/* * QEMU Sun4m & Sun4d & Sun4c System Emulator * * Copyright (c) 2003-2005 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "sysbus.h" #include "qemu-timer.h" #include "sun4m.h" #include "nvram.h" #include "sparc32_dma.h" #include "fdc.h" #include "sysemu.h" #include "net.h" #include "boards.h" #include "firmware_abi.h" #include "scsi.h" #include "pc.h" #include "isa.h" #include "fw_cfg.h" #include "escc.h" //#define DEBUG_IRQ /* * Sun4m architecture was used in the following machines: * * SPARCserver 6xxMP/xx * SPARCclassic (SPARCclassic Server)(SPARCstation LC) (4/15), * SPARCclassic X (4/10) * SPARCstation LX/ZX (4/30) * SPARCstation Voyager * SPARCstation 10/xx, SPARCserver 10/xx * SPARCstation 5, SPARCserver 5 * SPARCstation 20/xx, SPARCserver 20 * SPARCstation 4 * * Sun4d architecture was used in the following machines: * * SPARCcenter 2000 * SPARCserver 1000 * * Sun4c architecture was used in the following machines: * SPARCstation 1/1+, SPARCserver 1/1+ * SPARCstation SLC * SPARCstation IPC * SPARCstation ELC * SPARCstation IPX * * See for example: http://www.sunhelp.org/faq/sunref1.html */ #ifdef DEBUG_IRQ #define DPRINTF(fmt, ...) \ do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) #endif #define KERNEL_LOAD_ADDR 0x00004000 #define CMDLINE_ADDR 0x007ff000 #define INITRD_LOAD_ADDR 0x00800000 #define PROM_SIZE_MAX (1024 * 1024) #define PROM_VADDR 0xffd00000 #define PROM_FILENAME "openbios-sparc32" #define CFG_ADDR 0xd00000510ULL #define FW_CFG_SUN4M_DEPTH (FW_CFG_ARCH_LOCAL + 0x00) #define MAX_CPUS 16 #define MAX_PILS 16 #define ESCC_CLOCK 4915200 struct sun4m_hwdef { target_phys_addr_t iommu_base, slavio_base; target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base; target_phys_addr_t serial_base, fd_base; target_phys_addr_t idreg_base, dma_base, esp_base, le_base; target_phys_addr_t tcx_base, cs_base, apc_base, aux1_base, aux2_base; target_phys_addr_t ecc_base; uint32_t ecc_version; long vram_size, nvram_size; // IRQ numbers are not PIL ones, but master interrupt controller // register bit numbers int esp_irq, le_irq, clock_irq, clock1_irq; int ser_irq, ms_kb_irq, fd_irq, me_irq, cs_irq, ecc_irq; uint8_t nvram_machine_id; uint16_t machine_id; uint32_t iommu_version; uint32_t intbit_to_level[32]; uint64_t max_mem; const char * const default_cpu_model; }; #define MAX_IOUNITS 5 struct sun4d_hwdef { target_phys_addr_t iounit_bases[MAX_IOUNITS], slavio_base; target_phys_addr_t counter_base, nvram_base, ms_kb_base; target_phys_addr_t serial_base; target_phys_addr_t espdma_base, esp_base; target_phys_addr_t ledma_base, le_base; target_phys_addr_t tcx_base; target_phys_addr_t sbi_base; unsigned long vram_size, nvram_size; // IRQ numbers are not PIL ones, but SBI register bit numbers int esp_irq, le_irq, clock_irq, clock1_irq; int ser_irq, ms_kb_irq, me_irq; uint8_t nvram_machine_id; uint16_t machine_id; uint32_t iounit_version; uint64_t max_mem; const char * const default_cpu_model; }; struct sun4c_hwdef { target_phys_addr_t iommu_base, slavio_base; target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base; target_phys_addr_t serial_base, fd_base; target_phys_addr_t idreg_base, dma_base, esp_base, le_base; target_phys_addr_t tcx_base, aux1_base; long vram_size, nvram_size; // IRQ numbers are not PIL ones, but master interrupt controller // register bit numbers int esp_irq, le_irq, clock_irq, clock1_irq; int ser_irq, ms_kb_irq, fd_irq, me_irq; uint8_t nvram_machine_id; uint16_t machine_id; uint32_t iommu_version; uint32_t intbit_to_level[32]; uint64_t max_mem; const char * const default_cpu_model; }; int DMA_get_channel_mode (int nchan) { return 0; } int DMA_read_memory (int nchan, void *buf, int pos, int size) { return 0; } int DMA_write_memory (int nchan, void *buf, int pos, int size) { return 0; } void DMA_hold_DREQ (int nchan) {} void DMA_release_DREQ (int nchan) {} void DMA_schedule(int nchan) {} void DMA_init (int high_page_enable) {} void DMA_register_channel (int nchan, DMA_transfer_handler transfer_handler, void *opaque) { } static int fw_cfg_boot_set(void *opaque, const char *boot_device) { fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]); return 