intel_dp);
1294

1295
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1296
	pp = ironlake_get_pp_control(intel_dp);
1297 1298 1299
	if (IS_GEN5(dev)) {
		/* ILK workaround: disable reset around power sequence */
		pp &= ~PANEL_POWER_RESET;
1300 1301
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
1302
	}
1303

1304
	pp |= POWER_TARGET_ON;
1305 1306 1307
	if (!IS_GEN5(dev))
		pp |= PANEL_POWER_RESET;

1308 1309
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
1310

1311
	wait_panel_on(intel_dp);
1312
	intel_dp->last_power_on = jiffies;
1313

1314 1315
	if (IS_GEN5(dev)) {
		pp |= PANEL_POWER_RESET; /* restore panel reset bit */
1316 1317
		I915_WRITE(pp_ctrl_reg, pp);
		POSTING_READ(pp_ctrl_reg);
1318
	}
1319 1320
}

1321
void intel_edp_panel_off(struct intel_dp *intel_dp)
1322
{
1323 1324
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
1325
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1326
	struct drm_i915_private *dev_priv = dev->dev_private;
1327
	enum intel_display_power_domain power_domain;
1328
	u32 pp;
1329
	u32 pp_ctrl_reg;
1330

1331 1332
	if (!is_edp(intel_dp))
		return;
1333

1334
	DRM_DEBUG_KMS("Turn eDP power off\n");
1335

1336 1337
	WARN(!intel_dp->want_panel_vdd, "Need VDD to turn off panel\n");

1338
	pp = ironlake_get_pp_control(intel_dp);
1339 1340
	/* We need to switch off panel power _and_ force vdd, for otherwise some
	 * panels get very unhappy and cease to work. */
1341 1342
	pp &= ~(POWER_TARGET_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
		EDP_BLC_ENABLE);
1343

1344
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1345

1346 1347
	intel_dp->want_panel_vdd = false;

1348 1349
	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
1350

1351
	intel_dp->last_power_cycle = jiffies;
1352
	wait_panel_off(intel_dp);
1353 1354

	/* We got a reference when we enabled the VDD. */
1355 1356
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_put(dev_priv, power_domain);
1357 1358
}

1359
void intel_edp_backlight_on(struct intel_dp *intel_dp)
1360
{
1361 1362
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
1363 1364
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;
1365
	u32 pp_ctrl_reg;
1366

1367 1368 1369
	if (!is_edp(intel_dp))
		return;

1370
	DRM_DEBUG_KMS("\n");
1371 1372 1373

	intel_panel_enable_backlight(intel_dp->attached_connector);

1374 1375 1376 1377 1378 1379
	/*
	 * If we enable the backlight right away following a panel power
	 * on, we may see slight flicker as the panel syncs with the eDP
	 * link.  So delay a bit to make sure the image is solid before
	 * allowing it to appear.
	 */
1380
	wait_backlight_on(intel_dp);
1381
	pp = ironlake_get_pp_control(intel_dp);
1382
	pp |= EDP_BLC_ENABLE;
1383

1384
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1385 1386 1387

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
1388 1389
}

1390
void intel_edp_backlight_off(struct intel_dp *intel_dp)
1391
{
1392
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
1393 1394
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 pp;
1395
	u32 pp_ctrl_reg;
1396

1397 1398 1399
	if (!is_edp(intel_dp))
		return;

1400
	DRM_DEBUG_KMS("\n");
1401
	pp = ironlake_get_pp_control(intel_dp);
1402
	pp &= ~EDP_BLC_ENABLE;
1403

1404
	pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
1405 1406 1407

	I915_WRITE(pp_ctrl_reg, pp);
	POSTING_READ(pp_ctrl_reg);
1408
	intel_dp->last_backlight_off = jiffies;
1409 1410 1411 1412

	edp_wait_backlight_off(intel_dp);

	intel_panel_disable_backlight(intel_dp->attached_connector);
1413
}
1414

1415
static void ironlake_edp_pll_on(struct intel_dp *intel_dp)
1416
{
1417 1418 1419
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
	struct drm_device *dev = crtc->dev;
1420 1421 1422
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpa_ctl;

1423 1424 1425
	assert_pipe_disabled(dev_priv,
			     to_intel_crtc(crtc)->pipe);

1426 1427
	DRM_DEBUG_KMS("\n");
	dpa_ctl = I915_READ(DP_A);
1428 1429 1430 1431 1432 1433 1434 1435 1436
	WARN(dpa_ctl & DP_PLL_ENABLE, "dp pll on, should be off\n");
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");

	/* We don't adjust intel_dp->DP while tearing down the link, to
	 * facilitate link retraining (e.g. after hotplug). Hence clear all
	 * enable bits here to ensure that we don't enable too much. */
	intel_dp->DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
	intel_dp->DP |= DP_PLL_ENABLE;
	I915_WRITE(DP_A, intel_dp->DP);
1437 1438
	POSTING_READ(DP_A);
	udelay(200);
1439 1440
}

1441
static void ironlake_edp_pll_off(struct intel_dp *intel_dp)
1442
{
1443 1444 1445
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
	struct drm_device *dev = crtc->dev;
1446 1447 1448
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpa_ctl;

1449 1450 1451
	assert_pipe_disabled(dev_priv,
			     to_intel_crtc(crtc)->pipe);

1452
	dpa_ctl = I915_READ(DP_A);
1453 1454 1455 1456 1457 1458 1459
	WARN((dpa_ctl & DP_PLL_ENABLE) == 0,
	     "dp pll off, should be on\n");
	WARN(dpa_ctl & DP_PORT_EN, "dp port still on, should be off\n");

	/* We can't rely on the value tracked for the DP register in
	 * intel_dp->DP because link_down must not change that (otherwise link
	 * re-training will fail. */
1460
	dpa_ctl &= ~DP_PLL_ENABLE;
1461
	I915_WRITE(DP_A, dpa_ctl);
1462
	POSTING_READ(DP_A);
1463 1464 1465
	udelay(200);
}

1466
/* If the sink supports it, try to set the power state appropriately */
1467
void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
1468 1469 1470 1471 1472 1473 1474 1475
{
	int ret, i;

	/* Should have a valid DPCD by this point */
	if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
		return;

	if (mode != DRM_MODE_DPMS_ON) {
1476 1477
		ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
					 DP_SET_POWER_D3);
1478 1479 1480 1481 1482 1483 1484 1485
		if (ret != 1)
			DRM_DEBUG_DRIVER("failed to write sink power state\n");
	} else {
		/*
		 * When turning on, we need to retry for 1ms to give the sink
		 * time to wake up.
		 */
		for (i = 0; i < 3; i++) {
1486 1487
			ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
						 DP_SET_POWER_D0);
1488 1489 1490 1491 1492 1493 1494
			if (ret == 1)
				break;
			msleep(1);
		}
	}
}

1495 1496
static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
				  enum pipe *pipe)
1497
{
1498
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1499
	enum port port = dp_to_dig_port(intel_dp)->port;
1500 1501
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
1502 1503 1504 1505 1506 1507 1508 1509
	enum intel_display_power_domain power_domain;
	u32 tmp;

	power_domain = intel_display_port_power_domain(encoder);
	if (!intel_display_power_enabled(dev_priv, power_domain))
		return false;

	tmp = I915_READ(intel_dp->output_reg);
1510 1511 1512 1513

	if (!(tmp & DP_PORT_EN))
		return false;

1514
	if (port == PORT_A && IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) {
1515
		*pipe = PORT_TO_PIPE_CPT(tmp);
1516 1517
	} else if (IS_CHERRYVIEW(dev)) {
		*pipe = DP_PORT_TO_PIPE_CHV(tmp);
1518
	} else if (!HAS_PCH_CPT(dev) || port == PORT_A) {
1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546
		*pipe = PORT_TO_PIPE(tmp);
	} else {
		u32 trans_sel;
		u32 trans_dp;
		int i;

		switch (intel_dp->output_reg) {
		case PCH_DP_B:
			trans_sel = TRANS_DP_PORT_SEL_B;
			break;
		case PCH_DP_C:
			trans_sel = TRANS_DP_PORT_SEL_C;
			break;
		case PCH_DP_D:
			trans_sel = TRANS_DP_PORT_SEL_D;
			break;
		default:
			return true;
		}

		for_each_pipe(i) {
			trans_dp = I915_READ(TRANS_DP_CTL(i));
			if ((trans_dp & TRANS_DP_PORT_SEL_MASK) == trans_sel) {
				*pipe = i;
				return true;
			}
		}

1547 1548 1549
		DRM_DEBUG_KMS("No pipe for dp port 0x%x found\n",
			      intel_dp->output_reg);
	}
1550

1551 1552
	return true;
}
1553

1554 1555 1556 1557 1558
static void intel_dp_get_config(struct intel_encoder *encoder,
				struct intel_crtc_config *pipe_config)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	u32 tmp, flags = 0;
1559 1560 1561 1562
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum port port = dp_to_dig_port(intel_dp)->port;
	struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
1563
	int dotclock;
1564

1565 1566 1567 1568
	tmp = I915_READ(intel_dp->output_reg);
	if (tmp & DP_AUDIO_OUTPUT_ENABLE)
		pipe_config->has_audio = true;

1569 1570 1571 1572 1573
	if ((port == PORT_A) || !HAS_PCH_CPT(dev)) {
		if (tmp & DP_SYNC_HS_HIGH)
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
1574

1575 1576 1577 1578 1579 1580 1581 1582 1583 1584
		if (tmp & DP_SYNC_VS_HIGH)
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	} else {
		tmp = I915_READ(TRANS_DP_CTL(crtc->pipe));
		if (tmp & TRANS_DP_HSYNC_ACTIVE_HIGH)
			flags |= DRM_MODE_FLAG_PHSYNC;
		else
			flags |= DRM_MODE_FLAG_NHSYNC;
1585

1586 1587 1588 1589 1590
		if (tmp & TRANS_DP_VSYNC_ACTIVE_HIGH)
			flags |= DRM_MODE_FLAG_PVSYNC;
		else
			flags |= DRM_MODE_FLAG_NVSYNC;
	}
1591 1592

	pipe_config->adjusted_mode.flags |= flags;
1593

1594 1595 1596 1597
	pipe_config->has_dp_encoder = true;

	intel_dp_get_m_n(crtc, pipe_config);

1598
	if (port == PORT_A) {
1599 1600 1601 1602 1603
		if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_160MHZ)
			pipe_config->port_clock = 162000;
		else
			pipe_config->port_clock = 270000;
	}
1604 1605 1606 1607 1608 1609 1610

	dotclock = intel_dotclock_calculate(pipe_config->port_clock,
					    &pipe_config->dp_m_n);

	if (HAS_PCH_SPLIT(dev_priv->dev) && port != PORT_A)
		ironlake_check_encoder_dotclock(pipe_config, dotclock);

1611
	pipe_config->adjusted_mode.crtc_clock = dotclock;
1612

1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	if (is_edp(intel_dp) && dev_priv->vbt.edp_bpp &&
	    pipe_config->pipe_bpp > dev_priv->vbt.edp_bpp) {
		/*
		 * This is a big fat ugly hack.
		 *
		 * Some machines in UEFI boot mode provide us a VBT that has 18
		 * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
		 * unknown we fail to light up. Yet the same BIOS boots up with
		 * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
		 * max, not what it tells us to use.
		 *
		 * Note: This will still be broken if the eDP panel is not lit
		 * up by the BIOS, and thus we can't get the mode at module
		 * load.
		 */
		DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
			      pipe_config->pipe_bpp, dev_priv->vbt.edp_bpp);
		dev_priv->vbt.edp_bpp = pipe_config->pipe_bpp;
	}
1632 1633
}

1634
static bool is_edp_psr(struct intel_dp *intel_dp)
1635
{
1636
	return intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED;
1637 1638
}

R
Rodrigo Vivi 已提交
1639 1640 1641 1642
static bool intel_edp_is_psr_enabled(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1643
	if (!HAS_PSR(dev))
R
Rodrigo Vivi 已提交
1644 1645
		return false;

1646
	return I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
R
Rodrigo Vivi 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692
}

static void intel_edp_psr_write_vsc(struct intel_dp *intel_dp,
				    struct edp_vsc_psr *vsc_psr)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *crtc = to_intel_crtc(dig_port->base.base.crtc);
	u32 ctl_reg = HSW_TVIDEO_DIP_CTL(crtc->config.cpu_transcoder);
	u32 data_reg = HSW_TVIDEO_DIP_VSC_DATA(crtc->config.cpu_transcoder);
	uint32_t *data = (uint32_t *) vsc_psr;
	unsigned int i;

	/* As per BSPec (Pipe Video Data Island Packet), we need to disable
	   the video DIP being updated before program video DIP data buffer
	   registers for DIP being updated. */
	I915_WRITE(ctl_reg, 0);
	POSTING_READ(ctl_reg);

	for (i = 0; i < VIDEO_DIP_VSC_DATA_SIZE; i += 4) {
		if (i < sizeof(struct edp_vsc_psr))
			I915_WRITE(data_reg + i, *data++);
		else
			I915_WRITE(data_reg + i, 0);
	}

	I915_WRITE(ctl_reg, VIDEO_DIP_ENABLE_VSC_HSW);
	POSTING_READ(ctl_reg);
}

static void intel_edp_psr_setup(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct edp_vsc_psr psr_vsc;

	/* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
	memset(&psr_vsc, 0, sizeof(psr_vsc));
	psr_vsc.sdp_header.HB0 = 0;
	psr_vsc.sdp_header.HB1 = 0x7;
	psr_vsc.sdp_header.HB2 = 0x2;
	psr_vsc.sdp_header.HB3 = 0x8;
	intel_edp_psr_write_vsc(intel_dp, &psr_vsc);

