/* * PowerPC emulation micro-operations for qemu. * * Copyright (c) 2003-2007 Jocelyn Mayer * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ //#define DEBUG_OP #include "config.h" #include "exec.h" #include "host-utils.h" #include "helper_regs.h" #include "op_helper.h" #if !defined(CONFIG_USER_ONLY) /* Segment registers load and store */ void OPPROTO op_load_sr (void) { T0 = env->sr[T1]; RETURN(); } void OPPROTO op_store_sr (void) { do_store_sr(env, T1, T0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_load_slb (void) { T0 = ppc_load_slb(env, T1); RETURN(); } void OPPROTO op_store_slb (void) { ppc_store_slb(env, T1, T0); RETURN(); } #endif /* defined(TARGET_PPC64) */ void OPPROTO op_load_sdr1 (void) { T0 = env->sdr1; RETURN(); } void OPPROTO op_store_sdr1 (void) { do_store_sdr1(env, T0); RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_load_asr (void) { T0 = env->asr; RETURN(); } void OPPROTO op_store_asr (void) { ppc_store_asr(env, T0); RETURN(); } #endif void OPPROTO op_load_msr (void) { T0 = env->msr; RETURN(); } void OPPROTO op_store_msr (void) { do_store_msr(); RETURN(); } #if defined (TARGET_PPC64) void OPPROTO op_store_msr_32 (void) { T0 = (env->msr & ~0xFFFFFFFFULL) | (T0 & 0xFFFFFFFF); do_store_msr(); RETURN(); } #endif void OPPROTO op_update_riee (void) { /* We don't call do_store_msr here as we won't trigger * any special case nor change hflags */ T0 &= (1 << MSR_RI) | (1 << MSR_EE); env->msr &= ~(1 << MSR_RI) | (1 << MSR_EE); env->msr |= T0; RETURN(); } #endif /* SPR */ void OPPROTO op_load_spr (void) { T0 = env->spr[PARAM1]; RETURN(); } void OPPROTO op_store_spr (void) { env->spr[PARAM1] = T0; RETURN(); } void OPPROTO op_load_dump_spr (void) { T0 = ppc_load_dump_spr(PARAM1); RETURN(); } void OPPROTO op_store_dump_spr (void) { ppc_store_dump_spr(PARAM1, T0); RETURN(); } void OPPROTO op_mask_spr (void) { env->spr[PARAM1] &= ~T0; RETURN(); } void OPPROTO op_load_tbl (void) { T0 = cpu_ppc_load_tbl(env); RETURN(); } void OPPROTO op_load_tbu (void) { T0 = cpu_ppc_load_tbu(env); RETURN(); } void OPPROTO op_load_atbl (void) { T0 = cpu_ppc_load_atbl(env); RETURN(); } void OPPROTO op_load_atbu (void) { T0 = cpu_ppc_load_atbu(env); RETURN(); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_store_tbl (void) { cpu_ppc_store_tbl(env, T0); RETURN(); } void OPPROTO op_store_tbu (void) { cpu_ppc_store_tbu(env, T0); RETURN(); } void OPPROTO op_store_atbl (void) { cpu_ppc_store_atbl(env, T0); RETURN(); } void OPPROTO op_store_atbu (void) { cpu_ppc_store_atbu(env, T0); RETURN(); } void OPPROTO op_load_decr (void) { T0 = cpu_ppc_load_decr(env); RETURN(); } void OPPROTO op_store_decr (void) { cpu_ppc_store_decr(env, T0); RETURN(); } void OPPROTO op_load_ibat (void) { T0 = env->IBAT[PARAM1][PARAM2]; RETURN(); } void OPPROTO op_store_ibatu (void) { do_store_ibatu(env, PARAM1, T0); RETURN(); } void OPPROTO op_store_ibatl (void) { #if 1 env->IBAT[1][PARAM1] = T0; #else do_store_ibatl(env, PARAM1, T0); #endif RETURN(); } void OPPROTO op_load_dbat (void) { T0 = env->DBAT[PARAM1][PARAM2]; RETURN(); } void OPPROTO op_store_dbatu (void) { do_store_dbatu(env, PARAM1, T0); RETURN(); } void OPPROTO op_store_dbatl (void) { #if 1 env->DBAT[1][PARAM1] = T0; #else do_store_dbatl(env, PARAM1, T0); #endif RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */ /*** Integer shift ***/ void OPPROTO op_srli_T1 (void) { T1 = (uint32_t)T1 >> PARAM1; RETURN(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_helper.h" #include "op_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_helper.h" #include "op_mem.h" #define MEMSUFFIX _kernel #include "op_helper.h" #include "op_mem.h" #define MEMSUFFIX _hypv #include "op_helper.h" #include "op_mem.h" #endif /* Special op to check and maybe clear reservation */ void OPPROTO op_check_reservation (void) { if ((uint32_t)env->reserve == (uint32_t)(T0 & ~0x00000003)) env->reserve = (target_ulong)-1ULL; RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_check_reservation_64 (void) { if ((uint64_t)env->reserve == (uint64_t)(T0 & ~0x00000003)) env->reserve = (target_ulong)-1ULL; RETURN(); } #endif void OPPROTO op_wait (void) { env->halted = 1; RETURN(); } /* Return from interrupt */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_rfi (void) { do_rfi(); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_rfid (void) { do_rfid(); RETURN(); } void OPPROTO op_hrfid (void) { do_hrfid(); RETURN(); } #endif /* Exception vectors */ void OPPROTO op_store_excp_prefix (void) { T0 &= env->ivpr_mask; env->excp_prefix = T0; RETURN(); } void OPPROTO op_store_excp_vector (void) { T0 &= env->ivor_mask; env->excp_vectors[PARAM1] = T0; RETURN(); } #endif /* Trap word */ void OPPROTO op_tw (void) { do_tw(PARAM1); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_td (void) { do_td(PARAM1); RETURN(); } #endif #if !defined(CONFIG_USER_ONLY) /* tlbia */ void OPPROTO op_tlbia (void) { ppc_tlb_invalidate_all(env); RETURN(); } /* tlbie */ void OPPROTO op_tlbie (void) { ppc_tlb_invalidate_one(env, (uint32_t)T0); RETURN(); } #if defined(TARGET_PPC64) void OPPROTO op_tlbie_64 (void) { ppc_tlb_invalidate_one(env, T0); RETURN(); } #endif #if defined(TARGET_PPC64) void OPPROTO op_slbia (void) { ppc_slb_invalidate_all(env); RETURN(); } void OPPROTO op_slbie (void) { ppc_slb_invalidate_one(env, (uint32_t)T0); RETURN(); } void OPPROTO op_slbie_64 (void) { ppc_slb_invalidate_one(env, T0); RETURN(); } #endif #endif #if !defined(CONFIG_USER_ONLY) /* PowerPC 602/603/755 software TLB load instructions */ void OPPROTO op_6xx_tlbld (void) { do_load_6xx_tlb(0); RETURN(); } void OPPROTO op_6xx_tlbli (void) { do_load_6xx_tlb(1); RETURN(); } /* PowerPC 74xx software TLB load instructions */ void OPPROTO op_74xx_tlbld (void) { do_load_74xx_tlb(0); RETURN(); } void OPPROTO op_74xx_tlbli (void) { do_load_74xx_tlb(1); RETURN(); } #endif /* 601 specific */ void OPPROTO op_load_601_rtcl (void) { T0 = cpu_ppc601_load_rtcl(env); RETURN(); } void OPPROTO op_load_601_rtcu (void) { T0 = cpu_ppc601_load_rtcu(env); RETURN(); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_store_601_rtcl (void) { cpu_ppc601_store_rtcl(env, T0); RETURN(); } void OPPROTO op_store_601_rtcu (void) { cpu_ppc601_store_rtcu(env, T0); RETURN(); } void OPPROTO op_store_hid0_601 (void) { do_store_hid0_601(); RETURN(); } void OPPROTO op_load_601_bat (void) { T0 = env->IBAT[PARAM1][PARAM2]; RETURN(); } void OPPROTO op_store_601_batl (void) { do_store_ibatl_601(env, PARAM1, T0); RETURN(); } void OPPROTO op_store_601_batu (void) { do_store_ibatu_601(env, PARAM1, T0); RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */ /* PowerPC 601 specific instructions (POWER bridge) */ /* XXX: those