#include "cpu.h" #include "dyngen-exec.h" #include "host-utils.h" #include "helper.h" #include "sysemu.h" #if !defined(CONFIG_USER_ONLY) #include "softmmu_exec.h" #endif //#define DEBUG_MMU //#define DEBUG_MXCC //#define DEBUG_UNALIGNED //#define DEBUG_UNASSIGNED //#define DEBUG_ASI //#define DEBUG_PSTATE //#define DEBUG_CACHE_CONTROL #ifdef DEBUG_MMU #define DPRINTF_MMU(fmt, ...) \ do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF_MMU(fmt, ...) do {} while (0) #endif #ifdef DEBUG_MXCC #define DPRINTF_MXCC(fmt, ...) \ do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF_MXCC(fmt, ...) do {} while (0) #endif #ifdef DEBUG_ASI #define DPRINTF_ASI(fmt, ...) \ do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) #endif #ifdef DEBUG_PSTATE #define DPRINTF_PSTATE(fmt, ...) \ do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF_PSTATE(fmt, ...) do {} while (0) #endif #ifdef DEBUG_CACHE_CONTROL #define DPRINTF_CACHE_CONTROL(fmt, ...) \ do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0) #endif #ifdef TARGET_SPARC64 #ifndef TARGET_ABI32 #define AM_CHECK(env1) ((env1)->pstate & PS_AM) #else #define AM_CHECK(env1) (1) #endif #endif #define DT0 (env->dt0) #define DT1 (env->dt1) #define QT0 (env->qt0) #define QT1 (env->qt1) /* Leon3 cache control */ /* Cache control: emulate the behavior of cache control registers but without any effect on the emulated */ #define CACHE_STATE_MASK 0x3 #define CACHE_DISABLED 0x0 #define CACHE_FROZEN 0x1 #define CACHE_ENABLED 0x3 /* Cache Control register fields */ #define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */ #define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */ #define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */ #define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */ #define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */ #define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */ #define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */ #define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */ #if !defined(CONFIG_USER_ONLY) static void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, int is_asi, int size); #else #ifdef TARGET_SPARC64 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec, int is_asi, int size); #endif #endif #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) // Calculates TSB pointer value for fault page size 8k or 64k static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, uint64_t tag_access_register, int page_size) { uint64_t tsb_base = tsb_register & ~0x1fffULL; int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; int tsb_size = tsb_register & 0xf; // discard lower 13 bits which hold tag access context uint64_t tag_access_va = tag_access_register & ~0x1fffULL; // now reorder bits uint64_t tsb_base_mask = ~0x1fffULL; uint64_t va = tag_access_va; // move va bits to correct position if (page_size == 8*1024) { va >>= 9; } else if (page_size == 64*1024) { va >>= 12; } if (tsb_size) { tsb_base_mask <<= tsb_size; } // calculate tsb_base mask and adjust va if split is in use if (tsb_split) { if (page_size == 8*1024) { va &= ~(1ULL << (13 + tsb_size)); } else if (page_size == 64*1024) { va |= (1ULL << (13 + tsb_size)); } tsb_base_mask <<= 1; } return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; } // Calculates tag target register value by reordering bits // in tag access register static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) { return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); } static void replace_tlb_entry(SparcTLBEntry *tlb, uint64_t tlb_tag, uint64_t tlb_tte, CPUState *env1) { target_ulong mask, size, va, offset; // flush page range if translation is valid if (TTE_IS_VALID(tlb->tte)) { mask = 0xffffffffffffe000ULL; mask <<= 3 * ((tlb->tte >> 61) & 3); size = ~mask + 1; va = tlb->tag & mask; for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { tlb_flush_page(env1, va + offset); } } tlb->tag = tlb_tag; tlb->tte = tlb_tte; } static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, const char* strmmu, CPUState *env1) { unsigned int i; target_ulong mask; uint64_t context; int is_demap_context = (demap_addr >> 6) & 1; // demap context switch ((demap_addr >> 4) & 3) { case 0: // primary context = env1->dmmu.mmu_primary_context; break; case 1: // secondary context = env1->dmmu.mmu_secondary_context; break; case 2: // nucleus context = 0; break; case 3: // reserved default: return; } for (i = 0; i < 64; i++) { if (TTE_IS_VALID(tlb[i].tte)) { if (is_demap_context) { // will remove non-global entries matching context value if (TTE_IS_GLOBAL(tlb[i].tte) || !tlb_compare_context(&tlb[i], context)) { continue; } } else { // demap page // will remove any entry matching VA mask = 0xffffffffffffe000ULL; mask <<= 3 * ((tlb[i].tte >> 61) & 3); if (!compare_masked(demap_addr, tlb[i].tag, mask)) { continue; } // entry should be global or matching context value if (!TTE_IS_GLOBAL(tlb[i].tte) && !tlb_compare_context(&tlb[i], context)) { continue; } } replace_tlb_entry(&tlb[i], 0, 0, env1); #ifdef DEBUG_MMU DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); dump_mmu(stdout, fprintf, env1); #endif } } } static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, uint64_t tlb_tag, uint64_t tlb_tte, const char* strmmu, CPUState *env1) { unsigned int i, replace_used; // Try replacing invalid entry for (i = 0; i < 64; i++) { if (!TTE_IS_VALID(tlb[i].tte)) { replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); #ifdef DEBUG_MMU DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); dump_mmu(stdout, fprintf, env1); #endif return; } } // All entries are valid, try replacing unlocked entry for (replace_used = 0; replace_used < 2; ++replace_used) { // Used entries are not replaced on first pass for (i = 0; i < 64; i++) { if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); #ifdef DEBUG_MMU DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", strmmu, (replace_used?"used":"unused"), i); dump_mmu(stdout, fprintf, env1); #endif return; } } // Now reset used bit and search for unused entries again for (i = 0; i < 64; i++) { TTE_SET_UNUSED(tlb[i].tte); } } #ifdef DEBUG_MMU DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu); #endif // error state? } #endif static inline target_ulong address_mask(CPUState *env1, target_ulong addr) { #ifdef TARGET_SPARC64 if (AM_CHECK(env1)) addr &= 0xffffffffULL; #endif return addr; } /* returns true if access using this ASI is to have address translated by MMU otherwise access is to raw physical address */ static inline int is_translating_asi(int asi) { #ifdef TARGET_SPARC64 /* Ultrasparc IIi translating asi - note this list is defined by cpu implementation */ switch (asi) { case 0x04 ... 0x11: case 0x16 ... 0x19: case 0x1E ... 0x1F: case 0x24 ... 0x2C: case 0x70 ... 0x73: case 0x78 ... 0x79: case 0x80 ... 0xFF: return 1; default: return 0; } #else /* TODO: check sparc32 bits */ return 0; #endif } static inline target_ulong asi_address_mask(CPUState *env1, int asi, target_ulong addr) { if (is_translating_asi(asi)) { return address_mask(env, addr); } else { return addr; } } static void raise_exception(int tt) { env->exception_index = tt; cpu_loop_exit(env); } void HELPER(raise_exception)(int tt) { raise_exception(tt); } void helper_shutdown(void) { #if !defined(CONFIG_USER_ONLY) qemu_system_shutdown_request(); #endif } void helper_check_align(target_ulong addr, uint32_t align) { if (addr & align) { #ifdef DEBUG_UNALIGNED printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx "\n", addr, env->pc); #endif raise_exception(TT_UNALIGNED); } } #define F_HELPER(name, p) void helper_f##name##p(void) #define F_BINOP(name) \ float32 helper_f ## name ## s (float32 src1, float32 src2) \ { \ return float32_ ## name (src1, src2, &env->fp_status); \ } \ F_HELPER(name, d) \ { \ DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \ } \ F_HELPER(name, q) \ { \ QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \ } F_BINOP(add); F_BINOP(sub); F_BINOP(mul); F_BINOP(div); #undef F_BINOP void helper_fsmuld(float32 src1, float32 src2) { DT0 = float64_mul(float32_to_float64(src1, &env->fp_status), float32_to_float64(src2, &env->fp_status), &env->fp_status); } void helper_fdmulq(void) { QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status), float64_to_float128(DT1, &env->fp_status), &env->fp_status); } float32 helper_fnegs(float32 src) { return float32_chs(src); } #ifdef TARGET_SPARC64 F_HELPER(neg, d) { DT0 = float64_chs(DT1); } F_HELPER(neg, q) { QT0 = float128_chs(QT1); } #endif /* Integer to float conversion. */ float32 helper_fitos(int32_t src) { return int32_to_float32(src, &env->fp_status); } void helper_fitod(int32_t src) { DT0 = int32_to_float64(src, &env->fp_status); } void helper_fitoq(int32_t src) { QT0 = int32_to_float128(src, &env->fp_status); } #ifdef TARGET_SPARC64 float32 helper_fxtos(void) { return int64_to_float32(*((int64_t *)&DT1), &env->fp_status); } F_HELPER(xto, d) { DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status); } F_HELPER(xto, q) { QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status); } #endif #undef F_HELPER /* floating point conversion */ float32 helper_fdtos(void) { return float64_to_float32(DT1, &env->fp_status); } void helper_fstod(float32 src) { DT0 = float32_to_float64(src, &env->fp_status); } float32 helper_fqtos(void) { return float128_to_float32(QT1, &env->fp_status); } void helper_fstoq(float32 src) { QT0 = float32_to_float128(src, &env->fp_status); } void helper_fqtod(void) { DT0 = float128_to_float64(QT1, &env->fp_status); } void helper_fdtoq(void) { QT0 = float64_to_float128(DT1, &env->fp_status); } /* Float to integer conversion. */ int32_t helper_fstoi(float32 src) { return float32_to_int32_round_to_zero(src, &env->fp_status); } int32_t helper_fdtoi(void) { return float64_to_int32_round_to_zero(DT1, &env->fp_status); } int32_t helper_fqtoi(void) { return float128_to_int32_round_to_zero(QT1, &env->fp_status); } #ifdef TARGET_SPARC64 void