/* SPARC micro operations Copyright (C) 2003 Thomas M. Ogrisegg This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" #include "helper.h" #define REGNAME f0 #define REG (env->fpr[0]) #include "fop_template.h" #define REGNAME f1 #define REG (env->fpr[1]) #include "fop_template.h" #define REGNAME f2 #define REG (env->fpr[2]) #include "fop_template.h" #define REGNAME f3 #define REG (env->fpr[3]) #include "fop_template.h" #define REGNAME f4 #define REG (env->fpr[4]) #include "fop_template.h" #define REGNAME f5 #define REG (env->fpr[5]) #include "fop_template.h" #define REGNAME f6 #define REG (env->fpr[6]) #include "fop_template.h" #define REGNAME f7 #define REG (env->fpr[7]) #include "fop_template.h" #define REGNAME f8 #define REG (env->fpr[8]) #include "fop_template.h" #define REGNAME f9 #define REG (env->fpr[9]) #include "fop_template.h" #define REGNAME f10 #define REG (env->fpr[10]) #include "fop_template.h" #define REGNAME f11 #define REG (env->fpr[11]) #include "fop_template.h" #define REGNAME f12 #define REG (env->fpr[12]) #include "fop_template.h" #define REGNAME f13 #define REG (env->fpr[13]) #include "fop_template.h" #define REGNAME f14 #define REG (env->fpr[14]) #include "fop_template.h" #define REGNAME f15 #define REG (env->fpr[15]) #include "fop_template.h" #define REGNAME f16 #define REG (env->fpr[16]) #include "fop_template.h" #define REGNAME f17 #define REG (env->fpr[17]) #include "fop_template.h" #define REGNAME f18 #define REG (env->fpr[18]) #include "fop_template.h" #define REGNAME f19 #define REG (env->fpr[19]) #include "fop_template.h" #define REGNAME f20 #define REG (env->fpr[20]) #include "fop_template.h" #define REGNAME f21 #define REG (env->fpr[21]) #include "fop_template.h" #define REGNAME f22 #define REG (env->fpr[22]) #include "fop_template.h" #define REGNAME f23 #define REG (env->fpr[23]) #include "fop_template.h" #define REGNAME f24 #define REG (env->fpr[24]) #include "fop_template.h" #define REGNAME f25 #define REG (env->fpr[25]) #include "fop_template.h" #define REGNAME f26 #define REG (env->fpr[26]) #include "fop_template.h" #define REGNAME f27 #define REG (env->fpr[27]) #include "fop_template.h" #define REGNAME f28 #define REG (env->fpr[28]) #include "fop_template.h" #define REGNAME f29 #define REG (env->fpr[29]) #include "fop_template.h" #define REGNAME f30 #define REG (env->fpr[30]) #include "fop_template.h" #define REGNAME f31 #define REG (env->fpr[31]) #include "fop_template.h" #ifdef TARGET_SPARC64 #define REGNAME f32 #define REG (env->fpr[32]) #include "fop_template.h" #define REGNAME f34 #define REG (env->fpr[34]) #include "fop_template.h" #define REGNAME f36 #define REG (env->fpr[36]) #include "fop_template.h" #define REGNAME f38 #define REG (env->fpr[38]) #include "fop_template.h" #define REGNAME f40 #define REG (env->fpr[40]) #include "fop_template.h" #define REGNAME f42 #define REG (env->fpr[42]) #include "fop_template.h" #define REGNAME f44 #define REG (env->fpr[44]) #include "fop_template.h" #define