	/* Avoid continuous PSR exit by masking memup and hpd */
1693
	I915_WRITE(EDP_PSR_DEBUG_CTL(dev), EDP_PSR_DEBUG_MASK_MEMUP |
1694
		   EDP_PSR_DEBUG_MASK_HPD | EDP_PSR_DEBUG_MASK_LPSP);
R
Rodrigo Vivi 已提交
1695 1696 1697 1698
}

static void intel_edp_psr_enable_sink(struct intel_dp *intel_dp)
{
1699 1700
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;
R
Rodrigo Vivi 已提交
1701
	struct drm_i915_private *dev_priv = dev->dev_private;
1702
	uint32_t aux_clock_divider;
R
Rodrigo Vivi 已提交
1703 1704
	int precharge = 0x3;
	int msg_size = 5;       /* Header(4) + Message(1) */
1705
	bool only_standby = false;
R
Rodrigo Vivi 已提交
1706

1707 1708
	aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);

1709 1710 1711
	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
		only_standby = true;

R
Rodrigo Vivi 已提交
1712
	/* Enable PSR in sink */
1713
	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby)
1714 1715
		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
				   DP_PSR_ENABLE & ~DP_PSR_MAIN_LINK_ACTIVE);
R
Rodrigo Vivi 已提交
1716
	else
1717 1718
		drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG,
				   DP_PSR_ENABLE | DP_PSR_MAIN_LINK_ACTIVE);
R
Rodrigo Vivi 已提交
1719 1720

	/* Setup AUX registers */
1721 1722 1723
	I915_WRITE(EDP_PSR_AUX_DATA1(dev), EDP_PSR_DPCD_COMMAND);
	I915_WRITE(EDP_PSR_AUX_DATA2(dev), EDP_PSR_DPCD_NORMAL_OPERATION);
	I915_WRITE(EDP_PSR_AUX_CTL(dev),
R
Rodrigo Vivi 已提交
1724 1725 1726 1727 1728 1729 1730 1731
		   DP_AUX_CH_CTL_TIME_OUT_400us |
		   (msg_size << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
		   (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
		   (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT));
}

static void intel_edp_psr_enable_source(struct intel_dp *intel_dp)
{
1732 1733
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;
R
Rodrigo Vivi 已提交
1734 1735 1736 1737
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t max_sleep_time = 0x1f;
	uint32_t idle_frames = 1;
	uint32_t val = 0x0;
B
Ben Widawsky 已提交
1738
	const uint32_t link_entry_time = EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
1739 1740 1741 1742
	bool only_standby = false;

	if (IS_BROADWELL(dev) && dig_port->port != PORT_A)
		only_standby = true;
R
Rodrigo Vivi 已提交
1743

1744
	if (intel_dp->psr_dpcd[1] & DP_PSR_NO_TRAIN_ON_EXIT || only_standby) {
R
Rodrigo Vivi 已提交
1745 1746 1747 1748
		val |= EDP_PSR_LINK_STANDBY;
		val |= EDP_PSR_TP2_TP3_TIME_0us;
		val |= EDP_PSR_TP1_TIME_0us;
		val |= EDP_PSR_SKIP_AUX_EXIT;
1749
		val |= IS_BROADWELL(dev) ? BDW_PSR_SINGLE_FRAME : 0;
R
Rodrigo Vivi 已提交
1750 1751 1752
	} else
		val |= EDP_PSR_LINK_DISABLE;

1753
	I915_WRITE(EDP_PSR_CTL(dev), val |
B
Ben Widawsky 已提交
1754
		   (IS_BROADWELL(dev) ? 0 : link_entry_time) |
R
Rodrigo Vivi 已提交
1755 1756 1757 1758 1759
		   max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT |
		   idle_frames << EDP_PSR_IDLE_FRAME_SHIFT |
		   EDP_PSR_ENABLE);
}

1760 1761 1762 1763 1764 1765 1766
static bool intel_edp_psr_match_conditions(struct intel_dp *intel_dp)
{
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_crtc *crtc = dig_port->base.base.crtc;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1767
	struct drm_i915_gem_object *obj = intel_fb_obj(crtc->primary->fb);
1768 1769
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;

R
Rodrigo Vivi 已提交
1770 1771
	dev_priv->psr.source_ok = false;

1772 1773 1774 1775 1776 1777 1778
	if (!HAS_PSR(dev)) {
		DRM_DEBUG_KMS("PSR not supported on this platform\n");
		return false;
	}

	if (IS_HASWELL(dev) && (intel_encoder->type != INTEL_OUTPUT_EDP ||
				dig_port->port != PORT_A)) {
1779 1780 1781 1782
		DRM_DEBUG_KMS("HSW ties PSR to DDI A (eDP)\n");
		return false;
	}

1783
	if (!i915.enable_psr) {
1784 1785 1786 1787
		DRM_DEBUG_KMS("PSR disable by flag\n");
		return false;
	}

1788 1789 1790 1791 1792 1793 1794
	crtc = dig_port->base.base.crtc;
	if (crtc == NULL) {
		DRM_DEBUG_KMS("crtc not active for PSR\n");
		return false;
	}

	intel_crtc = to_intel_crtc(crtc);
1795
	if (!intel_crtc_active(crtc)) {
1796 1797 1798 1799 1800 1801 1802 1803 1804 1805
		DRM_DEBUG_KMS("crtc not active for PSR\n");
		return false;
	}

	if (obj->tiling_mode != I915_TILING_X ||
	    obj->fence_reg == I915_FENCE_REG_NONE) {
		DRM_DEBUG_KMS("PSR condition failed: fb not tiled or fenced\n");
		return false;
	}

1806 1807 1808 1809
	/* Below limitations aren't valid for Broadwell */
	if (IS_BROADWELL(dev))
		goto out;

1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820
	if (I915_READ(SPRCTL(intel_crtc->pipe)) & SPRITE_ENABLE) {
		DRM_DEBUG_KMS("PSR condition failed: Sprite is Enabled\n");
		return false;
	}

	if (I915_READ(HSW_STEREO_3D_CTL(intel_crtc->config.cpu_transcoder)) &
	    S3D_ENABLE) {
		DRM_DEBUG_KMS("PSR condition failed: Stereo 3D is Enabled\n");
		return false;
	}

1821
	if (intel_crtc->config.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
1822 1823 1824 1825
		DRM_DEBUG_KMS("PSR condition failed: Interlaced is Enabled\n");
		return false;
	}

1826
 out:
R
Rodrigo Vivi 已提交
1827
	dev_priv->psr.source_ok = true;
1828 1829 1830
	return true;
}

1831
static void intel_edp_psr_do_enable(struct intel_dp *intel_dp)
R
Rodrigo Vivi 已提交
1832
{
1833 1834 1835
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
R
Rodrigo Vivi 已提交
1836

1837
	if (intel_edp_is_psr_enabled(dev))
R
Rodrigo Vivi 已提交
1838 1839 1840 1841 1842 1843 1844
		return;

	/* Enable PSR on the panel */
	intel_edp_psr_enable_sink(intel_dp);

	/* Enable PSR on the host */
	intel_edp_psr_enable_source(intel_dp);
1845 1846 1847

	dev_priv->psr.enabled = true;
	dev_priv->psr.active = true;
R
Rodrigo Vivi 已提交
1848 1849
}

1850 1851 1852 1853
void intel_edp_psr_enable(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);

1854 1855 1856 1857 1858
	if (!HAS_PSR(dev)) {
		DRM_DEBUG_KMS("PSR not supported on this platform\n");
		return;
	}

1859 1860 1861 1862 1863
	if (!is_edp_psr(intel_dp)) {
		DRM_DEBUG_KMS("PSR not supported by this panel\n");
		return;
	}

1864 1865 1866
	/* Setup PSR once */
	intel_edp_psr_setup(intel_dp);

1867
	if (intel_edp_psr_match_conditions(intel_dp))
1868 1869 1870
		intel_edp_psr_do_enable(intel_dp);
}

R
Rodrigo Vivi 已提交
1871 1872 1873 1874 1875
void intel_edp_psr_disable(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;

1876
	if (!dev_priv->psr.enabled)
R
Rodrigo Vivi 已提交
1877 1878
		return;

1879 1880
	I915_WRITE(EDP_PSR_CTL(dev),
		   I915_READ(EDP_PSR_CTL(dev)) & ~EDP_PSR_ENABLE);
R
Rodrigo Vivi 已提交
1881 1882

	/* Wait till PSR is idle */
1883
	if (_wait_for((I915_READ(EDP_PSR_STATUS_CTL(dev)) &
R
Rodrigo Vivi 已提交
1884 1885
		       EDP_PSR_STATUS_STATE_MASK) == 0, 2000, 10))
		DRM_ERROR("Timed out waiting for PSR Idle State\n");
1886 1887

	dev_priv->psr.enabled = false;
R
Rodrigo Vivi 已提交
1888 1889
}

1890
static void intel_edp_psr_work(struct work_struct *work)
1891 1892 1893 1894 1895 1896 1897
{
	struct drm_i915_private *dev_priv =
		container_of(work, typeof(*dev_priv), psr.work.work);
	struct drm_device *dev = dev_priv->dev;
	struct intel_encoder *encoder;
	struct intel_dp *intel_dp = NULL;

1898 1899 1900 1901 1902 1903 1904
	list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head)
		if (encoder->type == INTEL_OUTPUT_EDP) {
			intel_dp = enc_to_intel_dp(&encoder->base);

			if (!intel_edp_psr_match_conditions(intel_dp))
				intel_edp_psr_disable(intel_dp);
			else
1905
				intel_edp_psr_do_enable(intel_dp);
1906 1907 1908
		}
}

1909
static void intel_edp_psr_inactivate(struct drm_device *dev)
1910 1911 1912
{
	struct drm_i915_private *dev_priv = dev->dev_private;

1913
	dev_priv->psr.active = false;
1914

1915 1916
	I915_WRITE(EDP_PSR_CTL(dev), I915_READ(EDP_PSR_CTL(dev))
		   & ~EDP_PSR_ENABLE);
1917 1918
}

1919
void intel_edp_psr_exit(struct drm_device *dev)
1920 1921 1922 1923 1924 1925
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!HAS_PSR(dev))
		return;

1926
	if (!dev_priv->psr.enabled)
1927 1928 1929 1930 1931 1932 1933
		return;

	cancel_delayed_work_sync(&dev_priv->psr.work);

	if (dev_priv->psr.active)
		intel_edp_psr_inactivate(dev);

1934 1935
	schedule_delayed_work(&dev_priv->psr.work,
			      msecs_to_jiffies(100));
1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947
}

void intel_edp_psr_init(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	if (!HAS_PSR(dev))
		return;

	INIT_DELAYED_WORK(&dev_priv->psr.work, intel_edp_psr_work);
}

1948
static void intel_disable_dp(struct intel_encoder *encoder)
1949
{
1950
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1951 1952
	enum port port = dp_to_dig_port(intel_dp)->port;
	struct drm_device *dev = encoder->base.dev;
1953 1954 1955

	/* Make sure the panel is off before trying to change the mode. But also
	 * ensure that we have vdd while we switch off the panel. */
1956
	intel_edp_panel_vdd_on(intel_dp);
1957
	intel_edp_backlight_off(intel_dp);
1958
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
1959
	intel_edp_panel_off(intel_dp);
1960 1961

	/* cpu edp my only be disable _after_ the cpu pipe/plane is disabled. */
1962
	if (!(port == PORT_A || IS_VALLEYVIEW(dev)))
1963
		intel_dp_link_down(intel_dp);
1964 1965
}

1966
static void g4x_post_disable_dp(struct intel_encoder *encoder)
1967
{
1968
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1969
	enum port port = dp_to_dig_port(intel_dp)->port;
1970

1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
	if (port != PORT_A)
		return;

	intel_dp_link_down(intel_dp);
	ironlake_edp_pll_off(intel_dp);
}

static void vlv_post_disable_dp(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

	intel_dp_link_down(intel_dp);
1983 1984
}

1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
static void chv_post_disable_dp(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
	u32 val;

	intel_dp_link_down(intel_dp);

	mutex_lock(&dev_priv->dpio_lock);

	/* Propagate soft reset to data lane reset */
2002
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2003
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2004
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);
2005

2006 2007 2008 2009 2010 2011 2012 2013 2014
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
	val |= CHV_PCS_REQ_SOFTRESET_EN;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2015
	val &= ~(DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2016
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2017 2018 2019 2020

	mutex_unlock(&dev_priv->dpio_lock);
}

2021
static void intel_enable_dp(struct intel_encoder *encoder)
2022
{
2023 2024 2025 2026
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dp_reg = I915_READ(intel_dp->output_reg);
2027

2028 2029
	if (WARN_ON(dp_reg & DP_PORT_EN))
		return;
2030

2031
	intel_edp_panel_vdd_on(intel_dp);
2032
	intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
2033
	intel_dp_start_link_train(intel_dp);
2034 2035
	intel_edp_panel_on(intel_dp);
	edp_panel_vdd_off(intel_dp, true);
2036
	intel_dp_complete_link_train(intel_dp);
2037
	intel_dp_stop_link_train(intel_dp);
2038
}
2039

2040 2041
static void g4x_enable_dp(struct intel_encoder *encoder)
{
2042 2043
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

2044
	intel_enable_dp(encoder);
2045
	intel_edp_backlight_on(intel_dp);
2046
}
2047

2048 2049
static void vlv_enable_dp(struct intel_encoder *encoder)
{
2050 2051
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);

2052
	intel_edp_backlight_on(intel_dp);
2053 2054
}

2055
static void g4x_pre_enable_dp(struct intel_encoder *encoder)
2056 2057 2058 2059
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);

2060 2061
	intel_dp_prepare(encoder);

2062 2063 2064
	/* Only ilk+ has port A */
	if (dport->port == PORT_A) {
		ironlake_set_pll_cpu_edp(intel_dp);
2065
		ironlake_edp_pll_on(intel_dp);
2066
	}
2067 2068 2069
}

static void vlv_pre_enable_dp(struct intel_encoder *encoder)
2070
{
2071
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2072
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2073
	struct drm_device *dev = encoder->base.dev;
2074
	struct drm_i915_private *dev_priv = dev->dev_private;
2075
	struct intel_crtc *intel_crtc = to_intel_crtc(encoder->base.crtc);
2076
	enum dpio_channel port = vlv_dport_to_channel(dport);
2077
	int pipe = intel_crtc->pipe;
2078
	struct edp_power_seq power_seq;
2079
	u32 val;
2080