helper_fstox(float32 src) { *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status); } void helper_fdtox(void) { *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status); } void helper_fqtox(void) { *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status); } void helper_faligndata(void) { uint64_t tmp; tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8); /* on many architectures a shift of 64 does nothing */ if ((env->gsr & 7) != 0) { tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8); } *((uint64_t *)&DT0) = tmp; } #ifdef HOST_WORDS_BIGENDIAN #define VIS_B64(n) b[7 - (n)] #define VIS_W64(n) w[3 - (n)] #define VIS_SW64(n) sw[3 - (n)] #define VIS_L64(n) l[1 - (n)] #define VIS_B32(n) b[3 - (n)] #define VIS_W32(n) w[1 - (n)] #else #define VIS_B64(n) b[n] #define VIS_W64(n) w[n] #define VIS_SW64(n) sw[n] #define VIS_L64(n) l[n] #define VIS_B32(n) b[n] #define VIS_W32(n) w[n] #endif typedef union { uint8_t b[8]; uint16_t w[4]; int16_t sw[4]; uint32_t l[2]; uint64_t ll; float64 d; } vis64; typedef union { uint8_t b[4]; uint16_t w[2]; uint32_t l; float32 f; } vis32; void helper_fpmerge(void) { vis64 s, d; s.d = DT0; d.d = DT1; // Reverse calculation order to handle overlap d.VIS_B64(7) = s.VIS_B64(3); d.VIS_B64(6) = d.VIS_B64(3); d.VIS_B64(5) = s.VIS_B64(2); d.VIS_B64(4) = d.VIS_B64(2); d.VIS_B64(3) = s.VIS_B64(1); d.VIS_B64(2) = d.VIS_B64(1); d.VIS_B64(1) = s.VIS_B64(0); //d.VIS_B64(0) = d.VIS_B64(0); DT0 = d.d; } void helper_fmul8x16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmul8x16al(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmul8x16au(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmul8sux16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmul8ulx16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void helper_fmuld8sux16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_L64(r) = tmp; // Reverse calculation order to handle overlap PMUL(1); PMUL(0); #undef PMUL DT0 = d.d; } void helper_fmuld8ulx16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_L64(r) = tmp; // Reverse calculation order to handle overlap PMUL(1); PMUL(0); #undef PMUL DT0 = d.d; } void helper_fexpand(void) { vis32 s; vis64 d; s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff); d.d = DT1; d.VIS_W64(0) = s.VIS_B32(0) << 4; d.VIS_W64(1) = s.VIS_B32(1) << 4; d.VIS_W64(2) = s.VIS_B32(2) << 4; d.VIS_W64(3) = s.VIS_B32(3) << 4; DT0 = d.d; } #define VIS_HELPER(name, F) \ void name##16(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \ d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \ d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \ d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \ \ DT0 = d.d; \ } \ \ uint32_t name##16s(uint32_t src1, uint32_t src2) \ { \ vis32 s, d; \ \ s.l = src1; \ d.l = src2; \ \ d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \ d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \ \ return d.l; \ } \ \ void name##32(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \ d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \ \ DT0 = d.d; \ } \ \ uint32_t name##32s(uint32_t src1, uint32_t src2) \ { \ vis32 s, d; \ \ s.l = src1; \ d.l = src2; \ \ d.l = F(d.l, s.l); \ \ return d.l; \ } #define FADD(a, b) ((a) + (b)) #define FSUB(a, b) ((a) - (b)) VIS_HELPER(helper_fpadd, FADD) VIS_HELPER(helper_fpsub, FSUB) #define VIS_CMPHELPER(name, F) \ uint64_t name##16(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_W64(0) = F(s.VIS_W64(0), d.VIS_W64(0)) ? 1 : 0; \ d.VIS_W64(0) |= F(s.VIS_W64(1), d.VIS_W64(1)) ? 2 : 0; \ d.VIS_W64(0) |= F(s.VIS_W64(2), d.VIS_W64(2)) ? 4 : 0; \ d.VIS_W64(0) |= F(s.VIS_W64(3), d.VIS_W64(3)) ? 8 : 0; \ d.VIS_W64(1) = d.VIS_W64(2) = d.VIS_W64(3) = 0; \ \ return d.ll; \ } \ \ uint64_t name##32(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_L64(0) = F(s.VIS_L64(0), d.VIS_L64(0)) ? 1 : 0; \ d.VIS_L64(0) |= F(s.VIS_L64(1), d.VIS_L64(1)) ? 2 : 0; \ d.VIS_L64(1) = 0; \ \ return d.ll; \ } #define FCMPGT(a, b) ((a) > (b)) #define FCMPEQ(a, b) ((a) == (b)) #define FCMPLE(a, b) ((a) <= (b)) #define FCMPNE(a, b) ((a) != (b)) VIS_CMPHELPER(helper_fcmpgt, FCMPGT) VIS_CMPHELPER(helper_fcmpeq, FCMPEQ) VIS_CMPHELPER(helper_fcmple, FCMPLE) VIS_CMPHELPER(helper_fcmpne, FCMPNE) #endif void helper_check_ieee_exceptions(void) { target_ulong status; status = get_float_exception_flags(&env->fp_status); if (status) { /* Copy IEEE 754 flags into FSR */ if (status & float_flag_invalid) env->fsr |= FSR_NVC; if (status & float_flag_overflow) env->fsr |= FSR_OFC; if (status & float_flag_underflow) env->fsr |= FSR_UFC; if (status & float_flag_divbyzero) env->fsr |= FSR_DZC; if (status & float_flag_inexact) env->fsr |= FSR_NXC; if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { /* Unmasked exception, generate a trap */ env->fsr |= FSR_FTT_IEEE_EXCP; raise_exception(TT_FP_EXCP); } else { /* Accumulate exceptions */ env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; } } } void helper_clear_float_exceptions(void) { set_float_exception_flags(0, &env->fp_status); } float32 helper_fabss(float32 src) { return float32_abs(src); } #ifdef TARGET_SPARC64 void helper_fabsd(void) { DT0 = float64_abs(DT1); } void helper_fabsq(void) { QT0 = float128_abs(QT1); } #endif float32 helper_fsqrts(float32 src) { return float32_sqrt(src, &env->fp_status); } void helper_fsqrtd(void) { DT0 = float64_sqrt(DT1, &env->fp_status); } void helper_fsqrtq(void) { QT0 = float128_sqrt(QT1, &env->fp_status); } #define GEN_FCMP(name, size, reg1, reg2, FS, E) \ void glue(helper_, name) (void) \ { \ env->fsr &= FSR_FTT_NMASK; \ if (E && (glue(size, _is_any_nan)(reg1) || \ glue(size, _is_any_nan)(reg2)) && \ (env->fsr & FSR_NVM)) { \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ raise_exception(TT_FP_EXCP); \ } \ switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \ case float_relation_unordered: \ if ((env->fsr & FSR_NVM)) { \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ raise_exception(TT_FP_EXCP); \ } else { \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ env->fsr |= FSR_NVA; \ } \ break; \ case float_relation_less: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= FSR_FCC1 << FS; \ break; \ default: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ break; \ } \ } #define GEN_FCMPS(name, size, FS, E) \ void glue(helper_, name)(float32 src1, float32 src2) \ { \ env->fsr &= FSR_FTT_NMASK; \ if (E && (glue(size, _is_any_nan)(src1) || \ glue(size, _is_any_nan)(src2)) && \ (env->fsr & FSR_NVM)) { \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ raise_exception(TT_FP_EXCP); \ } \ switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \ case float_relation_unordered: \ if ((env->fsr & FSR_NVM)) { \ env->fsr |= FSR_NVC; \ env->fsr |= FSR_FTT_IEEE_EXCP; \ raise_exception(TT_FP_EXCP); \ } else { \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ env->fsr |= FSR_NVA; \ } \ break; \ case float_relation_less: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= FSR_FCC0 << FS; \ break; \ case float_relation_greater: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ env->fsr |= FSR_FCC1 << FS; \ break; \ default: \ env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ break; \ } \ } GEN_FCMPS(fcmps, float32, 0, 0); GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0); GEN_FCMPS(fcmpes, float32, 0, 1); GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1); GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0); GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1); static uint32_t compute_all_flags(void) { return env->psr & PSR_ICC; } static uint32_t compute_C_flags(void) { return env->psr & PSR_CARRY; } static inline uint32_t get_NZ_icc(int32_t dst) { uint32_t ret = 0; if (dst == 0) { ret = PSR_ZERO; } else if (dst < 0) { ret = PSR_NEG; } return ret; } #ifdef TARGET_SPARC64 static uint32_t compute_all_flags_xcc(void) { return env->xcc & PSR_ICC; } static uint32_t compute_C_flags_xcc(void) { return env->xcc & PSR_CARRY; } static inline uint32_t get_NZ_xcc(target_long dst) { uint32_t ret = 0; if (!dst) { ret = PSR_ZERO; } else if (dst < 0) { ret = PSR_NEG; } return ret; } #endif static inline uint32_t get_V_div_icc(target_ulong src2) { uint32_t ret = 0; if (src2 != 0) { ret = PSR_OVF; } return ret; } static uint32_t compute_all_div(void) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_V_div_icc(CC_SRC2); return ret; } static uint32_t compute_C_div(void) { return 0; } static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1) { uint32_t ret = 0; if (dst < src1) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) { ret = PSR_OVF; } return ret; } #ifdef TARGET_SPARC64 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1) { uint32_t ret = 0; if (dst < src1) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) { ret = PSR_OVF; } return ret; } static uint32_t compute_all_add_xcc(void) { uint32_t ret; ret = get_NZ_xcc(CC_DST); ret |= get_C_add_xcc(CC_DST, CC_SRC); ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_add_xcc(void) { return get_C_add_xcc(CC_DST, CC_SRC); } #endif static uint32_t compute_all_add(void) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_add_icc(CC_DST, CC_SRC); ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_add(void) { return get_C_add_icc(CC_DST, CC_SRC); } #ifdef TARGET_SPARC64 static uint32_t compute_all_addx_xcc(void) { uint32_t ret; ret = get_NZ_xcc(CC_DST); ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_addx_xcc(void) { uint32_t ret; ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } #endif static uint32_t compute_all_addx(void) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_addx(void) { uint32_t ret; ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2) { uint32_t ret = 0; if ((src1 | src2) & 0x3) { ret = PSR_OVF; } return ret; } static uint32_t compute_all_tadd(void) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_add_icc(CC_DST, CC_SRC); ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_tag_icc(CC_SRC, CC_SRC2); return ret; } static