0; } static void nvram_init(m48t59_t *nvram, uint8_t *macaddr, const char *cmdline, const char *boot_devices, ram_addr_t RAM_size, uint32_t kernel_size, int width, int height, int depth, int nvram_machine_id, const char *arch) { unsigned int i; uint32_t start, end; uint8_t image[0x1ff0]; struct OpenBIOS_nvpart_v1 *part_header; memset(image, '\0', sizeof(image)); start = 0; // OpenBIOS nvram variables // Variable partition part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; part_header->signature = OPENBIOS_PART_SYSTEM; pstrcpy(part_header->name, sizeof(part_header->name), "system"); end = start + sizeof(struct OpenBIOS_nvpart_v1); for (i = 0; i < nb_prom_envs; i++) end = OpenBIOS_set_var(image, end, prom_envs[i]); // End marker image[end++] = '\0'; end = start + ((end - start + 15) & ~15); OpenBIOS_finish_partition(part_header, end - start); // free partition start = end; part_header = (struct OpenBIOS_nvpart_v1 *)&image[start]; part_header->signature = OPENBIOS_PART_FREE; pstrcpy(part_header->name, sizeof(part_header->name), "free"); end = 0x1fd0; OpenBIOS_finish_partition(part_header, end - start); Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, nvram_machine_id); for (i = 0; i < sizeof(image); i++) m48t59_write(nvram, i, image[i]); } static void *slavio_intctl; void pic_info(Monitor *mon) { if (slavio_intctl) slavio_pic_info(mon, slavio_intctl); } void irq_info(Monitor *mon) { if (slavio_intctl) slavio_irq_info(mon, slavio_intctl); } void cpu_check_irqs(CPUState *env) { if (env->pil_in && (env->interrupt_index == 0 || (env->interrupt_index & ~15) == TT_EXTINT)) { unsigned int i; for (i = 15; i > 0; i--) { if (env->pil_in & (1 << i)) { int old_interrupt = env->interrupt_index; env->interrupt_index = TT_EXTINT | i; if (old_interrupt != env->interrupt_index) { DPRINTF("Set CPU IRQ %d\n", i); cpu_interrupt(env, CPU_INTERRUPT_HARD); } break; } } } else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) { DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15); env->interrupt_index = 0; cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); } } static void cpu_set_irq(void *opaque, int irq, int level) { CPUState *env = opaque; if (level) { DPRINTF("Raise CPU IRQ %d\n", irq); env->halted = 0; env->pil_in |= 1 << irq; cpu_check_irqs(env); } else { DPRINTF("Lower CPU IRQ %d\n", irq); env->pil_in &= ~(1 << irq); cpu_check_irqs(env); } } static void dummy_cpu_set_irq(void *opaque, int irq, int level) { } static void *slavio_misc; void qemu_system_powerdown(void) { slavio_set_power_fail(slavio_misc, 1); } static void main_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); env->halted = 0; } static void secondary_cpu_reset(void *opaque) { CPUState *env = opaque; cpu_reset(env); env->halted = 1; } static void cpu_halt_signal(void *opaque, int irq, int level) { if (level && cpu_single_env) cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HALT); } static unsigned long sun4m_load_kernel(const char *kernel_filename, const char *initrd_filename, ram_addr_t RAM_size) { int linux_boot; unsigned int i; long initrd_size, kernel_size; linux_boot = (kernel_filename != NULL); kernel_size = 0; if (linux_boot) { kernel_size = load_elf(kernel_filename, -0xf0000000ULL, NULL, NULL, NULL); if (kernel_size < 0) kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR, RAM_size - KERNEL_LOAD_ADDR); if (kernel_size < 0) kernel_size = load_image_targphys(kernel_filename, KERNEL_LOAD_ADDR, RAM_size - KERNEL_LOAD_ADDR); if (kernel_size < 0) { fprintf(stderr, "qemu: could not load kernel '%s'\n", kernel_filename); exit(1); } /* load initrd */ initrd_size = 0; if (initrd_filename) { initrd_size = load_image_targphys(initrd_filename, INITRD_LOAD_ADDR, RAM_size - INITRD_LOAD_ADDR); if (initrd_size < 0) { fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", initrd_filename); exit(1); } } if (initrd_size > 0) { for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) { if (ldl_phys(KERNEL_LOAD_ADDR + i) == 0x48647253) { // HdrS stl_phys(KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR); stl_phys(KERNEL_LOAD_ADDR + i + 