REGNAME f46 #define REG (env->fpr[46]) #include "fop_template.h" #define REGNAME f48 #define REG (env->fpr[47]) #include "fop_template.h" #define REGNAME f50 #define REG (env->fpr[50]) #include "fop_template.h" #define REGNAME f52 #define REG (env->fpr[52]) #include "fop_template.h" #define REGNAME f54 #define REG (env->fpr[54]) #include "fop_template.h" #define REGNAME f56 #define REG (env->fpr[56]) #include "fop_template.h" #define REGNAME f58 #define REG (env->fpr[58]) #include "fop_template.h" #define REGNAME f60 #define REG (env->fpr[60]) #include "fop_template.h" #define REGNAME f62 #define REG (env->fpr[62]) #include "fop_template.h" #endif #ifdef TARGET_SPARC64 #define XFLAG_SET(x) ((env->xcc&x)?1:0) #endif #define FLAG_SET(x) ((env->psr&x)?1:0) void OPPROTO op_add_T1_T0_cc(void) { target_ulong src1; src1 = T0; T0 += T1; env->psr = 0; #ifdef TARGET_SPARC64 if (!(T0 & 0xffffffff)) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if ((T0 & 0xffffffff) < (src1 & 0xffffffff)) env->psr |= PSR_CARRY; if ((((src1 & 0xffffffff) ^ (T1 & 0xffffffff) ^ -1) & ((src1 & 0xffffffff) ^ (T0 & 0xffffffff))) & (1 << 31)) env->psr |= PSR_OVF; env->xcc = 0; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; if (T0 < src1) env->xcc |= PSR_CARRY; if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1ULL << 63)) env->xcc |= PSR_OVF; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (T0 < src1) env->psr |= PSR_CARRY; if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1 << 31)) env->psr |= PSR_OVF; #endif FORCE_RET(); } void OPPROTO op_addx_T1_T0_cc(void) { target_ulong src1; src1 = T0; if (FLAG_SET(PSR_CARRY)) { T0 += T1 + 1; env->psr = 0; #ifdef TARGET_SPARC64 if ((T0 & 0xffffffff) <= (src1 & 0xffffffff)) env->psr |= PSR_CARRY; env->xcc = 0; if (T0 <= src1) env->xcc |= PSR_CARRY; #else if (T0 <= src1) env->psr |= PSR_CARRY; #endif } else { T0 += T1; env->psr = 0; #ifdef TARGET_SPARC64 if ((T0 & 0xffffffff) < (src1 & 0xffffffff)) env->psr |= PSR_CARRY; env->xcc = 0; if (T0 < src1) env->xcc |= PSR_CARRY; #else if (T0 < src1) env->psr |= PSR_CARRY; #endif } #ifdef TARGET_SPARC64 if (!(T0 & 0xffffffff)) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if ((((src1 & 0xffffffff) ^ (T1 & 0xffffffff) ^ -1) & ((src1 & 0xffffffff) ^ (T0 & 0xffffffff))) & (1 << 31)) env->psr |= PSR_OVF; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1ULL << 63)) env->xcc |= PSR_OVF; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1 << 31)) env->psr |= PSR_OVF; #endif FORCE_RET(); } void OPPROTO op_tadd_T1_T0_cc(void) { target_ulong src1; src1 = T0; T0 += T1; env->psr = 0; #ifdef TARGET_SPARC64 if (!