/* * QEMU KVM support * * Copyright IBM, Corp. 2008 * Red Hat, Inc. 2008 * * Authors: * Anthony Liguori * Glauber Costa * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * */ #include #include #include #include #include #include "qemu-common.h" #include "sysemu.h" #include "gdbstub.h" #include "kvm.h" /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */ #define PAGE_SIZE TARGET_PAGE_SIZE //#define DEBUG_KVM #ifdef DEBUG_KVM #define dprintf(fmt, ...) \ do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) #else #define dprintf(fmt, ...) \ do { } while (0) #endif typedef struct KVMSlot { target_phys_addr_t start_addr; ram_addr_t memory_size; ram_addr_t phys_offset; int slot; int flags; } KVMSlot; typedef struct kvm_dirty_log KVMDirtyLog; int kvm_allowed = 0; struct KVMState { KVMSlot slots[32]; int fd; int vmfd; int coalesced_mmio; #ifdef KVM_CAP_SET_GUEST_DEBUG struct kvm_sw_breakpoint_head kvm_sw_breakpoints; #endif }; static KVMState *kvm_state; static KVMSlot *kvm_alloc_slot(KVMState *s) { int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { /* KVM private memory slots */ if (i >= 8 && i < 12) continue; if (s->slots[i].memory_size == 0) return &s->slots[i]; } fprintf(stderr, "%s: no free slot available\n", __func__); abort(); } static KVMSlot *kvm_lookup_matching_slot(KVMState *s, target_phys_addr_t start_addr, target_phys_addr_t end_addr) { int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { KVMSlot *mem = &s->slots[i]; if (start_addr == mem->start_addr && end_addr == mem->start_addr + mem->memory_size) { return mem; } } return NULL; } static KVMSlot *kvm_lookup_slot(KVMState *s, target_phys_addr_t start_addr) { int i; for (i = 0; i < ARRAY_SIZE(s->slots); i++) { KVMSlot *mem = &s->slots[i]; if (start_addr >= mem->start_addr && start_addr < (mem->start_addr + mem->memory_size)) return mem; } return NULL; } static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot) { struct kvm_userspace_memory_region mem; mem.slot = slot->slot; mem.guest_phys_addr = slot->start_addr; mem.memory_size = slot->memory_size; mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset); mem.flags = slot->flags; return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem); } int kvm_init_vcpu(CPUState *env) { KVMState *s = kvm_state; long mmap_size; int ret; dprintf("kvm_init_vcpu\n"); ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index); if (ret < 0) { dprintf("kvm_create_vcpu failed\n"); goto err; } env->kvm_fd = ret; env->kvm_state = s; mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0); if (mmap_size < 0) { dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n"); goto err; } env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED, env->kvm_fd, 0); if (env->kvm_run == MAP_FAILED) { ret = -errno; dprintf("mmap'ing vcpu state failed\n"); goto err; } ret = kvm_arch_init_vcpu(env); err: return ret; } int kvm_sync_vcpus(void) { CPUState *env; for (env = first_cpu; env != NULL; env = env->next_cpu) { int ret; ret = kvm_arch_put_registers(env); if (ret) return ret; } return 0; } /* * dirty pages logging control */ static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr, ram_addr_t size, unsigned flags, unsigned mask) { KVMState *s = kvm_state; KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size); if (mem == NULL) { fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" TARGET_FMT_plx "\n", __func__, phys_addr, phys_addr + size - 1); return -EINVAL; } flags = (mem->flags & ~mask) | flags; /* Nothing changed, no need to issue ioctl */ if (flags == mem->flags) return 0; mem->flags = flags; return kvm_set_user_memory_region(s, mem); } int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size) { return kvm_dirty_pages_log_change(phys_addr, size, KVM_MEM_LOG_DIRTY_PAGES, KVM_MEM_LOG_DIRTY_PAGES); } int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size) { return kvm_dirty_pages_log_change(phys_addr, size, 0, KVM_MEM_LOG_DIRTY_PAGES); } /** * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty(). * This means all bits are set to dirty. * * @start_add: start of logged region. * @end_addr: end of logged