uint32_t compute_all_taddtv(void) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_add_icc(CC_DST, CC_SRC); return ret; } static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (src1 < src2) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1, uint32_t src2) { uint32_t ret = 0; if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) { ret = PSR_OVF; } return ret; } #ifdef TARGET_SPARC64 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (src1 < src2) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) { ret = PSR_CARRY; } return ret; } static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1, target_ulong src2) { uint32_t ret = 0; if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) { ret = PSR_OVF; } return ret; } static uint32_t compute_all_sub_xcc(void) { uint32_t ret; ret = get_NZ_xcc(CC_DST); ret |= get_C_sub_xcc(CC_SRC, CC_SRC2); ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_sub_xcc(void) { return get_C_sub_xcc(CC_SRC, CC_SRC2); } #endif static uint32_t compute_all_sub(void) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_sub_icc(CC_SRC, CC_SRC2); ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_sub(void) { return get_C_sub_icc(CC_SRC, CC_SRC2); } #ifdef TARGET_SPARC64 static uint32_t compute_all_subx_xcc(void) { uint32_t ret; ret = get_NZ_xcc(CC_DST); ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_subx_xcc(void) { uint32_t ret; ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2); return ret; } #endif static uint32_t compute_all_subx(void) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_C_subx(void) { uint32_t ret; ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2); return ret; } static uint32_t compute_all_tsub(void) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_sub_icc(CC_SRC, CC_SRC2); ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); ret |= get_V_tag_icc(CC_SRC, CC_SRC2); return ret; } static uint32_t compute_all_tsubtv(void) { uint32_t ret; ret = get_NZ_icc(CC_DST); ret |= get_C_sub_icc(CC_SRC, CC_SRC2); return ret; } static uint32_t compute_all_logic(void) { return get_NZ_icc(CC_DST); } static uint32_t compute_C_logic(void) { return 0; } #ifdef TARGET_SPARC64 static uint32_t compute_all_logic_xcc(void) { return get_NZ_xcc(CC_DST); } #endif typedef struct CCTable { uint32_t (*compute_all)(void); /* return all the flags */ uint32_t (*compute_c)(void); /* return the C flag */ } CCTable; static const CCTable icc_table[CC_OP_NB] = { /* CC_OP_DYNAMIC should never happen */ [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags }, [CC_OP_DIV] = { compute_all_div, compute_C_div }, [CC_OP_ADD] = { compute_all_add, compute_C_add }, [CC_OP_ADDX] = { compute_all_addx, compute_C_addx }, [CC_OP_TADD] = { compute_all_tadd, compute_C_add }, [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add }, [CC_OP_SUB] = { compute_all_sub, compute_C_sub }, [CC_OP_SUBX] = { compute_all_subx, compute_C_subx }, [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub }, [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub }, [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic }, }; #ifdef TARGET_SPARC64 static const CCTable xcc_table[CC_OP_NB] = { /* CC_OP_DYNAMIC should never happen */ [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc }, [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic }, [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc }, [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc }, [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc }, [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc }, [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc }, [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc }, [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc }, [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc }, [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic }, }; #endif void helper_compute_psr(void) { uint32_t new_psr; new_psr = icc_table[CC_OP].compute_all(); env->psr = new_psr; #ifdef TARGET_SPARC64 new_psr = xcc_table[CC_OP].compute_all(); env->xcc = new_psr; #endif CC_OP = CC_OP_FLAGS; } uint32_t helper_compute_C_icc(void) { uint32_t ret; ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT; return ret; } static inline void memcpy32(target_ulong *dst, const target_ulong *src) { dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; } static void set_cwp(int new_cwp) { /* put the modified wrap registers at their proper location */ if (env->cwp == env->nwindows - 1) { memcpy32(env->regbase, env->regbase + env->nwindows * 16); } env->cwp = new_cwp; /* put the wrap registers at their temporary location */ if (new_cwp == env->nwindows - 1) { memcpy32(env->regbase + env->nwindows * 16, env->regbase); } env->regwptr = env->regbase + (new_cwp * 16); } void cpu_set_cwp(CPUState *env1, int new_cwp) { CPUState *saved_env; saved_env = env; env = env1; set_cwp(new_cwp); env = saved_env; } static target_ulong get_psr(void) { helper_compute_psr(); #if !defined (TARGET_SPARC64) return env->version | (env->psr & PSR_ICC) | (env->psref? PSR_EF : 0) | (env->psrpil << 8) | (env->psrs? PSR_S : 0) | (env->psrps? PSR_PS : 0) | (env->psret? PSR_ET : 0) | env->cwp; #else return env->psr & PSR_ICC; #endif } target_ulong cpu_get_psr(CPUState *env1) { CPUState *saved_env; target_ulong ret; saved_env = env; env = env1; ret = get_psr(); env = saved_env; return ret; } static void put_psr(target_ulong val) { env->psr = val & PSR_ICC; #if !defined (TARGET_SPARC64) env->psref = (val & PSR_EF)? 1 : 0; env->psrpil = (val & PSR_PIL) >> 8; #endif #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY)) cpu_check_irqs(env); #endif #if !defined (TARGET_SPARC64) env->psrs = (val & PSR_S)? 1 : 0; env->psrps = (val & PSR_PS)? 1 : 0; env->psret = (val & PSR_ET)? 1 : 0; set_cwp(val & PSR_CWP); #endif env->cc_op = CC_OP_FLAGS; } void cpu_put_psr(CPUState *env1, target_ulong val) { CPUState *saved_env; saved_env = env; env = env1; put_psr(val); env = saved_env; } static int cwp_inc(int cwp) { if (unlikely(cwp >= env->nwindows)) { cwp -= env->nwindows; } return cwp; } int cpu_cwp_inc(CPUState *env1, int cwp) { CPUState *saved_env; target_ulong ret; saved_env = env; env = env1; ret = cwp_inc(cwp); env = saved_env; return ret; } static int cwp_dec(int cwp) { if (unlikely(cwp < 0)) { cwp += env->nwindows; } return cwp; } int cpu_cwp_dec(CPUState *env1, int cwp) { CPUState *saved_env; target_ulong ret; saved_env = env; env = env1; ret = cwp_dec(cwp); env = saved_env; return ret; } #ifdef TARGET_SPARC64 GEN_FCMPS(fcmps_fcc1, float32, 22, 0); GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0); GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0); GEN_FCMPS(fcmps_fcc2, float32, 24, 0); GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0); GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0); GEN_FCMPS(fcmps_fcc3, float32, 26, 0); GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0); GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0); GEN_FCMPS(fcmpes_fcc1, float32, 22, 1); GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1); GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1); GEN_FCMPS(fcmpes_fcc2, float32, 24, 1); GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1); GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1); GEN_FCMPS(fcmpes_fcc3, float32, 26, 1); GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1); GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1); #endif #undef GEN_FCMPS #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ defined(DEBUG_MXCC) static void dump_mxcc(CPUState *env) { printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 "\n", env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]); printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 "\n" " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 "\n", env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3], env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]); } #endif #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ && defined(DEBUG_ASI) static void dump_asi(const char *txt, target_ulong addr, int asi, int size, uint64_t r1) { switch (size) { case 1: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, addr, asi, r1 & 0xff); break; case 2: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, addr, asi, r1 & 0xffff); break; case 4: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, addr, asi, r1 & 0xffffffff); break; case 8: DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, addr, asi, r1); break; } } #endif #ifndef TARGET_SPARC64 #ifndef CONFIG_USER_ONLY /* Leon3 cache control */ static void leon3_cache_control_int(void) { uint32_t state = 0; if (env->cache_control & CACHE_CTRL_IF) { /* Instruction cache state */ state = env->cache_control & CACHE_STATE_MASK; if (state == CACHE_ENABLED) { state = CACHE_FROZEN; DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n"); } env->cache_control &= ~CACHE_STATE_MASK; env->cache_control |= state; } if (env->cache_control & CACHE_CTRL_DF) { /* Data cache state */ state = (env->cache_control >> 2) & CACHE_STATE_MASK; if (state == CACHE_ENABLED) { state = CACHE_FROZEN; DPRINTF_CACHE_CONTROL("Data cache: freeze\n"); } env->cache_control &= ~(CACHE_STATE_MASK << 2); env->cache_control |= (state << 2); } } static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size) { DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n", addr, val, size); if (size != 4) { DPRINTF_CACHE_CONTROL("32bits only\n"); return; } switch (addr) { case 0x00: /* Cache control */ /* These values must always be read as zeros */ val &= ~CACHE_CTRL_FD; val &= ~CACHE_CTRL_FI; val &= ~CACHE_CTRL_IB; val &= ~CACHE_CTRL_IP; val &= ~CACHE_CTRL_DP; env->cache_control = val; break; case 0x04: /* Instruction cache configuration */ case 0x08: /* Data cache configuration */ /* Read Only */ break; default: DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr); break; }; } static uint64_t leon3_cache_control_ld(target_ulong addr, int