(T0 & 0xffffffff)) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if ((T0 & 0xffffffff) < (src1 & 0xffffffff)) env->psr |= PSR_CARRY; if ((((src1 & 0xffffffff) ^ (T1 & 0xffffffff) ^ -1) & ((src1 & 0xffffffff) ^ (T0 & 0xffffffff))) & (1 << 31)) env->psr |= PSR_OVF; if ((src1 & 0x03) || (T1 & 0x03)) env->psr |= PSR_OVF; env->xcc = 0; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; if (T0 < src1) env->xcc |= PSR_CARRY; if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1ULL << 63)) env->xcc |= PSR_OVF; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (T0 < src1) env->psr |= PSR_CARRY; if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1 << 31)) env->psr |= PSR_OVF; if ((src1 & 0x03) || (T1 & 0x03)) env->psr |= PSR_OVF; #endif FORCE_RET(); } void OPPROTO op_tadd_T1_T0_ccTV(void) { target_ulong src1; if ((T0 & 0x03) || (T1 & 0x03)) { raise_exception(TT_TOVF); FORCE_RET(); return; } src1 = T0; T0 += T1; #ifdef TARGET_SPARC64 if ((((src1 & 0xffffffff) ^ (T1 & 0xffffffff) ^ -1) & ((src1 & 0xffffffff) ^ (T0 & 0xffffffff))) & (1 << 31)) raise_exception(TT_TOVF); #else if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1 << 31)) raise_exception(TT_TOVF); #endif env->psr = 0; #ifdef TARGET_SPARC64 if (!(T0 & 0xffffffff)) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if ((T0 & 0xffffffff) < (src1 & 0xffffffff)) env->psr |= PSR_CARRY; env->xcc = 0; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; if (T0 < src1) env->xcc |= PSR_CARRY; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (T0 < src1) env->psr |= PSR_CARRY; #endif FORCE_RET(); } void OPPROTO op_sub_T1_T0_cc(void) { target_ulong src1; src1 = T0; T0 -= T1; env->psr = 0; #ifdef TARGET_SPARC64 if (!(T0 & 0xffffffff)) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if ((src1 & 0xffffffff) < (T1 & 0xffffffff)) env->psr |= PSR_CARRY; if ((((src1 & 0xffffffff) ^ (T1 & 0xffffffff)) & ((src1 & 0xffffffff) ^ (T0 & 0xffffffff))) & (1 << 31)) env->psr |= PSR_OVF; env->xcc = 0; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; if (src1 < T1) env->xcc |= PSR_CARRY; if (((src1 ^ T1) & (src1 ^ T0)) & (1ULL << 63)) env->xcc |= PSR_OVF; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (src1 < T1) env->psr |= PSR_CARRY; if (((src1 ^ T1) & (src1 ^ T0)) & (1 << 31)) env->psr |= PSR_OVF; #endif FORCE_RET(); } void OPPROTO op_subx_T1_T0_cc(void) { target_ulong src1; src1 = T0; if (FLAG_SET(PSR_CARRY)) { T0 -= T1 + 1; env->psr = 0; #ifdef TARGET_SPARC64 if ((src1 & 0xffffffff) <= (T1 & 0xffffffff)) env->psr |= PSR_CARRY; env->xcc = 0; if (src1 <= T1) env->xcc |= PSR_CARRY; #else if (src1 <= T1) env->psr |= PSR_CARRY; #endif } else { T0 -= T1; env->psr = 0; #ifdef TARGET_SPARC64 if ((src1 & 0xffffffff) < (T1 & 0xffffffff)) env->psr |= PSR_CARRY; env->xcc = 0; if (src1 < T1) env->xcc |= PSR_CARRY; #else if (src1 < T1) env->psr |= PSR_CARRY; #endif } #ifdef TARGET_SPARC64 if (!(T0 & 0xffffffff)) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if ((((src1 & 0xffffffff) ^ (T1 & 0xffffffff)) & ((src1 & 0xffffffff) ^ (T0 & 0xffffffff))) & (1 << 31)) env->psr |= PSR_OVF; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; if (((src1 ^ T1) & (src1 ^ T0)) & (1ULL << 63)) env->xcc |= PSR_OVF; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (((src1 ^ T1) & (src1 ^ T0)) & (1 << 31)) env->psr |= PSR_OVF; #endif FORCE_RET(); } void OPPROTO op_tsub_T1_T0_cc(void) { target_ulong src1; src1 = T0; T0 -= T1; env->psr = 0; #ifdef TARGET_SPARC64 if (!