micro-ops need tests ! */ void OPPROTO op_POWER_abs (void) { if ((int32_t)T0 == INT32_MIN) T0 = INT32_MAX; else if ((int32_t)T0 < 0) T0 = -T0; RETURN(); } void OPPROTO op_POWER_abso (void) { do_POWER_abso(); RETURN(); } void OPPROTO op_POWER_clcs (void) { do_POWER_clcs(); RETURN(); } void OPPROTO op_POWER_div (void) { do_POWER_div(); RETURN(); } void OPPROTO op_POWER_divo (void) { do_POWER_divo(); RETURN(); } void OPPROTO op_POWER_divs (void) { do_POWER_divs(); RETURN(); } void OPPROTO op_POWER_divso (void) { do_POWER_divso(); RETURN(); } void OPPROTO op_POWER_doz (void) { if ((int32_t)T1 > (int32_t)T0) T0 = T1 - T0; else T0 = 0; RETURN(); } void OPPROTO op_POWER_dozo (void) { do_POWER_dozo(); RETURN(); } void OPPROTO op_load_xer_cmp (void) { T2 = xer_cmp; RETURN(); } void OPPROTO op_POWER_maskg (void) { do_POWER_maskg(); RETURN(); } void OPPROTO op_POWER_maskir (void) { T0 = (T0 & ~T2) | (T1 & T2); RETURN(); } void OPPROTO op_POWER_mul (void) { uint64_t tmp; tmp = (uint64_t)T0 * (uint64_t)T1; env->spr[SPR_MQ] = tmp >> 32; T0 = tmp; RETURN(); } void OPPROTO op_POWER_mulo (void) { do_POWER_mulo(); RETURN(); } void OPPROTO op_POWER_nabs (void) { if (T0 > 0) T0 = -T0; RETURN(); } void OPPROTO op_POWER_nabso (void) { /* nabs never overflows */ if (T0 > 0) T0 = -T0; env->xer &= ~(1 << XER_OV); RETURN(); } /* XXX: factorise POWER rotates... */ void OPPROTO op_POWER_rlmi (void) { T0 = rotl32(T0, T2) & PARAM1; T0 |= T1 & (uint32_t)PARAM2; RETURN(); } void OPPROTO op_POWER_rrib (void) { T2 &= 0x1FUL; T0 = rotl32(T0 & INT32_MIN, T2); T0 |= T1 & ~rotl32(INT32_MIN, T2); RETURN(); } void OPPROTO op_POWER_sle (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, T1); T0 = T0 << T1; RETURN(); } void OPPROTO op_POWER_sleq (void) { uint32_t tmp = env->spr[SPR_MQ]; T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, T1); T0 = T0 << T1; T0 |= tmp >> (32 - T1); RETURN(); } void OPPROTO op_POWER_sllq (void) { uint32_t msk = UINT32_MAX; msk = msk << (T1 & 0x1FUL); if (T1 & 0x20UL) msk = ~msk; T1 &= 0x1FUL; T0 = (T0 << T1) & msk; T0 |= env->spr[SPR_MQ] & ~msk; RETURN(); } void OPPROTO op_POWER_slq (void) { uint32_t msk = UINT32_MAX, tmp; msk = msk << (T1 & 0x1FUL); if (T1 & 0x20UL) msk = ~msk; T1 &= 0x1FUL; tmp = rotl32(T0, T1); T0 = tmp & msk; env->spr[SPR_MQ] = tmp; RETURN(); } void OPPROTO op_POWER_sraq (void) { env->spr[SPR_MQ] = rotl32(T0, 32 - (T1 & 0x1FUL)); if (T1 & 0x20UL) T0 = UINT32_MAX; else T0 = (int32_t)T0 >> T1; RETURN(); } void OPPROTO op_POWER_sre (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = (int32_t)T0 >> T1; RETURN(); } void OPPROTO op_POWER_srea (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = T0 >> T1; T0 = (int32_t)T0 >> T1; RETURN(); } void OPPROTO op_POWER_sreq (void) { uint32_t tmp; int32_t msk; T1 &= 0x1FUL; msk = INT32_MIN >> T1; tmp = env->spr[SPR_MQ]; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = T0 >> T1; T0 |= tmp & msk; RETURN(); } void OPPROTO op_POWER_srlq (void) { uint32_t tmp; int32_t msk; msk = INT32_MIN >> (T1 & 0x1FUL); if (T1 & 0x20UL) msk = ~msk; T1 &= 0x1FUL; tmp = env->spr[SPR_MQ]; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = T0 >> T1; T0 &= msk; T0 |= tmp & ~msk; RETURN(); } void OPPROTO op_POWER_srq (void) { T1 &= 0x1FUL; env->spr[SPR_MQ] = rotl32(T0, 32 - T1); T0 = T0 >> T1; RETURN(); } /* POWER instructions not