size) { uint64_t ret = 0; if (size != 4) { DPRINTF_CACHE_CONTROL("32bits only\n"); return 0; } switch (addr) { case 0x00: /* Cache control */ ret = env->cache_control; break; /* Configuration registers are read and only always keep those predefined values */ case 0x04: /* Instruction cache configuration */ ret = 0x10220000; break; case 0x08: /* Data cache configuration */ ret = 0x18220000; break; default: DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr); break; }; DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n", addr, ret, size); return ret; } void leon3_irq_manager(void *irq_manager, int intno) { leon3_irq_ack(irq_manager, intno); leon3_cache_control_int(); } uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) uint32_t last_addr = addr; #endif helper_check_align(addr, size - 1); switch (asi) { case 2: /* SuperSparc MXCC registers and Leon3 cache control */ switch (addr) { case 0x00: /* Leon3 Cache Control */ case 0x08: /* Leon3 Instruction Cache config */ case 0x0C: /* Leon3 Date Cache config */ if (env->def->features & CPU_FEATURE_CACHE_CTRL) { ret = leon3_cache_control_ld(addr, size); } break; case 0x01c00a00: /* MXCC control register */ if (size == 8) ret = env->mxccregs[3]; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00a04: /* MXCC control register */ if (size == 4) ret = env->mxccregs[3]; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00c00: /* Module reset register */ if (size == 8) { ret = env->mxccregs[5]; // should we do something here? } else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00f00: /* MBus port address register */ if (size == 8) ret = env->mxccregs[7]; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; default: DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size); break; } DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " "addr = %08x -> ret = %" PRIx64 "," "addr = %08x\n", asi, size, sign, last_addr, ret, addr); #ifdef DEBUG_MXCC dump_mxcc(env); #endif break; case 3: /* MMU probe */ { int mmulev; mmulev = (addr >> 8) & 15; if (mmulev > 4) ret = 0; else ret = mmu_probe(env, addr, mmulev); DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", addr, mmulev, ret); } break; case 4: /* read MMU regs */ { int reg = (addr >> 8) & 0x1f; ret = env->mmuregs[reg]; if (reg == 3) /* Fault status cleared on read */ env->mmuregs[3] = 0; else if (reg == 0x13) /* Fault status read */ ret = env->mmuregs[3]; else if (reg == 0x14) /* Fault address read */ ret = env->mmuregs[4]; DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); } break; case 5: // Turbosparc ITLB Diagnostic case 6: // Turbosparc DTLB Diagnostic case 7: // Turbosparc IOTLB Diagnostic break; case 9: /* Supervisor code access */ switch(size) { case 1: ret = ldub_code(addr); break; case 2: ret = lduw_code(addr); break; default: case 4: ret = ldl_code(addr); break; case 8: ret = ldq_code(addr); break; } break; case 0xa: /* User data access */ switch(size) { case 1: ret = ldub_user(addr); break; case 2: ret = lduw_user(addr); break; default: case 4: ret = ldl_user(addr); break; case 8: ret = ldq_user(addr); break; } break; case 0xb: /* Supervisor data access */ switch(size) { case 1: ret = ldub_kernel(addr); break; case 2: ret = lduw_kernel(addr); break; default: case 4: ret = ldl_kernel(addr); break; case 8: ret = ldq_kernel(addr); break; } break; case 0xc: /* I-cache tag */ case 0xd: /* I-cache data */ case 0xe: /* D-cache tag */ case 0xf: /* D-cache data */ break; case 0x20: /* MMU passthrough */ switch(size) { case 1: ret = ldub_phys(addr); break; case 2: ret = lduw_phys(addr); break; default: case 4: ret = ldl_phys(addr); break; case 8: ret = ldq_phys(addr); break; } break; case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ switch(size) { case 1: ret = ldub_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32)); break; case 2: ret = lduw_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32)); break; default: case 4: ret = ldl_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32)); break; case 8: ret = ldq_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32)); break; } break; case 0x30: // Turbosparc secondary cache diagnostic case 0x31: // Turbosparc RAM snoop case 0x32: // Turbosparc page table descriptor diagnostic case 0x39: /* data cache diagnostic register */ ret = 0; break; case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ { int reg = (addr >> 8) & 3; switch(reg) { case 0: /* Breakpoint Value (Addr) */ ret = env->mmubpregs[reg]; break; case 1: /* Breakpoint Mask */ ret = env->mmubpregs[reg]; break; case 2: /* Breakpoint Control */ ret = env->mmubpregs[reg]; break; case 3: /* Breakpoint Status */ ret = env->mmubpregs[reg]; env->mmubpregs[reg] = 0ULL; break; } DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, ret); } break; case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ ret = env->mmubpctrv; break; case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ ret = env->mmubpctrc; break; case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ ret = env->mmubpctrs; break; case 0x4c: /* SuperSPARC MMU Breakpoint Action */ ret = env->mmubpaction; break; case 8: /* User code access, XXX */ default: do_unassigned_access(addr, 0, 0, asi, size); ret = 0; break; } if (sign) { switch(size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) { helper_check_align(addr, size - 1); switch(asi) { case 2: /* SuperSparc MXCC registers and Leon3 cache control */ switch (addr) { case 0x00: /* Leon3 Cache Control */ case 0x08: /* Leon3 Instruction Cache config */ case 0x0C: /* Leon3 Date Cache config */ if (env->def->features & CPU_FEATURE_CACHE_CTRL) { leon3_cache_control_st(addr, val, size); } break; case 0x01c00000: /* MXCC stream data register 0 */ if (size == 8) env->mxccdata[0] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00008: /* MXCC stream data register 1 */ if (size == 8) env->mxccdata[1] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00010: /* MXCC stream data register 2 */ if (size == 8) env->mxccdata[2] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00018: /* MXCC stream data register 3 */ if (size == 8) env->mxccdata[3] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00100: /* MXCC stream source */ if (size == 8) env->mxccregs[0] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 0); env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 8); env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16); env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24); break; case 0x01c00200: /* MXCC stream destination */ if (size == 8) env->mxccregs[1] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]); stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]); break; case 0x01c00a00: /* MXCC control register */ if (size == 8) env->mxccregs[3] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00a04: /* MXCC control register */ if (size == 4) env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) | val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00e00: /* MXCC error register */ // writing a 1 bit clears the error if (size == 8) env->mxccregs[6] &= ~val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; case 0x01c00f00: /* MBus port address register */ if (size == 8) env->mxccregs[7] = val; else DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size); break; default: DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size); break; } DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", asi, size, addr, val); #ifdef DEBUG_MXCC dump_mxcc(env); #endif break; case 3: /* MMU flush */ { int mmulev; mmulev = (addr >> 8) & 15; DPRINTF_MMU("mmu flush level %d\n", mmulev); switch (mmulev) { case 0: // flush page tlb_flush_page(env, addr & 0xfffff000); break; case 1: // flush segment (256k) case 2: // flush region (16M) case 3: // flush context (4G) case 4: // flush entire tlb_flush(env, 1); break; default: break; } #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env); #endif } break; case 4: /* write MMU regs */ { int reg = (addr >> 8) & 0x1f; uint32_t oldreg; oldreg = env->mmuregs[reg]; switch(reg) { case 0: // Control Register env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | (val & 0x00ffffff); // Mappings generated during no-fault mode or MMU // disabled mode are invalid in normal mode if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) != (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) tlb_flush(env, 1); break; case 1: // Context Table Pointer Register env->mmuregs[reg] = val & env->def->mmu_ctpr_mask; break; case 2: // Context Register env->mmuregs[reg] = val & env->def->mmu_cxr_mask; if (oldreg != env->mmuregs[reg]) { /* we flush when the MMU context changes because QEMU has no MMU context support */ tlb_flush(env, 1); } break; case 3: // Synchronous Fault Status Register with Clear case 4: // Synchronous Fault Address Register break; case 0x10: // TLB Replacement Control Register env->mmuregs[reg] = val & env->def->mmu_trcr_mask; break; case 0x13: // Synchronous Fault Status Register with Read and Clear env->mmuregs[3] = val & env->def->mmu_sfsr_mask; break; case 0x14: // Synchronous Fault Address Register env->mmuregs[4] = val; break; default: env->mmuregs[reg] = val; break; } if (oldreg != env->mmuregs[reg]) { DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env); #endif } break; case 5: // Turbosparc ITLB Diagnostic case 6: // Turbosparc DTLB Diagnostic case 7: // Turbosparc IOTLB Diagnostic break; case 0xa: /* User data access */ switch(size) { case 1: stb_user(addr, val); break; case 2: stw_user(addr, val); break; default: case 4: stl_user(addr, val); break; case 8: stq_user(addr, val); break; } break; case 0xb: /* Supervisor data access */ switch(size) { case 1: stb_kernel(addr, val); break; case 2: stw_kernel(addr, val); break; default: case 4: stl_kernel(addr, val); break; case 8: stq_kernel(addr, val); break; } break; case 0xc: /* I-cache tag */ case 0xd: /* I-cache data */ case 0xe: /* D-cache tag */ case 0xf: /* D-cache data */ case 0x10: /* I/D-cache flush page */ case 0x11: /* I/D-cache flush segment */ case 0x12: /* I/D-cache flush region */ case 0x13: /* I/D-cache flush context */ case 0x14: /* I/D-cache flush user */ break; case 0x17: /* Block copy, sta access */ { // val = src // addr = dst // copy 32 bytes unsigned int i; uint32_t src = val & ~3, dst = addr & ~3, temp; for (i = 0; i < 32; i += 4, src += 4, dst += 4) { temp = ldl_kernel(src); stl_kernel(dst, temp); } } break; case 0x1f: /* Block fill, stda access */ { // addr = dst // fill 32 bytes with val unsigned int i; uint32_t dst = addr & 7; for (i = 0; i < 32; i += 8, dst += 8) stq_kernel(dst, val); } break; case 0x20: /* MMU passthrough */ { switch(size) { case 1: stb_phys(addr, val); break; case 2: stw_phys(addr, val); break; case 4: default: stl_phys(addr, val); break; case 8: stq_phys(addr, val); break; } } break; case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ { switch(size) { case 1: stb_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; case 2: stw_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; case 4: default: stl_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; case 8: stq_phys((target_phys_addr_t)addr | ((target_phys_addr_t)(asi & 0xf) << 32), val); break; } } break; case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic case 0x31: // store buffer data, Ross RT620 I-cache flush or // Turbosparc snoop RAM case 0x32: // store buffer control or Turbosparc page table // descriptor diagnostic case 0x36: /* I-cache flash clear */ case 0x37: /* D-cache flash clear */ break; case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ { int reg = (addr >> 8) & 3; switch(reg) { case 0: /* Breakpoint Value (Addr) */ env->mmubpregs[reg] = (val & 0xfffffffffULL); break; case 1: /* Breakpoint Mask */ env->mmubpregs[reg] = (val & 0xfffffffffULL); break; case 2: /* Breakpoint Control */ env->mmubpregs[reg] = (val & 0x7fULL); break; case 3: /* Breakpoint Status */ env->mmubpregs[reg] = (val & 0xfULL); break; } DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, env->mmuregs[reg]); } break; case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ env->mmubpctrv = val & 0xffffffff; break; case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ env->mmubpctrc = val & 0x3; break; case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ env->mmubpctrs = val & 0x3; break; case 0x4c: /* SuperSPARC MMU Breakpoint Action */ env->mmubpaction = val & 0x1fff; break; case 8: /* User code access, XXX */ case 9: /* Supervisor code access, XXX */ default: do_unassigned_access(addr, 1, 0, asi, size); break; } #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif } #endif /* CONFIG_USER_ONLY */ #else /* TARGET_SPARC64 */ #ifdef CONFIG_USER_ONLY uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_ASI) target_ulong last_addr = addr; #endif if (asi < 0x80) raise_exception(TT_PRIV_ACT); helper_check_align(addr, size - 1); addr = asi_address_mask(env, asi, addr); switch (asi) { case 0x82: // Primary no-fault case 0x8a: // Primary no-fault LE if (page_check_range(addr, size, PAGE_READ) == -1) { #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return 0; } // Fall through case 0x80: // Primary case 0x88: // Primary LE { switch(size) { case 1: ret = ldub_raw(addr); break; case 2: ret = lduw_raw(addr); break; case 4: ret = ldl_raw(addr); break; default: case 8: ret = ldq_raw(addr); break; } } break; case 0x83: // Secondary no-fault case 0x8b: // Secondary no-fault LE if (page_check_range(addr, size, PAGE_READ) == -1) { #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return 0; } // Fall through case 0x81: // Secondary case 0x89: // Secondary LE // XXX break; default: break; } /* Convert from little endian */ switch (asi) { case 0x88: // Primary LE case 0x89: // Secondary LE case 0x8a: // Primary no-fault LE case 0x8b: // Secondary no-fault LE switch(size) { case 2: ret = bswap16(ret); break; case 4: ret = bswap32(ret); break; case 8: ret = bswap64(ret); break; default: break; } default: break; } /* Convert to signed number */ if (sign) { switch(size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) { #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif if (asi < 0x80) raise_exception(TT_PRIV_ACT); helper_check_align(addr, size - 1); addr = asi_address_mask(env, asi, addr); /* Convert to little endian */ switch (asi) { case 0x88: // Primary LE case 0x89: // Secondary LE switch(size) { case 2: val = bswap16(val); break; case 4: val = bswap32(val); break; case 8: val = bswap64(val); break; default: break; } default: break; } switch(asi) { case 0x80: // Primary case 0x88: // Primary LE { switch(size) { case 1: stb_raw(addr, val); break; case 2: stw_raw(addr, val); break; case 4: stl_raw(addr, val); break; case 8: default: stq_raw(addr, val); break; } } break; case 0x81: // Secondary case 0x89: // Secondary LE // XXX return; case 0x82: // Primary no-fault, RO case 0x83: // Secondary no-fault, RO case 0x8a: // Primary no-fault LE, RO case 0x8b: // Secondary no-fault LE, RO default: do_unassigned_access(addr, 1, 0, 1, size); return; } } #else /* CONFIG_USER_ONLY */ uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) { uint64_t ret = 0; #if defined(DEBUG_ASI) target_ulong last_addr = addr; #endif asi &= 0xff; if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || (cpu_has_hypervisor(env) && asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) raise_exception(TT_PRIV_ACT); helper_check_align(addr, size - 1); addr = asi_address_mask(env, asi, addr); /* process nonfaulting loads first */ if ((asi & 0xf6) == 0x82) { int mmu_idx; /* secondary space access has lowest asi bit equal to 1 */ if (env->pstate & PS_PRIV) { mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX; } else { mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX; } if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) { #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif /* env->exception_index is set in get_physical_address_data(). */ raise_exception(env->exception_index); } /* convert nonfaulting load ASIs to normal load ASIs */ asi &= ~0x02; } switch (asi) { case 0x10: // As if user primary case 0x11: // As if user secondary case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x80: // Primary case 0x81: // Secondary case 0x88: // Primary LE case 0x89: // Secondary LE case 0xe2: // UA2007 Primary block init case 0xe3: // UA2007 Secondary block init if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if (cpu_hypervisor_mode(env)) { switch(size) { case 1: ret = ldub_hypv(addr); break; case 2: ret = lduw_hypv(addr); break; case 4: ret = ldl_hypv(addr); break; default: case 8: ret = ldq_hypv(addr); break; } } else { /* secondary space access has lowest asi bit equal to 1 */ if (asi & 1) { switch(size) { case 1: ret = ldub_kernel_secondary(addr); break; case 2: ret = lduw_kernel_secondary(addr); break; case 4: ret = ldl_kernel_secondary(addr); break; default: case 8: ret = ldq_kernel_secondary(addr); break; } } else { switch(size) { case 1: ret = ldub_kernel(addr); break; case 2: ret = lduw_kernel(addr); break; case 4: ret = ldl_kernel(addr); break; default: case 8: ret = ldq_kernel(addr); break; } } } } else { /* secondary space access has lowest asi bit equal to 1 */ if (asi & 1) { switch(size) { case 1: ret = ldub_user_secondary(addr); break; case 2: ret = lduw_user_secondary(addr); break; case 4: ret = ldl_user_secondary(addr); break; default: case 8: ret = ldq_user_secondary(addr); break; } } else { switch(size) { case 1: ret = ldub_user(addr); break; case 2: ret = lduw_user(addr); break; case 4: ret = ldl_user(addr); break; default: case 8: ret = ldq_user(addr); break; } } } break; case 0x14: // Bypass case 0x15: // Bypass, non-cacheable case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE { switch(size) { case 1: ret = ldub_phys(addr); break; case 2: ret = lduw_phys(addr); break; case 4: ret = ldl_phys(addr); break; default: case 8: ret = ldq_phys(addr); break; } break; } case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic LE // Only ldda allowed raise_exception(TT_ILL_INSN); return 0; case 0x04: // Nucleus case 0x0c: // Nucleus Little Endian (LE) { switch(size) { case 1: ret = ldub_nucleus(addr); break; case 2: ret = lduw_nucleus(addr); break; case 4: ret = ldl_nucleus(addr); break; default: case 8: ret = ldq_nucleus(addr); break; } break; } case 0x4a: // UPA config // XXX break; case 0x45: // LSU ret = env->lsu; break; case 0x50: // I-MMU regs { int reg = (addr >> 3) & 0xf; if (reg == 0) { // I-TSB Tag Target register ret = ultrasparc_tag_target(env->immu.tag_access); } else { ret = env->immuregs[reg]; } break; } case 0x51: // I-MMU 8k TSB pointer { // env->immuregs[5] holds I-MMU TSB register value // env->immuregs[6] holds I-MMU Tag Access register value ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, 8*1024); break; } case 0x52: // I-MMU 64k TSB pointer { // env->immuregs[5] holds I-MMU TSB register value // env->immuregs[6] holds I-MMU Tag Access register value ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, 64*1024); break; } case 0x55: // I-MMU data access { int reg = (addr >> 3) & 0x3f; ret = env->itlb[reg].tte; break; } case 0x56: // I-MMU tag read { int reg = (addr >> 3) & 0x3f; ret = env->itlb[reg].tag; break; } case 0x58: // D-MMU regs { int reg = (addr >> 3) & 0xf; if (reg == 0) { // D-TSB Tag Target register ret = ultrasparc_tag_target(env->dmmu.tag_access); } else { ret = env->dmmuregs[reg]; } break; } case 0x59: // D-MMU 8k TSB pointer { // env->dmmuregs[5] holds D-MMU TSB register value // env->dmmuregs[6] holds D-MMU Tag Access register value ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, 8*1024); break; } case 0x5a: // D-MMU 64k TSB pointer { // env->dmmuregs[5] holds D-MMU TSB register value // env->dmmuregs[6] holds D-MMU Tag Access register value ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, 64*1024); break; } case 0x5d: // D-MMU data access { int reg = (addr >> 3) & 0x3f; ret = env->dtlb[reg].tte; break; } case 