/* * QEMU Floppy disk emulator (Intel 82078) * * Copyright (c) 2003, 2007 Jocelyn Mayer * Copyright (c) 2008 Hervé Poussineau * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ /* * The controller is used in Sun4m systems in a slightly different * way. There are changes in DOR register and DMA is not available. */ #include "qemu/osdep.h" #include "hw/block/fdc.h" #include "qapi/error.h" #include "qemu/error-report.h" #include "qemu/timer.h" #include "hw/irq.h" #include "hw/isa/isa.h" #include "hw/qdev-properties.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "hw/block/block.h" #include "sysemu/block-backend.h" #include "sysemu/blockdev.h" #include "sysemu/sysemu.h" #include "qemu/log.h" #include "qemu/main-loop.h" #include "qemu/module.h" #include "trace.h" /********************************************************/ /* debug Floppy devices */ #define DEBUG_FLOPPY 0 #define FLOPPY_DPRINTF(fmt, ...) \ do { \ if (DEBUG_FLOPPY) { \ fprintf(stderr, "FLOPPY: " fmt , ## __VA_ARGS__); \ } \ } while (0) /********************************************************/ /* qdev floppy bus */ #define TYPE_FLOPPY_BUS "floppy-bus" #define FLOPPY_BUS(obj) OBJECT_CHECK(FloppyBus, (obj), TYPE_FLOPPY_BUS) typedef struct FDCtrl FDCtrl; typedef struct FDrive FDrive; static FDrive *get_drv(FDCtrl *fdctrl, int unit); typedef struct FloppyBus { BusState bus; FDCtrl *fdc; } FloppyBus; static const TypeInfo floppy_bus_info = { .name = TYPE_FLOPPY_BUS, .parent = TYPE_BUS, .instance_size = sizeof(FloppyBus), }; static void floppy_bus_create(FDCtrl *fdc, FloppyBus *bus, DeviceState *dev) { qbus_create_inplace(bus, sizeof(FloppyBus), TYPE_FLOPPY_BUS, dev, NULL); bus->fdc = fdc; } /********************************************************/ /* Floppy drive emulation */ typedef enum FDriveRate { FDRIVE_RATE_500K = 0x00, /* 500 Kbps */ FDRIVE_RATE_300K = 0x01, /* 300 Kbps */ FDRIVE_RATE_250K = 0x02, /* 250 Kbps */ FDRIVE_RATE_1M = 0x03, /* 1 Mbps */ } FDriveRate; typedef enum FDriveSize { FDRIVE_SIZE_UNKNOWN, FDRIVE_SIZE_350, FDRIVE_SIZE_525, } FDriveSize; typedef struct FDFormat { FloppyDriveType drive; uint8_t last_sect; uint8_t max_track; uint8_t max_head; FDriveRate rate; } FDFormat; /* In many cases, the total sector size of a format is enough to uniquely * identify it. However, there are some total sector collisions between * formats of different physical size, and these are noted below by * highlighting the total sector size for entries with collisions. */ static const FDFormat fd_formats[] = { /* First entry is default format */ /* 1.44 MB 3"1/2 floppy disks */ { FLOPPY_DRIVE_TYPE_144, 18, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 2880 */ { FLOPPY_DRIVE_TYPE_144, 20, 80, 1, FDRIVE_RATE_500K, }, /* 3.5" 3200 */ { FLOPPY_DRIVE_TYPE_144, 21, 80, 1, FDRIVE_RATE_500K, }, { FLOPPY_DRIVE_TYPE_144, 21, 82, 1, FDRIVE_RATE_500K, }, { FLOPPY_DRIVE_TYPE_144, 21, 83, 1, FDRIVE_RATE_500K, }, { FLOPPY_DRIVE_TYPE_144, 22, 80, 1, FDRIVE_RATE_500K, }, { FLOPPY_DRIVE_TYPE_144, 23, 80, 1, FDRIVE_RATE_500K, }, { FLOPPY_DRIVE_TYPE_144, 24, 80, 1, FDRIVE_RATE_500K, }, /* 2.88 MB 3"1/2 floppy disks */ { FLOPPY_DRIVE_TYPE_288, 36, 80, 1, FDRIVE_RATE_1M, }, { FLOPPY_DRIVE_TYPE_288, 39, 80, 1, FDRIVE_RATE_1M, }, { FLOPPY_DRIVE_TYPE_288, 40, 80, 1, FDRIVE_RATE_1M, }, { FLOPPY_DRIVE_TYPE_288, 44, 80, 1, FDRIVE_RATE_1M, }, { FLOPPY_DRIVE_TYPE_288, 48, 80, 1, FDRIVE_RATE_1M, }, /* 720 kB 3"1/2 floppy disks */ { FLOPPY_DRIVE_TYPE_144, 9, 80, 1, FDRIVE_RATE_250K, }, /* 3.5" 1440 */ { FLOPPY_DRIVE_TYPE_144, 10, 80, 1, FDRIVE_RATE_250K, }, { FLOPPY_DRIVE_TYPE_144, 10, 82, 1, FDRIVE_RATE_250K, }, { FLOPPY_DRIVE_TYPE_144, 10, 83, 1, FDRIVE_RATE_250K, }, { FLOPPY_DRIVE_TYPE_144, 13, 80, 1, FDRIVE_RATE_250K, }, { FLOPPY_DRIVE_TYPE_144, 14, 80, 1, FDRIVE_RATE_250K, }, /* 1.2 MB 5"1/4 floppy disks */ { FLOPPY_DRIVE_TYPE_120, 15, 80, 1, FDRIVE_RATE_500K, }, { FLOPPY_DRIVE_TYPE_120, 18, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 2880 */ { FLOPPY_DRIVE_TYPE_120, 18, 82, 1, FDRIVE_RATE_500K, }, { FLOPPY_DRIVE_TYPE_120, 18, 83, 1, FDRIVE_RATE_500K, }, { FLOPPY_DRIVE_TYPE_120, 20, 80, 1, FDRIVE_RATE_500K, }, /* 5.25" 3200 */ /* 720 kB 5"1/4 floppy disks */ { FLOPPY_DRIVE_TYPE_120, 9, 80, 1, FDRIVE_RATE_250K, }, /* 5.25" 1440 */ { FLOPPY_DRIVE_TYPE_120, 11, 80, 1, FDRIVE_RATE_250K, }, /* 360 kB 5"1/4 floppy disks */ { FLOPPY_DRIVE_TYPE_120, 9, 40, 1, FDRIVE_RATE_300K, }, /* 5.25" 720 */ { FLOPPY_DRIVE_TYPE_120, 9, 40, 0, FDRIVE_RATE_300K, }, { FLOPPY_DRIVE_TYPE_120, 10, 41, 1, FDRIVE_RATE_300K, }, { FLOPPY_DRIVE_TYPE_120, 10, 42, 1, FDRIVE_RATE_300K, }, /* 320 kB 5"1/4 floppy disks */ { FLOPPY_DRIVE_TYPE_120, 8, 40, 1, FDRIVE_RATE_250K, }, { FLOPPY_DRIVE_TYPE_120, 8, 40, 0, FDRIVE_RATE_250K, }, /* 360 kB must match 5"1/4 better than 3"1/2... */ { FLOPPY_DRIVE_TYPE_144, 9, 80, 0, FDRIVE_RATE_250K, }, /* 3.5" 720 */ /* end */ { FLOPPY_DRIVE_TYPE_NONE, -1, -1, 0, 0, }, }; static FDriveSize drive_size(FloppyDriveType drive) { switch (drive) { case FLOPPY_DRIVE_TYPE_120: return FDRIVE_SIZE_525; case FLOPPY_DRIVE_TYPE_144: case FLOPPY_DRIVE_TYPE_288: return FDRIVE_SIZE_350; default: return FDRIVE_SIZE_UNKNOWN; } } #define GET_CUR_DRV(fdctrl) ((fdctrl)->cur_drv) #define SET_CUR_DRV(fdctrl, drive) ((fdctrl)->cur_drv = (drive)) /* Will always be a fixed parameter for us */ #define FD_SECTOR_LEN 512 #define FD_SECTOR_SC 2 /* Sector size code */ #define FD_RESET_SENSEI_COUNT 4 /* Number of sense interrupts on RESET */ /* Floppy disk drive emulation */ typedef enum FDiskFlags { FDISK_DBL_SIDES = 0x01, } FDiskFlags; struct FDrive { FDCtrl *fdctrl; BlockBackend *blk; BlockConf *conf; /* Drive status */ FloppyDriveType drive; /* CMOS drive type */ uint8_t perpendicular; /* 2.88 MB access mode */ /* Position */ uint8_t head; uint8_t track; uint8_t sect; /* Media */ FloppyDriveType disk; /* Current disk type */ FDiskFlags flags; uint8_t last_sect; /* Nb sector per track */ uint8_t max_track; /* Nb of tracks */ uint16_t bps; /* Bytes per sector */ uint8_t ro; /* Is read-only */ uint8_t media_changed; /* Is media changed */ uint8_t media_rate; /* Data rate of medium */ bool media_validated; /* Have we validated the media? */ }; static FloppyDriveType get_fallback_drive_type(FDrive *drv); /* Hack: FD_SEEK is expected to work on empty drives. However, QEMU * currently goes through some pains to keep seeks within the bounds * established by last_sect and max_track. Correcting this is difficult, * as refactoring FDC code tends to expose nasty bugs in the Linux kernel. * * For now: allow empty drives to have large bounds so we can seek around, * with the understanding that when a diskette is inserted, the bounds will * properly tighten to match the geometry of that inserted medium. */ static void fd_empty_seek_hack(FDrive *drv) { drv->last_sect = 0xFF; drv->max_track = 0xFF; } static void fd_init(FDrive *drv) { /* Drive */ drv->perpendicular = 0; /* Disk */ drv->disk = FLOPPY_DRIVE_TYPE_NONE; drv->last_sect = 0; drv->max_track = 0; drv->ro = true; drv->media_changed = 1; } #define NUM_SIDES(drv) ((drv)->flags & FDISK_DBL_SIDES ? 2 : 1) static int fd_sector_calc(uint8_t head, uint8_t track, uint8_t sect, uint8_t last_sect, uint8_t num_sides) { return (((track * num_sides) + head) * last_sect) + sect - 1; } /* Returns current position, in sectors, for given drive */ static int fd_sector(FDrive *drv) { return fd_sector_calc(drv->head, drv->track, drv->sect, drv->last_sect, NUM_SIDES(drv)); } /* Returns current position, in bytes, for given drive */ static int fd_offset(FDrive *drv) { g_assert(fd_sector(drv) < INT_MAX >> BDRV_SECTOR_BITS); return fd_sector(drv) << BDRV_SECTOR_BITS; } /* Seek to a new position: * returns 0 if already on right track * returns 1 if track changed * returns 2 if track is invalid * returns 3 if sector is invalid * returns 4 if seek is disabled */ static int fd_seek(FDrive *drv, uint8_t head, uint8_t track, uint8_t sect, int enable_seek) { uint32_t sector; int ret; if (track > drv->max_track || (head != 0 && (drv->flags & FDISK_DBL_SIDES) == 0)) { FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", head, track, sect, 1, (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, drv->max_track, drv->last_sect); return 2; } if (sect > drv->last_sect) { FLOPPY_DPRINTF("try to read %d %02x %02x (max=%d %d %02x %02x)\n", head, track, sect, 1, (drv->flags & FDISK_DBL_SIDES) == 0 ? 