/* * QEMU ESP/NCR53C9x emulation * * Copyright (c) 2005-2006 Fabrice Bellard * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "sysbus.h" #include "scsi-disk.h" #include "esp.h" /* debug ESP card */ //#define DEBUG_ESP /* * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), * also produced as NCR89C100. See * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt * and * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt */ #ifdef DEBUG_ESP #define DPRINTF(fmt, ...) \ do { printf("ESP: " fmt , ## __VA_ARGS__); } while (0) #else #define DPRINTF(fmt, ...) do {} while (0) #endif #define ESP_ERROR(fmt, ...) \ do { printf("ESP ERROR: %s: " fmt, __func__ , ## __VA_ARGS__); } while (0) #define ESP_REGS 16 #define TI_BUFSZ 16 typedef struct ESPState ESPState; struct ESPState { SysBusDevice busdev; uint32_t it_shift; qemu_irq irq; uint8_t rregs[ESP_REGS]; uint8_t wregs[ESP_REGS]; int32_t ti_size; uint32_t ti_rptr, ti_wptr; uint8_t ti_buf[TI_BUFSZ]; uint32_t sense; uint32_t dma; SCSIBus bus; SCSIDevice *current_dev; uint8_t cmdbuf[TI_BUFSZ]; uint32_t cmdlen; uint32_t do_cmd; /* The amount of data left in the current DMA transfer. */ uint32_t dma_left; /* The size of the current DMA transfer. Zero if no transfer is in progress. */ uint32_t dma_counter; uint8_t *async_buf; uint32_t async_len; espdma_memory_read_write dma_memory_read; espdma_memory_read_write dma_memory_write; void *dma_opaque; }; #define ESP_TCLO 0x0 #define ESP_TCMID 0x1 #define ESP_FIFO 0x2 #define ESP_CMD 0x3 #define ESP_RSTAT 0x4 #define ESP_WBUSID 0x4 #define ESP_RINTR 0x5 #define ESP_WSEL 0x5 #define ESP_RSEQ 0x6 #define ESP_WSYNTP 0x6 #define ESP_RFLAGS 0x7 #define ESP_WSYNO 0x7 #define ESP_CFG1 0x8 #define ESP_RRES1 0x9 #define ESP_WCCF 0x9 #define ESP_RRES2 0xa #define ESP_WTEST 0xa #define ESP_CFG2 0xb #define ESP_CFG3 0xc #define ESP_RES3 0xd #define ESP_TCHI 0xe #define ESP_RES4 0xf #define CMD_DMA 0x80 #define CMD_CMD 0x7f #define CMD_NOP 0x00 #define CMD_FLUSH 0x01 #define CMD_RESET 0x02 #define CMD_BUSRESET 0x03 #define CMD_TI 0x10 #define CMD_ICCS 0x11 #define CMD_MSGACC 0x12 #define CMD_PAD 0x18 #define CMD_SATN 0x1a #define CMD_SEL 0x41 #define CMD_SELATN 0x42 #define CMD_SELATNS 0x43 #define CMD_ENSEL 0x44 #define STAT_DO 0x00 #define STAT_DI 0x01 #define STAT_CD 0x02 #define STAT_ST 0x03 #define STAT_MO 0x06 #define STAT_MI 0x07 #define STAT_PIO_MASK 0x06 #define STAT_TC 0x10 #define STAT_PE 0x20 #define STAT_GE 0x40 #define STAT_INT 0x80 #define BUSID_DID 0x07 #define INTR_FC 0x08 #define INTR_BS 0x10 #define INTR_DC 0x20 #define INTR_RST 0x80 #define SEQ_0 0x0 #define SEQ_CD 0x4 #define CFG1_RESREPT 0x40 #define TCHI_FAS100A 0x4 static void esp_raise_irq(ESPState *s) { if (!(s->rregs[ESP_RSTAT] & STAT_INT)) { s->rregs[ESP_RSTAT] |= STAT_INT; qemu_irq_raise(s->irq); } } static void esp_lower_irq(ESPState *s) { if (s->rregs[ESP_RSTAT] & STAT_INT) { s->rregs[ESP_RSTAT] &= ~STAT_INT; qemu_irq_lower(s->irq); } } static uint32_t get_cmd(ESPState *s, uint8_t *buf) { uint32_t dmalen; int target; target = s->wregs[ESP_WBUSID] & BUSID_DID; if (s->dma) { dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8); s->dma_memory_read(s->dma_opaque, buf, dmalen); } else { dmalen = s->ti_size; memcpy(buf, s->ti_buf, dmalen); buf[0] = 0; } DPRINTF("get_cmd: len %d target %d\n", dmalen, target); s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; if (s->current_dev) { /* Started a new command before the old one finished. Cancel it. */ s->current_dev->info->cancel_io(s->current_dev, 0); s->async_len = 0; } if (target >= ESP_MAX_DEVS || !s->bus.devs[target]) { // No such drive s->rregs[ESP_RSTAT] = 0; s->rregs[ESP_RINTR] = INTR_DC; s->rregs[ESP_RSEQ] = SEQ_0; esp_raise_irq(s); return 0; } s->current_dev = s->bus.devs[target]; return dmalen; } static void do_busid_cmd(ESPState *s, uint8_t *buf, uint8_t busid) { int32_t datalen; int lun; DPRINTF("do_busid_cmd: busid 0x%x\n", busid); lun = busid & 7; datalen = s->current_dev->info->send_command(s->current_dev, 0, buf, lun); s->ti_size = datalen; if (datalen != 0) { s->rregs[ESP_RSTAT] = STAT_TC; s->dma_left = 0; s->dma_counter = 0; if (datalen > 0) { s->rregs[ESP_RSTAT] |= STAT_DI; s->current_dev->info->read_data(s->current_dev, 0); } else { s->rregs[ESP_RSTAT] |= STAT_DO; s->current_dev->info->write_data(s->current_dev, 0); } } s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } static void do_cmd(ESPState *s, uint8_t *buf) { uint8_t busid = buf[0]; do_busid_cmd(s, &buf[1], busid); } static void handle_satn(ESPState *s) { uint8_t buf[32]; int len; len = get_cmd(s, buf); if (len) do_cmd(s, buf); } static void handle_s_without_atn(ESPState *s) { uint8_t buf[32]; int len; len = get_cmd(s, buf); if (len) { do_busid_cmd(s, buf, 0); } } static void handle_satn_stop(ESPState *s) { s->cmdlen = get_cmd(s, s->cmdbuf); if (s->cmdlen) { DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen); s->do_cmd = 1; s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD; s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_raise_irq(s); } } static void write_response(ESPState *s) { DPRINTF("Transfer status (sense=%d)\n", s->sense); s->ti_buf[0] = s->sense; s->ti_buf[1] = 0; if (s->dma) { s->dma_memory_write(s->dma_opaque, s->ti_buf, 2); s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST; s->rregs[ESP_RINTR] = INTR_BS | INTR_FC; s->rregs[ESP_RSEQ] = SEQ_CD; } else { s->ti_size = 2; s->ti_rptr = 0; s->ti_wptr = 0; s->rregs[ESP_RFLAGS] = 2; } esp_raise_irq(s); } static void esp_dma_done(ESPState *s) { s->rregs[ESP_RSTAT] |= STAT_TC; s->rregs[ESP_RINTR] = INTR_BS; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; s->rregs[ESP_TCLO] = 0; s->rregs[ESP_TCMID] = 0; esp_raise_irq(s); } static void esp_do_dma(ESPState *s) { uint32_t len; int to_device; to_device = (s->ti_size < 0); len = s->dma_left; if (s->do_cmd) { DPRINTF("command len %d + %d\n", s->cmdlen, len); s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s, s->cmdbuf); return; } if (s->async_len == 0) { /* Defer until data is available. */ return; } if (len > s->async_len) { len = s->async_len; } if (to_device) { s->dma_memory_read(s->dma_opaque, s->async_buf, len); } else { s->dma_memory_write(s->dma_opaque, s->async_buf, len); } s->dma_left -= len; s->async_buf += len; s->async_len -= len; if (to_device) s->ti_size += len; else s->ti_size -= len; if (s->async_len == 0) { if (to_device) { // ti_size is negative s->current_dev->info->write_data(s->current_dev, 0); } else { s->current_dev->info->read_data(s->current_dev, 0); /* If there is still data to be read from the device then complete the DMA operation immediately. Otherwise defer until the scsi layer has completed. */ if (s->dma_left == 0 && s->ti_size > 0) { esp_dma_done(s); } } } else { /* Partially filled a scsi buffer. Complete immediately. */ esp_dma_done(s); } } static void esp_command_complete(SCSIBus *bus, int reason, uint32_t tag, uint32_t arg) { ESPState *s = DO_UPCAST(ESPState, busdev.qdev, bus->qbus.parent); if (reason == SCSI_REASON_DONE) { DPRINTF("SCSI Command complete\n"); if (s->ti_size != 0) DPRINTF("SCSI command completed unexpectedly\n"); s->ti_size = 