region. */ void kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr) { KVMState *s = kvm_state; KVMDirtyLog d; KVMSlot *mem = kvm_lookup_matching_slot(s, start_addr, end_addr); unsigned long alloc_size; ram_addr_t addr; target_phys_addr_t phys_addr = start_addr; dprintf("sync addr: " TARGET_FMT_lx " into %lx\n", start_addr, mem->phys_offset); if (mem == NULL) { fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-" TARGET_FMT_plx "\n", __func__, phys_addr, end_addr - 1); return; } alloc_size = mem->memory_size >> TARGET_PAGE_BITS / sizeof(d.dirty_bitmap); d.dirty_bitmap = qemu_mallocz(alloc_size); d.slot = mem->slot; dprintf("slot %d, phys_addr %llx, uaddr: %llx\n", d.slot, mem->start_addr, mem->phys_offset); if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) { dprintf("ioctl failed %d\n", errno); goto out; } phys_addr = start_addr; for (addr = mem->phys_offset; phys_addr < end_addr; phys_addr+= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) { unsigned long *bitmap = (unsigned long *)d.dirty_bitmap; unsigned nr = (phys_addr - start_addr) >> TARGET_PAGE_BITS; unsigned word = nr / (sizeof(*bitmap) * 8); unsigned bit = nr % (sizeof(*bitmap) * 8); if ((bitmap[word] >> bit) & 1) cpu_physical_memory_set_dirty(addr); } out: qemu_free(d.dirty_bitmap); } int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) { int ret = -ENOSYS; #ifdef KVM_CAP_COALESCED_MMIO KVMState *s = kvm_state; if (s->coalesced_mmio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone); } #endif return ret; } int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size) { int ret = -ENOSYS; #ifdef KVM_CAP_COALESCED_MMIO KVMState *s = kvm_state; if (s->coalesced_mmio) { struct kvm_coalesced_mmio_zone zone; zone.addr = start; zone.size = size; ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone); } #endif return ret; } int kvm_init(int smp_cpus) { KVMState *s; int ret; int i; if (smp_cpus > 1) return -EINVAL; s = qemu_mallocz(sizeof(KVMState)); #ifdef KVM_CAP_SET_GUEST_DEBUG TAILQ_INIT(&s->kvm_sw_breakpoints); #endif for (i = 0; i < ARRAY_SIZE(s->slots); i++) s->slots[i].slot = i; s->vmfd = -1; s->fd = open("/dev/kvm", O_RDWR); if (s->fd == -1) { fprintf(stderr, "Could not access KVM kernel module: %m\n"); ret = -errno; goto err; } ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0); if (ret < KVM_API_VERSION) { if (ret > 0) ret = -EINVAL; fprintf(stderr, "kvm version too old\n"); goto err; } if (ret > KVM_API_VERSION) { ret = -EINVAL; fprintf(stderr, "kvm version not supported\n"); goto err; } s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0); if (s->vmfd < 0) goto err; /* initially, KVM allocated its own memory and we had to jump through * hooks to make phys_ram_base point to this. Modern versions of KVM * just use a user allocated buffer so we can use regular pages * unmodified. Make sure we have a sufficiently modern version of KVM. */ ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_USER_MEMORY); if (ret <= 0) { if (ret == 0) ret = -EINVAL; fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n"); goto err; } /* There was a nasty bug in < kvm-80 that prevents memory slots from being * destroyed properly. Since we rely on this capability, refuse to work * with any kernel without this capability. */ ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_DESTROY_MEMORY_REGION_WORKS); if (ret <= 0) { if (ret == 0) ret = -EINVAL; fprintf(stderr, "KVM kernel module broken (DESTROY_MEMORY_REGION)\n" "Please upgrade to at least kvm-81.