2081
	mutex_lock(&dev_priv->dpio_lock);
2082

2083
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(port));
2084 2085 2086 2087 2088 2089
	val = 0;
	if (pipe)
		val |= (1<<21);
	else
		val &= ~(1<<21);
	val |= 0x001000c4;
2090 2091 2092
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW8(port), val);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW14(port), 0x00760018);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW23(port), 0x00400888);
2093

2094 2095
	mutex_unlock(&dev_priv->dpio_lock);

2096 2097 2098 2099 2100 2101
	if (is_edp(intel_dp)) {
		/* init power sequencer on this pipe and port */
		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
							      &power_seq);
	}
2102

2103 2104
	intel_enable_dp(encoder);

2105
	vlv_wait_port_ready(dev_priv, dport);
2106 2107
}

2108
static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder)
2109 2110 2111 2112
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
2113 2114
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
2115
	enum dpio_channel port = vlv_dport_to_channel(dport);
2116
	int pipe = intel_crtc->pipe;
2117

2118 2119
	intel_dp_prepare(encoder);

2120
	/* Program Tx lane resets to default */
2121
	mutex_lock(&dev_priv->dpio_lock);
2122
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW0(port),
2123 2124
			 DPIO_PCS_TX_LANE2_RESET |
			 DPIO_PCS_TX_LANE1_RESET);
2125
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW1(port),
2126 2127 2128 2129 2130 2131
			 DPIO_PCS_CLK_CRI_RXEB_EIOS_EN |
			 DPIO_PCS_CLK_CRI_RXDIGFILTSG_EN |
			 (1<<DPIO_PCS_CLK_DATAWIDTH_SHIFT) |
				 DPIO_PCS_CLK_SOFT_RESET);

	/* Fix up inter-pair skew failure */
2132 2133 2134
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW12(port), 0x00750f00);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW11(port), 0x00001500);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW14(port), 0x40400000);
2135
	mutex_unlock(&dev_priv->dpio_lock);
2136 2137
}

2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149
static void chv_pre_enable_dp(struct intel_encoder *encoder)
{
	struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct edp_power_seq power_seq;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	int pipe = intel_crtc->pipe;
	int data, i;
2150
	u32 val;
2151 2152

	mutex_lock(&dev_priv->dpio_lock);
2153 2154

	/* Deassert soft data lane reset*/
2155
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW1(ch));
2156
	val |= CHV_PCS_REQ_SOFTRESET_EN;
2157 2158 2159 2160 2161 2162 2163 2164 2165
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW1(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW1(ch));
	val |= CHV_PCS_REQ_SOFTRESET_EN;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW1(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW0(ch));
	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW0(ch), val);
2166

2167
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW0(ch));
2168
	val |= (DPIO_PCS_TX_LANE2_RESET | DPIO_PCS_TX_LANE1_RESET);
2169
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW0(ch), val);
2170 2171

	/* Program Tx lane latency optimal setting*/
2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200
	for (i = 0; i < 4; i++) {
		/* Set the latency optimal bit */
		data = (i == 1) ? 0x0 : 0x6;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW11(ch, i),
				data << DPIO_FRC_LATENCY_SHFIT);

		/* Set the upar bit */
		data = (i == 1) ? 0x0 : 0x1;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW14(ch, i),
				data << DPIO_UPAR_SHIFT);
	}

	/* Data lane stagger programming */
	/* FIXME: Fix up value only after power analysis */

	mutex_unlock(&dev_priv->dpio_lock);

	if (is_edp(intel_dp)) {
		/* init power sequencer on this pipe and port */
		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
		intel_dp_init_panel_power_sequencer_registers(dev, intel_dp,
							      &power_seq);
	}

	intel_enable_dp(encoder);

	vlv_wait_port_ready(dev_priv, dport);
}

2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213
static void chv_dp_pre_pll_enable(struct intel_encoder *encoder)
{
	struct intel_digital_port *dport = enc_to_dig_port(&encoder->base);
	struct drm_device *dev = encoder->base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(encoder->base.crtc);
	enum dpio_channel ch = vlv_dport_to_channel(dport);
	enum pipe pipe = intel_crtc->pipe;
	u32 val;

	mutex_lock(&dev_priv->dpio_lock);

2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232
	/* program left/right clock distribution */
	if (pipe != PIPE_B) {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
		val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA1_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA1_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
	} else {
		val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
		val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
		if (ch == DPIO_CH0)
			val |= CHV_BUFLEFTENA2_FORCE;
		if (ch == DPIO_CH1)
			val |= CHV_BUFRIGHTENA2_FORCE;
		vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
	}

2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264
	/* program clock channel usage */
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW8(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW8(ch));
	val |= CHV_PCS_USEDCLKCHANNEL_OVRRIDE;
	if (pipe != PIPE_B)
		val &= ~CHV_PCS_USEDCLKCHANNEL;
	else
		val |= CHV_PCS_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW8(ch), val);

	/*
	 * This a a bit weird since generally CL
	 * matches the pipe, but here we need to
	 * pick the CL based on the port.
	 */
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW19(ch));
	if (pipe != PIPE_B)
		val &= ~CHV_CMN_USEDCLKCHANNEL;
	else
		val |= CHV_CMN_USEDCLKCHANNEL;
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW19(ch), val);

	mutex_unlock(&dev_priv->dpio_lock);
}

2265
/*
2266 2267
 * Native read with retry for link status and receiver capability reads for
 * cases where the sink may still be asleep.
2268 2269 2270
 *
 * Sinks are *supposed* to come up within 1ms from an off state, but we're also
 * supposed to retry 3 times per the spec.
2271
 */
2272 2273 2274
static ssize_t
intel_dp_dpcd_read_wake(struct drm_dp_aux *aux, unsigned int offset,
			void *buffer, size_t size)
2275
{
2276 2277
	ssize_t ret;
	int i;
2278 2279

	for (i = 0; i < 3; i++) {
2280 2281 2282
		ret = drm_dp_dpcd_read(aux, offset, buffer, size);
		if (ret == size)
			return ret;
2283 2284
		msleep(1);
	}
2285

2286
	return ret;
2287 2288 2289 2290 2291 2292 2293
}

/*
 * Fetch AUX CH registers 0x202 - 0x207 which contain
 * link status information
 */
static bool
2294
intel_dp_get_link_status(struct intel_dp *intel_dp, uint8_t link_status[DP_LINK_STATUS_SIZE])
2295
{
2296 2297 2298 2299
	return intel_dp_dpcd_read_wake(&intel_dp->aux,
				       DP_LANE0_1_STATUS,
				       link_status,
				       DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
2300 2301
}

2302
/* These are source-specific values. */
2303
static uint8_t
K
Keith Packard 已提交
2304
intel_dp_voltage_max(struct intel_dp *intel_dp)
2305
{
2306
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2307
	enum port port = dp_to_dig_port(intel_dp)->port;
K
Keith Packard 已提交
2308

2309
	if (IS_VALLEYVIEW(dev))
2310
		return DP_TRAIN_VOLTAGE_SWING_1200;
2311
	else if (IS_GEN7(dev) && port == PORT_A)
K
Keith Packard 已提交
2312
		return DP_TRAIN_VOLTAGE_SWING_800;
2313
	else if (HAS_PCH_CPT(dev) && port != PORT_A)
K
Keith Packard 已提交
2314 2315 2316 2317 2318 2319 2320 2321
		return DP_TRAIN_VOLTAGE_SWING_1200;
	else
		return DP_TRAIN_VOLTAGE_SWING_800;
}

static uint8_t
intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, uint8_t voltage_swing)
{
2322
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
2323
	enum port port = dp_to_dig_port(intel_dp)->port;
K
Keith Packard 已提交
2324

2325
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			return DP_TRAIN_PRE_EMPHASIS_9_5;
		case DP_TRAIN_VOLTAGE_SWING_600:
			return DP_TRAIN_PRE_EMPHASIS_6;
		case DP_TRAIN_VOLTAGE_SWING_800:
			return DP_TRAIN_PRE_EMPHASIS_3_5;
		case DP_TRAIN_VOLTAGE_SWING_1200:
		default:
			return DP_TRAIN_PRE_EMPHASIS_0;
		}
2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348
	} else if (IS_VALLEYVIEW(dev)) {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			return DP_TRAIN_PRE_EMPHASIS_9_5;
		case DP_TRAIN_VOLTAGE_SWING_600:
			return DP_TRAIN_PRE_EMPHASIS_6;
		case DP_TRAIN_VOLTAGE_SWING_800:
			return DP_TRAIN_PRE_EMPHASIS_3_5;
		case DP_TRAIN_VOLTAGE_SWING_1200:
		default:
			return DP_TRAIN_PRE_EMPHASIS_0;
		}
2349
	} else if (IS_GEN7(dev) && port == PORT_A) {
K
Keith Packard 已提交
2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			return DP_TRAIN_PRE_EMPHASIS_6;
		case DP_TRAIN_VOLTAGE_SWING_600:
		case DP_TRAIN_VOLTAGE_SWING_800:
			return DP_TRAIN_PRE_EMPHASIS_3_5;
		default:
			return DP_TRAIN_PRE_EMPHASIS_0;
		}
	} else {
		switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			return DP_TRAIN_PRE_EMPHASIS_6;
		case DP_TRAIN_VOLTAGE_SWING_600:
			return DP_TRAIN_PRE_EMPHASIS_6;
		case DP_TRAIN_VOLTAGE_SWING_800:
			return DP_TRAIN_PRE_EMPHASIS_3_5;
		case DP_TRAIN_VOLTAGE_SWING_1200:
		default:
			return DP_TRAIN_PRE_EMPHASIS_0;
		}
2371 2372 2373
	}
}

2374 2375 2376 2377 2378
static uint32_t intel_vlv_signal_levels(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
2379 2380
	struct intel_crtc *intel_crtc =
		to_intel_crtc(dport->base.base.crtc);
2381 2382 2383
	unsigned long demph_reg_value, preemph_reg_value,
		uniqtranscale_reg_value;
	uint8_t train_set = intel_dp->train_set[0];
2384
	enum dpio_channel port = vlv_dport_to_channel(dport);
2385
	int pipe = intel_crtc->pipe;
2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
		preemph_reg_value = 0x0004000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x552AB83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_600:
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5548B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_800:
			demph_reg_value = 0x2B245555;
			uniqtranscale_reg_value = 0x5560B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_1200:
			demph_reg_value = 0x2B405555;
			uniqtranscale_reg_value = 0x5598DA3A;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		preemph_reg_value = 0x0002000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x5552B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_600:
			demph_reg_value = 0x2B404848;
			uniqtranscale_reg_value = 0x5580B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_800:
			demph_reg_value = 0x2B404040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		preemph_reg_value = 0x0000000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			demph_reg_value = 0x2B305555;
			uniqtranscale_reg_value = 0x5570B83A;
			break;
		case DP_TRAIN_VOLTAGE_SWING_600:
			demph_reg_value = 0x2B2B4040;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		preemph_reg_value = 0x0006000;
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			demph_reg_value = 0x1B405555;
			uniqtranscale_reg_value = 0x55ADDA3A;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

2460
	mutex_lock(&dev_priv->dpio_lock);
2461 2462 2463
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x00000000);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW4(port), demph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW2(port),
2464
			 uniqtranscale_reg_value);
2465 2466 2467 2468
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW3(port), 0x0C782040);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW11(port), 0x00030000);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS_DW9(port), preemph_reg_value);
	vlv_dpio_write(dev_priv, pipe, VLV_TX_DW5(port), 0x80000000);
2469
	mutex_unlock(&dev_priv->dpio_lock);
2470 2471 2472 2473

	return 0;
}

2474 2475 2476 2477 2478 2479
static uint32_t intel_chv_signal_levels(struct intel_dp *intel_dp)
{
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_digital_port *dport = dp_to_dig_port(intel_dp);
	struct intel_crtc *intel_crtc = to_intel_crtc(dport->base.base.crtc);
2480
	u32 deemph_reg_value, margin_reg_value, val;
2481 2482
	uint8_t train_set = intel_dp->train_set[0];
	enum dpio_channel ch = vlv_dport_to_channel(dport);
2483 2484
	enum pipe pipe = intel_crtc->pipe;
	int i;
2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558

	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
	case DP_TRAIN_PRE_EMPHASIS_0:
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			deemph_reg_value = 128;
			margin_reg_value = 52;
			break;
		case DP_TRAIN_VOLTAGE_SWING_600:
			deemph_reg_value = 128;
			margin_reg_value = 77;
			break;
		case DP_TRAIN_VOLTAGE_SWING_800:
			deemph_reg_value = 128;
			margin_reg_value = 102;
			break;
		case DP_TRAIN_VOLTAGE_SWING_1200:
			deemph_reg_value = 128;
			margin_reg_value = 154;
			/* FIXME extra to set for 1200 */
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			deemph_reg_value = 85;
			margin_reg_value = 78;
			break;
		case DP_TRAIN_VOLTAGE_SWING_600:
			deemph_reg_value = 85;
			margin_reg_value = 116;
			break;
		case DP_TRAIN_VOLTAGE_SWING_800:
			deemph_reg_value = 85;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			deemph_reg_value = 64;
			margin_reg_value = 104;
			break;
		case DP_TRAIN_VOLTAGE_SWING_600:
			deemph_reg_value = 64;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
		case DP_TRAIN_VOLTAGE_SWING_400:
			deemph_reg_value = 43;
			margin_reg_value = 154;
			break;
		default:
			return 0;
		}
		break;
	default:
		return 0;
	}

	mutex_lock(&dev_priv->dpio_lock);

	/* Clear calc init */
2559 2560 2561 2562 2563 2564 2565
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
	val &= ~(DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3);
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2566 2567

	/* Program swing deemph */
2568 2569 2570 2571 2572 2573
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW4(ch, i));
		val &= ~DPIO_SWING_DEEMPH9P5_MASK;
		val |= deemph_reg_value << DPIO_SWING_DEEMPH9P5_SHIFT;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW4(ch, i), val);
	}
2574 2575