(T0 & 0xffffffff)) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if ((src1 & 0xffffffff) < (T1 & 0xffffffff)) env->psr |= PSR_CARRY; if ((((src1 & 0xffffffff) ^ (T1 & 0xffffffff)) & ((src1 & 0xffffffff) ^ (T0 & 0xffffffff))) & (1 << 31)) env->psr |= PSR_OVF; if ((src1 & 0x03) || (T1 & 0x03)) env->psr |= PSR_OVF; env->xcc = 0; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; if (src1 < T1) env->xcc |= PSR_CARRY; if (((src1 ^ T1) & (src1 ^ T0)) & (1ULL << 63)) env->xcc |= PSR_OVF; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (src1 < T1) env->psr |= PSR_CARRY; if (((src1 ^ T1) & (src1 ^ T0)) & (1 << 31)) env->psr |= PSR_OVF; if ((src1 & 0x03) || (T1 & 0x03)) env->psr |= PSR_OVF; #endif FORCE_RET(); } void OPPROTO op_tsub_T1_T0_ccTV(void) { target_ulong src1; if ((T0 & 0x03) || (T1 & 0x03)) raise_exception(TT_TOVF); src1 = T0; T0 -= T1; #ifdef TARGET_SPARC64 if ((((src1 & 0xffffffff) ^ (T1 & 0xffffffff)) & ((src1 & 0xffffffff) ^ (T0 & 0xffffffff))) & (1 << 31)) raise_exception(TT_TOVF); #else if (((src1 ^ T1) & (src1 ^ T0)) & (1 << 31)) raise_exception(TT_TOVF); #endif env->psr = 0; #ifdef TARGET_SPARC64 if (!(T0 & 0xffffffff)) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if ((src1 & 0xffffffff) < (T1 & 0xffffffff)) env->psr |= PSR_CARRY; env->xcc = 0; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; if (src1 < T1) env->xcc |= PSR_CARRY; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (src1 < T1) env->psr |= PSR_CARRY; #endif FORCE_RET(); } void OPPROTO op_andn_T1_T0(void) { T0 &= ~T1; } void OPPROTO op_orn_T1_T0(void) { T0 |= ~T1; } void OPPROTO op_xnor_T1_T0(void) { T0 ^= ~T1; } void OPPROTO op_umul_T1_T0(void) { uint64_t res; res = (uint64_t) T0 * (uint64_t) T1; #ifdef TARGET_SPARC64 T0 = res; #else T0 = res & 0xffffffff; #endif env->y = res >> 32; } void OPPROTO op_smul_T1_T0(void) { uint64_t res; res = (int64_t) ((int32_t) T0) * (int64_t) ((int32_t) T1); #ifdef TARGET_SPARC64 T0 = res; #else T0 = res & 0xffffffff; #endif env->y = res >> 32; } void OPPROTO op_mulscc_T1_T0(void) { unsigned int b1, N, V, b2; target_ulong src1; N = FLAG_SET(PSR_NEG); V = FLAG_SET(PSR_OVF); b1 = N ^ V; b2 = T0 & 1; T0 = (b1 << 31) | (T0 >> 1); if (!(env->y & 1)) T1 = 0; /* do addition and update flags */ src1 = T0; T0 += T1; env->psr = 0; if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (T0 < src1) env->psr |= PSR_CARRY; if (((src1 ^ T1 ^ -1) & (src1 ^ T0)) & (1 << 31)) env->psr |= PSR_OVF; env->y = (b2 << 31) | (env->y >> 1); FORCE_RET(); } void OPPROTO op_udiv_T1_T0(void) { uint64_t x0; uint32_t x1; x0 = T0 | ((uint64_t) (env->y) << 32); x1 = T1; if (x1 == 0) { raise_exception(TT_DIV_ZERO); } x0 = x0 / x1; if (x0 > 0xffffffff) { T0 = 0xffffffff; T1 = 1; } else { T0 = x0; T1 = 0; } FORCE_RET(); } void OPPROTO op_sdiv_T1_T0(void) { int64_t x0; int32_t x1; x0 = T0 | ((int64_t) (env->y) << 32); x1 = T1; if (x1 == 0) { raise_exception(TT_DIV_ZERO); } x0 = x0 / x1; if ((int32_t) x0 != x0) { T0 = x0 < 0? 