\n"); goto err; } s->coalesced_mmio = 0; #ifdef KVM_CAP_COALESCED_MMIO ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_COALESCED_MMIO); if (ret > 0) s->coalesced_mmio = ret; #endif ret = kvm_arch_init(s, smp_cpus); if (ret < 0) goto err; kvm_state = s; return 0; err: if (s) { if (s->vmfd != -1) close(s->vmfd); if (s->fd != -1) close(s->fd); } qemu_free(s); return ret; } static int kvm_handle_io(CPUState *env, uint16_t port, void *data, int direction, int size, uint32_t count) { int i; uint8_t *ptr = data; for (i = 0; i < count; i++) { if (direction == KVM_EXIT_IO_IN) { switch (size) { case 1: stb_p(ptr, cpu_inb(env, port)); break; case 2: stw_p(ptr, cpu_inw(env, port)); break; case 4: stl_p(ptr, cpu_inl(env, port)); break; } } else { switch (size) { case 1: cpu_outb(env, port, ldub_p(ptr)); break; case 2: cpu_outw(env, port, lduw_p(ptr)); break; case 4: cpu_outl(env, port, ldl_p(ptr)); break; } } ptr += size; } return 1; } static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run) { #ifdef KVM_CAP_COALESCED_MMIO KVMState *s = kvm_state; if (s->coalesced_mmio) { struct kvm_coalesced_mmio_ring *ring; ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE); while (ring->first != ring->last) { struct kvm_coalesced_mmio *ent; ent = &ring->coalesced_mmio[ring->first]; cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len); /* FIXME smp_wmb() */ ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX; } } #endif } int kvm_cpu_exec(CPUState *env) { struct kvm_run *run = env->kvm_run; int ret; dprintf("kvm_cpu_exec()\n"); do { kvm_arch_pre_run(env, run); if (env->exit_request) { dprintf("interrupt exit requested\n"); ret = 0; break; } ret = kvm_vcpu_ioctl(env, KVM_RUN, 0); kvm_arch_post_run(env, run); if (ret == -EINTR || ret == -EAGAIN) { dprintf("io window exit\n"); ret = 0; break; } if (ret < 0) { dprintf("kvm run failed %s\n", strerror(-ret)); abort(); } kvm_run_coalesced_mmio(env, run); ret = 0; /* exit loop */ switch (run->exit_reason) { case KVM_EXIT_IO: dprintf("handle_io\n"); ret = kvm_handle_io(env, run->io.port, (uint8_t *)run + run->io.data_offset, run->io.direction, run->io.size, run->io.count); break; case KVM_EXIT_MMIO: dprintf("handle_mmio\n"); cpu_physical_memory_rw(run->mmio.phys_addr, run->mmio.data, run->mmio.len, run->mmio.is_write); ret = 1; break; case KVM_EXIT_IRQ_WINDOW_OPEN: dprintf("irq_window_open\n"); break; case KVM_EXIT_SHUTDOWN: dprintf("shutdown\n"); qemu_system_reset_request(); ret = 1; break; case KVM_EXIT_UNKNOWN: dprintf("kvm_exit_unknown\n"); break; case KVM_EXIT_FAIL_ENTRY: dprintf("kvm_exit_fail_entry\n"); break; case KVM_EXIT_EXCEPTION: dprintf("kvm_exit_exception\n"); break; case KVM_EXIT_DEBUG: dprintf("kvm_exit_debug\n"); #ifdef KVM_CAP_SET_GUEST_DEBUG if (kvm_arch_debug(&run->debug.arch)) { gdb_set_stop_cpu(env); vm_stop(EXCP_DEBUG); env->exception_index = EXCP_DEBUG; return 0; } /* re-enter, this exception was guest-internal */ ret = 1; #endif /* KVM_CAP_SET_GUEST_DEBUG */ break; default: dprintf("kvm_arch_handle_exit\n"); ret = kvm_arch_handle_exit(env, run); break; } } while (ret > 0); if (env->exit_request) { env->exit_request = 0; env->exception_index = EXCP_INTERRUPT; } return ret; } void kvm_set_phys_mem(target_phys_addr_t start_addr, ram_addr_t size, ram_addr_t phys_offset) { KVMState *s = kvm_state; ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK; KVMSlot *mem; if (start_addr & ~TARGET_PAGE_MASK) { fprintf(stderr, "Only page-aligned memory slots supported\n"); abort(); } /* KVM does not support read-only slots */ phys_offset &= ~IO_MEM_ROM; mem = kvm_lookup_slot(s, start_addr); if (mem) { if (flags >= IO_MEM_UNASSIGNED) { mem->memory_size = 0; mem->start_addr = start_addr; mem->phys_offset = 0; mem->flags = 0; kvm_set_user_memory_region(s, mem); } else if (start_addr >= mem->start_addr && (start_addr + size) <= (mem->start_addr + mem->memory_size)) { KVMSlot slot; target_phys_addr_t mem_start; ram_addr_t mem_size, mem_offset; /* Not splitting */ if ((phys_offset - (start_addr - mem->start_addr)) == mem->phys_offset) return; /* unregister whole slot */ memcpy(&slot, mem, sizeof(slot)); mem->memory_size = 0; kvm_set_user_memory_region(s, mem); /* register prefix slot */ mem_start = slot.start_addr; mem_size = start_addr - slot.start_addr; mem_offset = slot.phys_offset; if (mem_size) kvm_set_phys_mem(mem_start, mem_size, mem_offset); /* register new slot */ kvm_set_phys_mem(start_addr, size, phys_offset); /* register suffix slot */ mem_start = start_addr + size; mem_offset += mem_size + size; mem_size = slot.memory_size - mem_size - size; if (mem_size) kvm_set_phys_mem(mem_start, mem_size, mem_offset); return; } else { printf("Registering overlapping slot\n"); abort(); } } /* KVM does