	/* Program swing margin */
2576 2577 2578 2579 2580 2581
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
		val &= ~DPIO_SWING_MARGIN_MASK;
		val |= margin_reg_value << DPIO_SWING_MARGIN_SHIFT;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
	}
2582 2583

	/* Disable unique transition scale */
2584 2585 2586 2587 2588
	for (i = 0; i < 4; i++) {
		val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
		val &= ~DPIO_TX_UNIQ_TRANS_SCALE_EN;
		vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
	}
2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600

	if (((train_set & DP_TRAIN_PRE_EMPHASIS_MASK)
			== DP_TRAIN_PRE_EMPHASIS_0) &&
		((train_set & DP_TRAIN_VOLTAGE_SWING_MASK)
			== DP_TRAIN_VOLTAGE_SWING_1200)) {

		/*
		 * The document said it needs to set bit 27 for ch0 and bit 26
		 * for ch1. Might be a typo in the doc.
		 * For now, for this unique transition scale selection, set bit
		 * 27 for ch0 and ch1.
		 */
2601 2602 2603 2604 2605
		for (i = 0; i < 4; i++) {
			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW3(ch, i));
			val |= DPIO_TX_UNIQ_TRANS_SCALE_EN;
			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW3(ch, i), val);
		}
2606

2607 2608 2609 2610 2611 2612
		for (i = 0; i < 4; i++) {
			val = vlv_dpio_read(dev_priv, pipe, CHV_TX_DW2(ch, i));
			val &= ~(0xff << DPIO_UNIQ_TRANS_SCALE_SHIFT);
			val |= (0x9a << DPIO_UNIQ_TRANS_SCALE_SHIFT);
			vlv_dpio_write(dev_priv, pipe, CHV_TX_DW2(ch, i), val);
		}
2613 2614 2615
	}

	/* Start swing calculation */
2616 2617 2618 2619 2620 2621 2622
	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS01_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS01_DW10(ch), val);

	val = vlv_dpio_read(dev_priv, pipe, VLV_PCS23_DW10(ch));
	val |= DPIO_PCS_SWING_CALC_TX0_TX2 | DPIO_PCS_SWING_CALC_TX1_TX3;
	vlv_dpio_write(dev_priv, pipe, VLV_PCS23_DW10(ch), val);
2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633

	/* LRC Bypass */
	val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW30);
	val |= DPIO_LRC_BYPASS;
	vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW30, val);

	mutex_unlock(&dev_priv->dpio_lock);

	return 0;
}

2634
static void
J
Jani Nikula 已提交
2635 2636
intel_get_adjust_train(struct intel_dp *intel_dp,
		       const uint8_t link_status[DP_LINK_STATUS_SIZE])
2637 2638 2639 2640
{
	uint8_t v = 0;
	uint8_t p = 0;
	int lane;
K
Keith Packard 已提交
2641 2642
	uint8_t voltage_max;
	uint8_t preemph_max;
2643

2644
	for (lane = 0; lane < intel_dp->lane_count; lane++) {
2645 2646
		uint8_t this_v = drm_dp_get_adjust_request_voltage(link_status, lane);
		uint8_t this_p = drm_dp_get_adjust_request_pre_emphasis(link_status, lane);
2647 2648 2649 2650 2651 2652 2653

		if (this_v > v)
			v = this_v;
		if (this_p > p)
			p = this_p;
	}

K
Keith Packard 已提交
2654
	voltage_max = intel_dp_voltage_max(intel_dp);
2655 2656
	if (v >= voltage_max)
		v = voltage_max | DP_TRAIN_MAX_SWING_REACHED;
2657

K
Keith Packard 已提交
2658 2659 2660
	preemph_max = intel_dp_pre_emphasis_max(intel_dp, v);
	if (p >= preemph_max)
		p = preemph_max | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
2661 2662

	for (lane = 0; lane < 4; lane++)
2663
		intel_dp->train_set[lane] = v | p;
2664 2665 2666
}

static uint32_t
2667
intel_gen4_signal_levels(uint8_t train_set)
2668
{
2669
	uint32_t	signal_levels = 0;
2670

2671
	switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685
	case DP_TRAIN_VOLTAGE_SWING_400:
	default:
		signal_levels |= DP_VOLTAGE_0_4;
		break;
	case DP_TRAIN_VOLTAGE_SWING_600:
		signal_levels |= DP_VOLTAGE_0_6;
		break;
	case DP_TRAIN_VOLTAGE_SWING_800:
		signal_levels |= DP_VOLTAGE_0_8;
		break;
	case DP_TRAIN_VOLTAGE_SWING_1200:
		signal_levels |= DP_VOLTAGE_1_2;
		break;
	}
2686
	switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703
	case DP_TRAIN_PRE_EMPHASIS_0:
	default:
		signal_levels |= DP_PRE_EMPHASIS_0;
		break;
	case DP_TRAIN_PRE_EMPHASIS_3_5:
		signal_levels |= DP_PRE_EMPHASIS_3_5;
		break;
	case DP_TRAIN_PRE_EMPHASIS_6:
		signal_levels |= DP_PRE_EMPHASIS_6;
		break;
	case DP_TRAIN_PRE_EMPHASIS_9_5:
		signal_levels |= DP_PRE_EMPHASIS_9_5;
		break;
	}
	return signal_levels;
}

2704 2705 2706 2707
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
2708 2709 2710
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
2711
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
2712 2713 2714 2715
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
2716
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
2717 2718
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
		return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
2719
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
2720 2721
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
2722
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
2723 2724
	case DP_TRAIN_VOLTAGE_SWING_1200 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
2725
	default:
2726 2727 2728
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
2729 2730 2731
	}
}

K
Keith Packard 已提交
2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762
/* Gen7's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen7_edp_signal_levels(uint8_t train_set)
{
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_400MV_0DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
		return EDP_LINK_TRAIN_400MV_6DB_IVB;

	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_600MV_0DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_600MV_3_5DB_IVB;

	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
		return EDP_LINK_TRAIN_800MV_0DB_IVB;
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return EDP_LINK_TRAIN_800MV_3_5DB_IVB;

	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return EDP_LINK_TRAIN_500MV_0DB_IVB;
	}
}

2763 2764
/* Gen7.5's (HSW) DP voltage swing and pre-emphasis control */
static uint32_t
2765
intel_hsw_signal_levels(uint8_t train_set)
2766
{
2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777
	int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
					 DP_TRAIN_PRE_EMPHASIS_MASK);
	switch (signal_levels) {
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
		return DDI_BUF_EMP_400MV_0DB_HSW;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return DDI_BUF_EMP_400MV_3_5DB_HSW;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
		return DDI_BUF_EMP_400MV_6DB_HSW;
	case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_9_5:
		return DDI_BUF_EMP_400MV_9_5DB_HSW;
2778

2779 2780 2781 2782 2783 2784
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_0:
		return DDI_BUF_EMP_600MV_0DB_HSW;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return DDI_BUF_EMP_600MV_3_5DB_HSW;
	case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_6:
		return DDI_BUF_EMP_600MV_6DB_HSW;
2785

2786 2787 2788 2789 2790 2791 2792 2793
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
		return DDI_BUF_EMP_800MV_0DB_HSW;
	case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_3_5:
		return DDI_BUF_EMP_800MV_3_5DB_HSW;
	default:
		DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
			      "0x%x\n", signal_levels);
		return DDI_BUF_EMP_400MV_0DB_HSW;
2794 2795 2796
	}
}

2797 2798 2799 2800 2801
/* Properly updates "DP" with the correct signal levels. */
static void
intel_dp_set_signal_levels(struct intel_dp *intel_dp, uint32_t *DP)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2802
	enum port port = intel_dig_port->port;
2803 2804 2805 2806
	struct drm_device *dev = intel_dig_port->base.base.dev;
	uint32_t signal_levels, mask;
	uint8_t train_set = intel_dp->train_set[0];

2807
	if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2808 2809
		signal_levels = intel_hsw_signal_levels(train_set);
		mask = DDI_BUF_EMP_MASK;
2810 2811 2812
	} else if (IS_CHERRYVIEW(dev)) {
		signal_levels = intel_chv_signal_levels(intel_dp);
		mask = 0;
2813 2814 2815
	} else if (IS_VALLEYVIEW(dev)) {
		signal_levels = intel_vlv_signal_levels(intel_dp);
		mask = 0;
2816
	} else if (IS_GEN7(dev) && port == PORT_A) {
2817 2818
		signal_levels = intel_gen7_edp_signal_levels(train_set);
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
2819
	} else if (IS_GEN6(dev) && port == PORT_A) {
2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831
		signal_levels = intel_gen6_edp_signal_levels(train_set);
		mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
	} else {
		signal_levels = intel_gen4_signal_levels(train_set);
		mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
	}

	DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);

	*DP = (*DP & ~mask) | signal_levels;
}

2832
static bool
C
Chris Wilson 已提交
2833
intel_dp_set_link_train(struct intel_dp *intel_dp,
2834
			uint32_t *DP,
2835
			uint8_t dp_train_pat)
2836
{
2837 2838
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
2839
	struct drm_i915_private *dev_priv = dev->dev_private;
2840
	enum port port = intel_dig_port->port;
2841 2842
	uint8_t buf[sizeof(intel_dp->train_set) + 1];
	int ret, len;
2843

2844
	if (HAS_DDI(dev)) {
2845
		uint32_t temp = I915_READ(DP_TP_CTL(port));
2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867

		if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
			temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
		else
			temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;

		temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
			temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;

			break;
		case DP_TRAINING_PATTERN_1:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
			break;
		case DP_TRAINING_PATTERN_2:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
			break;
		case DP_TRAINING_PATTERN_3:
			temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
			break;
		}
2868
		I915_WRITE(DP_TP_CTL(port), temp);
2869

2870
	} else if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
2871
		*DP &= ~DP_LINK_TRAIN_MASK_CPT;
2872 2873 2874

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
2875
			*DP |= DP_LINK_TRAIN_OFF_CPT;
2876 2877
			break;
		case DP_TRAINING_PATTERN_1:
2878
			*DP |= DP_LINK_TRAIN_PAT_1_CPT;
2879 2880
			break;
		case DP_TRAINING_PATTERN_2:
2881
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2882 2883 2884
			break;
		case DP_TRAINING_PATTERN_3:
			DRM_ERROR("DP training pattern 3 not supported\n");
2885
			*DP |= DP_LINK_TRAIN_PAT_2_CPT;
2886 2887 2888 2889
			break;
		}

	} else {
2890
		*DP &= ~DP_LINK_TRAIN_MASK;
2891 2892 2893

		switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
		case DP_TRAINING_PATTERN_DISABLE:
2894
			*DP |= DP_LINK_TRAIN_OFF;
2895 2896
			break;
		case DP_TRAINING_PATTERN_1:
2897
			*DP |= DP_LINK_TRAIN_PAT_1;
2898 2899
			break;
		case DP_TRAINING_PATTERN_2:
2900
			*DP |= DP_LINK_TRAIN_PAT_2;
2901 2902 2903
			break;
		case DP_TRAINING_PATTERN_3:
			DRM_ERROR("DP training pattern 3 not supported\n");
2904
			*DP |= DP_LINK_TRAIN_PAT_2;
2905 2906 2907 2908
			break;
		}
	}

2909
	I915_WRITE(intel_dp->output_reg, *DP);
C
Chris Wilson 已提交
2910
	POSTING_READ(intel_dp->output_reg);
2911

2912 2913
	buf[0] = dp_train_pat;
	if ((dp_train_pat & DP_TRAINING_PATTERN_MASK) ==
2914
	    DP_TRAINING_PATTERN_DISABLE) {
2915 2916 2917 2918 2919 2920
		/* don't write DP_TRAINING_LANEx_SET on disable */
		len = 1;
	} else {
		/* DP_TRAINING_LANEx_SET follow DP_TRAINING_PATTERN_SET */
		memcpy(buf + 1, intel_dp->train_set, intel_dp->lane_count);
		len = intel_dp->lane_count + 1;
2921
	}
2922

2923 2924
	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_PATTERN_SET,
				buf, len);
2925 2926

	return ret == len;
2927 2928
}

2929 2930 2931 2932
static bool
intel_dp_reset_link_train(struct intel_dp *intel_dp, uint32_t *DP,
			uint8_t dp_train_pat)
{
2933
	memset(intel_dp->train_set, 0, sizeof(intel_dp->train_set));
2934 2935 2936 2937 2938 2939
	intel_dp_set_signal_levels(intel_dp, DP);
	return intel_dp_set_link_train(intel_dp, DP, dp_train_pat);
}

static bool
intel_dp_update_link_train(struct intel_dp *intel_dp, uint32_t *DP,
J
Jani Nikula 已提交
2940
			   const uint8_t link_status[DP_LINK_STATUS_SIZE])
2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	int ret;

	intel_get_adjust_train(intel_dp, link_status);
	intel_dp_set_signal_levels(intel_dp, DP);

	I915_WRITE(intel_dp->output_reg, *DP);
	POSTING_READ(intel_dp->output_reg);

2953 2954
	ret = drm_dp_dpcd_write(&intel_dp->aux, DP_TRAINING_LANE0_SET,
				intel_dp->train_set, intel_dp->lane_count);
2955 2956 2957 2958

	return ret == intel_dp->lane_count;
}

2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989
static void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum port port = intel_dig_port->port;
	uint32_t val;

	if (!HAS_DDI(dev))
		return;

	val = I915_READ(DP_TP_CTL(port));
	val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
	val |= DP_TP_CTL_LINK_TRAIN_IDLE;
	I915_WRITE(DP_TP_CTL(port), val);

	/*
	 * On PORT_A we can have only eDP in SST mode. There the only reason
	 * we need to set idle transmission mode is to work around a HW issue
	 * where we enable the pipe while not in idle link-training mode.
	 * In this case there is requirement to wait for a minimum number of
	 * idle patterns to be sent.
	 */
	if (port == PORT_A)
		return;

	if (wait_for((I915_READ(DP_TP_STATUS(port)) & DP_TP_STATUS_IDLE_DONE),
		     1))
		DRM_ERROR("Timed out waiting for DP idle patterns\n");
}