0; s->dma_left = 0; s->async_len = 0; if (arg) DPRINTF("Command failed\n"); s->sense = arg; s->rregs[ESP_RSTAT] = STAT_ST; esp_dma_done(s); s->current_dev = NULL; } else { DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size); s->async_len = arg; s->async_buf = s->current_dev->info->get_buf(s->current_dev, 0); if (s->dma_left) { esp_do_dma(s); } else if (s->dma_counter != 0 && s->ti_size <= 0) { /* If this was the last part of a DMA transfer then the completion interrupt is deferred to here. */ esp_dma_done(s); } } } static void handle_ti(ESPState *s) { uint32_t dmalen, minlen; dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8); if (dmalen==0) { dmalen=0x10000; } s->dma_counter = dmalen; if (s->do_cmd) minlen = (dmalen < 32) ? dmalen : 32; else if (s->ti_size < 0) minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size; else minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size; DPRINTF("Transfer Information len %d\n", minlen); if (s->dma) { s->dma_left = minlen; s->rregs[ESP_RSTAT] &= ~STAT_TC; esp_do_dma(s); } else if (s->do_cmd) { DPRINTF("command len %d\n", s->cmdlen); s->ti_size = 0; s->cmdlen = 0; s->do_cmd = 0; do_cmd(s, s->cmdbuf); return; } } static void esp_reset(DeviceState *d) { ESPState *s = container_of(d, ESPState, busdev.qdev); memset(s->rregs, 0, ESP_REGS); memset(s->wregs, 0, ESP_REGS); s->rregs[ESP_TCHI] = TCHI_FAS100A; // Indicate fas100a s->ti_size = 0; s->ti_rptr = 0; s->ti_wptr = 0; s->dma = 0; s->do_cmd = 0; s->rregs[ESP_CFG1] = 7; } static void parent_esp_reset(void *opaque, int irq, int level) { if (level) esp_reset(opaque); } static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr) { ESPState *s = opaque; uint32_t saddr, old_val; saddr = addr >> s->it_shift; DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]); switch (saddr) { case ESP_FIFO: if (s->ti_size > 0) { s->ti_size--; if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) { /* Data out. */ ESP_ERROR("PIO data read not implemented\n"); s->rregs[ESP_FIFO] = 0; } else { s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++]; } esp_raise_irq(s); } if (s->ti_size == 0) { s->ti_rptr = 0; s->ti_wptr = 0; } break; case ESP_RINTR: /* Clear sequence step, interrupt register and all status bits except TC */ old_val = s->rregs[ESP_RINTR]; s->rregs[ESP_RINTR] = 0; s->rregs[ESP_RSTAT] &= ~STAT_TC; s->rregs[ESP_RSEQ] = SEQ_CD; esp_lower_irq(s); return old_val; default: break; } return s->rregs[saddr]; } static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val) { ESPState *s = opaque; uint32_t saddr; saddr = addr >> s->it_shift; DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr], val); switch (saddr) { case ESP_TCLO: case ESP_TCMID: s->rregs[ESP_RSTAT] &= ~STAT_TC; break; case ESP_FIFO: if (s->do_cmd) { s->cmdbuf[s->cmdlen++] = val & 0xff; } else if (s->ti_size == TI_BUFSZ - 1) { ESP_ERROR("fifo overrun\n"); } else { s->ti_size++; s->ti_buf[s->ti_wptr++] = val & 0xff; } break; case ESP_CMD: s->rregs[saddr] = val; if (val & CMD_DMA) { s->dma = 1; /* Reload DMA counter. */ s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO]; s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID]; } else { s->dma = 0; } switch(val & CMD_CMD) { case CMD_NOP: DPRINTF("NOP (%2.2x)\n", val); break; case CMD_FLUSH: DPRINTF("Flush FIFO (%2.2x)\n", val); //s->ti_size = 0; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; break; case CMD_RESET: DPRINTF("Chip reset (%2.2x)\n", val); esp_reset(&s->busdev.qdev); break; case CMD_BUSRESET: DPRINTF("Bus reset (%2.2x)\n", val); s->rregs[ESP_RINTR] = INTR_RST; if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) { esp_raise_irq(s); } break; case CMD_TI: handle_ti(s); break; case CMD_ICCS: DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val); write_response(s); s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSTAT] |= STAT_MI; break; case CMD_MSGACC: DPRINTF("Message Accepted (%2.2x)\n", val); s->rregs[ESP_RINTR] = INTR_DC; s->rregs[ESP_RSEQ] = 0; s->rregs[ESP_RFLAGS] = 0; esp_raise_irq(s); break; case CMD_PAD: DPRINTF("Transfer padding (%2.2x)\n", val); s->rregs[ESP_RSTAT] = STAT_TC; s->rregs[ESP_RINTR] = INTR_FC; s->rregs[ESP_RSEQ] = 0; break; case CMD_SATN: DPRINTF("Set ATN (%2.2x)\n", val); break; case CMD_SEL: DPRINTF("Select without ATN (%2.2x)\n", val); handle_s_without_atn(s); break; case CMD_SELATN: DPRINTF("Select with ATN (%2.2x)\n", val); handle_satn(s); break; case CMD_SELATNS: DPRINTF("Select with ATN & stop (%2.2x)\n", val); handle_satn_stop(s); break; case CMD_ENSEL: DPRINTF("Enable selection (%2.2x)\n", val); s->rregs[ESP_RINTR] = 0; break; default: ESP_ERROR("Unhandled ESP command (%2.2x)\n", val); break; } break; case ESP_WBUSID ... ESP_WSYNO: break; case ESP_CFG1: s->rregs[saddr] = val; break; case ESP_WCCF ... ESP_WTEST: break; case ESP_CFG2 ... ESP_RES4: s->rregs[saddr] = val; break; default: ESP_ERROR("invalid write of 0x%02x at [0x%x]\n", val, saddr); return; } s->wregs[saddr] = val; } static CPUReadMemoryFunc * const esp_mem_read[3] = { esp_mem_readb, NULL, NULL, }; static CPUWriteMemoryFunc * const esp_mem_write[3] = { esp_mem_writeb, NULL, esp_mem_writeb, }; static const VMStateDescription vmstate_esp = { .name ="esp", .version_id = 3, .minimum_version_id = 3, .minimum_version_id_old = 3, .fields = (VMStateField []) { VMSTATE_BUFFER(rregs, ESPState), VMSTATE_BUFFER(wregs, ESPState), VMSTATE_INT32(ti_size, ESPState), VMSTATE_UINT32(ti_rptr, ESPState), VMSTATE_UINT32(ti_wptr, ESPState), VMSTATE_BUFFER(ti_buf, ESPState), VMSTATE_UINT32(sense, ESPState), VMSTATE_UINT32(dma, ESPState), VMSTATE_BUFFER(cmdbuf, ESPState), VMSTATE_UINT32(cmdlen, ESPState), VMSTATE_UINT32(do_cmd, ESPState), VMSTATE_UINT32(dma_left, ESPState), VMSTATE_END_OF_LIST() } }; void esp_init(target_phys_addr_t espaddr, int it_shift, espdma_memory_read_write dma_memory_read, espdma_memory_read_write dma_memory_write, void *dma_opaque, qemu_irq irq, qemu_irq *reset) { DeviceState *dev; SysBusDevice *s; ESPState *esp; dev = qdev_create(NULL, "esp"); esp = DO_UPCAST(ESPState, busdev.qdev, dev); esp->dma_memory_read = dma_memory_read; esp->dma_memory_write = dma_memory_write; esp->dma_opaque = dma_opaque; esp->it_shift = it_shift; qdev_init_nofail(dev); s = sysbus_from_qdev(dev); sysbus_connect_irq(s, 0, irq); sysbus_mmio_map(s, 0, espaddr); *reset = qdev_get_gpio_in(dev, 0); } static int esp_init1(SysBusDevice *dev) { ESPState *s = FROM_SYSBUS(ESPState, dev); int esp_io_memory; sysbus_init_irq(dev, &s->irq); assert(s->it_shift != -1); esp_io_memory = cpu_register_io_memory(esp_mem_read, esp_mem_write, s); sysbus_init_mmio(dev, ESP_REGS << s->it_shift, esp_io_memory); qdev_init_gpio_in(&dev->qdev, parent_esp_reset, 1); scsi_bus_new(&s->bus, &dev->qdev, 0, ESP_MAX_DEVS, esp_command_complete); scsi_bus_legacy_handle_cmdline(&s->bus); return 0; } static SysBusDeviceInfo esp_info = { .init = esp_init1, .qdev.name = "esp", .qdev.size = sizeof(ESPState), .qdev.vmsd = &vmstate_esp, .qdev.reset = esp_reset, .qdev.props = (Property[]) { {.name = NULL} } }; static void esp_register_devices(void) { sysbus_register_withprop(&esp_info); } device_init(esp_register_devices)