20, initrd_size); break; } } } } return kernel_size; } static void lance_init(NICInfo *nd, target_phys_addr_t leaddr, void *dma_opaque, qemu_irq irq, qemu_irq *reset) { DeviceState *dev; SysBusDevice *s; qemu_check_nic_model(&nd_table[0], "lance"); dev = qdev_create(NULL, "lance"); qdev_set_netdev(dev, nd); qdev_set_prop_ptr(dev, "dma", dma_opaque); qdev_init(dev); s = sysbus_from_qdev(dev); sysbus_mmio_map(s, 0, leaddr); sysbus_connect_irq(s, 0, irq); *reset = qdev_get_irq_sink(dev, 0); } static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env, *envs[MAX_CPUS]; unsigned int i; void *iommu, *espdma, *ledma, *nvram; qemu_irq *cpu_irqs[MAX_CPUS], *slavio_irq, *slavio_cpu_irq, *espdma_irq, *ledma_irq; qemu_irq *esp_reset, *le_reset; qemu_irq *fdc_tc; qemu_irq *cpu_halt; ram_addr_t ram_offset, prom_offset, idreg_offset; unsigned long kernel_size; int ret; char buf[1024]; BlockDriverState *fd[MAX_FD]; int drive_index; void *fw_cfg; /* init CPUs */ if (!cpu_model) cpu_model = hwdef->default_cpu_model; for(i = 0; i < smp_cpus; i++) { env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n"); exit(1); } cpu_sparc_set_id(env, i); envs[i] = env; if (i == 0) { qemu_register_reset(main_cpu_reset, env); } else { qemu_register_reset(secondary_cpu_reset, env); env->halted = 1; } cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS); env->prom_addr = hwdef->slavio_base; } for (i = smp_cpus; i < MAX_CPUS; i++) cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); /* allocate RAM */ if ((uint64_t)RAM_size > hwdef->max_mem) { fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n", (unsigned int)(RAM_size / (1024 * 1024)), (unsigned int)(hwdef->max_mem / (1024 * 1024))); exit(1); } ram_offset = qemu_ram_alloc(RAM_size); cpu_register_physical_memory(0, RAM_size, ram_offset); /* load boot prom */ prom_offset = qemu_ram_alloc(PROM_SIZE_MAX); cpu_register_physical_memory(hwdef->slavio_base, (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK, prom_offset | IO_MEM_ROM); if (bios_name == NULL) bios_name = PROM_FILENAME; snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name); ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL); if (ret < 0 || ret > PROM_SIZE_MAX) ret = load_image_targphys(buf, hwdef->slavio_base, PROM_SIZE_MAX); if (ret < 0 || ret > PROM_SIZE_MAX) { fprintf(stderr, "qemu: could not load prom '%s'\n", buf); exit(1); } /* set up devices */ slavio_intctl = slavio_intctl_init(hwdef->intctl_base, hwdef->intctl_base + 0x10000ULL, &hwdef->intbit_to_level[0], &slavio_irq, &slavio_cpu_irq, cpu_irqs, hwdef->clock_irq); if (hwdef->idreg_base) { static const uint8_t idreg_data[] = { 0xfe, 0x81, 0x01, 0x03 }; idreg_offset = qemu_ram_alloc(sizeof(idreg_data)); cpu_register_physical_memory(hwdef->idreg_base, sizeof(idreg_data), idreg_offset | IO_MEM_ROM); cpu_physical_memory_write_rom(hwdef->idreg_base, idreg_data, sizeof(idreg_data)); } iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[hwdef->me_irq]); espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq], iommu, &espdma_irq, &esp_reset); ledma = sparc32_dma_init(hwdef->dma_base + 16ULL, slavio_irq[hwdef->le_irq], iommu, &ledma_irq, &le_reset); if (graphic_depth != 8 && graphic_depth != 24) { fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth); exit (1); } tcx_init(hwdef->tcx_base, hwdef->vram_size, graphic_width, graphic_height, graphic_depth); lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset); nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, hwdef->nvram_size, 8); slavio_timer_init_all(hwdef->counter_base, slavio_irq[hwdef->clock1_irq], slavio_cpu_irq, smp_cpus); slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq], display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1); // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device escc_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq], slavio_irq[hwdef->ser_irq], serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1); slavio_misc = slavio_misc_init(hwdef->slavio_base, hwdef->apc_base, hwdef->aux1_base, hwdef->aux2_base, slavio_irq[hwdef->me_irq], cpu_halt[0], &fdc_tc); if (hwdef->fd_base) { /* there