2990
/* Enable corresponding port and start training pattern 1 */
2991
void
2992
intel_dp_start_link_train(struct intel_dp *intel_dp)
2993
{
2994
	struct drm_encoder *encoder = &dp_to_dig_port(intel_dp)->base.base;
2995
	struct drm_device *dev = encoder->dev;
2996 2997
	int i;
	uint8_t voltage;
2998
	int voltage_tries, loop_tries;
C
Chris Wilson 已提交
2999
	uint32_t DP = intel_dp->DP;
3000
	uint8_t link_config[2];
3001

P
Paulo Zanoni 已提交
3002
	if (HAS_DDI(dev))
3003 3004
		intel_ddi_prepare_link_retrain(encoder);

3005
	/* Write the link configuration data */
3006 3007 3008 3009
	link_config[0] = intel_dp->link_bw;
	link_config[1] = intel_dp->lane_count;
	if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
		link_config[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
3010
	drm_dp_dpcd_write(&intel_dp->aux, DP_LINK_BW_SET, link_config, 2);
3011 3012 3013

	link_config[0] = 0;
	link_config[1] = DP_SET_ANSI_8B10B;
3014
	drm_dp_dpcd_write(&intel_dp->aux, DP_DOWNSPREAD_CTRL, link_config, 2);
3015 3016

	DP |= DP_PORT_EN;
K
Keith Packard 已提交
3017

3018 3019 3020 3021 3022 3023 3024 3025
	/* clock recovery */
	if (!intel_dp_reset_link_train(intel_dp, &DP,
				       DP_TRAINING_PATTERN_1 |
				       DP_LINK_SCRAMBLING_DISABLE)) {
		DRM_ERROR("failed to enable link training\n");
		return;
	}

3026
	voltage = 0xff;
3027 3028
	voltage_tries = 0;
	loop_tries = 0;
3029
	for (;;) {
3030
		uint8_t link_status[DP_LINK_STATUS_SIZE];
3031

3032
		drm_dp_link_train_clock_recovery_delay(intel_dp->dpcd);
3033 3034
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
			DRM_ERROR("failed to get link status\n");
3035
			break;
3036
		}
3037

3038
		if (drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3039
			DRM_DEBUG_KMS("clock recovery OK\n");
3040 3041 3042 3043 3044 3045
			break;
		}

		/* Check to see if we've tried the max voltage */
		for (i = 0; i < intel_dp->lane_count; i++)
			if ((intel_dp->train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
3046
				break;
3047
		if (i == intel_dp->lane_count) {
3048 3049
			++loop_tries;
			if (loop_tries == 5) {
3050
				DRM_ERROR("too many full retries, give up\n");
3051 3052
				break;
			}
3053 3054 3055
			intel_dp_reset_link_train(intel_dp, &DP,
						  DP_TRAINING_PATTERN_1 |
						  DP_LINK_SCRAMBLING_DISABLE);
3056 3057 3058
			voltage_tries = 0;
			continue;
		}
3059

3060
		/* Check to see if we've tried the same voltage 5 times */
3061
		if ((intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
3062
			++voltage_tries;
3063
			if (voltage_tries == 5) {
3064
				DRM_ERROR("too many voltage retries, give up\n");
3065 3066 3067 3068 3069
				break;
			}
		} else
			voltage_tries = 0;
		voltage = intel_dp->train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
3070

3071 3072 3073 3074 3075
		/* Update training set as requested by target */
		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
			DRM_ERROR("failed to update link training\n");
			break;
		}
3076 3077
	}

3078 3079 3080
	intel_dp->DP = DP;
}

3081
void
3082 3083 3084
intel_dp_complete_link_train(struct intel_dp *intel_dp)
{
	bool channel_eq = false;
3085
	int tries, cr_tries;
3086
	uint32_t DP = intel_dp->DP;
3087 3088 3089 3090 3091
	uint32_t training_pattern = DP_TRAINING_PATTERN_2;

	/* Training Pattern 3 for HBR2 ot 1.2 devices that support it*/
	if (intel_dp->link_bw == DP_LINK_BW_5_4 || intel_dp->use_tps3)
		training_pattern = DP_TRAINING_PATTERN_3;
3092

3093
	/* channel equalization */
3094
	if (!intel_dp_set_link_train(intel_dp, &DP,
3095
				     training_pattern |
3096 3097 3098 3099 3100
				     DP_LINK_SCRAMBLING_DISABLE)) {
		DRM_ERROR("failed to start channel equalization\n");
		return;
	}

3101
	tries = 0;
3102
	cr_tries = 0;
3103 3104
	channel_eq = false;
	for (;;) {
3105
		uint8_t link_status[DP_LINK_STATUS_SIZE];
3106

3107 3108 3109 3110 3111
		if (cr_tries > 5) {
			DRM_ERROR("failed to train DP, aborting\n");
			break;
		}

3112
		drm_dp_link_train_channel_eq_delay(intel_dp->dpcd);
3113 3114
		if (!intel_dp_get_link_status(intel_dp, link_status)) {
			DRM_ERROR("failed to get link status\n");
3115
			break;
3116
		}
3117

3118
		/* Make sure clock is still ok */
3119
		if (!drm_dp_clock_recovery_ok(link_status, intel_dp->lane_count)) {
3120
			intel_dp_start_link_train(intel_dp);
3121
			intel_dp_set_link_train(intel_dp, &DP,
3122
						training_pattern |
3123
						DP_LINK_SCRAMBLING_DISABLE);
3124 3125 3126 3127
			cr_tries++;
			continue;
		}

3128
		if (drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3129 3130 3131
			channel_eq = true;
			break;
		}
3132

3133 3134 3135 3136
		/* Try 5 times, then try clock recovery if that fails */
		if (tries > 5) {
			intel_dp_link_down(intel_dp);
			intel_dp_start_link_train(intel_dp);
3137
			intel_dp_set_link_train(intel_dp, &DP,
3138
						training_pattern |
3139
						DP_LINK_SCRAMBLING_DISABLE);
3140 3141 3142 3143
			tries = 0;
			cr_tries++;
			continue;
		}
3144

3145 3146 3147 3148 3149
		/* Update training set as requested by target */
		if (!intel_dp_update_link_train(intel_dp, &DP, link_status)) {
			DRM_ERROR("failed to update link training\n");
			break;
		}
3150
		++tries;
3151
	}
3152

3153 3154 3155 3156
	intel_dp_set_idle_link_train(intel_dp);

	intel_dp->DP = DP;

3157
	if (channel_eq)
M
Masanari Iida 已提交
3158
		DRM_DEBUG_KMS("Channel EQ done. DP Training successful\n");
3159

3160 3161 3162 3163
}

void intel_dp_stop_link_train(struct intel_dp *intel_dp)
{
3164
	intel_dp_set_link_train(intel_dp, &intel_dp->DP,
3165
				DP_TRAINING_PATTERN_DISABLE);
3166 3167 3168
}

static void
C
Chris Wilson 已提交
3169
intel_dp_link_down(struct intel_dp *intel_dp)
3170
{
3171
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3172
	enum port port = intel_dig_port->port;
3173
	struct drm_device *dev = intel_dig_port->base.base.dev;
3174
	struct drm_i915_private *dev_priv = dev->dev_private;
3175 3176
	struct intel_crtc *intel_crtc =
		to_intel_crtc(intel_dig_port->base.base.crtc);
C
Chris Wilson 已提交
3177
	uint32_t DP = intel_dp->DP;
3178

3179
	if (WARN_ON(HAS_DDI(dev)))
3180 3181
		return;

3182
	if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
3183 3184
		return;

3185
	DRM_DEBUG_KMS("\n");
3186

3187
	if (HAS_PCH_CPT(dev) && (IS_GEN7(dev) || port != PORT_A)) {
3188
		DP &= ~DP_LINK_TRAIN_MASK_CPT;
C
Chris Wilson 已提交
3189
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
3190 3191
	} else {
		DP &= ~DP_LINK_TRAIN_MASK;
C
Chris Wilson 已提交
3192
		I915_WRITE(intel_dp->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
3193
	}
3194
	POSTING_READ(intel_dp->output_reg);
3195

3196
	if (HAS_PCH_IBX(dev) &&
3197
	    I915_READ(intel_dp->output_reg) & DP_PIPEB_SELECT) {
3198
		struct drm_crtc *crtc = intel_dig_port->base.base.crtc;
3199

3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213
		/* Hardware workaround: leaving our transcoder select
		 * set to transcoder B while it's off will prevent the
		 * corresponding HDMI output on transcoder A.
		 *
		 * Combine this with another hardware workaround:
		 * transcoder select bit can only be cleared while the
		 * port is enabled.
		 */
		DP &= ~DP_PIPEB_SELECT;
		I915_WRITE(intel_dp->output_reg, DP);

		/* Changes to enable or select take place the vblank
		 * after being written.
		 */
3214 3215 3216 3217
		if (WARN_ON(crtc == NULL)) {
			/* We should never try to disable a port without a crtc
			 * attached. For paranoia keep the code around for a
			 * bit. */
3218 3219 3220
			POSTING_READ(intel_dp->output_reg);
			msleep(50);
		} else
3221
			intel_wait_for_vblank(dev, intel_crtc->pipe);
3222 3223
	}

3224
	DP &= ~DP_AUDIO_OUTPUT_ENABLE;
C
Chris Wilson 已提交
3225 3226
	I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
	POSTING_READ(intel_dp->output_reg);
3227
	msleep(intel_dp->panel_power_down_delay);
3228 3229
}

3230 3231
static bool
intel_dp_get_dpcd(struct intel_dp *intel_dp)
3232
{
R
Rodrigo Vivi 已提交
3233 3234 3235 3236
	struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;

3237 3238
	char dpcd_hex_dump[sizeof(intel_dp->dpcd) * 3];

3239 3240
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, 0x000, intel_dp->dpcd,
				    sizeof(intel_dp->dpcd)) < 0)
3241
		return false; /* aux transfer failed */
3242

3243 3244 3245 3246
	hex_dump_to_buffer(intel_dp->dpcd, sizeof(intel_dp->dpcd),
			   32, 1, dpcd_hex_dump, sizeof(dpcd_hex_dump), false);
	DRM_DEBUG_KMS("DPCD: %s\n", dpcd_hex_dump);

3247 3248 3249
	if (intel_dp->dpcd[DP_DPCD_REV] == 0)
		return false; /* DPCD not present */

3250 3251
	/* Check if the panel supports PSR */
	memset(intel_dp->psr_dpcd, 0, sizeof(intel_dp->psr_dpcd));
3252
	if (is_edp(intel_dp)) {
3253 3254 3255
		intel_dp_dpcd_read_wake(&intel_dp->aux, DP_PSR_SUPPORT,
					intel_dp->psr_dpcd,
					sizeof(intel_dp->psr_dpcd));
R
Rodrigo Vivi 已提交
3256 3257
		if (intel_dp->psr_dpcd[0] & DP_PSR_IS_SUPPORTED) {
			dev_priv->psr.sink_support = true;
3258
			DRM_DEBUG_KMS("Detected EDP PSR Panel.\n");
R
Rodrigo Vivi 已提交
3259
		}
3260 3261
	}

3262 3263 3264 3265 3266 3267 3268 3269
	/* Training Pattern 3 support */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x12 &&
	    intel_dp->dpcd[DP_MAX_LANE_COUNT] & DP_TPS3_SUPPORTED) {
		intel_dp->use_tps3 = true;
		DRM_DEBUG_KMS("Displayport TPS3 supported");
	} else
		intel_dp->use_tps3 = false;

3270 3271 3272 3273 3274 3275 3276
	if (!(intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
	      DP_DWN_STRM_PORT_PRESENT))
		return true; /* native DP sink */

	if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
		return true; /* no per-port downstream info */

3277 3278 3279
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
				    intel_dp->downstream_ports,
				    DP_MAX_DOWNSTREAM_PORTS) < 0)
3280 3281 3282
		return false; /* downstream port status fetch failed */

	return true;
3283 3284
}

3285 3286 3287 3288 3289 3290 3291 3292
static void
intel_dp_probe_oui(struct intel_dp *intel_dp)
{
	u8 buf[3];

	if (!(intel_dp->dpcd[DP_DOWN_STREAM_PORT_COUNT] & DP_OUI_SUPPORT))
		return;

3293
	intel_edp_panel_vdd_on(intel_dp);
D
Daniel Vetter 已提交
3294

3295
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_OUI, buf, 3) == 3)
3296 3297 3298
		DRM_DEBUG_KMS("Sink OUI: %02hx%02hx%02hx\n",
			      buf[0], buf[1], buf[2]);

3299
	if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_BRANCH_OUI, buf, 3) == 3)
3300 3301
		DRM_DEBUG_KMS("Branch OUI: %02hx%02hx%02hx\n",
			      buf[0], buf[1], buf[2]);
D
Daniel Vetter 已提交
3302

3303
	edp_panel_vdd_off(intel_dp, false);
3304 3305
}

3306 3307 3308 3309 3310 3311 3312 3313
int intel_dp_sink_crc(struct intel_dp *intel_dp, u8 *crc)
{
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct intel_crtc *intel_crtc =
		to_intel_crtc(intel_dig_port->base.base.crtc);
	u8 buf[1];

3314
	if (drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_SINK_MISC, buf) < 0)
3315 3316 3317 3318 3319
		return -EAGAIN;

	if (!(buf[0] & DP_TEST_CRC_SUPPORTED))
		return -ENOTTY;

3320 3321
	if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK,
			       DP_TEST_SINK_START) < 0)
3322 3323 3324 3325 3326 3327
		return -EAGAIN;

	/* Wait 2 vblanks to be sure we will have the correct CRC value */
	intel_wait_for_vblank(dev, intel_crtc->pipe);
	intel_wait_for_vblank(dev, intel_crtc->pipe);

3328
	if (drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_CRC_R_CR, crc, 6) < 0)
3329 3330
		return -EAGAIN;

3331
	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_SINK, 0);
3332 3333 3334
	return 0;
}