not need to know about this memory */ if (flags >= IO_MEM_UNASSIGNED) return; mem = kvm_alloc_slot(s); mem->memory_size = size; mem->start_addr = start_addr; mem->phys_offset = phys_offset; mem->flags = 0; kvm_set_user_memory_region(s, mem); /* FIXME deal with errors */ } int kvm_ioctl(KVMState *s, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); ret = ioctl(s->fd, type, arg); if (ret == -1) ret = -errno; return ret; } int kvm_vm_ioctl(KVMState *s, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); ret = ioctl(s->vmfd, type, arg); if (ret == -1) ret = -errno; return ret; } int kvm_vcpu_ioctl(CPUState *env, int type, ...) { int ret; void *arg; va_list ap; va_start(ap, type); arg = va_arg(ap, void *); va_end(ap); ret = ioctl(env->kvm_fd, type, arg); if (ret == -1) ret = -errno; return ret; } int kvm_has_sync_mmu(void) { #ifdef KVM_CAP_SYNC_MMU KVMState *s = kvm_state; if (kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SYNC_MMU) > 0) return 1; #endif return 0; } #ifdef KVM_CAP_SET_GUEST_DEBUG struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env, target_ulong pc) { struct kvm_sw_breakpoint *bp; TAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) { if (bp->pc == pc) return bp; } return NULL; } int kvm_sw_breakpoints_active(CPUState *env) { return !TAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints); } int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) { struct kvm_guest_debug dbg; dbg.control = 0; if (env->singlestep_enabled) dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP; kvm_arch_update_guest_debug(env, &dbg); dbg.control |= reinject_trap; return kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg); } int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, target_ulong len, int type) { struct kvm_sw_breakpoint *bp; CPUState *env; int err; if (type == GDB_BREAKPOINT_SW) { bp = kvm_find_sw_breakpoint(current_env, addr); if (bp) { bp->use_count++; return 0; } bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint)); if (!bp) return -ENOMEM; bp->pc = addr; bp->use_count = 1; err = kvm_arch_insert_sw_breakpoint(current_env, bp); if (err) { free(bp); return err; } TAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); } else { err = kvm_arch_insert_hw_breakpoint(addr, len, type); if (err) return err; } for (env = first_cpu; env != NULL; env = env->next_cpu) { err = kvm_update_guest_debug(env, 0); if (err) return err; } return 0; } int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, target_ulong len, int type) { struct kvm_sw_breakpoint *bp; CPUState *env; int err; if (type == GDB_BREAKPOINT_SW) { bp = kvm_find_sw_breakpoint(current_env, addr); if (!bp) return -ENOENT; if (bp->use_count > 1) { bp->use_count--; return 0; } err = kvm_arch_remove_sw_breakpoint(current_env, bp); if (err) return err; TAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry); qemu_free(bp); } else { err = kvm_arch_remove_hw_breakpoint(addr, len, type); if (err) return err; } for (env = first_cpu; env != NULL; env = env->next_cpu) { err = kvm_update_guest_debug(env, 0); if (err) return err; } return 0; } void kvm_remove_all_breakpoints(CPUState *current_env) { struct kvm_sw_breakpoint *bp, *next; KVMState *s = current_env->kvm_state; CPUState *env; TAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) { if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) { /* Try harder to find a CPU that currently sees the breakpoint. */ for (env = first_cpu; env != NULL; env = env->next_cpu) { if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) break; } } } kvm_arch_remove_all_hw_breakpoints(); for (env = first_cpu; env != NULL; env = env->next_cpu) kvm_update_guest_debug(env, 0); } #else /* !KVM_CAP_SET_GUEST_DEBUG */ int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap) { return -EINVAL; } int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr, target_ulong len, int type) { return -EINVAL; } int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr, target_ulong len, int type) { return -EINVAL; } void kvm_remove_all_breakpoints(CPUState *current_env) { } #endif /* !KVM_CAP_SET_GUEST_DEBUG */