is zero or one floppy drive */ memset(fd, 0, sizeof(fd)); drive_index = drive_get_index(IF_FLOPPY, 0, 0); if (drive_index != -1) fd[0] = drives_table[drive_index].bdrv; sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd, fdc_tc); } if (drive_get_max_bus(IF_SCSI) > 0) { fprintf(stderr, "qemu: too many SCSI bus\n"); exit(1); } esp_init(hwdef->esp_base, 2, espdma_memory_read, espdma_memory_write, espdma, *espdma_irq, esp_reset); if (hwdef->cs_base) cs_init(hwdef->cs_base, hwdef->cs_irq, slavio_intctl); kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename, RAM_size); nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, RAM_size, kernel_size, graphic_width, graphic_height, graphic_depth, hwdef->nvram_machine_id, "Sun4m"); if (hwdef->ecc_base) ecc_init(hwdef->ecc_base, slavio_irq[hwdef->ecc_irq], hwdef->ecc_version); fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); } enum { ss2_id = 0, ss5_id = 32, vger_id, lx_id, ss4_id, scls_id, sbook_id, ss10_id = 64, ss20_id, ss600mp_id, ss1000_id = 96, ss2000_id, }; static const struct sun4m_hwdef sun4m_hwdefs[] = { /* SS-5 */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, .cs_base = 0x6c000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x6a000000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .cs_irq = 5, .nvram_machine_id = 0x80, .machine_id = ss5_id, .iommu_version = 0x05000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0x10000000, .default_cpu_model = "Fujitsu MB86904", }, /* SS-10 */ { .iommu_base = 0xfe0000000ULL, .tcx_base = 0xe20000000ULL, .slavio_base = 0xff0000000ULL, .ms_kb_base = 0xff1000000ULL, .serial_base = 0xff1100000ULL, .nvram_base = 0xff1200000ULL, .fd_base = 0xff1700000ULL, .counter_base = 0xff1300000ULL, .intctl_base = 0xff1400000ULL, .idreg_base = 0xef0000000ULL, .dma_base = 0xef0400000ULL, .esp_base = 0xef0800000ULL, .le_base = 0xef0c00000ULL, .apc_base = 0xefa000000ULL, // XXX should not exist .aux1_base = 0xff1800000ULL, .aux2_base = 0xff1a01000ULL, .ecc_base = 0xf00000000ULL, .ecc_version = 0x10000000, // version 0, implementation 1 .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .ecc_irq = 28, .nvram_machine_id = 0x72, .machine_id = ss10_id, .iommu_version = 0x03000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, /* SS-600MP */ { .iommu_base = 0xfe0000000ULL, .tcx_base = 0xe20000000ULL, .slavio_base = 0xff0000000ULL, .ms_kb_base = 0xff1000000ULL, .serial_base = 0xff1100000ULL, .nvram_base = 0xff1200000ULL, .counter_base = 0xff1300000ULL, .intctl_base = 0xff1400000ULL, .dma_base = 0xef0081000ULL, .esp_base = 0xef0080000ULL, .le_base = 0xef0060000ULL, .apc_base = 0xefa000000ULL, // XXX should not exist .aux1_base = 0xff1800000ULL, .aux2_base = 0xff1a01000ULL, // XXX should not exist .ecc_base = 0xf00000000ULL, .ecc_version = 0x00000000, // version 0, implementation 0 .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .ecc_irq = 28, .nvram_machine_id = 0x71, .machine_id = ss600mp_id, .iommu_version = 0x01000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, /* SS-20 */ { .iommu_base = 0xfe0000000ULL, .tcx_base = 0xe20000000ULL, .slavio_base = 0xff0000000ULL, .ms_kb_base = 0xff1000000ULL, .serial_base = 0xff1100000ULL, .nvram_base = 0xff1200000ULL, .fd_base = 0xff1700000ULL, .counter_base = 0xff1300000ULL, .intctl_base = 0xff1400000ULL, .idreg_base = 0xef0000000ULL, .dma_base = 0xef0400000ULL, .esp_base = 0xef0800000ULL, .le_base = 0xef0c00000ULL, .apc_base = 0xefa000000ULL, // XXX should not exist .aux1_base = 0xff1800000ULL, .aux2_base = 0xff1a01000ULL, .ecc_base = 0xf00000000ULL, .ecc_version = 0x20000000, // version 0, implementation 2 .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .ecc_irq = 28, .nvram_machine_id = 0x72, .machine_id = ss20_id, .iommu_version = 0x13000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, /* Voyager */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x71300000, // pmc .aux1_base = 0x71900000, .aux2_base = 0x71910000, .