3335 3336 3337
static bool
intel_dp_get_sink_irq(struct intel_dp *intel_dp, u8 *sink_irq_vector)
{
3338 3339 3340
	return intel_dp_dpcd_read_wake(&intel_dp->aux,
				       DP_DEVICE_SERVICE_IRQ_VECTOR,
				       sink_irq_vector, 1) == 1;
3341 3342 3343 3344 3345 3346
}

static void
intel_dp_handle_test_request(struct intel_dp *intel_dp)
{
	/* NAK by default */
3347
	drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, DP_TEST_NAK);
3348 3349
}

3350 3351 3352 3353 3354 3355 3356 3357 3358
/*
 * According to DP spec
 * 5.1.2:
 *  1. Read DPCD
 *  2. Configure link according to Receiver Capabilities
 *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
 *  4. Check link status on receipt of hot-plug interrupt
 */

P
Paulo Zanoni 已提交
3359
void
C
Chris Wilson 已提交
3360
intel_dp_check_link_status(struct intel_dp *intel_dp)
3361
{
3362
	struct intel_encoder *intel_encoder = &dp_to_dig_port(intel_dp)->base;
3363
	u8 sink_irq_vector;
3364
	u8 link_status[DP_LINK_STATUS_SIZE];
3365

3366
	/* FIXME: This access isn't protected by any locks. */
3367
	if (!intel_encoder->connectors_active)
3368
		return;
3369

3370
	if (WARN_ON(!intel_encoder->base.crtc))
3371 3372
		return;

3373
	/* Try to read receiver status if the link appears to be up */
3374
	if (!intel_dp_get_link_status(intel_dp, link_status)) {
3375 3376 3377
		return;
	}

3378
	/* Now read the DPCD to see if it's actually running */
3379
	if (!intel_dp_get_dpcd(intel_dp)) {
3380 3381 3382
		return;
	}

3383 3384 3385 3386
	/* Try to read the source of the interrupt */
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp_get_sink_irq(intel_dp, &sink_irq_vector)) {
		/* Clear interrupt source */
3387 3388 3389
		drm_dp_dpcd_writeb(&intel_dp->aux,
				   DP_DEVICE_SERVICE_IRQ_VECTOR,
				   sink_irq_vector);
3390 3391 3392 3393 3394 3395 3396

		if (sink_irq_vector & DP_AUTOMATED_TEST_REQUEST)
			intel_dp_handle_test_request(intel_dp);
		if (sink_irq_vector & (DP_CP_IRQ | DP_SINK_SPECIFIC_IRQ))
			DRM_DEBUG_DRIVER("CP or sink specific irq unhandled\n");
	}

3397
	if (!drm_dp_channel_eq_ok(link_status, intel_dp->lane_count)) {
3398
		DRM_DEBUG_KMS("%s: channel EQ not ok, retraining\n",
3399
			      intel_encoder->base.name);
3400 3401
		intel_dp_start_link_train(intel_dp);
		intel_dp_complete_link_train(intel_dp);
3402
		intel_dp_stop_link_train(intel_dp);
3403
	}
3404 3405
}

3406
/* XXX this is probably wrong for multiple downstream ports */
3407
static enum drm_connector_status
3408
intel_dp_detect_dpcd(struct intel_dp *intel_dp)
3409
{
3410 3411 3412 3413 3414 3415 3416 3417
	uint8_t *dpcd = intel_dp->dpcd;
	uint8_t type;

	if (!intel_dp_get_dpcd(intel_dp))
		return connector_status_disconnected;

	/* if there's no downstream port, we're done */
	if (!(dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT))
3418
		return connector_status_connected;
3419 3420

	/* If we're HPD-aware, SINK_COUNT changes dynamically */
3421 3422
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
	    intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
3423
		uint8_t reg;
3424 3425 3426

		if (intel_dp_dpcd_read_wake(&intel_dp->aux, DP_SINK_COUNT,
					    &reg, 1) < 0)
3427
			return connector_status_unknown;
3428

3429 3430
		return DP_GET_SINK_COUNT(reg) ? connector_status_connected
					      : connector_status_disconnected;
3431 3432 3433
	}

	/* If no HPD, poke DDC gently */
3434
	if (drm_probe_ddc(&intel_dp->aux.ddc))
3435
		return connector_status_connected;
3436 3437

	/* Well we tried, say unknown for unreliable port types */
3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449
	if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
		type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
		if (type == DP_DS_PORT_TYPE_VGA ||
		    type == DP_DS_PORT_TYPE_NON_EDID)
			return connector_status_unknown;
	} else {
		type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
			DP_DWN_STRM_PORT_TYPE_MASK;
		if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
		    type == DP_DWN_STRM_PORT_TYPE_OTHER)
			return connector_status_unknown;
	}
3450 3451 3452

	/* Anything else is out of spec, warn and ignore */
	DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
3453
	return connector_status_disconnected;
3454 3455
}

3456
static enum drm_connector_status
Z
Zhenyu Wang 已提交
3457
ironlake_dp_detect(struct intel_dp *intel_dp)
3458
{
3459
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3460 3461
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3462 3463
	enum drm_connector_status status;

3464 3465
	/* Can't disconnect eDP, but you can close the lid... */
	if (is_edp(intel_dp)) {
3466
		status = intel_panel_detect(dev);
3467 3468 3469 3470
		if (status == connector_status_unknown)
			status = connector_status_connected;
		return status;
	}
3471

3472 3473 3474
	if (!ibx_digital_port_connected(dev_priv, intel_dig_port))
		return connector_status_disconnected;

3475
	return intel_dp_detect_dpcd(intel_dp);
3476 3477
}

3478
static enum drm_connector_status
Z
Zhenyu Wang 已提交
3479
g4x_dp_detect(struct intel_dp *intel_dp)
3480
{
3481
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3482
	struct drm_i915_private *dev_priv = dev->dev_private;
3483
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3484
	uint32_t bit;
3485

3486 3487 3488 3489 3490 3491 3492 3493 3494 3495
	/* Can't disconnect eDP, but you can close the lid... */
	if (is_edp(intel_dp)) {
		enum drm_connector_status status;

		status = intel_panel_detect(dev);
		if (status == connector_status_unknown)
			status = connector_status_connected;
		return status;
	}

3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523
	if (IS_VALLEYVIEW(dev)) {
		switch (intel_dig_port->port) {
		case PORT_B:
			bit = PORTB_HOTPLUG_LIVE_STATUS_VLV;
			break;
		case PORT_C:
			bit = PORTC_HOTPLUG_LIVE_STATUS_VLV;
			break;
		case PORT_D:
			bit = PORTD_HOTPLUG_LIVE_STATUS_VLV;
			break;
		default:
			return connector_status_unknown;
		}
	} else {
		switch (intel_dig_port->port) {
		case PORT_B:
			bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
			break;
		case PORT_C:
			bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
			break;
		case PORT_D:
			bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
			break;
		default:
			return connector_status_unknown;
		}
3524 3525
	}

3526
	if ((I915_READ(PORT_HOTPLUG_STAT) & bit) == 0)
3527 3528
		return connector_status_disconnected;

3529
	return intel_dp_detect_dpcd(intel_dp);
Z
Zhenyu Wang 已提交
3530 3531
}

3532 3533 3534
static struct edid *
intel_dp_get_edid(struct drm_connector *connector, struct i2c_adapter *adapter)
{
3535
	struct intel_connector *intel_connector = to_intel_connector(connector);
3536

3537 3538 3539 3540
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
3541 3542
			return NULL;

J
Jani Nikula 已提交
3543
		return drm_edid_duplicate(intel_connector->edid);
3544
	}
3545

3546
	return drm_get_edid(connector, adapter);
3547 3548 3549 3550 3551
}

static int
intel_dp_get_edid_modes(struct drm_connector *connector, struct i2c_adapter *adapter)
{
3552
	struct intel_connector *intel_connector = to_intel_connector(connector);
3553

3554 3555 3556 3557 3558 3559 3560 3561
	/* use cached edid if we have one */
	if (intel_connector->edid) {
		/* invalid edid */
		if (IS_ERR(intel_connector->edid))
			return 0;

		return intel_connector_update_modes(connector,
						    intel_connector->edid);
3562 3563
	}

3564
	return intel_ddc_get_modes(connector, adapter);
3565 3566
}

Z
Zhenyu Wang 已提交
3567 3568 3569 3570
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector, bool force)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3571 3572
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3573
	struct drm_device *dev = connector->dev;
3574
	struct drm_i915_private *dev_priv = dev->dev_private;
Z
Zhenyu Wang 已提交
3575
	enum drm_connector_status status;
3576
	enum intel_display_power_domain power_domain;
Z
Zhenyu Wang 已提交
3577 3578
	struct edid *edid = NULL;

3579 3580
	intel_runtime_pm_get(dev_priv);

3581 3582 3583
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_get(dev_priv, power_domain);

3584
	DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
3585
		      connector->base.id, connector->name);
3586

Z
Zhenyu Wang 已提交
3587 3588 3589 3590 3591 3592
	intel_dp->has_audio = false;

	if (HAS_PCH_SPLIT(dev))
		status = ironlake_dp_detect(intel_dp);
	else
		status = g4x_dp_detect(intel_dp);
3593

Z
Zhenyu Wang 已提交
3594
	if (status != connector_status_connected)
3595
		goto out;
Z
Zhenyu Wang 已提交
3596

3597 3598
	intel_dp_probe_oui(intel_dp);

3599 3600
	if (intel_dp->force_audio != HDMI_AUDIO_AUTO) {
		intel_dp->has_audio = (intel_dp->force_audio == HDMI_AUDIO_ON);
3601
	} else {
3602
		edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3603 3604 3605 3606
		if (edid) {
			intel_dp->has_audio = drm_detect_monitor_audio(edid);
			kfree(edid);
		}
Z
Zhenyu Wang 已提交
3607 3608
	}

3609 3610
	if (intel_encoder->type != INTEL_OUTPUT_EDP)
		intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
3611 3612 3613
	status = connector_status_connected;

out:
3614 3615
	intel_display_power_put(dev_priv, power_domain);

3616
	intel_runtime_pm_put(dev_priv);
3617

3618
	return status;
3619 3620 3621 3622
}

static int intel_dp_get_modes(struct drm_connector *connector)
{
3623
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3624 3625
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
3626
	struct intel_connector *intel_connector = to_intel_connector(connector);
3627
	struct drm_device *dev = connector->dev;
3628 3629
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum intel_display_power_domain power_domain;
3630
	int ret;
3631 3632 3633 3634

	/* We should parse the EDID data and find out if it has an audio sink
	 */

3635 3636 3637
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_get(dev_priv, power_domain);

3638
	ret = intel_dp_get_edid_modes(connector, &intel_dp->aux.ddc);
3639
	intel_display_power_put(dev_priv, power_domain);
3640
	if (ret)
3641 3642
		return ret;

3643
	/* if eDP has no EDID, fall back to fixed mode */
3644
	if (is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
3645
		struct drm_display_mode *mode;
3646 3647
		mode = drm_mode_duplicate(dev,
					  intel_connector->panel.fixed_mode);
3648
		if (mode) {
3649 3650 3651 3652 3653
			drm_mode_probed_add(connector, mode);
			return 1;
		}
	}
	return 0;
3654 3655
}

3656 3657 3658 3659
static bool
intel_dp_detect_audio(struct drm_connector *connector)
{
	struct intel_dp *intel_dp = intel_attached_dp(connector);
3660 3661 3662 3663 3664
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = connector->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	enum intel_display_power_domain power_domain;
3665 3666 3667
	struct edid *edid;
	bool has_audio = false;

3668 3669 3670
	power_domain = intel_display_port_power_domain(intel_encoder);
	intel_display_power_get(dev_priv, power_domain);

3671
	edid = intel_dp_get_edid(connector, &intel_dp->aux.ddc);
3672 3673 3674 3675 3676
	if (edid) {
		has_audio = drm_detect_monitor_audio(edid);
		kfree(edid);
	}

3677 3678
	intel_display_power_put(dev_priv, power_domain);

3679 3680 3681
	return has_audio;
}

3682 3683 3684 3685 3686
static int
intel_dp_set_property(struct drm_connector *connector,
		      struct drm_property *property,
		      uint64_t val)
{
3687
	struct drm_i915_private *dev_priv = connector->dev->dev_private;
3688
	struct intel_connector *intel_connector = to_intel_connector(connector);
3689 3690
	struct intel_encoder *intel_encoder = intel_attached_encoder(connector);
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3691 3692
	int ret;

3693
	ret = drm_object_property_set_value(&connector->base, property, val);
3694 3695 3696
	if (ret)
		return ret;

3697
	if (property == dev_priv->force_audio_property) {
3698 3699 3700 3701
		int i = val;
		bool has_audio;

		if (i == intel_dp->force_audio)
3702 3703
			return 0;

3704
		intel_dp->force_audio = i;
3705

3706
		if (i == HDMI_AUDIO_AUTO)
3707 3708
			has_audio = intel_dp_detect_audio(connector);
		else
3709
			has_audio = (i == HDMI_AUDIO_ON);
3710 3711

		if (has_audio == intel_dp->has_audio)
3712 3713
			return 0;

3714
		intel_dp->has_audio = has_audio;
3715 3716 3717
		goto done;
	}

3718
	if (property == dev_priv->broadcast_rgb_property) {
3719 3720 3721
		bool old_auto = intel_dp->color_range_auto;
		uint32_t old_range = intel_dp->color_range;

3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736
		switch (val) {
		case INTEL_BROADCAST_RGB_AUTO:
			intel_dp->color_range_auto = true;
			break;
		case INTEL_BROADCAST_RGB_FULL:
			intel_dp->color_range_auto = false;
			intel_dp->color_range = 0;
			break;
		case INTEL_BROADCAST_RGB_LIMITED:
			intel_dp->color_range_auto = false;
			intel_dp->color_range = DP_COLOR_RANGE_16_235;
			break;
		default:
			return -EINVAL;
		}
3737 3738 3739 3740 3741

		if (old_auto == intel_dp->color_range_auto &&
		    old_range == intel_dp->color_range)
			return 0;