implemented in PowerPC 601 */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_POWER_mfsri (void) { T1 = T0 >> 28; T0 = env->sr[T1]; RETURN(); } void OPPROTO op_POWER_rac (void) { do_POWER_rac(); RETURN(); } void OPPROTO op_POWER_rfsvc (void) { do_POWER_rfsvc(); RETURN(); } #endif /* PowerPC 602 specific instruction */ #if !defined(CONFIG_USER_ONLY) void OPPROTO op_602_mfrom (void) { do_op_602_mfrom(); RETURN(); } #endif /* PowerPC 4xx specific micro-ops */ void OPPROTO op_load_dcr (void) { do_load_dcr(); RETURN(); } void OPPROTO op_store_dcr (void) { do_store_dcr(); RETURN(); } #if !defined(CONFIG_USER_ONLY) /* Return from critical interrupt : * same as rfi, except nip & MSR are loaded from SRR2/3 instead of SRR0/1 */ void OPPROTO op_40x_rfci (void) { do_40x_rfci(); RETURN(); } void OPPROTO op_rfci (void) { do_rfci(); RETURN(); } void OPPROTO op_rfdi (void) { do_rfdi(); RETURN(); } void OPPROTO op_rfmci (void) { do_rfmci(); RETURN(); } void OPPROTO op_wrte (void) { /* We don't call do_store_msr here as we won't trigger * any special case nor change hflags */ T0 &= 1 << MSR_EE; env->msr &= ~(1 << MSR_EE); env->msr |= T0; RETURN(); } void OPPROTO op_440_tlbre (void) { do_440_tlbre(PARAM1); RETURN(); } void OPPROTO op_440_tlbsx (void) { T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_440_MMUCR] & 0xFF); RETURN(); } void OPPROTO op_4xx_tlbsx_check (void) { int tmp; tmp = xer_so; if ((int)T0 != -1) tmp |= 0x02; env->crf[0] = tmp; RETURN(); } void OPPROTO op_440_tlbwe (void) { do_440_tlbwe(PARAM1); RETURN(); } void OPPROTO op_4xx_tlbre_lo (void) { do_4xx_tlbre_lo(); RETURN(); } void OPPROTO op_4xx_tlbre_hi (void) { do_4xx_tlbre_hi(); RETURN(); } void OPPROTO op_4xx_tlbsx (void) { T0 = ppcemb_tlb_search(env, T0, env->spr[SPR_40x_PID]); RETURN(); } void OPPROTO op_4xx_tlbwe_lo (void) { do_4xx_tlbwe_lo(); RETURN(); } void OPPROTO op_4xx_tlbwe_hi (void) { do_4xx_tlbwe_hi(); RETURN(); } #endif /* SPR micro-ops */ /* 440 specific */ void OPPROTO op_440_dlmzb (void) { do_440_dlmzb(); RETURN(); } void OPPROTO op_440_dlmzb_update_Rc (void) { if (T0 == 8) T0 = 0x2; else if (T0 < 4) T0 = 0x4; else T0 = 0x8; RETURN(); } #if !defined(CONFIG_USER_ONLY) void OPPROTO op_store_pir (void) { env->spr[SPR_PIR] = T0 & 0x0000000FUL; RETURN(); } void OPPROTO op_load_403_pb (void) { do_load_403_pb(PARAM1); RETURN(); } void OPPROTO op_store_403_pb (void) { do_store_403_pb(PARAM1); RETURN(); } void OPPROTO op_load_40x_pit (void) { T0 = load_40x_pit(env); RETURN(); } void OPPROTO op_store_40x_pit (void) { store_40x_pit(env, T0); RETURN(); } void OPPROTO op_store_40x_dbcr0 (void) { store_40x_dbcr0(env, T0); RETURN(); } void OPPROTO op_store_40x_sler (void) { store_40x_sler(env, T0); RETURN(); } void OPPROTO op_store_booke_tcr (void) { store_booke_tcr(env, T0); RETURN(); } void OPPROTO op_store_booke_tsr (void) { store_booke_tsr(env, T0); RETURN(); } #endif /* !defined(CONFIG_USER_ONLY) */ /* SPE extension */ void OPPROTO op_splatw_T1_64 (void) { T1_64 = (T1_64 << 32) | (T1_64 & 0x00000000FFFFFFFFULL); RETURN(); } void OPPROTO op_extsh_T1_64 (void) { T1_64 = (int32_t)((int16_t)T1_64); RETURN(); } void OPPROTO op_sli16_T1_64 (void) { T1_64 = T1_64 << 16; RETURN(); } void OPPROTO op_sli32_T1_64 (void) { T1_64 = T1_64 << 32; RETURN(); } void OPPROTO op_srli32_T1_64 (void) { T1_64 = T1_64 >> 32; RETURN(); }