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .nvram_machine_id = 0x80, .machine_id = vger_id, .iommu_version = 0x05000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0x10000000, .default_cpu_model = "Fujitsu MB86904", }, /* LX */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .nvram_machine_id = 0x80, .machine_id = lx_id, .iommu_version = 0x04000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0x10000000, .default_cpu_model = "TI MicroSparc I", }, /* SS-4 */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, .cs_base = 0x6c000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x6a000000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .cs_irq = 5, .nvram_machine_id = 0x80, .machine_id = ss4_id, .iommu_version = 0x05000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0x10000000, .default_cpu_model = "Fujitsu MB86904", }, /* SPARCClassic */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x6a000000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .nvram_machine_id = 0x80, .machine_id = scls_id, .iommu_version = 0x05000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0x10000000, .default_cpu_model = "TI MicroSparc I", }, /* SPARCbook */ { .iommu_base = 0x10000000, .tcx_base = 0x50000000, // XXX .slavio_base = 0x70000000, .ms_kb_base = 0x71000000, .serial_base = 0x71100000, .nvram_base = 0x71200000, .fd_base = 0x71400000, .counter_base = 0x71d00000, .intctl_base = 0x71e00000, .idreg_base = 0x78000000, .dma_base = 0x78400000, .esp_base = 0x78800000, .le_base = 0x78c00000, .apc_base = 0x6a000000, .aux1_base = 0x71900000, .aux2_base = 0x71910000, .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 18, .le_irq = 16, .clock_irq = 7, .clock1_irq = 19, .ms_kb_irq = 14, .ser_irq = 15, .fd_irq = 22, .me_irq = 30, .nvram_machine_id = 0x80, .machine_id = sbook_id, .iommu_version = 0x05000000, .intbit_to_level = { 2, 3, 5, 7, 9, 11, 0, 14, 3, 5, 7, 9, 11, 13, 12, 12, 6, 0, 4, 10, 8, 0, 11, 0, 0, 0, 0, 0, 15, 0, 15, 0, }, .max_mem = 0x10000000, .default_cpu_model = "TI MicroSparc I", }, }; /* SPARCstation 5 hardware initialisation */ static void ss5_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[0], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation 10 hardware initialisation */ static void ss10_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[1], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCserver 600MP hardware initialisation */ static void ss600mp_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[2], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation 20 hardware initialisation */ static void ss20_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[3], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation Voyager hardware initialisation */ static void vger_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[4], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation LX hardware initialisation */ static void ss_lx_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[5], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCstation 4 hardware initialisation */ static void ss4_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[6], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCClassic hardware initialisation */ static void scls_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[7], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCbook hardware initialisation */ static void sbook_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4m_hw_init(&sun4m_hwdefs[8], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } static QEMUMachine ss5_machine = { .name = "SS-5", .desc = "Sun4m platform, SPARCstation 5", .init = ss5_init, .use_scsi = 1, }; static QEMUMachine ss10_machine = { .name = "SS-10", .desc = "Sun4m platform, SPARCstation 10", .init = ss10_init, .use_scsi = 1, .max_cpus = 4, }; static QEMUMachine ss600mp_machine = { .name = "SS-600MP", .desc = "Sun4m platform, SPARCserver 600MP", .init = ss600mp_init, .use_scsi = 1, .max_cpus = 4, }; static QEMUMachine ss20_machine = { .name = "SS-20", .desc = "Sun4m platform, SPARCstation 20", .init = ss20_init, .use_scsi = 1, .max_cpus = 4, }; static QEMUMachine voyager_machine = { .name = "Voyager", .desc = "Sun4m platform, SPARCstation Voyager", .init = vger_init, .use_scsi = 