3742 3743 3744
		goto done;
	}

3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760
	if (is_edp(intel_dp) &&
	    property == connector->dev->mode_config.scaling_mode_property) {
		if (val == DRM_MODE_SCALE_NONE) {
			DRM_DEBUG_KMS("no scaling not supported\n");
			return -EINVAL;
		}

		if (intel_connector->panel.fitting_mode == val) {
			/* the eDP scaling property is not changed */
			return 0;
		}
		intel_connector->panel.fitting_mode = val;

		goto done;
	}

3761 3762 3763
	return -EINVAL;

done:
3764 3765
	if (intel_encoder->base.crtc)
		intel_crtc_restore_mode(intel_encoder->base.crtc);
3766 3767 3768 3769

	return 0;
}

3770
static void
3771
intel_dp_connector_destroy(struct drm_connector *connector)
3772
{
3773
	struct intel_connector *intel_connector = to_intel_connector(connector);
3774

3775 3776 3777
	if (!IS_ERR_OR_NULL(intel_connector->edid))
		kfree(intel_connector->edid);

3778 3779 3780
	/* Can't call is_edp() since the encoder may have been destroyed
	 * already. */
	if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
3781
		intel_panel_fini(&intel_connector->panel);
3782

3783
	drm_connector_cleanup(connector);
3784
	kfree(connector);
3785 3786
}

P
Paulo Zanoni 已提交
3787
void intel_dp_encoder_destroy(struct drm_encoder *encoder)
3788
{
3789 3790
	struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
	struct intel_dp *intel_dp = &intel_dig_port->dp;
3791
	struct drm_device *dev = intel_dp_to_dev(intel_dp);
3792

3793
	drm_dp_aux_unregister(&intel_dp->aux);
3794
	drm_encoder_cleanup(encoder);
3795 3796
	if (is_edp(intel_dp)) {
		cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
3797
		drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
3798
		edp_panel_vdd_off_sync(intel_dp);
3799
		drm_modeset_unlock(&dev->mode_config.connection_mutex);
3800
	}
3801
	kfree(intel_dig_port);
3802 3803
}

3804
static const struct drm_connector_funcs intel_dp_connector_funcs = {
3805
	.dpms = intel_connector_dpms,
3806 3807
	.detect = intel_dp_detect,
	.fill_modes = drm_helper_probe_single_connector_modes,
3808
	.set_property = intel_dp_set_property,
3809
	.destroy = intel_dp_connector_destroy,
3810 3811 3812 3813 3814
};

static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
	.get_modes = intel_dp_get_modes,
	.mode_valid = intel_dp_mode_valid,
3815
	.best_encoder = intel_best_encoder,
3816 3817 3818
};

static const struct drm_encoder_funcs intel_dp_enc_funcs = {
3819
	.destroy = intel_dp_encoder_destroy,
3820 3821
};

3822
static void
3823
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
3824
{
3825
	struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
3826

3827
	intel_dp_check_link_status(intel_dp);
3828
}
3829

3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845
bool
intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
{
	struct intel_dp *intel_dp = &intel_dig_port->dp;

	if (long_hpd)
		return true;

	/*
	 * we'll check the link status via the normal hot plug path later -
	 * but for short hpds we should check it now
	 */
	intel_dp_check_link_status(intel_dp);
	return false;
}

3846 3847
/* Return which DP Port should be selected for Transcoder DP control */
int
3848
intel_trans_dp_port_sel(struct drm_crtc *crtc)
3849 3850
{
	struct drm_device *dev = crtc->dev;
3851 3852
	struct intel_encoder *intel_encoder;
	struct intel_dp *intel_dp;
3853

3854 3855
	for_each_encoder_on_crtc(dev, crtc, intel_encoder) {
		intel_dp = enc_to_intel_dp(&intel_encoder->base);
3856

3857 3858
		if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
		    intel_encoder->type == INTEL_OUTPUT_EDP)
C
Chris Wilson 已提交
3859
			return intel_dp->output_reg;
3860
	}
C
Chris Wilson 已提交
3861

3862 3863 3864
	return -1;
}

3865
/* check the VBT to see whether the eDP is on DP-D port */
3866
bool intel_dp_is_edp(struct drm_device *dev, enum port port)
3867 3868
{
	struct drm_i915_private *dev_priv = dev->dev_private;
3869
	union child_device_config *p_child;
3870
	int i;
3871 3872 3873 3874 3875
	static const short port_mapping[] = {
		[PORT_B] = PORT_IDPB,
		[PORT_C] = PORT_IDPC,
		[PORT_D] = PORT_IDPD,
	};
3876

3877 3878 3879
	if (port == PORT_A)
		return true;

3880
	if (!dev_priv->vbt.child_dev_num)
3881 3882
		return false;

3883 3884
	for (i = 0; i < dev_priv->vbt.child_dev_num; i++) {
		p_child = dev_priv->vbt.child_dev + i;
3885

3886
		if (p_child->common.dvo_port == port_mapping[port] &&
3887 3888
		    (p_child->common.device_type & DEVICE_TYPE_eDP_BITS) ==
		    (DEVICE_TYPE_eDP & DEVICE_TYPE_eDP_BITS))
3889 3890 3891 3892 3893
			return true;
	}
	return false;
}

3894 3895 3896
static void
intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
{
3897 3898
	struct intel_connector *intel_connector = to_intel_connector(connector);

3899
	intel_attach_force_audio_property(connector);
3900
	intel_attach_broadcast_rgb_property(connector);
3901
	intel_dp->color_range_auto = true;
3902 3903 3904

	if (is_edp(intel_dp)) {
		drm_mode_create_scaling_mode_property(connector->dev);
3905 3906
		drm_object_attach_property(
			&connector->base,
3907
			connector->dev->mode_config.scaling_mode_property,
3908 3909
			DRM_MODE_SCALE_ASPECT);
		intel_connector->panel.fitting_mode = DRM_MODE_SCALE_ASPECT;
3910
	}
3911 3912
}

3913 3914 3915 3916 3917 3918 3919
static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
{
	intel_dp->last_power_cycle = jiffies;
	intel_dp->last_power_on = jiffies;
	intel_dp->last_backlight_off = jiffies;
}

3920 3921
static void
intel_dp_init_panel_power_sequencer(struct drm_device *dev,
3922 3923
				    struct intel_dp *intel_dp,
				    struct edp_power_seq *out)
3924 3925 3926 3927
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct edp_power_seq cur, vbt, spec, final;
	u32 pp_on, pp_off, pp_div, pp;
3928
	int pp_ctrl_reg, pp_on_reg, pp_off_reg, pp_div_reg;
3929 3930

	if (HAS_PCH_SPLIT(dev)) {
3931
		pp_ctrl_reg = PCH_PP_CONTROL;
3932 3933 3934 3935
		pp_on_reg = PCH_PP_ON_DELAYS;
		pp_off_reg = PCH_PP_OFF_DELAYS;
		pp_div_reg = PCH_PP_DIVISOR;
	} else {
3936 3937 3938 3939 3940 3941
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);

		pp_ctrl_reg = VLV_PIPE_PP_CONTROL(pipe);
		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
3942
	}
3943 3944 3945

	/* Workaround: Need to write PP_CONTROL with the unlock key as
	 * the very first thing. */
3946
	pp = ironlake_get_pp_control(intel_dp);
3947
	I915_WRITE(pp_ctrl_reg, pp);
3948

3949 3950 3951
	pp_on = I915_READ(pp_on_reg);
	pp_off = I915_READ(pp_off_reg);
	pp_div = I915_READ(pp_div_reg);
3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971

	/* Pull timing values out of registers */
	cur.t1_t3 = (pp_on & PANEL_POWER_UP_DELAY_MASK) >>
		PANEL_POWER_UP_DELAY_SHIFT;

	cur.t8 = (pp_on & PANEL_LIGHT_ON_DELAY_MASK) >>
		PANEL_LIGHT_ON_DELAY_SHIFT;

	cur.t9 = (pp_off & PANEL_LIGHT_OFF_DELAY_MASK) >>
		PANEL_LIGHT_OFF_DELAY_SHIFT;

	cur.t10 = (pp_off & PANEL_POWER_DOWN_DELAY_MASK) >>
		PANEL_POWER_DOWN_DELAY_SHIFT;

	cur.t11_t12 = ((pp_div & PANEL_POWER_CYCLE_DELAY_MASK) >>
		       PANEL_POWER_CYCLE_DELAY_SHIFT) * 1000;

	DRM_DEBUG_KMS("cur t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      cur.t1_t3, cur.t8, cur.t9, cur.t10, cur.t11_t12);

3972
	vbt = dev_priv->vbt.edp_pps;
3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008

	/* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
	 * our hw here, which are all in 100usec. */
	spec.t1_t3 = 210 * 10;
	spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
	spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
	spec.t10 = 500 * 10;
	/* This one is special and actually in units of 100ms, but zero
	 * based in the hw (so we need to add 100 ms). But the sw vbt
	 * table multiplies it with 1000 to make it in units of 100usec,
	 * too. */
	spec.t11_t12 = (510 + 100) * 10;

	DRM_DEBUG_KMS("vbt t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
		      vbt.t1_t3, vbt.t8, vbt.t9, vbt.t10, vbt.t11_t12);

	/* Use the max of the register settings and vbt. If both are
	 * unset, fall back to the spec limits. */
#define assign_final(field)	final.field = (max(cur.field, vbt.field) == 0 ? \
				       spec.field : \
				       max(cur.field, vbt.field))
	assign_final(t1_t3);
	assign_final(t8);
	assign_final(t9);
	assign_final(t10);
	assign_final(t11_t12);
#undef assign_final

#define get_delay(field)	(DIV_ROUND_UP(final.field, 10))
	intel_dp->panel_power_up_delay = get_delay(t1_t3);
	intel_dp->backlight_on_delay = get_delay(t8);
	intel_dp->backlight_off_delay = get_delay(t9);
	intel_dp->panel_power_down_delay = get_delay(t10);
	intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
#undef get_delay

4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025
	DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
		      intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
		      intel_dp->panel_power_cycle_delay);

	DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
		      intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);

	if (out)
		*out = final;
}

static void
intel_dp_init_panel_power_sequencer_registers(struct drm_device *dev,
					      struct intel_dp *intel_dp,
					      struct edp_power_seq *seq)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
4026 4027 4028 4029 4030 4031 4032 4033 4034
	u32 pp_on, pp_off, pp_div, port_sel = 0;
	int div = HAS_PCH_SPLIT(dev) ? intel_pch_rawclk(dev) : intel_hrawclk(dev);
	int pp_on_reg, pp_off_reg, pp_div_reg;

	if (HAS_PCH_SPLIT(dev)) {
		pp_on_reg = PCH_PP_ON_DELAYS;
		pp_off_reg = PCH_PP_OFF_DELAYS;
		pp_div_reg = PCH_PP_DIVISOR;
	} else {
4035 4036 4037 4038 4039
		enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);

		pp_on_reg = VLV_PIPE_PP_ON_DELAYS(pipe);
		pp_off_reg = VLV_PIPE_PP_OFF_DELAYS(pipe);
		pp_div_reg = VLV_PIPE_PP_DIVISOR(pipe);
4040 4041
	}

4042 4043 4044 4045 4046 4047 4048 4049
	/*
	 * And finally store the new values in the power sequencer. The
	 * backlight delays are set to 1 because we do manual waits on them. For
	 * T8, even BSpec recommends doing it. For T9, if we don't do this,
	 * we'll end up waiting for the backlight off delay twice: once when we
	 * do the manual sleep, and once when we disable the panel and wait for
	 * the PP_STATUS bit to become zero.
	 */
4050
	pp_on = (seq->t1_t3 << PANEL_POWER_UP_DELAY_SHIFT) |
4051 4052
		(1 << PANEL_LIGHT_ON_DELAY_SHIFT);
	pp_off = (1 << PANEL_LIGHT_OFF_DELAY_SHIFT) |
4053
		 (seq->t10 << PANEL_POWER_DOWN_DELAY_SHIFT);
4054 4055
	/* Compute the divisor for the pp clock, simply match the Bspec
	 * formula. */
4056
	pp_div = ((100 * div)/2 - 1) << PP_REFERENCE_DIVIDER_SHIFT;
4057
	pp_div |= (DIV_ROUND_UP(seq->t11_t12, 1000)
4058 4059 4060 4061
			<< PANEL_POWER_CYCLE_DELAY_SHIFT);

	/* Haswell doesn't have any port selection bits for the panel
	 * power sequencer any more. */
4062
	if (IS_VALLEYVIEW(dev)) {
4063 4064 4065 4066
		if (dp_to_dig_port(intel_dp)->port == PORT_B)
			port_sel = PANEL_PORT_SELECT_DPB_VLV;
		else
			port_sel = PANEL_PORT_SELECT_DPC_VLV;
4067 4068
	} else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
		if (dp_to_dig_port(intel_dp)->port == PORT_A)
4069
			port_sel = PANEL_PORT_SELECT_DPA;
4070
		else
4071
			port_sel = PANEL_PORT_SELECT_DPD;
4072 4073
	}

4074 4075 4076 4077 4078
	pp_on |= port_sel;

	I915_WRITE(pp_on_reg, pp_on);
	I915_WRITE(pp_off_reg, pp_off);
	I915_WRITE(pp_div_reg, pp_div);
4079 4080

	DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
4081 4082 4083
		      I915_READ(pp_on_reg),
		      I915_READ(pp_off_reg),
		      I915_READ(pp_div_reg));
4084 4085
}

4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106
void intel_dp_set_drrs_state(struct drm_device *dev, int refresh_rate)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_encoder *encoder;
	struct intel_dp *intel_dp = NULL;
	struct intel_crtc_config *config = NULL;
	struct intel_crtc *intel_crtc = NULL;
	struct intel_connector *intel_connector = dev_priv->drrs.connector;
	u32 reg, val;
	enum edp_drrs_refresh_rate_type index = DRRS_HIGH_RR;

	if (refresh_rate <= 0) {
		DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
		return;
	}

	if (intel_connector == NULL) {
		DRM_DEBUG_KMS("DRRS supported for eDP only.\n");
		return;
	}