0 : 1, drv->max_track, drv->last_sect); return 3; } sector = fd_sector_calc(head, track, sect, drv->last_sect, NUM_SIDES(drv)); ret = 0; if (sector != fd_sector(drv)) { #if 0 if (!enable_seek) { FLOPPY_DPRINTF("error: no implicit seek %d %02x %02x" " (max=%d %02x %02x)\n", head, track, sect, 1, drv->max_track, drv->last_sect); return 4; } #endif drv->head = head; if (drv->track != track) { if (drv->blk != NULL && blk_is_inserted(drv->blk)) { drv->media_changed = 0; } ret = 1; } drv->track = track; drv->sect = sect; } if (drv->blk == NULL || !blk_is_inserted(drv->blk)) { ret = 2; } return ret; } /* Set drive back to track 0 */ static void fd_recalibrate(FDrive *drv) { FLOPPY_DPRINTF("recalibrate\n"); fd_seek(drv, 0, 0, 1, 1); } /** * Determine geometry based on inserted diskette. * Will not operate on an empty drive. * * @return: 0 on success, -1 if the drive is empty. */ static int pick_geometry(FDrive *drv) { BlockBackend *blk = drv->blk; const FDFormat *parse; uint64_t nb_sectors, size; int i; int match, size_match, type_match; bool magic = drv->drive == FLOPPY_DRIVE_TYPE_AUTO; /* We can only pick a geometry if we have a diskette. */ if (!drv->blk || !blk_is_inserted(drv->blk) || drv->drive == FLOPPY_DRIVE_TYPE_NONE) { return -1; } /* We need to determine the likely geometry of the inserted medium. * In order of preference, we look for: * (1) The same drive type and number of sectors, * (2) The same diskette size and number of sectors, * (3) The same drive type. * * In all cases, matches that occur higher in the drive table will take * precedence over matches that occur later in the table. */ blk_get_geometry(blk, &nb_sectors); match = size_match = type_match = -1; for (i = 0; ; i++) { parse = &fd_formats[i]; if (parse->drive == FLOPPY_DRIVE_TYPE_NONE) { break; } size = (parse->max_head + 1) * parse->max_track * parse->last_sect; if (nb_sectors == size) { if (magic || parse->drive == drv->drive) { /* (1) perfect match -- nb_sectors and drive type */ goto out; } else if (drive_size(parse->drive) == drive_size(drv->drive)) { /* (2) size match -- nb_sectors and physical medium size */ match = (match == -1) ? i : match; } else { /* This is suspicious -- Did the user misconfigure? */ size_match = (size_match == -1) ? i : size_match; } } else if (type_match == -1) { if ((parse->drive == drv->drive) || (magic && (parse->drive == get_fallback_drive_type(drv)))) { /* (3) type match -- nb_sectors mismatch, but matches the type * specified explicitly by the user, or matches the fallback * default type when using the drive autodetect mechanism */ type_match = i; } } } /* No exact match found */ if (match == -1) { if (size_match != -1) { parse = &fd_formats[size_match]; FLOPPY_DPRINTF("User requested floppy drive type '%s', " "but inserted medium appears to be a " "%"PRId64" sector '%s' type\n", FloppyDriveType_str(drv->drive), nb_sectors, FloppyDriveType_str(parse->drive)); } assert(type_match != -1 && "misconfigured fd_format"); match = type_match; } parse = &(fd_formats[match]); out: if (parse->max_head == 0) { drv->flags &= ~FDISK_DBL_SIDES; } else { drv->flags |= FDISK_DBL_SIDES; } drv->max_track = parse->max_track; drv->last_sect = parse->last_sect; drv->disk = parse->drive; drv->media_rate = parse->rate; return 0; } static void pick_drive_type(FDrive *drv) { if (drv->drive != FLOPPY_DRIVE_TYPE_AUTO) { return; } if (pick_geometry(drv) == 0) { drv->drive = drv->disk; } else { drv->drive = get_fallback_drive_type(drv); } g_assert(drv->drive != FLOPPY_DRIVE_TYPE_AUTO); } /* Revalidate a disk drive after a disk change */ static void fd_revalidate(FDrive *drv) { int rc; FLOPPY_DPRINTF("revalidate\n"); if (drv->blk != NULL) { drv->ro = blk_is_read_only(drv->blk); if (!blk_is_inserted(drv->blk)) { FLOPPY_DPRINTF("No disk in drive\n"); drv->disk = FLOPPY_DRIVE_TYPE_NONE; fd_empty_seek_hack(drv); } else if (!drv->media_validated) { rc = pick_geometry(drv); if (rc) { FLOPPY_DPRINTF("Could not validate floppy drive media"); } else { drv->media_validated = true; FLOPPY_DPRINTF("Floppy disk (%d h %d t %d s) %s\n", (drv->flags & FDISK_DBL_SIDES) ? 2 : 1, drv->max_track, drv->last_sect, drv->ro ? "ro" : "rw"); } } } else { FLOPPY_DPRINTF("No drive connected\n"); drv->last_sect = 0; drv->max_track = 0; drv->flags &= ~FDISK_DBL_SIDES; drv->drive = FLOPPY_DRIVE_TYPE_NONE; drv->disk = FLOPPY_DRIVE_TYPE_NONE; } } static void fd_change_cb(void *opaque, bool load, Error **errp) { FDrive *drive = opaque; if (!load) { blk_set_perm(drive->blk, 0, BLK_PERM_ALL, &error_abort); } else { if (!blkconf_apply_backend_options(drive->conf, blk_is_read_only(drive->blk), false, errp)) { return; } } drive->media_changed = 1; drive->media_validated = false; fd_revalidate(drive); } static const BlockDevOps fd_block_ops = { .change_media_cb = fd_change_cb, }; #define TYPE_FLOPPY_DRIVE "floppy" #define FLOPPY_DRIVE(obj) \ OBJECT_CHECK(FloppyDrive, (obj), TYPE_FLOPPY_DRIVE) typedef struct FloppyDrive { DeviceState qdev; uint32_t unit; BlockConf conf; FloppyDriveType type; } FloppyDrive; static Property floppy_drive_properties[] = { DEFINE_PROP_UINT32("unit", FloppyDrive, unit, -1), DEFINE_BLOCK_PROPERTIES(FloppyDrive, conf), DEFINE_PROP_SIGNED("drive-type", FloppyDrive, type, FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, FloppyDriveType), DEFINE_PROP_END_OF_LIST(), }; static void floppy_drive_realize(DeviceState *qdev, Error **errp) { FloppyDrive *dev = FLOPPY_DRIVE(qdev); FloppyBus *bus = FLOPPY_BUS(qdev->parent_bus); FDrive *drive; bool read_only; int ret; if (dev->unit == -1) { for (dev->unit = 0; dev->unit < MAX_FD; dev->unit++) { drive = get_drv(bus->fdc, dev->unit); if (!drive->blk) { break; } } } if (dev->unit >= MAX_FD) { error_setg(errp, "Can't create floppy unit %d, bus supports " "only %d units", dev->unit, MAX_FD); return; } drive = get_drv(bus->fdc, dev->unit); if (drive->blk) { error_setg(errp, "Floppy unit %d is in use", dev->unit); return; } if (!dev->conf.blk) { /* Anonymous BlockBackend for an empty drive */ dev->conf.blk = blk_new(qemu_get_aio_context(), 0, BLK_PERM_ALL); ret = blk_attach_dev(dev->conf.blk, qdev); assert(ret == 0); /* Don't take write permissions on an empty drive to allow attaching a * read-only node later */ read_only = true; } else { read_only = !blk_bs(dev->conf.blk) || blk_is_read_only(dev->conf.blk); } if (!blkconf_blocksizes(&dev->conf, errp)) { return; } if (dev->conf.logical_block_size != 512 || dev->conf.physical_block_size != 512) { error_setg(errp, "Physical and logical block size must " "be 512 for floppy"); return; } /* rerror/werror aren't supported by fdc and therefore not even registered * with qdev. So set the defaults manually before they are used in * blkconf_apply_backend_options(). */ dev->conf.rerror = BLOCKDEV_ON_ERROR_AUTO; dev->conf.werror = BLOCKDEV_ON_ERROR_AUTO; if (!blkconf_apply_backend_options(&dev->conf, read_only, false, errp)) { return; } /* 'enospc' is the default for -drive, 'report' is what blk_new() gives us * for empty drives. */ if (blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_ENOSPC && blk_get_on_error(dev->conf.blk, 0) != BLOCKDEV_ON_ERROR_REPORT) { error_setg(errp, "fdc doesn't support drive option werror"); return; } if (blk_get_on_error(dev->conf.blk, 1) != BLOCKDEV_ON_ERROR_REPORT) { error_setg(errp, "fdc doesn't support drive option rerror"); return; } drive->conf = &dev->conf; drive->blk = dev->conf.blk; drive->fdctrl = bus->fdc; fd_init(drive); blk_set_dev_ops(drive->blk, &fd_block_ops, drive); /* Keep 'type' qdev property and FDrive->drive in sync */ drive->drive = dev->type; pick_drive_type(drive); dev->type = drive->drive; fd_revalidate(drive); } static void floppy_drive_class_init(ObjectClass *klass, void *data) { DeviceClass *k = DEVICE_CLASS(klass); k->realize = floppy_drive_realize; set_bit(DEVICE_CATEGORY_STORAGE, k->categories); k->bus_type = TYPE_FLOPPY_BUS; device_class_set_props(k, floppy_drive_properties); k->desc = "virtual floppy drive"; } static const TypeInfo floppy_drive_info = { .name = TYPE_FLOPPY_DRIVE, .parent = TYPE_DEVICE, .instance_size = sizeof(FloppyDrive), .class_init = floppy_drive_class_init, }; /********************************************************/ /* Intel 82078 floppy disk controller emulation */ static void fdctrl_reset(FDCtrl *fdctrl, int do_irq); static void fdctrl_to_command_phase(FDCtrl *fdctrl); static int fdctrl_transfer_handler (void *opaque, int nchan, int dma_pos, int dma_len); static void fdctrl_raise_irq(FDCtrl *fdctrl); static FDrive *get_cur_drv(FDCtrl *fdctrl); static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl); static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl); static uint32_t fdctrl_read_dor(FDCtrl *fdctrl); static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value); static uint32_t fdctrl_read_tape(FDCtrl *fdctrl); static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value); static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl); static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value); static uint32_t fdctrl_read_data(FDCtrl *fdctrl); static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value); static uint32_t fdctrl_read_dir(FDCtrl *fdctrl); static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value); enum { FD_DIR_WRITE = 0, FD_DIR_READ = 1, FD_DIR_SCANE = 2, FD_DIR_SCANL = 3, FD_DIR_SCANH = 4, FD_DIR_VERIFY = 5, }; enum { FD_STATE_MULTI = 0x01, /* multi track flag */ FD_STATE_FORMAT = 0x02, /* format flag */ }; enum { FD_REG_SRA = 0x00, FD_REG_SRB = 0x01, FD_REG_DOR = 0x02, FD_REG_TDR = 0x03, FD_REG_MSR = 0x04, FD_REG_DSR = 0x04, FD_REG_FIFO = 0x05, FD_REG_DIR = 0x07, FD_REG_CCR = 0x07, }; enum { FD_CMD_READ_TRACK = 0x02, FD_CMD_SPECIFY = 0x03, FD_CMD_SENSE_DRIVE_STATUS = 0x04, FD_CMD_WRITE = 0x05, FD_CMD_READ = 0x06, FD_CMD_RECALIBRATE = 0x07, FD_CMD_SENSE_INTERRUPT_STATUS = 0x08, FD_CMD_WRITE_DELETED = 0x09, FD_CMD_READ_ID = 0x0a, FD_CMD_READ_DELETED = 0x0c, FD_CMD_FORMAT_TRACK = 0x0d, FD_CMD_DUMPREG = 0x0e, FD_CMD_SEEK = 0x0f, FD_CMD_VERSION = 0x10, FD_CMD_SCAN_EQUAL = 0x11, FD_CMD_PERPENDICULAR_MODE = 0x12, FD_CMD_CONFIGURE = 0x13, FD_CMD_LOCK = 0x14, FD_CMD_VERIFY = 0x16, FD_CMD_POWERDOWN_MODE = 0x17, FD_CMD_PART_ID = 0x18, FD_CMD_SCAN_LOW_OR_EQUAL = 0x19, FD_CMD_SCAN_HIGH_OR_EQUAL = 0x1d, FD_CMD_SAVE = 0x2e, FD_CMD_OPTION = 0x33, FD_CMD_RESTORE = 0x4e, FD_CMD_DRIVE_SPECIFICATION_COMMAND = 0x8e, FD_CMD_RELATIVE_SEEK_OUT = 0x8f, FD_CMD_FORMAT_AND_WRITE = 0xcd, FD_CMD_RELATIVE_SEEK_IN = 0xcf, }; enum { FD_CONFIG_PRETRK = 0xff, /* Pre-compensation set to track 0 */ FD_CONFIG_FIFOTHR = 0x0f, /* FIFO threshold set to 1 byte */ FD_CONFIG_POLL = 0x10, /* Poll enabled */ FD_CONFIG_EFIFO = 0x20, /* FIFO disabled */ FD_CONFIG_EIS = 0x40, /* No implied seeks */ }; enum { FD_SR0_DS0 = 0x01, FD_SR0_DS1 = 0x02, FD_SR0_HEAD = 0x04, FD_SR0_EQPMT = 0x10, FD_SR0_SEEK = 0x20, FD_SR0_ABNTERM = 0x40, FD_SR0_INVCMD = 0x80, FD_SR0_RDYCHG = 0xc0, }; enum { FD_SR1_MA = 0x01, /* Missing address mark */ FD_SR1_NW = 0x02, /* Not writable */ FD_SR1_EC = 0x80, /* End of cylinder */ }; enum { FD_SR2_SNS = 0x04, /* Scan not satisfied */ FD_SR2_SEH = 0x08, /* Scan equal hit */ }; enum { FD_SRA_DIR = 0x01, FD_SRA_nWP = 0x02, FD_SRA_nINDX = 0x04, FD_SRA_HDSEL = 0x08, FD_SRA_nTRK0 = 0x10, FD_SRA_STEP = 0x20, FD_SRA_nDRV2 = 0x40, FD_SRA_INTPEND = 0x80, }; enum { FD_SRB_MTR0 = 0x01, FD_SRB_MTR1 = 0x02, FD_SRB_WGATE = 0x04, FD_SRB_RDATA = 0x08, FD_SRB_WDATA = 0x10, FD_SRB_DR0 = 0x20, }; enum { #if MAX_FD == 4 FD_DOR_SELMASK = 0x03, #else FD_DOR_SELMASK = 0x01, #endif FD_DOR_nRESET = 0x04, FD_DOR_DMAEN = 0x08, FD_DOR_MOTEN0 = 0x10, FD_DOR_MOTEN1 = 0x20, FD_DOR_MOTEN2 = 0x40, FD_DOR_MOTEN3 = 0x80, }; enum { #if MAX_FD == 4 FD_TDR_BOOTSEL = 0x0c, #else FD_TDR_BOOTSEL = 0x04, #endif }; enum { FD_DSR_DRATEMASK= 0x03, FD_DSR_PWRDOWN = 0x40, FD_DSR_SWRESET = 0x80, }; enum { FD_MSR_DRV0BUSY = 0x01, FD_MSR_DRV1BUSY = 0x02, FD_MSR_DRV2BUSY = 0x04, FD_MSR_DRV3BUSY = 0x08, FD_MSR_CMDBUSY = 0x10, FD_MSR_NONDMA = 0x20, FD_MSR_DIO = 0x40, FD_MSR_RQM = 0x80, }; enum { FD_DIR_DSKCHG = 0x80, }; /* * See chapter 5.0 "Controller phases" of the spec: * * Command phase: * The host writes a command and its parameters into the FIFO. The command * phase is completed when all parameters for the command have been supplied, * and execution phase is entered. * * Execution phase: * Data transfers, either DMA or non-DMA. For non-DMA transfers, the FIFO * contains the payload now, otherwise it's unused. When all bytes of the * required data have been transferred, the state is switched to either result * phase (if the command produces status bytes) or directly back into the * command phase for the next command. * * Result phase: * The host reads out the FIFO, which contains one or more result bytes now. */ enum { /* Only for migration: reconstruct phase from registers like qemu 2.3 */ FD_PHASE_RECONSTRUCT = 0, FD_PHASE_COMMAND = 1, FD_PHASE_EXECUTION = 2, FD_PHASE_RESULT = 3, }; #define FD_MULTI_TRACK(state) ((state) & FD_STATE_MULTI) #define FD_FORMAT_CMD(state) ((state) & FD_STATE_FORMAT) struct FDCtrl { MemoryRegion iomem; qemu_irq irq; /* Controller state */ QEMUTimer *result_timer; int dma_chann; uint8_t phase; IsaDma *dma; /* Controller's identification */ uint8_t version; /* HW */ uint8_t sra; uint8_t srb; uint8_t dor; uint8_t dor_vmstate; /* only used as temp during vmstate */ uint8_t tdr; uint8_t dsr; uint8_t msr; uint8_t cur_drv; uint8_t status0; uint8_t status1; uint8_t status2; /* Command FIFO */ uint8_t *fifo; int32_t fifo_size; uint32_t data_pos; uint32_t data_len; uint8_t data_state; uint8_t data_dir; uint8_t eot; /* last wanted sector */ /* States kept only to be returned back */ /* precompensation */ uint8_t precomp_trk; uint8_t config; uint8_t lock; /* Power down config (also with status regB access mode */ uint8_t pwrd; /* Floppy drives */ FloppyBus bus; uint8_t num_floppies; FDrive drives[MAX_FD]; struct { BlockBackend *blk; FloppyDriveType type; } qdev_for_drives[MAX_FD]; int reset_sensei; uint32_t check_media_rate; FloppyDriveType fallback; /* type=auto failure fallback */ /* Timers state */ uint8_t timer0; uint8_t timer1; PortioList portio_list; }; static FloppyDriveType get_fallback_drive_type(FDrive *drv) { return drv->fdctrl->fallback; } #define TYPE_SYSBUS_FDC "base-sysbus-fdc" #define SYSBUS_FDC(obj) OBJECT_CHECK(FDCtrlSysBus, (obj), TYPE_SYSBUS_FDC) typedef struct FDCtrlSysBus { /*< private >*/ SysBusDevice parent_obj; /*< public >*/ struct FDCtrl state; } FDCtrlSysBus; #define ISA_FDC(obj) OBJECT_CHECK(FDCtrlISABus, (obj), TYPE_ISA_FDC) typedef struct FDCtrlISABus { ISADevice parent_obj; uint32_t iobase; uint32_t irq; uint32_t dma; struct FDCtrl state; int32_t bootindexA; int32_t bootindexB; } FDCtrlISABus; static uint32_t fdctrl_read (void *opaque, uint32_t reg) { FDCtrl *fdctrl = opaque; uint32_t retval; reg &= 7; switch (reg) { case FD_REG_SRA: retval = fdctrl_read_statusA(fdctrl); break; case FD_REG_SRB: retval = fdctrl_read_statusB(fdctrl); break; case FD_REG_DOR: retval = fdctrl_read_dor(fdctrl); break; case FD_REG_TDR: retval = fdctrl_read_tape(fdctrl); break; case FD_REG_MSR: retval = fdctrl_read_main_status(fdctrl); break; case FD_REG_FIFO: retval = fdctrl_read_data(fdctrl); break; case FD_REG_DIR: retval = fdctrl_read_dir(fdctrl); break; default: retval = (uint32_t)(-1); break; } trace_fdc_ioport_read(reg, retval); return retval; } static void fdctrl_write (void *opaque, uint32_t reg, uint32_t value) { FDCtrl *fdctrl = opaque; reg &= 7; trace_fdc_ioport_write(reg, value); switch (reg) { case FD_REG_DOR: fdctrl_write_dor(fdctrl, value); break; case FD_REG_TDR: fdctrl_write_tape(fdctrl, value); break; case FD_REG_DSR: fdctrl_write_rate(fdctrl, value); break; case FD_REG_FIFO: fdctrl_write_data(fdctrl, value); break; case FD_REG_CCR: fdctrl_write_ccr(fdctrl, value); break; default: break; } } static uint64_t fdctrl_read_mem (void *opaque, hwaddr reg, unsigned ize) { return fdctrl_read(opaque, (uint32_t)reg); } static void fdctrl_write_mem (void *opaque, hwaddr reg, uint64_t value, unsigned size) { fdctrl_write(opaque, (uint32_t)reg, value); } static const MemoryRegionOps fdctrl_mem_ops = { .read = fdctrl_read_mem, .write = fdctrl_write_mem, .endianness = DEVICE_NATIVE_ENDIAN, }; static const MemoryRegionOps fdctrl_mem_strict_ops = { .read = fdctrl_read_mem, .write = fdctrl_write_mem, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { .min_access_size = 1, .max_access_size = 1, }, }; static bool fdrive_media_changed_needed(void *opaque) { FDrive *drive = opaque; return (drive->blk != NULL && drive->media_changed != 1); } static const VMStateDescription vmstate_fdrive_media_changed = { .name = "fdrive/media_changed", .version_id = 1, .minimum_version_id = 1, .needed = fdrive_media_changed_needed, .fields = (VMStateField[]) { VMSTATE_UINT8(media_changed, FDrive), VMSTATE_END_OF_LIST() } }; static bool fdrive_media_rate_needed(void *opaque) { FDrive *drive = opaque; return drive->fdctrl->check_media_rate; } static const VMStateDescription vmstate_fdrive_media_rate = { .name = "fdrive/media_rate", .version_id = 1, .minimum_version_id = 1, .needed = fdrive_media_rate_needed, .fields = (VMStateField[]) { VMSTATE_UINT8(media_rate, FDrive), VMSTATE_END_OF_LIST() } }; static bool fdrive_perpendicular_needed(void *opaque) { FDrive *drive = opaque; return drive->perpendicular != 0; } static const VMStateDescription vmstate_fdrive_perpendicular = { .name = "fdrive/perpendicular", .version_id = 1, .minimum_version_id = 1, .needed = fdrive_perpendicular_needed, .fields = (VMStateField[]) { VMSTATE_UINT8(perpendicular, FDrive), VMSTATE_END_OF_LIST() } }; static int fdrive_post_load(void *opaque, int version_id) { fd_revalidate(opaque); return 0; } static const VMStateDescription vmstate_fdrive = { .name = "fdrive", .version_id = 1, .minimum_version_id = 1, .post_load = fdrive_post_load, .fields = (VMStateField[]) { VMSTATE_UINT8(head, FDrive), VMSTATE_UINT8(track, FDrive), VMSTATE_UINT8(sect, FDrive), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_fdrive_media_changed, &vmstate_fdrive_media_rate, &vmstate_fdrive_perpendicular, NULL } }; /* * Reconstructs the phase from register values according to the logic that was * implemented in qemu 2.3. This is the default value that is used if the phase * subsection is not present on migration. * * Don't change this function to reflect newer qemu versions, it is part of * the migration ABI. */ static int reconstruct_phase(FDCtrl *fdctrl) { if (fdctrl->msr & FD_MSR_NONDMA) { return FD_PHASE_EXECUTION; } else if ((fdctrl->msr & FD_MSR_RQM) == 0) { /* qemu 2.3 disabled RQM only during DMA transfers */ return FD_PHASE_EXECUTION; } else if (fdctrl->msr & FD_MSR_DIO) { return FD_PHASE_RESULT; } else { return FD_PHASE_COMMAND; } } static int fdc_pre_save(void *opaque) { FDCtrl *s = opaque; s->dor_vmstate = s->dor | GET_CUR_DRV(s); return 0; } static int fdc_pre_load(void *opaque) { FDCtrl *s = opaque; s->phase = FD_PHASE_RECONSTRUCT; return 0; } static int fdc_post_load(void *opaque, int version_id) { FDCtrl *s = opaque; SET_CUR_DRV(s, s->dor_vmstate & FD_DOR_SELMASK); s->dor = s->dor_vmstate & ~FD_DOR_SELMASK; if (s->phase == FD_PHASE_RECONSTRUCT) { s->phase = reconstruct_phase(s); } return 