0x5e: // D-MMU tag read { int reg = (addr >> 3) & 0x3f; ret = env->dtlb[reg].tag; break; } case 0x46: // D-cache data case 0x47: // D-cache tag access case 0x4b: // E-cache error enable case 0x4c: // E-cache asynchronous fault status case 0x4d: // E-cache asynchronous fault address case 0x4e: // E-cache tag data case 0x66: // I-cache instruction access case 0x67: // I-cache tag access case 0x6e: // I-cache predecode case 0x6f: // I-cache LRU etc. case 0x76: // E-cache tag case 0x7e: // E-cache tag break; case 0x5b: // D-MMU data pointer case 0x48: // Interrupt dispatch, RO case 0x49: // Interrupt data receive case 0x7f: // Incoming interrupt vector, RO // XXX break; case 0x54: // I-MMU data in, WO case 0x57: // I-MMU demap, WO case 0x5c: // D-MMU data in, WO case 0x5f: // D-MMU demap, WO case 0x77: // Interrupt vector, WO default: do_unassigned_access(addr, 0, 0, 1, size); ret = 0; break; } /* Convert from little endian */ switch (asi) { case 0x0c: // Nucleus Little Endian (LE) case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE case 0x88: // Primary LE case 0x89: // Secondary LE switch(size) { case 2: ret = bswap16(ret); break; case 4: ret = bswap32(ret); break; case 8: ret = bswap64(ret); break; default: break; } default: break; } /* Convert to signed number */ if (sign) { switch(size) { case 1: ret = (int8_t) ret; break; case 2: ret = (int16_t) ret; break; case 4: ret = (int32_t) ret; break; default: break; } } #ifdef DEBUG_ASI dump_asi("read ", last_addr, asi, size, ret); #endif return ret; } void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) { #ifdef DEBUG_ASI dump_asi("write", addr, asi, size, val); #endif asi &= 0xff; if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || (cpu_has_hypervisor(env) && asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) raise_exception(TT_PRIV_ACT); helper_check_align(addr, size - 1); addr = asi_address_mask(env, asi, addr); /* Convert to little endian */ switch (asi) { case 0x0c: // Nucleus Little Endian (LE) case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE case 0x88: // Primary LE case 0x89: // Secondary LE switch(size) { case 2: val = bswap16(val); break; case 4: val = bswap32(val); break; case 8: val = bswap64(val); break; default: break; } default: break; } switch(asi) { case 0x10: // As if user primary case 0x11: // As if user secondary case 0x18: // As if user primary LE case 0x19: // As if user secondary LE case 0x80: // Primary case 0x81: // Secondary case 0x88: // Primary LE case 0x89: // Secondary LE case 0xe2: // UA2007 Primary block init case 0xe3: // UA2007 Secondary block init if ((asi & 0x80) && (env->pstate & PS_PRIV)) { if (cpu_hypervisor_mode(env)) { switch(size) { case 1: stb_hypv(addr, val); break; case 2: stw_hypv(addr, val); break; case 4: stl_hypv(addr, val); break; case 8: default: stq_hypv(addr, val); break; } } else { /* secondary space access has lowest asi bit equal to 1 */ if (asi & 1) { switch(size) { case 1: stb_kernel_secondary(addr, val); break; case 2: stw_kernel_secondary(addr, val); break; case 4: stl_kernel_secondary(addr, val); break; case 8: default: stq_kernel_secondary(addr, val); break; } } else { switch(size) { case 1: stb_kernel(addr, val); break; case 2: stw_kernel(addr, val); break; case 4: stl_kernel(addr, val); break; case 8: default: stq_kernel(addr, val); break; } } } } else { /* secondary space access has lowest asi bit equal to 1 */ if (asi & 1) { switch(size) { case 1: stb_user_secondary(addr, val); break; case 2: stw_user_secondary(addr, val); break; case 4: stl_user_secondary(addr, val); break; case 8: default: stq_user_secondary(addr, val); break; } } else { switch(size) { case 1: stb_user(addr, val); break; case 2: stw_user(addr, val); break; case 4: stl_user(addr, val); break; case 8: default: stq_user(addr, val); break; } } } break; case 0x14: // Bypass case 0x15: // Bypass, non-cacheable case 0x1c: // Bypass LE case 0x1d: // Bypass, non-cacheable LE { switch(size) { case 1: stb_phys(addr, val); break; case 2: stw_phys(addr, val); break; case 4: stl_phys(addr, val); break; case 8: default: stq_phys(addr, val); break; } } return; case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic LE // Only ldda allowed raise_exception(TT_ILL_INSN); return; case 0x04: // Nucleus case 0x0c: // Nucleus Little Endian (LE) { switch(size) { case 1: stb_nucleus(addr, val); break; case 2: stw_nucleus(addr, val); break; case 4: stl_nucleus(addr, val); break; default: case 8: stq_nucleus(addr, val); break; } break; } case 0x4a: // UPA config // XXX return; case 0x45: // LSU { uint64_t oldreg; oldreg = env->lsu; env->lsu = val & (DMMU_E | IMMU_E); // Mappings generated during D/I MMU disabled mode are // invalid in normal mode if (oldreg != env->lsu) { DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu); #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env1); #endif tlb_flush(env, 1); } return; } case 0x50: // I-MMU regs { int reg = (addr >> 3) & 0xf; uint64_t oldreg; oldreg = env->immuregs[reg]; switch(reg) { case 0: // RO return; case 1: // Not in I-MMU case 2: return; case 3: // SFSR if ((val & 1) == 0) val = 0; // Clear SFSR env->immu.sfsr = val; break; case 4: // RO return; case 5: // TSB access DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" PRIx64 "\n", env->immu.tsb, val); env->immu.tsb = val; break; case 6: // Tag access env->immu.tag_access = val; break; case 7: case 8: return; default: break; } if (oldreg != env->immuregs[reg]) { DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" PRIx64 "\n", reg, oldreg, env->immuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env); #endif return; } case 0x54: // I-MMU data in replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env); return; case 0x55: // I-MMU data access { // TODO: auto demap unsigned int i = (addr >> 3) & 0x3f; replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env); #ifdef DEBUG_MMU DPRINTF_MMU("immu data access replaced entry [%i]\n", i); dump_mmu(stdout, fprintf, env); #endif return; } case 0x57: // I-MMU demap demap_tlb(env->itlb, addr, "immu", env); return; case 0x58: // D-MMU regs { int reg = (addr >> 3) & 0xf; uint64_t oldreg; oldreg = env->dmmuregs[reg]; switch(reg) { case 0: // RO case 4: return; case 3: // SFSR if ((val & 1) == 0) { val = 0; // Clear SFSR, Fault address env->dmmu.sfar = 0; } env->dmmu.sfsr = val; break; case 1: // Primary context env->dmmu.mmu_primary_context = val; /* can be optimized to only flush MMU_USER_IDX and MMU_KERNEL_IDX entries */ tlb_flush(env, 1); break; case 2: // Secondary context env->dmmu.mmu_secondary_context = val; /* can be optimized to only flush MMU_USER_SECONDARY_IDX and MMU_KERNEL_SECONDARY_IDX entries */ tlb_flush(env, 1); break; case 5: // TSB access DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" PRIx64 "\n", env->dmmu.tsb, val); env->dmmu.tsb = val; break; case 6: // Tag access env->dmmu.tag_access = val; break; case 7: // Virtual Watchpoint case 8: // Physical Watchpoint default: env->dmmuregs[reg] = val; break; } if (oldreg != env->dmmuregs[reg]) { DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); } #ifdef DEBUG_MMU dump_mmu(stdout, fprintf, env); #endif return; } case 0x5c: // D-MMU data in replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env); return; case 0x5d: // D-MMU data access { unsigned int i = (addr >> 3) & 0x3f; replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env); #ifdef DEBUG_MMU DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); dump_mmu(stdout, fprintf, env); #endif return; } case 0x5f: // D-MMU demap demap_tlb(env->dtlb, addr, "dmmu", env); return; case 0x49: // Interrupt data receive // XXX return; case 0x46: // D-cache data case 0x47: // D-cache tag access case 0x4b: // E-cache error enable case 0x4c: // E-cache asynchronous fault status case 0x4d: // E-cache asynchronous fault address case 0x4e: // E-cache tag data case 0x66: // I-cache instruction access case 0x67: // I-cache tag access case 0x6e: // I-cache predecode case 0x6f: // I-cache LRU etc. case 0x76: // E-cache tag case 0x7e: // E-cache tag return; case 0x51: // I-MMU 8k TSB pointer, RO case 0x52: // I-MMU 64k TSB pointer, RO case 0x56: // I-MMU tag read, RO case 0x59: // D-MMU 8k TSB pointer, RO case 0x5a: // D-MMU 64k TSB pointer, RO case 0x5b: // D-MMU data pointer, RO case 0x5e: // D-MMU tag read, RO case 0x48: // Interrupt dispatch, RO case 0x7f: // Incoming interrupt vector, RO case 0x82: // Primary no-fault, RO case 0x83: // Secondary no-fault, RO case 0x8a: // Primary no-fault LE, RO case 0x8b: // Secondary no-fault LE, RO default: do_unassigned_access(addr, 1, 0, 1, size); return; } } #endif /* CONFIG_USER_ONLY */ void helper_ldda_asi(target_ulong addr, int asi, int rd) { if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) || (cpu_has_hypervisor(env) && asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV))) raise_exception(TT_PRIV_ACT); addr = asi_address_mask(env, asi, addr); switch (asi) { #if !defined(CONFIG_USER_ONLY) case 0x24: // Nucleus quad LDD 128 bit atomic case 0x2c: // Nucleus quad LDD 128 bit atomic LE helper_check_align(addr, 0xf); if (rd == 0) { env->gregs[1] = ldq_nucleus(addr + 8); if (asi == 0x2c) bswap64s(&env->gregs[1]); } else if (rd < 8) { env->gregs[rd] = ldq_nucleus(addr); env->gregs[rd + 1] = ldq_nucleus(addr + 8); if (asi == 0x2c) { bswap64s(&env->gregs[rd]); bswap64s(&env->gregs[rd + 1]); } } else { env->regwptr[rd] = ldq_nucleus(addr); env->regwptr[rd + 1] = ldq_nucleus(addr + 8); if (asi == 0x2c) { bswap64s(&env->regwptr[rd]); bswap64s(&env->regwptr[rd + 1]); } } break; #endif default: helper_check_align(addr, 0x3); if (rd == 0) env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0); else if (rd < 8) { env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0); env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0); } else { env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0); env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0); } break; } } void