1, }; static QEMUMachine ss_lx_machine = { .name = "LX", .desc = "Sun4m platform, SPARCstation LX", .init = ss_lx_init, .use_scsi = 1, }; static QEMUMachine ss4_machine = { .name = "SS-4", .desc = "Sun4m platform, SPARCstation 4", .init = ss4_init, .use_scsi = 1, }; static QEMUMachine scls_machine = { .name = "SPARCClassic", .desc = "Sun4m platform, SPARCClassic", .init = scls_init, .use_scsi = 1, }; static QEMUMachine sbook_machine = { .name = "SPARCbook", .desc = "Sun4m platform, SPARCbook", .init = sbook_init, .use_scsi = 1, }; static const struct sun4d_hwdef sun4d_hwdefs[] = { /* SS-1000 */ { .iounit_bases = { 0xfe0200000ULL, 0xfe1200000ULL, 0xfe2200000ULL, 0xfe3200000ULL, -1, }, .tcx_base = 0x820000000ULL, .slavio_base = 0xf00000000ULL, .ms_kb_base = 0xf00240000ULL, .serial_base = 0xf00200000ULL, .nvram_base = 0xf00280000ULL, .counter_base = 0xf00300000ULL, .espdma_base = 0x800081000ULL, .esp_base = 0x800080000ULL, .ledma_base = 0x800040000ULL, .le_base = 0x800060000ULL, .sbi_base = 0xf02800000ULL, .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 3, .le_irq = 4, .clock_irq = 14, .clock1_irq = 10, .ms_kb_irq = 12, .ser_irq = 12, .nvram_machine_id = 0x80, .machine_id = ss1000_id, .iounit_version = 0x03000000, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, /* SS-2000 */ { .iounit_bases = { 0xfe0200000ULL, 0xfe1200000ULL, 0xfe2200000ULL, 0xfe3200000ULL, 0xfe4200000ULL, }, .tcx_base = 0x820000000ULL, .slavio_base = 0xf00000000ULL, .ms_kb_base = 0xf00240000ULL, .serial_base = 0xf00200000ULL, .nvram_base = 0xf00280000ULL, .counter_base = 0xf00300000ULL, .espdma_base = 0x800081000ULL, .esp_base = 0x800080000ULL, .ledma_base = 0x800040000ULL, .le_base = 0x800060000ULL, .sbi_base = 0xf02800000ULL, .vram_size = 0x00100000, .nvram_size = 0x2000, .esp_irq = 3, .le_irq = 4, .clock_irq = 14, .clock1_irq = 10, .ms_kb_irq = 12, .ser_irq = 12, .nvram_machine_id = 0x80, .machine_id = ss2000_id, .iounit_version = 0x03000000, .max_mem = 0xf00000000ULL, .default_cpu_model = "TI SuperSparc II", }, }; static void sun4d_hw_init(const struct sun4d_hwdef *hwdef, ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env, *envs[MAX_CPUS]; unsigned int i; void *iounits[MAX_IOUNITS], *espdma, *ledma, *nvram, *sbi; qemu_irq *cpu_irqs[MAX_CPUS], *sbi_irq, *sbi_cpu_irq, *espdma_irq, *ledma_irq; qemu_irq *esp_reset, *le_reset; ram_addr_t ram_offset, prom_offset; unsigned long kernel_size; int ret; char buf[1024]; void *fw_cfg; /* init CPUs */ if (!cpu_model) cpu_model = hwdef->default_cpu_model; for (i = 0; i < smp_cpus; i++) { env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n"); exit(1); } cpu_sparc_set_id(env, i); envs[i] = env; if (i == 0) { qemu_register_reset(main_cpu_reset, env); } else { qemu_register_reset(secondary_cpu_reset, env); env->halted = 1; } cpu_irqs[i] = qemu_allocate_irqs(cpu_set_irq, envs[i], MAX_PILS); env->prom_addr = hwdef->slavio_base; } for (i = smp_cpus; i < MAX_CPUS; i++) cpu_irqs[i] = qemu_allocate_irqs(dummy_cpu_set_irq, NULL, MAX_PILS); /* allocate RAM */ if ((uint64_t)RAM_size > hwdef->max_mem) { fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n", (unsigned int)(RAM_size / (1024 * 1024)), (unsigned int)(hwdef->max_mem / (1024 * 1024))); exit(1); } ram_offset = qemu_ram_alloc(RAM_size); cpu_register_physical_memory(0, RAM_size, ram_offset); /* load boot prom */ prom_offset = qemu_ram_alloc(PROM_SIZE_MAX); cpu_register_physical_memory(hwdef->slavio_base, (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK, prom_offset | IO_MEM_ROM); if (bios_name == NULL) bios_name = PROM_FILENAME; snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name); ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL); if (ret < 0 || ret > PROM_SIZE_MAX) ret = load_image_targphys(buf, hwdef->slavio_base, PROM_SIZE_MAX); if (ret < 0 || ret > PROM_SIZE_MAX) { fprintf(stderr, "qemu: could not load prom '%s'\n", buf); exit(1); } /* set up devices */ sbi = sbi_init(hwdef->sbi_base, &sbi_irq, &sbi_cpu_irq, cpu_irqs); for (i = 0; i < MAX_IOUNITS; i++) if (hwdef->iounit_bases[i] != (target_phys_addr_t)-1) iounits[i] = iommu_init(hwdef->iounit_bases[i], hwdef->iounit_version, sbi_irq[hwdef->me_irq]); espdma = sparc32_dma_init(hwdef->espdma_base, sbi_irq[hwdef->esp_irq], iounits[0], &espdma_irq, &esp_reset); ledma = sparc32_dma_init(hwdef->ledma_base, sbi_irq[hwdef->le_irq], iounits[0], &ledma_irq, &le_reset); if (graphic_depth != 8 && graphic_depth != 24) { fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth); exit (1); } tcx_init(hwdef->tcx_base, hwdef->vram_size, graphic_width, graphic_height, graphic_depth); lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset); nvram = m48t59_init(sbi_irq[0], hwdef->nvram_base, 0, hwdef->nvram_size, 8); slavio_timer_init_all(hwdef->counter_base, sbi_irq[hwdef->clock1_irq], sbi_cpu_irq, smp_cpus); slavio_serial_ms_kbd_init(hwdef->ms_kb_base, sbi_irq[hwdef->ms_kb_irq], display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1); // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device escc_init(hwdef->serial_base, sbi_irq[hwdef->ser_irq], sbi_irq[hwdef->ser_irq], serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); if (drive_get_max_bus(IF_SCSI) > 0) { fprintf(stderr, "qemu: too many SCSI bus\n"); exit(1); } esp_init(hwdef->esp_base, 2, espdma_memory_read, espdma_memory_write, espdma, *espdma_irq, esp_reset); kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename, RAM_size); nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, RAM_size, kernel_size, graphic_width, graphic_height, graphic_depth, hwdef->nvram_machine_id, "Sun4d"); fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); } /* SPARCserver 1000 hardware initialisation */ static void ss1000_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4d_hw_init(&sun4d_hwdefs[0], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } /* SPARCcenter 2000 hardware initialisation */ static void ss2000_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4d_hw_init(&sun4d_hwdefs[1], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } static QEMUMachine ss1000_machine = { .name = "SS-1000", .desc = "Sun4d platform, SPARCserver 1000", .init = ss1000_init, .use_scsi = 1, .max_cpus = 8, }; static QEMUMachine ss2000_machine = { .name = "SS-2000", .desc = "Sun4d platform, SPARCcenter 2000", .init = ss2000_init, .use_scsi = 1, .max_cpus = 20, }; static const struct sun4c_hwdef sun4c_hwdefs[] = { /* SS-2 */ { .iommu_base = 0xf8000000, .tcx_base = 0xfe000000, .slavio_base = 0xf6000000, .intctl_base = 0xf5000000, .counter_base = 0xf3000000, .ms_kb_base = 0xf0000000, .serial_base = 0xf1000000, .nvram_base = 0xf2000000, .fd_base = 0xf7200000, .dma_base = 0xf8400000, .esp_base = 0xf8800000, .le_base = 0xf8c00000, .aux1_base = 0xf7400003, .vram_size = 0x00100000, .nvram_size = 0x800, .esp_irq = 2, .le_irq = 3, .clock_irq = 5, .clock1_irq = 7, .ms_kb_irq = 1, .ser_irq = 1, .fd_irq = 1, .me_irq = 1, .nvram_machine_id = 0x55, .machine_id = ss2_id, .max_mem = 0x10000000, .default_cpu_model = "Cypress CY7C601", }, }; static void sun4c_hw_init(const struct sun4c_hwdef *hwdef, ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { CPUState *env; void *iommu, *espdma, *ledma, *nvram; qemu_irq *cpu_irqs, *slavio_irq, *espdma_irq, *ledma_irq; qemu_irq *esp_reset, *le_reset; qemu_irq *fdc_tc; ram_addr_t ram_offset, prom_offset; unsigned long kernel_size; int ret; char buf[1024]; BlockDriverState *fd[MAX_FD]; int drive_index; void *fw_cfg; /* init CPU */ if (!cpu_model) cpu_model = hwdef->default_cpu_model; env = cpu_init(cpu_model); if (!env) { fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n"); exit(1); } cpu_sparc_set_id(env, 0); qemu_register_reset(main_cpu_reset, env); cpu_irqs = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS); env->prom_addr = hwdef->slavio_base; /* allocate RAM */ if ((uint64_t)RAM_size > hwdef->max_mem) { fprintf(stderr, "qemu: Too much memory for this machine: %d, maximum %d\n", (unsigned int)(RAM_size / (1024 * 1024)), (unsigned int)(hwdef->max_mem / (1024 * 1024))); exit(1); } ram_offset = qemu_ram_alloc(RAM_size); cpu_register_physical_memory(0, RAM_size, ram_offset); /* load boot prom */ prom_offset = qemu_ram_alloc(PROM_SIZE_MAX); cpu_register_physical_memory(hwdef->slavio_base, (PROM_SIZE_MAX + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK, prom_offset | IO_MEM_ROM); if (bios_name == NULL) bios_name = PROM_FILENAME; snprintf(buf, sizeof(buf), "%s/%s", bios_dir, bios_name); ret = load_elf(buf, hwdef->slavio_base - PROM_VADDR, NULL, NULL, NULL); if (ret < 0 || ret > PROM_SIZE_MAX) ret = load_image_targphys(buf, hwdef->slavio_base, PROM_SIZE_MAX); if (ret < 0 || ret > PROM_SIZE_MAX) { fprintf(stderr, "qemu: could not load prom '%s'\n", buf); exit(1); } /* set up devices */ slavio_intctl = sun4c_intctl_init(hwdef->intctl_base, &slavio_irq, cpu_irqs); iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version, slavio_irq[hwdef->me_irq]); espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[hwdef->esp_irq], iommu, &espdma_irq, &esp_reset); ledma = sparc32_dma_init(hwdef->dma_base + 16ULL, slavio_irq[hwdef->le_irq], iommu, &ledma_irq, &le_reset); if (graphic_depth != 8 && graphic_depth != 24) { fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth); exit (1); } tcx_init(hwdef->tcx_base, hwdef->vram_size, graphic_width, graphic_height, graphic_depth); lance_init(&nd_table[0], hwdef->le_base, ledma, *ledma_irq, le_reset); nvram = m48t59_init(slavio_irq[0], hwdef->nvram_base, 0, hwdef->nvram_size, 2); slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[hwdef->ms_kb_irq], display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1); // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device escc_init(hwdef->serial_base, slavio_irq[hwdef->ser_irq], slavio_irq[hwdef->ser_irq], serial_hds[0], serial_hds[1], ESCC_CLOCK, 1); slavio_misc = slavio_misc_init(0, 0, hwdef->aux1_base, 0, slavio_irq[hwdef->me_irq], NULL, &fdc_tc); if (hwdef->fd_base != (target_phys_addr_t)-1) { /* there is zero or one floppy drive */ memset(fd, 0, sizeof(fd)); drive_index = drive_get_index(IF_FLOPPY, 0, 0); if (drive_index != -1) fd[0] = drives_table[drive_index].bdrv; sun4m_fdctrl_init(slavio_irq[hwdef->fd_irq], hwdef->fd_base, fd, fdc_tc); } if (drive_get_max_bus(IF_SCSI) > 0) { fprintf(stderr, "qemu: too many SCSI bus\n"); exit(1); } esp_init(hwdef->esp_base, 2, espdma_memory_read, espdma_memory_write, espdma, *espdma_irq, esp_reset); kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename, RAM_size); nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, RAM_size, kernel_size, graphic_width, graphic_height, graphic_depth, hwdef->nvram_machine_id, "Sun4c"); fw_cfg = fw_cfg_init(0, 0, CFG_ADDR, CFG_ADDR + 2); fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id); fw_cfg_add_i16(fw_cfg, FW_CFG_SUN4M_DEPTH, graphic_depth); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, KERNEL_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); if (kernel_cmdline) { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, CMDLINE_ADDR); pstrcpy_targphys(CMDLINE_ADDR, TARGET_PAGE_SIZE, kernel_cmdline); } else { fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0); } fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR); fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, boot_device[0]); qemu_register_boot_set(fw_cfg_boot_set, fw_cfg); } /* SPARCstation 2 hardware initialisation */ static void ss2_init(ram_addr_t RAM_size, const char *boot_device, const char *kernel_filename, const char *kernel_cmdline, const char *initrd_filename, const char *cpu_model) { sun4c_hw_init(&sun4c_hwdefs[0], RAM_size, boot_device, kernel_filename, kernel_cmdline, initrd_filename, cpu_model); } static QEMUMachine ss2_machine = { .name = "SS-2", .desc = "Sun4c platform, SPARCstation 2", .init = ss2_init, .use_scsi = 1, }; static void ss2_machine_init(void) { qemu_register_machine(&ss5_machine); qemu_register_machine(&ss10_machine); qemu_register_machine(&ss600mp_machine); qemu_register_machine(&ss20_machine); qemu_register_machine(&voyager_machine); qemu_register_machine(&ss_lx_machine); qemu_register_machine(&ss4_machine); qemu_register_machine(&scls_machine); qemu_register_machine(&sbook_machine); qemu_register_machine(&ss1000_machine); qemu_register_machine(&ss2000_machine); qemu_register_machine(&ss2_machine); } machine_init(ss2_machine_init);