0; } static bool fdc_reset_sensei_needed(void *opaque) { FDCtrl *s = opaque; return s->reset_sensei != 0; } static const VMStateDescription vmstate_fdc_reset_sensei = { .name = "fdc/reset_sensei", .version_id = 1, .minimum_version_id = 1, .needed = fdc_reset_sensei_needed, .fields = (VMStateField[]) { VMSTATE_INT32(reset_sensei, FDCtrl), VMSTATE_END_OF_LIST() } }; static bool fdc_result_timer_needed(void *opaque) { FDCtrl *s = opaque; return timer_pending(s->result_timer); } static const VMStateDescription vmstate_fdc_result_timer = { .name = "fdc/result_timer", .version_id = 1, .minimum_version_id = 1, .needed = fdc_result_timer_needed, .fields = (VMStateField[]) { VMSTATE_TIMER_PTR(result_timer, FDCtrl), VMSTATE_END_OF_LIST() } }; static bool fdc_phase_needed(void *opaque) { FDCtrl *fdctrl = opaque; return reconstruct_phase(fdctrl) != fdctrl->phase; } static const VMStateDescription vmstate_fdc_phase = { .name = "fdc/phase", .version_id = 1, .minimum_version_id = 1, .needed = fdc_phase_needed, .fields = (VMStateField[]) { VMSTATE_UINT8(phase, FDCtrl), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_fdc = { .name = "fdc", .version_id = 2, .minimum_version_id = 2, .pre_save = fdc_pre_save, .pre_load = fdc_pre_load, .post_load = fdc_post_load, .fields = (VMStateField[]) { /* Controller State */ VMSTATE_UINT8(sra, FDCtrl), VMSTATE_UINT8(srb, FDCtrl), VMSTATE_UINT8(dor_vmstate, FDCtrl), VMSTATE_UINT8(tdr, FDCtrl), VMSTATE_UINT8(dsr, FDCtrl), VMSTATE_UINT8(msr, FDCtrl), VMSTATE_UINT8(status0, FDCtrl), VMSTATE_UINT8(status1, FDCtrl), VMSTATE_UINT8(status2, FDCtrl), /* Command FIFO */ VMSTATE_VARRAY_INT32(fifo, FDCtrl, fifo_size, 0, vmstate_info_uint8, uint8_t), VMSTATE_UINT32(data_pos, FDCtrl), VMSTATE_UINT32(data_len, FDCtrl), VMSTATE_UINT8(data_state, FDCtrl), VMSTATE_UINT8(data_dir, FDCtrl), VMSTATE_UINT8(eot, FDCtrl), /* States kept only to be returned back */ VMSTATE_UINT8(timer0, FDCtrl), VMSTATE_UINT8(timer1, FDCtrl), VMSTATE_UINT8(precomp_trk, FDCtrl), VMSTATE_UINT8(config, FDCtrl), VMSTATE_UINT8(lock, FDCtrl), VMSTATE_UINT8(pwrd, FDCtrl), VMSTATE_UINT8_EQUAL(num_floppies, FDCtrl, NULL), VMSTATE_STRUCT_ARRAY(drives, FDCtrl, MAX_FD, 1, vmstate_fdrive, FDrive), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription*[]) { &vmstate_fdc_reset_sensei, &vmstate_fdc_result_timer, &vmstate_fdc_phase, NULL } }; static void fdctrl_external_reset_sysbus(DeviceState *d) { FDCtrlSysBus *sys = SYSBUS_FDC(d); FDCtrl *s = &sys->state; fdctrl_reset(s, 0); } static void fdctrl_external_reset_isa(DeviceState *d) { FDCtrlISABus *isa = ISA_FDC(d); FDCtrl *s = &isa->state; fdctrl_reset(s, 0); } static void fdctrl_handle_tc(void *opaque, int irq, int level) { //FDCtrl *s = opaque; if (level) { // XXX FLOPPY_DPRINTF("TC pulsed\n"); } } /* Change IRQ state */ static void fdctrl_reset_irq(FDCtrl *fdctrl) { fdctrl->status0 = 0; if (!(fdctrl->sra & FD_SRA_INTPEND)) return; FLOPPY_DPRINTF("Reset interrupt\n"); qemu_set_irq(fdctrl->irq, 0); fdctrl->sra &= ~FD_SRA_INTPEND; } static void fdctrl_raise_irq(FDCtrl *fdctrl) { if (!(fdctrl->sra & FD_SRA_INTPEND)) { qemu_set_irq(fdctrl->irq, 1); fdctrl->sra |= FD_SRA_INTPEND; } fdctrl->reset_sensei = 0; FLOPPY_DPRINTF("Set interrupt status to 0x%02x\n", fdctrl->status0); } /* Reset controller */ static void fdctrl_reset(FDCtrl *fdctrl, int do_irq) { int i; FLOPPY_DPRINTF("reset controller\n"); fdctrl_reset_irq(fdctrl); /* Initialise controller */ fdctrl->sra = 0; fdctrl->srb = 0xc0; if (!fdctrl->drives[1].blk) { fdctrl->sra |= FD_SRA_nDRV2; } fdctrl->cur_drv = 0; fdctrl->dor = FD_DOR_nRESET; fdctrl->dor |= (fdctrl->dma_chann != -1) ? FD_DOR_DMAEN : 0; fdctrl->msr = FD_MSR_RQM; fdctrl->reset_sensei = 0; timer_del(fdctrl->result_timer); /* FIFO state */ fdctrl->data_pos = 0; fdctrl->data_len = 0; fdctrl->data_state = 0; fdctrl->data_dir = FD_DIR_WRITE; for (i = 0; i < MAX_FD; i++) fd_recalibrate(&fdctrl->drives[i]); fdctrl_to_command_phase(fdctrl); if (do_irq) { fdctrl->status0 |= FD_SR0_RDYCHG; fdctrl_raise_irq(fdctrl); fdctrl->reset_sensei = FD_RESET_SENSEI_COUNT; } } static inline FDrive *drv0(FDCtrl *fdctrl) { return &fdctrl->drives[(fdctrl->tdr & FD_TDR_BOOTSEL) >> 2]; } static inline FDrive *drv1(FDCtrl *fdctrl) { if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (1 << 2)) return &fdctrl->drives[1]; else return &fdctrl->drives[0]; } #if MAX_FD == 4 static inline FDrive *drv2(FDCtrl *fdctrl) { if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (2 << 2)) return &fdctrl->drives[2]; else return &fdctrl->drives[1]; } static inline FDrive *drv3(FDCtrl *fdctrl) { if ((fdctrl->tdr & FD_TDR_BOOTSEL) < (3 << 2)) return &fdctrl->drives[3]; else return &fdctrl->drives[2]; } #endif static FDrive *get_drv(FDCtrl *fdctrl, int unit) { switch (unit) { case 0: return drv0(fdctrl); case 1: return drv1(fdctrl); #if MAX_FD == 4 case 2: return drv2(fdctrl); case 3: return drv3(fdctrl); #endif default: return NULL; } } static FDrive *get_cur_drv(FDCtrl *fdctrl) { return get_drv(fdctrl, fdctrl->cur_drv); } /* Status A register : 0x00 (read-only) */ static uint32_t fdctrl_read_statusA(FDCtrl *fdctrl) { uint32_t retval = fdctrl->sra; FLOPPY_DPRINTF("status register A: 0x%02x\n", retval); return retval; } /* Status B register : 0x01 (read-only) */ static uint32_t fdctrl_read_statusB(FDCtrl *fdctrl) { uint32_t retval = fdctrl->srb; FLOPPY_DPRINTF("status register B: 0x%02x\n", retval); return retval; } /* Digital output register : 0x02 */ static uint32_t fdctrl_read_dor(FDCtrl *fdctrl) { uint32_t retval = fdctrl->dor; /* Selected drive */ retval |= fdctrl->cur_drv; FLOPPY_DPRINTF("digital output register: 0x%02x\n", retval); return retval; } static void fdctrl_write_dor(FDCtrl *fdctrl, uint32_t value) { FLOPPY_DPRINTF("digital output register set to 0x%02x\n", value); /* Motors */ if (value & FD_DOR_MOTEN0) fdctrl->srb |= FD_SRB_MTR0; else fdctrl->srb &= ~FD_SRB_MTR0; if (value & FD_DOR_MOTEN1) fdctrl->srb |= FD_SRB_MTR1; else fdctrl->srb &= ~FD_SRB_MTR1; /* Drive */ if (value & 1) fdctrl->srb |= FD_SRB_DR0; else fdctrl->srb &= ~FD_SRB_DR0; /* Reset */ if (!(value & FD_DOR_nRESET)) { if (fdctrl->dor & FD_DOR_nRESET) { FLOPPY_DPRINTF("controller enter RESET state\n"); } } else { if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("controller out of RESET state\n"); fdctrl_reset(fdctrl, 1); fdctrl->dsr &= ~FD_DSR_PWRDOWN; } } /* Selected drive */ fdctrl->cur_drv = value & FD_DOR_SELMASK; fdctrl->dor = value; } /* Tape drive register : 0x03 */ static uint32_t fdctrl_read_tape(FDCtrl *fdctrl) { uint32_t retval = fdctrl->tdr; FLOPPY_DPRINTF("tape drive register: 0x%02x\n", retval); return retval; } static void fdctrl_write_tape(FDCtrl *fdctrl, uint32_t value) { /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } FLOPPY_DPRINTF("tape drive register set to 0x%02x\n", value); /* Disk boot selection indicator */ fdctrl->tdr = value & FD_TDR_BOOTSEL; /* Tape indicators: never allow */ } /* Main status register : 0x04 (read) */ static uint32_t fdctrl_read_main_status(FDCtrl *fdctrl) { uint32_t retval = fdctrl->msr; fdctrl->dsr &= ~FD_DSR_PWRDOWN; fdctrl->dor |= FD_DOR_nRESET; FLOPPY_DPRINTF("main status register: 0x%02x\n", retval); return retval; } /* Data select rate register : 0x04 (write) */ static void fdctrl_write_rate(FDCtrl *fdctrl, uint32_t value) { /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } FLOPPY_DPRINTF("select rate register set to 0x%02x\n", value); /* Reset: autoclear */ if (value & FD_DSR_SWRESET) { fdctrl->dor &= ~FD_DOR_nRESET; fdctrl_reset(fdctrl, 1); fdctrl->dor |= FD_DOR_nRESET; } if (value & FD_DSR_PWRDOWN) { fdctrl_reset(fdctrl, 1); } fdctrl->dsr = value; } /* Configuration control register: 0x07 (write) */ static void fdctrl_write_ccr(FDCtrl *fdctrl, uint32_t value) { /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } FLOPPY_DPRINTF("configuration control register set to 0x%02x\n", value); /* Only the rate selection bits used in AT mode, and we * store those in the DSR. */ fdctrl->dsr = (fdctrl->dsr & ~FD_DSR_DRATEMASK) | (value & FD_DSR_DRATEMASK); } static int fdctrl_media_changed(FDrive *drv) { return drv->media_changed; } /* Digital input register : 0x07 (read-only) */ static uint32_t fdctrl_read_dir(FDCtrl *fdctrl) { uint32_t retval = 0; if (fdctrl_media_changed(get_cur_drv(fdctrl))) { retval |= FD_DIR_DSKCHG; } if (retval != 0) { FLOPPY_DPRINTF("Floppy digital input register: 0x%02x\n", retval); } return retval; } /* Clear the FIFO and update the state for receiving the next command */ static void fdctrl_to_command_phase(FDCtrl *fdctrl) { fdctrl->phase = FD_PHASE_COMMAND; fdctrl->data_dir = FD_DIR_WRITE; fdctrl->data_pos = 0; fdctrl->data_len = 1; /* Accept command byte, adjust for params later */ fdctrl->msr &= ~(FD_MSR_CMDBUSY | FD_MSR_DIO); fdctrl->msr |= FD_MSR_RQM; } /* Update the state to allow the guest to read out the command status. * @fifo_len is the number of result bytes to be read out. */ static void fdctrl_to_result_phase(FDCtrl *fdctrl, int fifo_len) { fdctrl->phase = FD_PHASE_RESULT; fdctrl->data_dir = FD_DIR_READ; fdctrl->data_len = fifo_len; fdctrl->data_pos = 0; fdctrl->msr |= FD_MSR_CMDBUSY | FD_MSR_RQM | FD_MSR_DIO; } /* Set an error: unimplemented/unknown