helper_ldf_asi(target_ulong addr, int asi, int size, int rd) { unsigned int i; CPU_DoubleU u; helper_check_align(addr, 3); addr = asi_address_mask(env, asi, addr); switch (asi) { case 0xf0: /* UA2007/JPS1 Block load primary */ case 0xf1: /* UA2007/JPS1 Block load secondary */ case 0xf8: /* UA2007/JPS1 Block load primary LE */ case 0xf9: /* UA2007/JPS1 Block load secondary LE */ if (rd & 7) { raise_exception(TT_ILL_INSN); return; } helper_check_align(addr, 0x3f); for (i = 0; i < 16; i++) { *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, 0); addr += 4; } return; case 0x16: /* UA2007 Block load primary, user privilege */ case 0x17: /* UA2007 Block load secondary, user privilege */ case 0x1e: /* UA2007 Block load primary LE, user privilege */ case 0x1f: /* UA2007 Block load secondary LE, user privilege */ case 0x70: /* JPS1 Block load primary, user privilege */ case 0x71: /* JPS1 Block load secondary, user privilege */ case 0x78: /* JPS1 Block load primary LE, user privilege */ case 0x79: /* JPS1 Block load secondary LE, user privilege */ if (rd & 7) { raise_exception(TT_ILL_INSN); return; } helper_check_align(addr, 0x3f); for (i = 0; i < 16; i++) { *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x19, 4, 0); addr += 4; } return; default: break; } switch(size) { default: case 4: *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0); break; case 8: u.ll = helper_ld_asi(addr, asi, size, 0); *((uint32_t *)&env->fpr[rd++]) = u.l.upper; *((uint32_t *)&env->fpr[rd++]) = u.l.lower; break; case 16: u.ll = helper_ld_asi(addr, asi, 8, 0); *((uint32_t *)&env->fpr[rd++]) = u.l.upper; *((uint32_t *)&env->fpr[rd++]) = u.l.lower; u.ll = helper_ld_asi(addr + 8, asi, 8, 0); *((uint32_t *)&env->fpr[rd++]) = u.l.upper; *((uint32_t *)&env->fpr[rd++]) = u.l.lower; break; } } void helper_stf_asi(target_ulong addr, int asi, int size, int rd) { unsigned int i; target_ulong val = 0; CPU_DoubleU u; helper_check_align(addr, 3); addr = asi_address_mask(env, asi, addr); switch (asi) { case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */ case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */ case 0xf0: /* UA2007/JPS1 Block store primary */ case 0xf1: /* UA2007/JPS1 Block store secondary */ case 0xf8: /* UA2007/JPS1 Block store primary LE */ case 0xf9: /* UA2007/JPS1 Block store secondary LE */ if (rd & 7) { raise_exception(TT_ILL_INSN); return; } helper_check_align(addr, 0x3f); for (i = 0; i < 16; i++) { val = *(uint32_t *)&env->fpr[rd++]; helper_st_asi(addr, val, asi & 0x8f, 4); addr += 4; } return; case 0x16: /* UA2007 Block load primary, user privilege */ case 0x17: /* UA2007 Block load secondary, user privilege */ case 0x1e: /* UA2007 Block load primary LE, user privilege */ case 0x1f: /* UA2007 Block load secondary LE, user privilege */ case 0x70: /* JPS1 Block store primary, user privilege */ case 0x71: /* JPS1 Block store secondary, user privilege */ case 0x78: /* JPS1 Block load primary LE, user privilege */ case 0x79: /* JPS1 Block load secondary LE, user privilege */ if (rd & 7) { raise_exception(TT_ILL_INSN); return; } helper_check_align(addr, 0x3f); for (i = 0; i < 16; i++) { val = *(uint32_t *)&env->fpr[rd++]; helper_st_asi(addr, val, asi & 0x19, 4); addr += 4; } return; default: break; } switch(size) { default: case 4: helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size); break; case 8: u.l.upper = *(uint32_t *)&env->fpr[rd++]; u.l.lower = *(uint32_t *)&env->fpr[rd++]; helper_st_asi(addr, u.ll, asi, size); break; case 16: u.l.upper = *(uint32_t *)&env->fpr[rd++]; u.l.lower = *(uint32_t *)&env->fpr[rd++]; helper_st_asi(addr, u.ll, asi, 8); u.l.upper = *(uint32_t *)&env->fpr[rd++]; u.l.lower = *(uint32_t *)&env->fpr[rd++]; helper_st_asi(addr + 8, u.ll, asi, 8); break; } } target_ulong helper_cas_asi(target_ulong addr, target_ulong val1, target_ulong val2, uint32_t asi) { target_ulong ret; val2 &= 0xffffffffUL; ret = helper_ld_asi(addr, asi, 4, 0); ret &= 0xffffffffUL; if (val2 == ret) helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4); return ret; } target_ulong helper_casx_asi(target_ulong addr, target_ulong val1, target_ulong val2, uint32_t asi) { target_ulong ret; ret = helper_ld_asi(addr, asi, 8, 0); if (val2 == ret) helper_st_asi(addr, val1, asi, 8); return ret; } #endif /* TARGET_SPARC64 */ #ifndef TARGET_SPARC64 void helper_rett(void) { unsigned int cwp; if (env->psret == 1) raise_exception(TT_ILL_INSN); env->psret = 1; cwp = cwp_inc(env->cwp + 1) ; if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); env->psrs = env->psrps; } #endif static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc) { int overflow = 0; uint64_t x0; uint32_t x1; x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32); x1 = (b & 0xffffffff); if (x1 == 0) { raise_exception(TT_DIV_ZERO); } x0 = x0 / x1; if (x0 > 0xffffffff) { x0 = 0xffffffff; overflow = 1; } if (cc) { env->cc_dst = x0; env->cc_src2 = overflow; env->cc_op = CC_OP_DIV; } return x0; } target_ulong helper_udiv(target_ulong a, target_ulong b) { return helper_udiv_common(a, b, 0); } target_ulong helper_udiv_cc(target_ulong a, target_ulong b) { return helper_udiv_common(a, b, 1); } static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc) { int overflow = 0; int64_t x0; int32_t x1; x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32); x1 = (b & 0xffffffff); if (x1 == 0) { raise_exception(TT_DIV_ZERO); } x0 = x0 / x1; if ((int32_t) x0 != x0) { x0 = x0 < 0 ? 0x80000000: 0x7fffffff; overflow = 1; } if (cc) { env->cc_dst = x0; env->cc_src2 = overflow; env->cc_op = CC_OP_DIV; } return x0; } target_ulong helper_sdiv(target_ulong a, target_ulong b) { return helper_sdiv_common(a, b, 0); } target_ulong helper_sdiv_cc(target_ulong a, target_ulong b) { return helper_sdiv_common(a, b, 1); } void helper_stdf(target_ulong addr, int mem_idx) { helper_check_align(addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case MMU_USER_IDX: stfq_user(addr, DT0); break; case MMU_KERNEL_IDX: stfq_kernel(addr, DT0); break; #ifdef TARGET_SPARC64 case MMU_HYPV_IDX: stfq_hypv(addr, DT0); break; #endif default: DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx); break; } #else stfq_raw(address_mask(env, addr), DT0); #endif } void helper_lddf(target_ulong addr, int mem_idx) { helper_check_align(addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case MMU_USER_IDX: DT0 = ldfq_user(addr); break; case MMU_KERNEL_IDX: DT0 = ldfq_kernel(addr); break; #ifdef TARGET_SPARC64 case MMU_HYPV_IDX: DT0 = ldfq_hypv(addr); break; #endif default: DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx); break; } #else DT0 = ldfq_raw(address_mask(env, addr)); #endif } void helper_ldqf(target_ulong addr, int mem_idx) { // XXX add 128 bit load CPU_QuadU u; helper_check_align(addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case MMU_USER_IDX: u.ll.upper = ldq_user(addr); u.ll.lower = ldq_user(addr + 8); QT0 = u.q; break; case MMU_KERNEL_IDX: u.ll.upper = ldq_kernel(addr); u.ll.lower = ldq_kernel(addr + 8); QT0 = u.q; break; #ifdef TARGET_SPARC64 case MMU_HYPV_IDX: u.ll.upper = ldq_hypv(addr); u.ll.lower = ldq_hypv(addr + 8); QT0 = u.q; break; #endif default: DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx); break; } #else u.ll.upper = ldq_raw(address_mask(env, addr)); u.ll.lower = ldq_raw(address_mask(env, addr + 8)); QT0 = u.q; #endif } void helper_stqf(target_ulong addr, int mem_idx) { // XXX add 128 bit store CPU_QuadU u; helper_check_align(addr, 7); #if !defined(CONFIG_USER_ONLY) switch (mem_idx) { case MMU_USER_IDX: u.q = QT0; stq_user(addr, u.ll.upper); stq_user(addr + 8, u.ll.lower); break; case MMU_KERNEL_IDX: u.q = QT0; stq_kernel(addr, u.ll.upper); stq_kernel(addr + 8, u.ll.lower); break; #ifdef TARGET_SPARC64 case MMU_HYPV_IDX: u.q = QT0; stq_hypv(addr, u.ll.upper); stq_hypv(addr + 8, u.ll.lower); break; #endif default: DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx); break; } #else u.q = QT0; stq_raw(address_mask(env, addr), u.ll.upper); stq_raw(address_mask(env, addr + 8), u.ll.lower); #endif } static inline void set_fsr(void) { int rnd_mode; switch (env->fsr & FSR_RD_MASK) { case FSR_RD_NEAREST: rnd_mode = float_round_nearest_even; break; default: case FSR_RD_ZERO: rnd_mode = float_round_to_zero; break; case FSR_RD_POS: rnd_mode = float_round_up; break; case FSR_RD_NEG: rnd_mode = float_round_down; break; } set_float_rounding_mode(rnd_mode, &env->fp_status); } void helper_ldfsr(uint32_t new_fsr) { env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK); set_fsr(); } #ifdef TARGET_SPARC64 void helper_ldxfsr(uint64_t new_fsr) { env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK); set_fsr(); } #endif void helper_debug(void) { env->exception_index = EXCP_DEBUG; cpu_loop_exit(env); } #ifndef TARGET_SPARC64 /* XXX: use another pointer for %iN registers to avoid slow wrapping handling ? */ void helper_save(void) { uint32_t cwp; cwp = cwp_dec(env->cwp - 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_OVF); } set_cwp(cwp); } void helper_restore(void) { uint32_t cwp; cwp = cwp_inc(env->cwp + 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); } void helper_wrpsr(target_ulong new_psr) { if ((new_psr & PSR_CWP) >= env->nwindows) { raise_exception(TT_ILL_INSN); } else { cpu_put_psr(env, new_psr); } } target_ulong helper_rdpsr(void) { return get_psr(); } #else /* XXX: use another pointer for %iN registers to avoid slow wrapping handling ? */ void helper_save(void) { uint32_t cwp; cwp = cwp_dec(env->cwp - 1); if (env->cansave == 0) { raise_exception(TT_SPILL | (env->otherwin != 0 ? (TT_WOTHER | ((env->wstate & 0x38) >> 1)): ((env->wstate & 0x7) << 2))); } else { if (env->cleanwin - env->canrestore == 0) { // XXX Clean windows without trap raise_exception(TT_CLRWIN); } else { env->cansave--; env->canrestore++; set_cwp(cwp); } } } void helper_restore(void) { uint32_t cwp; cwp = cwp_inc(env->cwp + 1); if (env->canrestore == 0) { raise_exception(TT_FILL | (env->otherwin != 0 ? (TT_WOTHER | ((env->wstate & 0x38) >> 