4107 4108 4109 4110 4111
	/*
	 * FIXME: This needs proper synchronization with psr state. But really
	 * hard to tell without seeing the user of this function of this code.
	 * Check locking and ordering once that lands.
	 */
4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174
	if (INTEL_INFO(dev)->gen < 8 && intel_edp_is_psr_enabled(dev)) {
		DRM_DEBUG_KMS("DRRS is disabled as PSR is enabled\n");
		return;
	}

	encoder = intel_attached_encoder(&intel_connector->base);
	intel_dp = enc_to_intel_dp(&encoder->base);
	intel_crtc = encoder->new_crtc;

	if (!intel_crtc) {
		DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
		return;
	}

	config = &intel_crtc->config;

	if (intel_dp->drrs_state.type < SEAMLESS_DRRS_SUPPORT) {
		DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
		return;
	}

	if (intel_connector->panel.downclock_mode->vrefresh == refresh_rate)
		index = DRRS_LOW_RR;

	if (index == intel_dp->drrs_state.refresh_rate_type) {
		DRM_DEBUG_KMS(
			"DRRS requested for previously set RR...ignoring\n");
		return;
	}

	if (!intel_crtc->active) {
		DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
		return;
	}

	if (INTEL_INFO(dev)->gen > 6 && INTEL_INFO(dev)->gen < 8) {
		reg = PIPECONF(intel_crtc->config.cpu_transcoder);
		val = I915_READ(reg);
		if (index > DRRS_HIGH_RR) {
			val |= PIPECONF_EDP_RR_MODE_SWITCH;
			intel_dp_set_m2_n2(intel_crtc, &config->dp_m2_n2);
		} else {
			val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
		}
		I915_WRITE(reg, val);
	}

	/*
	 * mutex taken to ensure that there is no race between differnt
	 * drrs calls trying to update refresh rate. This scenario may occur
	 * in future when idleness detection based DRRS in kernel and
	 * possible calls from user space to set differnt RR are made.
	 */

	mutex_lock(&intel_dp->drrs_state.mutex);

	intel_dp->drrs_state.refresh_rate_type = index;

	mutex_unlock(&intel_dp->drrs_state.mutex);

	DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
}

4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203
static struct drm_display_mode *
intel_dp_drrs_init(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector,
			struct drm_display_mode *fixed_mode)
{
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct drm_device *dev = intel_dig_port->base.base.dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_display_mode *downclock_mode = NULL;

	if (INTEL_INFO(dev)->gen <= 6) {
		DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
		return NULL;
	}

	if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
		DRM_INFO("VBT doesn't support DRRS\n");
		return NULL;
	}

	downclock_mode = intel_find_panel_downclock
					(dev, fixed_mode, connector);

	if (!downclock_mode) {
		DRM_INFO("DRRS not supported\n");
		return NULL;
	}

4204 4205 4206 4207
	dev_priv->drrs.connector = intel_connector;

	mutex_init(&intel_dp->drrs_state.mutex);

4208 4209 4210 4211 4212 4213 4214
	intel_dp->drrs_state.type = dev_priv->vbt.drrs_type;

	intel_dp->drrs_state.refresh_rate_type = DRRS_HIGH_RR;
	DRM_INFO("seamless DRRS supported for eDP panel.\n");
	return downclock_mode;
}

4215
static bool intel_edp_init_connector(struct intel_dp *intel_dp,
4216 4217
				     struct intel_connector *intel_connector,
				     struct edp_power_seq *power_seq)
4218 4219 4220
{
	struct drm_connector *connector = &intel_connector->base;
	struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4221 4222
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
4223 4224
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_display_mode *fixed_mode = NULL;
4225
	struct drm_display_mode *downclock_mode = NULL;
4226 4227 4228 4229
	bool has_dpcd;
	struct drm_display_mode *scan;
	struct edid *edid;

4230 4231
	intel_dp->drrs_state.type = DRRS_NOT_SUPPORTED;

4232 4233 4234
	if (!is_edp(intel_dp))
		return true;

4235 4236 4237 4238 4239 4240 4241 4242
	/* The VDD bit needs a power domain reference, so if the bit is already
	 * enabled when we boot, grab this reference. */
	if (edp_have_panel_vdd(intel_dp)) {
		enum intel_display_power_domain power_domain;
		power_domain = intel_display_port_power_domain(intel_encoder);
		intel_display_power_get(dev_priv, power_domain);
	}

4243
	/* Cache DPCD and EDID for edp. */
4244
	intel_edp_panel_vdd_on(intel_dp);
4245
	has_dpcd = intel_dp_get_dpcd(intel_dp);
4246
	edp_panel_vdd_off(intel_dp, false);
4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259

	if (has_dpcd) {
		if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
			dev_priv->no_aux_handshake =
				intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
				DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
	} else {
		/* if this fails, presume the device is a ghost */
		DRM_INFO("failed to retrieve link info, disabling eDP\n");
		return false;
	}

	/* We now know it's not a ghost, init power sequence regs. */
4260
	intel_dp_init_panel_power_sequencer_registers(dev, intel_dp, power_seq);
4261

4262
	mutex_lock(&dev->mode_config.mutex);
4263
	edid = drm_get_edid(connector, &intel_dp->aux.ddc);
4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281
	if (edid) {
		if (drm_add_edid_modes(connector, edid)) {
			drm_mode_connector_update_edid_property(connector,
								edid);
			drm_edid_to_eld(connector, edid);
		} else {
			kfree(edid);
			edid = ERR_PTR(-EINVAL);
		}
	} else {
		edid = ERR_PTR(-ENOENT);
	}
	intel_connector->edid = edid;

	/* prefer fixed mode from EDID if available */
	list_for_each_entry(scan, &connector->probed_modes, head) {
		if ((scan->type & DRM_MODE_TYPE_PREFERRED)) {
			fixed_mode = drm_mode_duplicate(dev, scan);
4282 4283 4284
			downclock_mode = intel_dp_drrs_init(
						intel_dig_port,
						intel_connector, fixed_mode);
4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295
			break;
		}
	}

	/* fallback to VBT if available for eDP */
	if (!fixed_mode && dev_priv->vbt.lfp_lvds_vbt_mode) {
		fixed_mode = drm_mode_duplicate(dev,
					dev_priv->vbt.lfp_lvds_vbt_mode);
		if (fixed_mode)
			fixed_mode->type |= DRM_MODE_TYPE_PREFERRED;
	}
4296
	mutex_unlock(&dev->mode_config.mutex);
4297

4298
	intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
4299 4300 4301 4302 4303
	intel_panel_setup_backlight(connector);

	return true;
}

4304
bool
4305 4306
intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
			struct intel_connector *intel_connector)
4307
{
4308 4309 4310 4311
	struct drm_connector *connector = &intel_connector->base;
	struct intel_dp *intel_dp = &intel_dig_port->dp;
	struct intel_encoder *intel_encoder = &intel_dig_port->base;
	struct drm_device *dev = intel_encoder->base.dev;
4312
	struct drm_i915_private *dev_priv = dev->dev_private;
4313
	enum port port = intel_dig_port->port;
4314
	struct edp_power_seq power_seq = { 0 };
4315
	int type;
4316

4317 4318 4319 4320 4321 4322 4323 4324 4325 4326
	/* intel_dp vfuncs */
	if (IS_VALLEYVIEW(dev))
		intel_dp->get_aux_clock_divider = vlv_get_aux_clock_divider;
	else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
		intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
	else if (HAS_PCH_SPLIT(dev))
		intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
	else
		intel_dp->get_aux_clock_divider = i9xx_get_aux_clock_divider;

4327 4328
	intel_dp->get_aux_send_ctl = i9xx_get_aux_send_ctl;

4329 4330
	/* Preserve the current hw state. */
	intel_dp->DP = I915_READ(intel_dp->output_reg);
4331
	intel_dp->attached_connector = intel_connector;
4332

4333
	if (intel_dp_is_edp(dev, port))
4334
		type = DRM_MODE_CONNECTOR_eDP;
4335 4336
	else
		type = DRM_MODE_CONNECTOR_DisplayPort;
4337

4338 4339 4340 4341 4342 4343 4344 4345
	/*
	 * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
	 * for DP the encoder type can be set by the caller to
	 * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
	 */
	if (type == DRM_MODE_CONNECTOR_eDP)
		intel_encoder->type = INTEL_OUTPUT_EDP;

4346 4347 4348 4349
	DRM_DEBUG_KMS("Adding %s connector on port %c\n",
			type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
			port_name(port));

4350
	drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
4351 4352 4353 4354 4355
	drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);

	connector->interlace_allowed = true;
	connector->doublescan_allowed = 0;

4356
	INIT_DELAYED_WORK(&intel_dp->panel_vdd_work,
4357
			  edp_panel_vdd_work);
4358

4359
	intel_connector_attach_encoder(intel_connector, intel_encoder);
4360 4361
	drm_sysfs_connector_add(connector);

P
Paulo Zanoni 已提交
4362
	if (HAS_DDI(dev))
4363 4364 4365
		intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
	else
		intel_connector->get_hw_state = intel_connector_get_hw_state;
4366
	intel_connector->unregister = intel_dp_connector_unregister;
4367

4368
	/* Set up the hotplug pin. */
4369 4370
	switch (port) {
	case PORT_A:
4371
		intel_encoder->hpd_pin = HPD_PORT_A;
4372 4373
		break;
	case PORT_B:
4374
		intel_encoder->hpd_pin = HPD_PORT_B;
4375 4376
		break;
	case PORT_C:
4377
		intel_encoder->hpd_pin = HPD_PORT_C;
4378 4379
		break;
	case PORT_D:
4380
		intel_encoder->hpd_pin = HPD_PORT_D;
4381 4382
		break;
	default:
4383
		BUG();
4384 4385
	}

4386 4387
	if (is_edp(intel_dp)) {
		intel_dp_init_panel_power_timestamps(intel_dp);
4388
		intel_dp_init_panel_power_sequencer(dev, intel_dp, &power_seq);
4389
	}
4390

4391
	intel_dp_aux_init(intel_dp, intel_connector);
4392

4393
	if (!intel_edp_init_connector(intel_dp, intel_connector, &power_seq)) {
4394
		drm_dp_aux_unregister(&intel_dp->aux);
4395 4396
		if (is_edp(intel_dp)) {
			cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
4397
			drm_modeset_lock(&dev->mode_config.connection_mutex, NULL);
4398
			edp_panel_vdd_off_sync(intel_dp);
4399
			drm_modeset_unlock(&dev->mode_config.connection_mutex);
4400
		}
4401 4402
		drm_sysfs_connector_remove(connector);
		drm_connector_cleanup(connector);
4403
		return false;
4404
	}
4405

4406 4407
	intel_dp_add_properties(intel_dp, connector);

4408 4409 4410 4411 4412 4413 4414 4415
	/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
	 * 0xd.  Failure to do so will result in spurious interrupts being
	 * generated on the port when a cable is not attached.
	 */
	if (IS_G4X(dev) && !IS_GM45(dev)) {
		u32 temp = I915_READ(PEG_BAND_GAP_DATA);
		I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
	}
4416 4417

	return true;
4418
}
4419 4420 4421 4422

void
intel_dp_init(struct drm_device *dev, int output_reg, enum port port)
{
4423
	struct drm_i915_private *dev_priv = dev->dev_private;
4424 4425 4426 4427 4428
	struct intel_digital_port *intel_dig_port;
	struct intel_encoder *intel_encoder;
	struct drm_encoder *encoder;
	struct intel_connector *intel_connector;

4429
	intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
4430 4431 4432
	if (!intel_dig_port)
		return;

4433
	intel_connector = kzalloc(sizeof(*intel_connector), GFP_KERNEL);
4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444
	if (!intel_connector) {
		kfree(intel_dig_port);
		return;
	}

	intel_encoder = &intel_dig_port->base;
	encoder = &intel_encoder->base;

	drm_encoder_init(dev, &intel_encoder->base, &intel_dp_enc_funcs,
			 DRM_MODE_ENCODER_TMDS);

4445
	intel_encoder->compute_config = intel_dp_compute_config;
P
Paulo Zanoni 已提交
4446 4447
	intel_encoder->disable = intel_disable_dp;
	intel_encoder->get_hw_state = intel_dp_get_hw_state;
4448
	intel_encoder->get_config = intel_dp_get_config;
4449
	if (IS_CHERRYVIEW(dev)) {
4450
		intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
4451 4452
		intel_encoder->pre_enable = chv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
4453
		intel_encoder->post_disable = chv_post_disable_dp;
4454
	} else if (IS_VALLEYVIEW(dev)) {
4455
		intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
4456 4457
		intel_encoder->pre_enable = vlv_pre_enable_dp;
		intel_encoder->enable = vlv_enable_dp;
4458
		intel_encoder->post_disable = vlv_post_disable_dp;
4459
	} else {
4460 4461
		intel_encoder->pre_enable = g4x_pre_enable_dp;
		intel_encoder->enable = g4x_enable_dp;
4462
		intel_encoder->post_disable = g4x_post_disable_dp;
4463
	}
4464

4465
	intel_dig_port->port = port;
4466 4467
	intel_dig_port->dp.output_reg = output_reg;

P
Paulo Zanoni 已提交
4468
	intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
4469 4470 4471 4472 4473 4474 4475 4476
	if (IS_CHERRYVIEW(dev)) {
		if (port == PORT_D)
			intel_encoder->crtc_mask = 1 << 2;
		else
			intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
	} else {
		intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
	}
4477
	intel_encoder->cloneable = 0;
4478 4479
	intel_encoder->hot_plug = intel_dp_hot_plug;

4480 4481 4482
	intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
	dev_priv->hpd_irq_port[port] = intel_dig_port;

4483 4484 4485
	if (!intel_dp_init_connector(intel_dig_port, intel_connector)) {
		drm_encoder_cleanup(encoder);
		kfree(intel_dig_port);
4486
		kfree(intel_connector);
4487
	}
4488
}