command */ static void fdctrl_unimplemented(FDCtrl *fdctrl, int direction) { qemu_log_mask(LOG_UNIMP, "fdc: unimplemented command 0x%02x\n", fdctrl->fifo[0]); fdctrl->fifo[0] = FD_SR0_INVCMD; fdctrl_to_result_phase(fdctrl, 1); } /* Seek to next sector * returns 0 when end of track reached (for DBL_SIDES on head 1) * otherwise returns 1 */ static int fdctrl_seek_to_next_sect(FDCtrl *fdctrl, FDrive *cur_drv) { FLOPPY_DPRINTF("seek to next sector (%d %02x %02x => %d)\n", cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv)); /* XXX: cur_drv->sect >= cur_drv->last_sect should be an error in fact */ uint8_t new_head = cur_drv->head; uint8_t new_track = cur_drv->track; uint8_t new_sect = cur_drv->sect; int ret = 1; if (new_sect >= cur_drv->last_sect || new_sect == fdctrl->eot) { new_sect = 1; if (FD_MULTI_TRACK(fdctrl->data_state)) { if (new_head == 0 && (cur_drv->flags & FDISK_DBL_SIDES) != 0) { new_head = 1; } else { new_head = 0; new_track++; fdctrl->status0 |= FD_SR0_SEEK; if ((cur_drv->flags & FDISK_DBL_SIDES) == 0) { ret = 0; } } } else { fdctrl->status0 |= FD_SR0_SEEK; new_track++; ret = 0; } if (ret == 1) { FLOPPY_DPRINTF("seek to next track (%d %02x %02x => %d)\n", new_head, new_track, new_sect, fd_sector(cur_drv)); } } else { new_sect++; } fd_seek(cur_drv, new_head, new_track, new_sect, 1); return ret; } /* Callback for transfer end (stop or abort) */ static void fdctrl_stop_transfer(FDCtrl *fdctrl, uint8_t status0, uint8_t status1, uint8_t status2) { FDrive *cur_drv; cur_drv = get_cur_drv(fdctrl); fdctrl->status0 &= ~(FD_SR0_DS0 | FD_SR0_DS1 | FD_SR0_HEAD); fdctrl->status0 |= GET_CUR_DRV(fdctrl); if (cur_drv->head) { fdctrl->status0 |= FD_SR0_HEAD; } fdctrl->status0 |= status0; FLOPPY_DPRINTF("transfer status: %02x %02x %02x (%02x)\n", status0, status1, status2, fdctrl->status0); fdctrl->fifo[0] = fdctrl->status0; fdctrl->fifo[1] = status1; fdctrl->fifo[2] = status2; fdctrl->fifo[3] = cur_drv->track; fdctrl->fifo[4] = cur_drv->head; fdctrl->fifo[5] = cur_drv->sect; fdctrl->fifo[6] = FD_SECTOR_SC; fdctrl->data_dir = FD_DIR_READ; if (fdctrl->dma_chann != -1 && !(fdctrl->msr & FD_MSR_NONDMA)) { IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); k->release_DREQ(fdctrl->dma, fdctrl->dma_chann); } fdctrl->msr |= FD_MSR_RQM | FD_MSR_DIO; fdctrl->msr &= ~FD_MSR_NONDMA; fdctrl_to_result_phase(fdctrl, 7); fdctrl_raise_irq(fdctrl); } /* Prepare a data transfer (either DMA or FIFO) */ static void fdctrl_start_transfer(FDCtrl *fdctrl, int direction) { FDrive *cur_drv; uint8_t kh, kt, ks; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); kt = fdctrl->fifo[2]; kh = fdctrl->fifo[3]; ks = fdctrl->fifo[4]; FLOPPY_DPRINTF("Start transfer at %d %d %02x %02x (%d)\n", GET_CUR_DRV(fdctrl), kh, kt, ks, fd_sector_calc(kh, kt, ks, cur_drv->last_sect, NUM_SIDES(cur_drv))); switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { case 2: /* sect too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 3: /* track too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 4: /* No seek enabled */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 1: fdctrl->status0 |= FD_SR0_SEEK; break; default: break; } /* Check the data rate. If the programmed data rate does not match * the currently inserted medium, the operation has to fail. */ if (fdctrl->check_media_rate && (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { FLOPPY_DPRINTF("data rate mismatch (fdc=%d, media=%d)\n", fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; } /* Set the FIFO state */ fdctrl->data_dir = direction; fdctrl->data_pos = 0; assert(fdctrl->msr & FD_MSR_CMDBUSY); if (fdctrl->fifo[0] & 0x80) fdctrl->data_state |= FD_STATE_MULTI; else fdctrl->data_state &= ~FD_STATE_MULTI; if (fdctrl->fifo[5] == 0) { fdctrl->data_len = fdctrl->fifo[8]; } else { int tmp; fdctrl->data_len = 128 << (fdctrl->fifo[5] > 7 ? 7 : fdctrl->fifo[5]); tmp = (fdctrl->fifo[6] - ks + 1); if (fdctrl->fifo[0] & 0x80) tmp += fdctrl->fifo[6]; fdctrl->data_len *= tmp; } fdctrl->eot = fdctrl->fifo[6]; if (fdctrl->dor & FD_DOR_DMAEN) { /* DMA transfer is enabled. */ IsaDmaClass *k = ISADMA_GET_CLASS(fdctrl->dma); FLOPPY_DPRINTF("direction=%d (%d - %d)\n", direction, (128 << fdctrl->fifo[5]) * (cur_drv->last_sect - ks + 1), fdctrl->data_len); /* No access is allowed until DMA transfer has completed */ fdctrl->msr &= ~FD_MSR_RQM; if (direction != FD_DIR_VERIFY) { /* * Now, we just have to wait for the DMA controller to * recall us... */ k->hold_DREQ(fdctrl->dma, fdctrl->dma_chann); k->schedule(fdctrl->dma); } else { /* Start transfer */ fdctrl_transfer_handler(fdctrl, fdctrl->dma_chann, 0, fdctrl->data_len); } return; } FLOPPY_DPRINTF("start non-DMA transfer\n"); fdctrl->msr |= FD_MSR_NONDMA | FD_MSR_RQM; if (direction != FD_DIR_WRITE) fdctrl->msr |= FD_MSR_DIO; /* IO based transfer: calculate len */ fdctrl_raise_irq(fdctrl); } /* Prepare a transfer of deleted data */ static void fdctrl_start_transfer_del(FDCtrl *fdctrl, int direction) { qemu_log_mask(LOG_UNIMP, "fdctrl_start_transfer_del() unimplemented\n"); /* We don't handle deleted data, * so we don't return *ANYTHING* */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); } /* handlers for DMA transfers */ static int fdctrl_transfer_handler (void *opaque, int nchan, int dma_pos, int dma_len) { FDCtrl *fdctrl; FDrive *cur_drv; int len, start_pos, rel_pos; uint8_t status0 = 0x00, status1 = 0x00, status2 = 0x00; IsaDmaClass *k; fdctrl = opaque; if (fdctrl->msr & FD_MSR_RQM) { FLOPPY_DPRINTF("Not in DMA transfer mode !\n"); return 0; } k = ISADMA_GET_CLASS(fdctrl->dma); cur_drv = get_cur_drv(fdctrl); if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || fdctrl->data_dir == FD_DIR_SCANH) status2 = FD_SR2_SNS; if (dma_len > fdctrl->data_len) dma_len = fdctrl->data_len; if (cur_drv->blk == NULL) { if (fdctrl->data_dir == FD_DIR_WRITE) fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); else fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); len = 0; goto transfer_error; } rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; for (start_pos = fdctrl->data_pos; fdctrl->data_pos < dma_len;) { len = dma_len - fdctrl->data_pos; if (len + rel_pos > FD_SECTOR_LEN) len = FD_SECTOR_LEN - rel_pos; FLOPPY_DPRINTF("copy %d bytes (%d %d %d) %d pos %d %02x " "(%d-0x%08x 0x%08x)\n", len, dma_len, fdctrl->data_pos, fdctrl->data_len, GET_CUR_DRV(fdctrl), cur_drv->head, cur_drv->track, cur_drv->sect, fd_sector(cur_drv), fd_sector(cur_drv) * FD_SECTOR_LEN); if (fdctrl->data_dir != FD_DIR_WRITE || len < FD_SECTOR_LEN || rel_pos != 0) { /* READ & SCAN commands and realign to a sector for WRITE */ if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) { FLOPPY_DPRINTF("Floppy: error getting sector %d\n", fd_sector(cur_drv)); /* Sure, image size is too small... */ memset(fdctrl->fifo, 0, FD_SECTOR_LEN); } } switch (fdctrl->data_dir) { case FD_DIR_READ: /* READ commands */ k->write_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, fdctrl->data_pos, len); break; case FD_DIR_WRITE: /* WRITE commands */ if (cur_drv->ro) { /* Handle readonly medium early, no need to do DMA, touch the * LED or attempt any writes. A real floppy doesn't attempt * to write to readonly media either. */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, FD_SR1_NW, 0x00); goto transfer_error; } k->read_memory(fdctrl->dma, nchan, fdctrl->fifo + rel_pos, fdctrl->data_pos, len); if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) { FLOPPY_DPRINTF("error writing sector %d\n", fd_sector(cur_drv)); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); goto transfer_error; } break; case FD_DIR_VERIFY: /* VERIFY commands */ break; default: /* SCAN commands */ { uint8_t tmpbuf[FD_SECTOR_LEN]; int ret; k->read_memory(fdctrl->dma, nchan, tmpbuf, fdctrl->data_pos, len); ret = memcmp(tmpbuf, fdctrl->fifo + rel_pos, len); if (ret == 0) { status2 = FD_SR2_SEH; goto end_transfer; } if ((ret < 0 && fdctrl->data_dir == FD_DIR_SCANL) || (ret > 0 && fdctrl->data_dir == FD_DIR_SCANH)) { status2 = 0x00; goto end_transfer; } } break; } fdctrl->data_pos += len; rel_pos = fdctrl->data_pos % FD_SECTOR_LEN; if (rel_pos == 0) { /* Seek to next sector */ if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) break; } } end_transfer: len = fdctrl->data_pos - start_pos; FLOPPY_DPRINTF("end transfer %d %d %d\n", fdctrl->data_pos, len, fdctrl->data_len); if (fdctrl->data_dir == FD_DIR_SCANE || fdctrl->data_dir == FD_DIR_SCANL || fdctrl->data_dir == FD_DIR_SCANH) status2 = FD_SR2_SEH; fdctrl->data_len -= len; fdctrl_stop_transfer(fdctrl, status0, status1, status2); transfer_error: return len; } /* Data register : 0x05 */ static uint32_t fdctrl_read_data(FDCtrl *fdctrl) { FDrive *cur_drv; uint32_t retval = 0; uint32_t pos; cur_drv = get_cur_drv(fdctrl); fdctrl->dsr &= ~FD_DSR_PWRDOWN; if (!(fdctrl->msr & FD_MSR_RQM) || !