1)): ((env->wstate & 0x7) << 2))); } else { env->cansave++; env->canrestore--; set_cwp(cwp); } } void helper_flushw(void) { if (env->cansave != env->nwindows - 2) { raise_exception(TT_SPILL | (env->otherwin != 0 ? (TT_WOTHER | ((env->wstate & 0x38) >> 1)): ((env->wstate & 0x7) << 2))); } } void helper_saved(void) { env->cansave++; if (env->otherwin == 0) env->canrestore--; else env->otherwin--; } void helper_restored(void) { env->canrestore++; if (env->cleanwin < env->nwindows - 1) env->cleanwin++; if (env->otherwin == 0) env->cansave--; else env->otherwin--; } static target_ulong get_ccr(void) { target_ulong psr; psr = get_psr(); return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20); } target_ulong cpu_get_ccr(CPUState *env1) { CPUState *saved_env; target_ulong ret; saved_env = env; env = env1; ret = get_ccr(); env = saved_env; return ret; } static void put_ccr(target_ulong val) { env->xcc = (val >> 4) << 20; env->psr = (val & 0xf) << 20; CC_OP = CC_OP_FLAGS; } void cpu_put_ccr(CPUState *env1, target_ulong val) { CPUState *saved_env; saved_env = env; env = env1; put_ccr(val); env = saved_env; } static target_ulong get_cwp64(void) { return env->nwindows - 1 - env->cwp; } target_ulong cpu_get_cwp64(CPUState *env1) { CPUState *saved_env; target_ulong ret; saved_env = env; env = env1; ret = get_cwp64(); env = saved_env; return ret; } static void put_cwp64(int cwp) { if (unlikely(cwp >= env->nwindows || cwp < 0)) { cwp %= env->nwindows; } set_cwp(env->nwindows - 1 - cwp); } void cpu_put_cwp64(CPUState *env1, int cwp) { CPUState *saved_env; saved_env = env; env = env1; put_cwp64(cwp); env = saved_env; } target_ulong helper_rdccr(void) { return get_ccr(); } void helper_wrccr(target_ulong new_ccr) { put_ccr(new_ccr); } // CWP handling is reversed in V9, but we still use the V8 register // order. target_ulong helper_rdcwp(void) { return get_cwp64(); } void helper_wrcwp(target_ulong new_cwp) { put_cwp64(new_cwp); } // This function uses non-native bit order #define GET_FIELD(X, FROM, TO) \ ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1)) // This function uses the order in the manuals, i.e. bit 0 is 2^0 #define GET_FIELD_SP(X, FROM, TO) \ GET_FIELD(X, 63 - (TO), 63 - (FROM)) target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize) { return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) | (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) | (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) | (GET_FIELD_SP(pixel_addr, 56, 59) << 13) | (GET_FIELD_SP(pixel_addr, 35, 38) << 9) | (GET_FIELD_SP(pixel_addr, 13, 16) << 5) | (((pixel_addr >> 55) & 1) << 4) | (GET_FIELD_SP(pixel_addr, 33, 34) << 2) | GET_FIELD_SP(pixel_addr, 11, 12); } target_ulong helper_alignaddr(target_ulong addr, target_ulong offset) { uint64_t tmp; tmp = addr + offset; env->gsr &= ~7ULL; env->gsr |= tmp & 7ULL; return tmp & ~7ULL; } target_ulong helper_popc(target_ulong val) { return ctpop64(val); } static inline uint64_t *get_gregset(uint32_t pstate) { switch (pstate) { default: DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n", pstate, (pstate & PS_IG) ? " IG" : "", (pstate & PS_MG) ? " MG" : "", (pstate & PS_AG) ? " AG" : ""); /* pass through to normal set of global registers */ case 0: return env->bgregs; case PS_AG: return env->agregs; case PS_MG: return env->mgregs; case PS_IG: return env->igregs; } } static inline void change_pstate(uint32_t new_pstate) { uint32_t pstate_regs, new_pstate_regs; uint64_t *src, *dst; if (env->def->features & CPU_FEATURE_GL) { // PS_AG is not implemented in this case new_pstate &= ~PS_AG; } pstate_regs = env->pstate & 0xc01; new_pstate_regs = new_pstate & 0xc01; if (new_pstate_regs != pstate_regs) { DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n", pstate_regs, new_pstate_regs); // Switch global register bank src = get_gregset(new_pstate_regs); dst = get_gregset(pstate_regs); memcpy32(dst, env->gregs); memcpy32(env->gregs, src); } else { DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n", new_pstate_regs); } env->pstate = new_pstate; } void helper_wrpstate(target_ulong new_state) { change_pstate(new_state & 0xf3f); #if !defined(CONFIG_USER_ONLY) if (cpu_interrupts_enabled(env)) { cpu_check_irqs(env); } #endif } void cpu_change_pstate(CPUState *env1, uint32_t new_pstate) { CPUState *saved_env; saved_env = env; env = env1; change_pstate(new_pstate); env = saved_env; } void helper_wrpil(target_ulong new_pil) { #if !defined(CONFIG_USER_ONLY) DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n", env->psrpil, (uint32_t)new_pil); env->psrpil = new_pil; if (cpu_interrupts_enabled(env)) { cpu_check_irqs(env); } #endif } void helper_done(void) { trap_state* tsptr = cpu_tsptr(env); env->pc = tsptr->tnpc; env->npc = tsptr->tnpc + 4; put_ccr(tsptr->tstate >> 32); env->asi = (tsptr->tstate >> 24) & 0xff; change_pstate((tsptr->tstate >> 8) & 0xf3f); put_cwp64(tsptr->tstate & 0xff); env->tl--; DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl); #if !defined(CONFIG_USER_ONLY) if (cpu_interrupts_enabled(env)) { cpu_check_irqs(env); } #endif } void helper_retry(void) { trap_state* tsptr = cpu_tsptr(env); env->pc = tsptr->tpc; env->npc = tsptr->tnpc; put_ccr(tsptr->tstate >> 32); env->asi = (tsptr->tstate >> 24) & 0xff; change_pstate((tsptr->tstate >> 8) & 0xf3f); put_cwp64(tsptr->tstate & 0xff); env->tl--; DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl); #if !defined(CONFIG_USER_ONLY) if (cpu_interrupts_enabled(env)) { cpu_check_irqs(env); } #endif } static void do_modify_softint(const char* operation, uint32_t value) { if (env->softint != value) { env->softint = value; DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint); #if !defined(CONFIG_USER_ONLY) if (cpu_interrupts_enabled(env)) { cpu_check_irqs(env); } #endif } } void helper_set_softint(uint64_t value) { do_modify_softint("helper_set_softint", env->softint | (uint32_t)value); } void helper_clear_softint(uint64_t value) { do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value); } void helper_write_softint(uint64_t value) { do_modify_softint("helper_write_softint", (uint32_t)value); } #endif #ifdef TARGET_SPARC64 trap_state* cpu_tsptr(CPUState* env) { return &env->ts[env->tl & MAXTL_MASK]; } #endif #if !defined(CONFIG_USER_ONLY) static void do_unaligned_access(target_ulong addr, int is_write, int is_user, void *retaddr); #define MMUSUFFIX _mmu #define ALIGNED_ONLY #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" /* XXX: make it generic ? */ static void cpu_restore_state2(void *retaddr) { TranslationBlock *tb; unsigned long pc; if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc); } } } static void do_unaligned_access(target_ulong addr, int is_write, int is_user, void *retaddr) { #ifdef DEBUG_UNALIGNED printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx "\n", addr, env->pc); #endif cpu_restore_state2(retaddr); raise_exception(TT_UNALIGNED); } /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx, void *retaddr) { int ret; CPUState *saved_env; saved_env = env; env = env1; ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx); if (ret) { cpu_restore_state2(retaddr); cpu_loop_exit(env); } env = saved_env; } #endif /* !CONFIG_USER_ONLY */ #ifndef TARGET_SPARC64 #if !defined(CONFIG_USER_ONLY) static void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, int is_asi, int size) { int fault_type; #ifdef DEBUG_UNASSIGNED if (is_asi) printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx " asi 0x%02x from " TARGET_FMT_lx "\n", is_exec ? "exec" : is_write ? "write" : "read", size, size == 1 ? "" : "s", addr, is_asi, env->pc); else printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", is_exec ? "exec" : is_write ? "write" : "read", size, size == 1 ? "" : "s", addr, env->pc); #endif /* Don't overwrite translation and access faults */ fault_type = (env->mmuregs[3] & 0x1c) >> 2; if ((fault_type > 4) || (fault_type == 0)) { env->mmuregs[3] = 0; /* Fault status register */ if (is_asi) env->mmuregs[3] |= 1 << 16; if (env->psrs) env->mmuregs[3] |= 1 << 5; if (is_exec) env->mmuregs[3] |= 1 << 6; if (is_write) env->mmuregs[3] |= 1 << 7; env->mmuregs[3] |= (5 << 2) | 2; /* SuperSPARC will never place instruction fault addresses in the FAR */ if (!is_exec) { env->mmuregs[4] = addr; /* Fault address register */ } } /* overflow (same type fault was not read before another fault) */ if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { env->mmuregs[3] |= 1; } if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { if (is_exec) raise_exception(TT_CODE_ACCESS); else raise_exception(TT_DATA_ACCESS); } /* flush neverland mappings created during no-fault mode, so the sequential MMU faults report proper fault types */ if (env->mmuregs[0] & MMU_NF) { tlb_flush(env, 1); } } #endif #else #if defined(CONFIG_USER_ONLY) static void do_unassigned_access(target_ulong addr, int is_write, int is_exec, int is_asi, int size) #else static void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, int is_asi, int size) #endif { #ifdef DEBUG_UNASSIGNED printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n", addr, env->pc); #endif if (is_exec) raise_exception(TT_CODE_ACCESS); else raise_exception(TT_DATA_ACCESS); } #endif #ifdef TARGET_SPARC64 void helper_tick_set_count(void *opaque, uint64_t count) { #if !defined(CONFIG_USER_ONLY) cpu_tick_set_count(opaque, count); #endif } uint64_t helper_tick_get_count(void *opaque) { #if !defined(CONFIG_USER_ONLY) return cpu_tick_get_count(opaque); #else return 0; #endif } void helper_tick_set_limit(void *opaque, uint64_t limit) { #if !defined(CONFIG_USER_ONLY) cpu_tick_set_limit(opaque, limit); #endif } #endif #if !defined(CONFIG_USER_ONLY) void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr, int is_write, int is_exec, int is_asi, int size) { CPUState *saved_env; saved_env = env; env = env1; /* Ignore unassigned accesses outside of CPU context */ if (env1) { do_unassigned_access(addr, is_write, is_exec, is_asi, size); } env = saved_env; } #endif