(fdctrl->msr & FD_MSR_DIO)) { FLOPPY_DPRINTF("error: controller not ready for reading\n"); return 0; } /* If data_len spans multiple sectors, the current position in the FIFO * wraps around while fdctrl->data_pos is the real position in the whole * request. */ pos = fdctrl->data_pos; pos %= FD_SECTOR_LEN; switch (fdctrl->phase) { case FD_PHASE_EXECUTION: assert(fdctrl->msr & FD_MSR_NONDMA); if (pos == 0) { if (fdctrl->data_pos != 0) if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { FLOPPY_DPRINTF("error seeking to next sector %d\n", fd_sector(cur_drv)); return 0; } if (blk_pread(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, BDRV_SECTOR_SIZE) < 0) { FLOPPY_DPRINTF("error getting sector %d\n", fd_sector(cur_drv)); /* Sure, image size is too small... */ memset(fdctrl->fifo, 0, FD_SECTOR_LEN); } } if (++fdctrl->data_pos == fdctrl->data_len) { fdctrl->msr &= ~FD_MSR_RQM; fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); } break; case FD_PHASE_RESULT: assert(!(fdctrl->msr & FD_MSR_NONDMA)); if (++fdctrl->data_pos == fdctrl->data_len) { fdctrl->msr &= ~FD_MSR_RQM; fdctrl_to_command_phase(fdctrl); fdctrl_reset_irq(fdctrl); } break; case FD_PHASE_COMMAND: default: abort(); } retval = fdctrl->fifo[pos]; FLOPPY_DPRINTF("data register: 0x%02x\n", retval); return retval; } static void fdctrl_format_sector(FDCtrl *fdctrl) { FDrive *cur_drv; uint8_t kh, kt, ks; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); kt = fdctrl->fifo[6]; kh = fdctrl->fifo[7]; ks = fdctrl->fifo[8]; FLOPPY_DPRINTF("format sector at %d %d %02x %02x (%d)\n", GET_CUR_DRV(fdctrl), kh, kt, ks, fd_sector_calc(kh, kt, ks, cur_drv->last_sect, NUM_SIDES(cur_drv))); switch (fd_seek(cur_drv, kh, kt, ks, fdctrl->config & FD_CONFIG_EIS)) { case 2: /* sect too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 3: /* track too big */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_EC, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 4: /* No seek enabled */ fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, 0x00, 0x00); fdctrl->fifo[3] = kt; fdctrl->fifo[4] = kh; fdctrl->fifo[5] = ks; return; case 1: fdctrl->status0 |= FD_SR0_SEEK; break; default: break; } memset(fdctrl->fifo, 0, FD_SECTOR_LEN); if (cur_drv->blk == NULL || blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) { FLOPPY_DPRINTF("error formatting sector %d\n", fd_sector(cur_drv)); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM | FD_SR0_SEEK, 0x00, 0x00); } else { if (cur_drv->sect == cur_drv->last_sect) { fdctrl->data_state &= ~FD_STATE_FORMAT; /* Last sector done */ fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); } else { /* More to do */ fdctrl->data_pos = 0; fdctrl->data_len = 4; } } } static void fdctrl_handle_lock(FDCtrl *fdctrl, int direction) { fdctrl->lock = (fdctrl->fifo[0] & 0x80) ? 1 : 0; fdctrl->fifo[0] = fdctrl->lock << 4; fdctrl_to_result_phase(fdctrl, 1); } static void fdctrl_handle_dumpreg(FDCtrl *fdctrl, int direction) { FDrive *cur_drv = get_cur_drv(fdctrl); /* Drives position */ fdctrl->fifo[0] = drv0(fdctrl)->track; fdctrl->fifo[1] = drv1(fdctrl)->track; #if MAX_FD == 4 fdctrl->fifo[2] = drv2(fdctrl)->track; fdctrl->fifo[3] = drv3(fdctrl)->track; #else fdctrl->fifo[2] = 0; fdctrl->fifo[3] = 0; #endif /* timers */ fdctrl->fifo[4] = fdctrl->timer0; fdctrl->fifo[5] = (fdctrl->timer1 << 1) | (fdctrl->dor & FD_DOR_DMAEN ? 1 : 0); fdctrl->fifo[6] = cur_drv->last_sect; fdctrl->fifo[7] = (fdctrl->lock << 7) | (cur_drv->perpendicular << 2); fdctrl->fifo[8] = fdctrl->config; fdctrl->fifo[9] = fdctrl->precomp_trk; fdctrl_to_result_phase(fdctrl, 10); } static void fdctrl_handle_version(FDCtrl *fdctrl, int direction) { /* Controller's version */ fdctrl->fifo[0] = fdctrl->version; fdctrl_to_result_phase(fdctrl, 1); } static void fdctrl_handle_partid(FDCtrl *fdctrl, int direction) { fdctrl->fifo[0] = 0x41; /* Stepping 1 */ fdctrl_to_result_phase(fdctrl, 1); } static void fdctrl_handle_restore(FDCtrl *fdctrl, int direction) { FDrive *cur_drv = get_cur_drv(fdctrl); /* Drives position */ drv0(fdctrl)->track = fdctrl->fifo[3]; drv1(fdctrl)->track = fdctrl->fifo[4]; #if MAX_FD == 4 drv2(fdctrl)->track = fdctrl->fifo[5]; drv3(fdctrl)->track = fdctrl->fifo[6]; #endif /* timers */ fdctrl->timer0 = fdctrl->fifo[7]; fdctrl->timer1 = fdctrl->fifo[8]; cur_drv->last_sect = fdctrl->fifo[9]; fdctrl->lock = fdctrl->fifo[10] >> 7; cur_drv->perpendicular = (fdctrl->fifo[10] >> 2) & 0xF; fdctrl->config = fdctrl->fifo[11]; fdctrl->precomp_trk = fdctrl->fifo[12]; fdctrl->pwrd = fdctrl->fifo[13]; fdctrl_to_command_phase(fdctrl); } static void fdctrl_handle_save(FDCtrl *fdctrl, int direction) { FDrive *cur_drv = get_cur_drv(fdctrl); fdctrl->fifo[0] = 0; fdctrl->fifo[1] = 0; /* Drives position */ fdctrl->fifo[2] = drv0(fdctrl)->track; fdctrl->fifo[3] = drv1(fdctrl)->track; #if MAX_FD == 4 fdctrl->fifo[4] = drv2(fdctrl)->track; fdctrl->fifo[5] = drv3(fdctrl)->track; #else fdctrl->fifo[4] = 0; fdctrl->fifo[5] = 0; #endif /* timers */ fdctrl->fifo[6] = fdctrl->timer0; fdctrl->fifo[7] = fdctrl->timer1; fdctrl->fifo[8] = cur_drv->last_sect; fdctrl->fifo[9] = (fdctrl->lock << 7) | (cur_drv->perpendicular << 2); fdctrl->fifo[10] = fdctrl->config; fdctrl->fifo[11] = fdctrl->precomp_trk; fdctrl->fifo[12] = fdctrl->pwrd; fdctrl->fifo[13] = 0; fdctrl->fifo[14] = 0; fdctrl_to_result_phase(fdctrl, 15); } static void fdctrl_handle_readid(FDCtrl *fdctrl, int direction) { FDrive *cur_drv = get_cur_drv(fdctrl); cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; timer_mod(fdctrl->result_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (NANOSECONDS_PER_SECOND / 50)); } static void fdctrl_handle_format_track(FDCtrl *fdctrl, int direction) { FDrive *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); fdctrl->data_state |= FD_STATE_FORMAT; if (fdctrl->fifo[0] & 0x80) fdctrl->data_state |= FD_STATE_MULTI; else fdctrl->data_state &= ~FD_STATE_MULTI; cur_drv->bps = fdctrl->fifo[2] > 7 ? 16384 : 128 << fdctrl->fifo[2]; #if 0 cur_drv->last_sect = cur_drv->flags & FDISK_DBL_SIDES ? fdctrl->fifo[3] : fdctrl->fifo[3] / 2; #else cur_drv->last_sect = fdctrl->fifo[3]; #endif /* TODO: implement format using DMA expected by the Bochs BIOS * and Linux fdformat (read 3 bytes per sector via DMA and fill * the sector with the specified fill byte */ fdctrl->data_state &= ~FD_STATE_FORMAT; fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); } static void fdctrl_handle_specify(FDCtrl *fdctrl, int direction) { fdctrl->timer0 = (fdctrl->fifo[1] >> 4) & 0xF; fdctrl->timer1 = fdctrl->fifo[2] >> 1; if (fdctrl->fifo[2] & 1) fdctrl->dor &= ~FD_DOR_DMAEN; else fdctrl->dor |= FD_DOR_DMAEN; /* No result back */ fdctrl_to_command_phase(fdctrl); } static void fdctrl_handle_sense_drive_status(FDCtrl *fdctrl, int direction) { FDrive *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); cur_drv->head = (fdctrl->fifo[1] >> 2) & 1; /* 1 Byte status back */ fdctrl->fifo[0] = (cur_drv->ro << 6) | (cur_drv->track == 0 ? 0x10 : 0x00) | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl) | 0x28; fdctrl_to_result_phase(fdctrl, 1); } static void fdctrl_handle_recalibrate(FDCtrl *fdctrl, int direction) { FDrive *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); fd_recalibrate(cur_drv); fdctrl_to_command_phase(fdctrl); /* Raise Interrupt */ fdctrl->status0 |= FD_SR0_SEEK; fdctrl_raise_irq(fdctrl); } static void fdctrl_handle_sense_interrupt_status(FDCtrl *fdctrl, int direction) { FDrive *cur_drv = get_cur_drv(fdctrl); if (fdctrl->reset_sensei > 0) { fdctrl->fifo[0] = FD_SR0_RDYCHG + FD_RESET_SENSEI_COUNT - fdctrl->reset_sensei; fdctrl->reset_sensei--; } else if (!(fdctrl->sra & FD_SRA_INTPEND)) { fdctrl->fifo[0] = FD_SR0_INVCMD; fdctrl_to_result_phase(fdctrl, 1); return; } else { fdctrl->fifo[0] = (fdctrl->status0 & ~(FD_SR0_HEAD | FD_SR0_DS1 | FD_SR0_DS0)) | GET_CUR_DRV(fdctrl); } fdctrl->fifo[1] = cur_drv->track; fdctrl_to_result_phase(fdctrl, 2); fdctrl_reset_irq(fdctrl); fdctrl->status0 = FD_SR0_RDYCHG; } static void fdctrl_handle_seek(FDCtrl *fdctrl, int direction) { FDrive *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); fdctrl_to_command_phase(fdctrl); /* The seek command just sends step pulses to the drive and doesn't care if * there is a medium inserted of if it's banging the head against the drive. */ fd_seek(cur_drv, cur_drv->head, fdctrl->fifo[2], cur_drv->sect, 1); /* Raise Interrupt */ fdctrl->status0 |= FD_SR0_SEEK; fdctrl_raise_irq(fdctrl); } static void fdctrl_handle_perpendicular_mode(FDCtrl *fdctrl, int direction) { FDrive *cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[1] & 0x80) cur_drv->perpendicular = fdctrl->fifo[1] & 0x7; /* No result back */ fdctrl_to_command_phase(fdctrl); } static void fdctrl_handle_configure(FDCtrl *fdctrl, int direction) { fdctrl->config = fdctrl->fifo[2]; fdctrl->precomp_trk = fdctrl->fifo[3]; /* No result back */ fdctrl_to_command_phase(fdctrl); } static void fdctrl_handle_powerdown_mode(FDCtrl *fdctrl, int direction) { fdctrl->pwrd = fdctrl->fifo[1]; fdctrl->fifo[0] = fdctrl->fifo[1]; fdctrl_to_result_phase(fdctrl, 1); } static void fdctrl_handle_option(FDCtrl *fdctrl, int direction) { /* No result back */ fdctrl_to_command_phase(fdctrl); } static void fdctrl_handle_drive_specification_command(FDCtrl *fdctrl, int direction) { FDrive *cur_drv = get_cur_drv(fdctrl); uint32_t pos; pos = fdctrl->data_pos - 1; pos %= FD_SECTOR_LEN; if (fdctrl->fifo[pos] & 0x80) { /* Command parameters done */ if (fdctrl->fifo[pos] & 0x40) { fdctrl->fifo[0] = fdctrl->fifo[1]; fdctrl->fifo[2] = 0; fdctrl->fifo[3] = 0; fdctrl_to_result_phase(fdctrl, 4); } else { fdctrl_to_command_phase(fdctrl); } } else if (fdctrl->data_len > 7) { /* ERROR */ fdctrl->fifo[0] = 0x80 | (cur_drv->head << 2) | GET_CUR_DRV(fdctrl); fdctrl_to_result_phase(fdctrl, 1); } } static void fdctrl_handle_relative_seek_in(FDCtrl *fdctrl, int direction) { FDrive *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[2] + cur_drv->track >= cur_drv->max_track) { fd_seek(cur_drv, cur_drv->head, cur_drv->max_track - 1, cur_drv->sect, 1); } else { fd_seek(cur_drv, cur_drv->head, cur_drv->track + fdctrl->fifo[2], cur_drv->sect, 1); } fdctrl_to_command_phase(fdctrl); /* Raise Interrupt */ fdctrl->status0 |= FD_SR0_SEEK; fdctrl_raise_irq(fdctrl); } static void fdctrl_handle_relative_seek_out(FDCtrl *fdctrl, int direction) { FDrive *cur_drv; SET_CUR_DRV(fdctrl, fdctrl->fifo[1] & FD_DOR_SELMASK); cur_drv = get_cur_drv(fdctrl); if (fdctrl->fifo[2] > cur_drv->track) { fd_seek(cur_drv, cur_drv->head, 0, cur_drv->sect, 1); } else { fd_seek(cur_drv, cur_drv->head, cur_drv->track - fdctrl->fifo[2], cur_drv->sect, 1); } fdctrl_to_command_phase(fdctrl); /* Raise Interrupt */ fdctrl->status0 |= FD_SR0_SEEK; fdctrl_raise_irq(fdctrl); } /* * Handlers for the execution phase of each command */ typedef struct FDCtrlCommand { uint8_t value; uint8_t mask; const char* name; int parameters; void (*handler)(FDCtrl *fdctrl, int direction); int direction; } FDCtrlCommand; static const FDCtrlCommand handlers[] = { { FD_CMD_READ, 0x1f, "READ", 8, fdctrl_start_transfer, FD_DIR_READ }, { FD_CMD_WRITE, 0x3f, "WRITE", 8, fdctrl_start_transfer, FD_DIR_WRITE }, { FD_CMD_SEEK, 0xff, "SEEK", 2, fdctrl_handle_seek }, { FD_CMD_SENSE_INTERRUPT_STATUS, 0xff, "SENSE INTERRUPT STATUS", 0, fdctrl_handle_sense_interrupt_status }, { FD_CMD_RECALIBRATE, 0xff, "RECALIBRATE", 1, fdctrl_handle_recalibrate }, { FD_CMD_FORMAT_TRACK, 0xbf, "FORMAT TRACK", 5, fdctrl_handle_format_track }, { FD_CMD_READ_TRACK, 0xbf, "READ TRACK", 8, fdctrl_start_transfer, FD_DIR_READ }, { FD_CMD_RESTORE, 0xff, "RESTORE", 17, fdctrl_handle_restore }, /* part of READ DELETED DATA */ { FD_CMD_SAVE, 0xff, "SAVE", 0, fdctrl_handle_save }, /* part of READ DELETED DATA */ { FD_CMD_READ_DELETED, 0x1f, "READ DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_READ }, { FD_CMD_SCAN_EQUAL, 0x1f, "SCAN EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANE }, { FD_CMD_VERIFY, 0x1f, "VERIFY", 8, fdctrl_start_transfer, FD_DIR_VERIFY }, { FD_CMD_SCAN_LOW_OR_EQUAL, 0x1f, "SCAN LOW OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANL }, { FD_CMD_SCAN_HIGH_OR_EQUAL, 0x1f, "SCAN HIGH OR EQUAL", 8, fdctrl_start_transfer, FD_DIR_SCANH }, { FD_CMD_WRITE_DELETED, 0x3f, "WRITE DELETED DATA", 8, fdctrl_start_transfer_del, FD_DIR_WRITE }, { FD_CMD_READ_ID, 0xbf, "READ ID", 1, fdctrl_handle_readid }, { FD_CMD_SPECIFY, 0xff, "SPECIFY", 2, fdctrl_handle_specify }, { FD_CMD_SENSE_DRIVE_STATUS, 0xff, "SENSE DRIVE STATUS", 1, fdctrl_handle_sense_drive_status }, { FD_CMD_PERPENDICULAR_MODE, 0xff, "PERPENDICULAR MODE", 1, fdctrl_handle_perpendicular_mode }, { FD_CMD_CONFIGURE, 0xff, "CONFIGURE", 3, fdctrl_handle_configure }, { FD_CMD_POWERDOWN_MODE, 0xff, "POWERDOWN MODE", 2, fdctrl_handle_powerdown_mode }, { FD_CMD_OPTION, 0xff, "OPTION", 1, fdctrl_handle_option }, { FD_CMD_DRIVE_SPECIFICATION_COMMAND, 0xff, "DRIVE SPECIFICATION COMMAND", 5, fdctrl_handle_drive_specification_command }, { FD_CMD_RELATIVE_SEEK_OUT, 0xff, "RELATIVE SEEK OUT", 2, fdctrl_handle_relative_seek_out }, { FD_CMD_FORMAT_AND_WRITE, 0xff, "FORMAT AND WRITE", 10, fdctrl_unimplemented }, { FD_CMD_RELATIVE_SEEK_IN, 0xff, "RELATIVE SEEK IN", 2, fdctrl_handle_relative_seek_in }, { FD_CMD_LOCK, 0x7f, "LOCK", 0, fdctrl_handle_lock }, { FD_CMD_DUMPREG, 0xff, "DUMPREG", 0, fdctrl_handle_dumpreg }, { FD_CMD_VERSION, 0xff, "VERSION", 0, fdctrl_handle_version }, { FD_CMD_PART_ID, 0xff, "PART ID", 0, fdctrl_handle_partid }, { FD_CMD_WRITE, 0x1f, "WRITE (BeOS)", 8, fdctrl_start_transfer, FD_DIR_WRITE }, /* not in specification ; BeOS 4.5 bug */ { 0, 0, "unknown", 0, fdctrl_unimplemented }, /* default handler */ }; /* Associate command to an index in the 'handlers' array */ static uint8_t command_to_handler[256]; static const FDCtrlCommand *get_command(uint8_t cmd) { int idx; idx = command_to_handler[cmd]; FLOPPY_DPRINTF("%s command\n", handlers[idx].name); return &handlers[idx]; } static void fdctrl_write_data(FDCtrl *fdctrl, uint32_t value) { FDrive *cur_drv; const FDCtrlCommand *cmd; uint32_t pos; /* Reset mode */ if (!(fdctrl->dor & FD_DOR_nRESET)) { FLOPPY_DPRINTF("Floppy controller in RESET state !\n"); return; } if (!(fdctrl->msr & FD_MSR_RQM) || (fdctrl->msr & FD_MSR_DIO)) { FLOPPY_DPRINTF("error: controller not ready for writing\n"); return; } fdctrl->dsr &= ~FD_DSR_PWRDOWN; FLOPPY_DPRINTF("%s: %02x\n", __func__, value); /* If data_len spans multiple sectors, the current position in the FIFO * wraps around while fdctrl->data_pos is the real position in the whole * request. */ pos = fdctrl->data_pos++; pos %= FD_SECTOR_LEN; fdctrl->fifo[pos] = value; if (fdctrl->data_pos == fdctrl->data_len) { fdctrl->msr &= ~FD_MSR_RQM; } switch (fdctrl->phase) { case FD_PHASE_EXECUTION: /* For DMA requests, RQM should be cleared during execution phase, so * we would have errored out above. */ assert(fdctrl->msr & FD_MSR_NONDMA); /* FIFO data write */ if (pos == FD_SECTOR_LEN - 1 || fdctrl->data_pos == fdctrl->data_len) { cur_drv = get_cur_drv(fdctrl); if (blk_pwrite(cur_drv->blk, fd_offset(cur_drv), fdctrl->fifo, BDRV_SECTOR_SIZE, 0) < 0) { FLOPPY_DPRINTF("error writing sector %d\n", fd_sector(cur_drv)); break; } if (!fdctrl_seek_to_next_sect(fdctrl, cur_drv)) { FLOPPY_DPRINTF("error seeking to next sector %d\n", fd_sector(cur_drv)); break; } } /* Switch to result phase when done with the transfer */ if (fdctrl->data_pos == fdctrl->data_len) { fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); } break; case FD_PHASE_COMMAND: assert(!(fdctrl->msr & FD_MSR_NONDMA)); assert(fdctrl->data_pos < FD_SECTOR_LEN); if (pos == 0) { /* The first byte specifies the command. Now we start reading * as many parameters as this command requires. */ cmd = get_command(value); fdctrl->data_len = cmd->parameters + 1; if (cmd->parameters) { fdctrl->msr |= FD_MSR_RQM; } fdctrl->msr |= FD_MSR_CMDBUSY; } if (fdctrl->data_pos == fdctrl->data_len) { /* We have all parameters now, execute the command */ fdctrl->phase = FD_PHASE_EXECUTION; if (fdctrl->data_state & FD_STATE_FORMAT) { fdctrl_format_sector(fdctrl); break; } cmd = get_command(fdctrl->fifo[0]); FLOPPY_DPRINTF("Calling handler for '%s'\n", cmd->name); cmd->handler(fdctrl, cmd->direction); } break; case FD_PHASE_RESULT: default: abort(); } } static void fdctrl_result_timer(void *opaque) { FDCtrl *fdctrl = opaque; FDrive *cur_drv = get_cur_drv(fdctrl); /* Pretend we are spinning. * This is needed for Coherent, which uses READ ID to check for * sector interleaving. */ if (cur_drv->last_sect != 0) { cur_drv->sect = (cur_drv->sect % cur_drv->last_sect) + 1; } /* READ_ID can't automatically succeed! */ if (fdctrl->check_media_rate && (fdctrl->dsr & FD_DSR_DRATEMASK) != cur_drv->media_rate) { FLOPPY_DPRINTF("read id rate mismatch (fdc=%d, media=%d)\n", fdctrl->dsr & FD_DSR_DRATEMASK, cur_drv->media_rate); fdctrl_stop_transfer(fdctrl, FD_SR0_ABNTERM, FD_SR1_MA, 0x00); } else { fdctrl_stop_transfer(fdctrl, 0x00, 0x00, 0x00); } } /* Init functions */ static void fdctrl_init_drives(FloppyBus *bus, DriveInfo **fds) { DeviceState *dev; int i; for (i = 0; i < MAX_FD; i++) { if (fds[i]) { dev = qdev_new("floppy"); qdev_prop_set_uint32(dev, "unit", i); qdev_prop_set_enum(dev, "drive-type", FLOPPY_DRIVE_TYPE_AUTO); qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(fds[i]), &error_fatal); qdev_realize_and_unref(dev, &bus->bus, &error_fatal); } } } void isa_fdc_init_drives(ISADevice *fdc, DriveInfo **fds) { fdctrl_init_drives(&ISA_FDC(fdc)->state.bus, fds); } static void fdctrl_connect_drives(FDCtrl *fdctrl, DeviceState *fdc_dev, Error **errp) { unsigned int i; FDrive *drive; DeviceState *dev; BlockBackend *blk; Error *local_err = NULL; for (i = 0; i < MAX_FD; i++) { drive = &fdctrl->drives[i]; drive->fdctrl = fdctrl; /* If the drive is not present, we skip creating the qdev device, but * still have to initialise the controller. */ blk = fdctrl->qdev_for_drives[i].blk; if (!blk) { fd_init(drive); fd_revalidate(drive); continue; } dev = qdev_new("floppy"); qdev_prop_set_uint32(dev, "unit", i); qdev_prop_set_enum(dev, "drive-type", fdctrl->qdev_for_drives[i].type); blk_ref(blk); blk_detach_dev(blk, fdc_dev); fdctrl->qdev_for_drives[i].blk = NULL; qdev_prop_set_drive(dev, "drive", blk, &local_err); blk_unref(blk); if (local_err) { error_propagate(errp, local_err); return; } qdev_realize_and_unref(dev, &fdctrl->bus.bus, &local_err); if (local_err) { error_propagate(errp, local_err); return; } } } ISADevice *fdctrl_init_isa(ISABus *bus, DriveInfo **fds) { ISADevice *isadev; isadev = isa_try_new(TYPE_ISA_FDC); if (!isadev) { return NULL; } isa_realize_and_unref(isadev, bus, &error_fatal); isa_fdc_init_drives(isadev, fds); return isadev; } void fdctrl_init_sysbus(qemu_irq irq, int dma_chann, hwaddr mmio_base, DriveInfo **fds) { FDCtrl *fdctrl; DeviceState *dev; SysBusDevice *sbd; FDCtrlSysBus *sys; dev = qdev_new("sysbus-fdc"); sys = SYSBUS_FDC(dev); fdctrl = &sys->state; fdctrl->dma_chann = dma_chann; /* FIXME */ sbd = SYS_BUS_DEVICE(dev); sysbus_realize_and_unref(sbd, &error_fatal); sysbus_connect_irq(sbd, 0, irq); sysbus_mmio_map(sbd, 0, mmio_base); fdctrl_init_drives(&sys->state.bus, fds); } void sun4m_fdctrl_init(qemu_irq irq, hwaddr io_base, DriveInfo **fds, qemu_irq *fdc_tc) { DeviceState *dev; FDCtrlSysBus *sys; dev = qdev_new("SUNW,fdtwo"); sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); sys = SYSBUS_FDC(dev); sysbus_connect_irq(SYS_BUS_DEVICE(sys), 0, irq); sysbus_mmio_map(SYS_BUS_DEVICE(sys), 0, io_base); *fdc_tc = qdev_get_gpio_in(dev, 0); fdctrl_init_drives(&sys->state.bus, fds); } static void fdctrl_realize_common(DeviceState *dev, FDCtrl *fdctrl, Error **errp) { int i, j; static int command_tables_inited = 0; if (fdctrl->fallback == FLOPPY_DRIVE_TYPE_AUTO) { error_setg(errp, "Cannot choose a fallback FDrive type of 'auto'"); return; } /* Fill 'command_to_handler' lookup table */ if (!command_tables_inited) { command_tables_inited = 1; for (i = ARRAY_SIZE(handlers) - 1; i >= 0; i--) { for (j = 0; j < sizeof(command_to_handler); j++) { if ((j & handlers[i].mask) == handlers[i].value) { command_to_handler[j] = i; } } } } FLOPPY_DPRINTF("init controller\n"); fdctrl->fifo = qemu_memalign(512, FD_SECTOR_LEN); memset(fdctrl->fifo, 0, FD_SECTOR_LEN); fdctrl->fifo_size = 512; fdctrl->result_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, fdctrl_result_timer, fdctrl); fdctrl->version = 0x90; /* Intel 82078 controller */ fdctrl->config = FD_CONFIG_EIS | FD_CONFIG_EFIFO; /* Implicit seek, polling & FIFO enabled */ fdctrl->num_floppies = MAX_FD; if (fdctrl->dma_chann != -1) { IsaDmaClass *k; assert(fdctrl->dma); k = ISADMA_GET_CLASS(fdctrl->dma); k->register_channel(fdctrl->dma, fdctrl->dma_chann, &fdctrl_transfer_handler, fdctrl); } floppy_bus_create(fdctrl, &fdctrl->bus, dev); fdctrl_connect_drives(fdctrl, dev, errp); } static const MemoryRegionPortio fdc_portio_list[] = { { 1, 5, 1, .read = fdctrl_read, .write = fdctrl_write }, { 7, 1, 1, .read = fdctrl_read, .write = fdctrl_write }, PORTIO_END_OF_LIST(), }; static void isabus_fdc_realize(DeviceState *dev, Error **errp) { ISADevice *isadev = ISA_DEVICE(dev); FDCtrlISABus *isa = ISA_FDC(dev); FDCtrl *fdctrl = &isa->state; Error *err = NULL; isa_register_portio_list(isadev, &fdctrl->portio_list, isa->iobase, fdc_portio_list, fdctrl, "fdc"); isa_init_irq(isadev, &fdctrl->irq, isa->irq); fdctrl->dma_chann = isa->dma; if (fdctrl->dma_chann != -1) { fdctrl->dma = isa_get_dma(isa_bus_from_device(isadev), isa->dma); if (!fdctrl->dma) { error_setg(errp, "ISA controller does not support DMA"); return; } } qdev_set_legacy_instance_id(dev, isa->iobase, 2); fdctrl_realize_common(dev, fdctrl, &err); if (err != NULL) { error_propagate(errp, err); return; } } static void sysbus_fdc_initfn(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); FDCtrlSysBus *sys = SYSBUS_FDC(obj); FDCtrl *fdctrl = &sys->state; fdctrl->dma_chann = -1; memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_ops, fdctrl, "fdc", 0x08); sysbus_init_mmio(sbd, &fdctrl->iomem); } static void sun4m_fdc_initfn(Object *obj) { SysBusDevice *sbd = SYS_BUS_DEVICE(obj); FDCtrlSysBus *sys = SYSBUS_FDC(obj); FDCtrl *fdctrl = &sys->state; fdctrl->dma_chann = -1; memory_region_init_io(&fdctrl->iomem, obj, &fdctrl_mem_strict_ops, fdctrl, "fdctrl", 0x08); sysbus_init_mmio(sbd, &fdctrl->iomem); } static void sysbus_fdc_common_initfn(Object *obj) { DeviceState *dev = DEVICE(obj); SysBusDevice *sbd = SYS_BUS_DEVICE(dev); FDCtrlSysBus *sys = SYSBUS_FDC(obj); FDCtrl *fdctrl = &sys->state; qdev_set_legacy_instance_id(dev, 0 /* io */, 2); /* FIXME */ sysbus_init_irq(sbd, &fdctrl->irq); qdev_init_gpio_in(dev, fdctrl_handle_tc, 1); } static void sysbus_fdc_common_realize(DeviceState *dev, Error **errp) { FDCtrlSysBus *sys = SYSBUS_FDC(dev); FDCtrl *fdctrl = &sys->state; fdctrl_realize_common(dev, fdctrl, errp); } FloppyDriveType isa_fdc_get_drive_type(ISADevice *fdc, int i) { FDCtrlISABus *isa = ISA_FDC(fdc); return isa->state.drives[i].drive; } void isa_fdc_get_drive_max_chs(FloppyDriveType type, uint8_t *maxc, uint8_t *maxh, uint8_t *maxs) { const FDFormat *fdf; *maxc = *maxh = *maxs = 0; for (fdf = fd_formats; fdf->drive != FLOPPY_DRIVE_TYPE_NONE; fdf++) { if (fdf->drive != type) { continue; } if (*maxc < fdf->max_track) { *maxc = fdf->max_track; } if (*maxh < fdf->max_head) { *maxh = fdf->max_head; } if (*maxs < fdf->last_sect) { *maxs = fdf->last_sect; } } (*maxc)--; } static const VMStateDescription vmstate_isa_fdc ={ .name = "fdc", .version_id = 2, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_STRUCT(state, FDCtrlISABus, 0, vmstate_fdc, FDCtrl), VMSTATE_END_OF_LIST() } }; static Property isa_fdc_properties[] = { DEFINE_PROP_UINT32("iobase", FDCtrlISABus, iobase, 0x3f0), DEFINE_PROP_UINT32("irq", FDCtrlISABus, irq, 6), DEFINE_PROP_UINT32("dma", FDCtrlISABus, dma, 2), DEFINE_PROP_DRIVE("driveA", FDCtrlISABus, state.qdev_for_drives[0].blk), DEFINE_PROP_DRIVE("driveB", FDCtrlISABus, state.qdev_for_drives[1].blk), DEFINE_PROP_BIT("check_media_rate", FDCtrlISABus, state.check_media_rate, 0, true), DEFINE_PROP_SIGNED("fdtypeA", FDCtrlISABus, state.qdev_for_drives[0].type, FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, FloppyDriveType), DEFINE_PROP_SIGNED("fdtypeB", FDCtrlISABus, state.qdev_for_drives[1].type, FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, FloppyDriveType), DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback, FLOPPY_DRIVE_TYPE_288, qdev_prop_fdc_drive_type, FloppyDriveType), DEFINE_PROP_END_OF_LIST(), }; static void isabus_fdc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = isabus_fdc_realize; dc->fw_name = "fdc"; dc->reset = fdctrl_external_reset_isa; dc->vmsd = &vmstate_isa_fdc; device_class_set_props(dc, isa_fdc_properties); set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static void isabus_fdc_instance_init(Object *obj) { FDCtrlISABus *isa = ISA_FDC(obj); device_add_bootindex_property(obj, &isa->bootindexA, "bootindexA", "/floppy@0", DEVICE(obj)); device_add_bootindex_property(obj, &isa->bootindexB, "bootindexB", "/floppy@1", DEVICE(obj)); } static const TypeInfo isa_fdc_info = { .name = TYPE_ISA_FDC, .parent = TYPE_ISA_DEVICE, .instance_size = sizeof(FDCtrlISABus), .class_init = isabus_fdc_class_init, .instance_init = isabus_fdc_instance_init, }; static const VMStateDescription vmstate_sysbus_fdc ={ .name = "fdc", .version_id = 2, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_STRUCT(state, FDCtrlSysBus, 0, vmstate_fdc, FDCtrl), VMSTATE_END_OF_LIST() } }; static Property sysbus_fdc_properties[] = { DEFINE_PROP_DRIVE("driveA", FDCtrlSysBus, state.qdev_for_drives[0].blk), DEFINE_PROP_DRIVE("driveB", FDCtrlSysBus, state.qdev_for_drives[1].blk), DEFINE_PROP_SIGNED("fdtypeA", FDCtrlSysBus, state.qdev_for_drives[0].type, FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, FloppyDriveType), DEFINE_PROP_SIGNED("fdtypeB", FDCtrlSysBus, state.qdev_for_drives[1].type, FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, FloppyDriveType), DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback, FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type, FloppyDriveType), DEFINE_PROP_END_OF_LIST(), }; static void sysbus_fdc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_props(dc, sysbus_fdc_properties); set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static const TypeInfo sysbus_fdc_info = { .name = "sysbus-fdc", .parent = TYPE_SYSBUS_FDC, .instance_init = sysbus_fdc_initfn, .class_init = sysbus_fdc_class_init, }; static Property sun4m_fdc_properties[] = { DEFINE_PROP_DRIVE("drive", FDCtrlSysBus, state.qdev_for_drives[0].blk), DEFINE_PROP_SIGNED("fdtype", FDCtrlSysBus, state.qdev_for_drives[0].type, FLOPPY_DRIVE_TYPE_AUTO, qdev_prop_fdc_drive_type, FloppyDriveType), DEFINE_PROP_SIGNED("fallback", FDCtrlISABus, state.fallback, FLOPPY_DRIVE_TYPE_144, qdev_prop_fdc_drive_type, FloppyDriveType), DEFINE_PROP_END_OF_LIST(), }; static void sun4m_fdc_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_props(dc, sun4m_fdc_properties); set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); } static const TypeInfo sun4m_fdc_info = { .name = "SUNW,fdtwo", .parent = TYPE_SYSBUS_FDC, .instance_init = sun4m_fdc_initfn, .class_init = sun4m_fdc_class_init, }; static void sysbus_fdc_common_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = sysbus_fdc_common_realize; dc->reset = fdctrl_external_reset_sysbus; dc->vmsd = &vmstate_sysbus_fdc; } static const TypeInfo sysbus_fdc_type_info = { .name = TYPE_SYSBUS_FDC, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(FDCtrlSysBus), .instance_init = sysbus_fdc_common_initfn, .abstract = true, .class_init = sysbus_fdc_common_class_init, }; static void fdc_register_types(void) { type_register_static(&isa_fdc_info); type_register_static(&sysbus_fdc_type_info); type_register_static(&sysbus_fdc_info); type_register_static(&sun4m_fdc_info); type_register_static(&floppy_bus_info); type_register_static(&floppy_drive_info); } type_init(fdc_register_types)