0x80000000: 0x7fffffff; T1 = 1; } else { T0 = x0; T1 = 0; } FORCE_RET(); } void OPPROTO op_div_cc(void) { env->psr = 0; #ifdef TARGET_SPARC64 if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (T1) env->psr |= PSR_OVF; env->xcc = 0; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; if (T1) env->psr |= PSR_OVF; #endif FORCE_RET(); } #ifdef TARGET_SPARC64 void OPPROTO op_udivx_T1_T0(void) { if (T1 == 0) { raise_exception(TT_DIV_ZERO); } T0 /= T1; FORCE_RET(); } void OPPROTO op_sdivx_T1_T0(void) { if (T1 == 0) { raise_exception(TT_DIV_ZERO); } if (T0 == INT64_MIN && T1 == -1) T0 = INT64_MIN; else T0 /= (target_long) T1; FORCE_RET(); } #endif void OPPROTO op_logic_T0_cc(void) { env->psr = 0; #ifdef TARGET_SPARC64 if (!(T0 & 0xffffffff)) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; env->xcc = 0; if (!T0) env->xcc |= PSR_ZERO; if ((int64_t) T0 < 0) env->xcc |= PSR_NEG; #else if (!T0) env->psr |= PSR_ZERO; if ((int32_t) T0 < 0) env->psr |= PSR_NEG; #endif FORCE_RET(); } /* Load and store */ #define MEMSUFFIX _raw #include "op_mem.h" #if !defined(CONFIG_USER_ONLY) #define MEMSUFFIX _user #include "op_mem.h" #define MEMSUFFIX _kernel #include "op_mem.h" #ifdef TARGET_SPARC64 #define MEMSUFFIX _hypv #include "op_mem.h" #endif #endif void OPPROTO op_ldfsr(void) { PUT_FSR32(env, *((uint32_t *) &FT0)); } void OPPROTO op_stfsr(void) { *((uint32_t *) &FT0) = GET_FSR32(env); } #ifndef TARGET_SPARC64 /* XXX: use another pointer for %iN registers to avoid slow wrapping handling ? */ void OPPROTO op_save(void) { uint32_t cwp; cwp = (env->cwp - 1) & (NWINDOWS - 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_OVF); } set_cwp(cwp); FORCE_RET(); } void OPPROTO op_restore(void) { uint32_t cwp; cwp = (env->cwp + 1) & (NWINDOWS - 1); if (env->wim & (1 << cwp)) { raise_exception(TT_WIN_UNF); } set_cwp(cwp); FORCE_RET(); } #else void OPPROTO op_rdccr(void) { T0 = GET_CCR(env); } void OPPROTO op_wrccr(void) { PUT_CCR(env, T0); } // CWP handling is reversed in V9, but we still use the V8 register // order. void OPPROTO op_rdcwp(void) { T0 = GET_CWP64(env); } void OPPROTO op_wrcwp(void) { PUT_CWP64(env, T0); } /* XXX: use another pointer for %iN registers to avoid slow wrapping handling ? */ void OPPROTO op_save(void) { uint32_t cwp; cwp = (env->cwp - 1) & (NWINDOWS - 1); if (env->cansave == 0) { raise_exception(TT_SPILL | (env->otherwin != 0 ? (TT_WOTHER | ((env->wstate & 0x38) >> 1)): ((env->wstate & 0x7) << 2))); } else { if (env->cleanwin - env->canrestore == 0) { // XXX Clean windows without trap raise_exception(TT_CLRWIN); } else { env->cansave--; env->canrestore++; set_cwp(cwp); } } FORCE_RET(); } void OPPROTO op_restore(void) { uint32_t cwp; cwp = (env->cwp + 1) & (NWINDOWS - 1); if (env->canrestore == 0) { raise_exception(TT_FILL | (env->otherwin != 0 ? (TT_WOTHER | ((env->wstate & 0x38) >> 1)): ((env->wstate & 0x7) << 2))); } else { env->cansave++; env->canrestore--; set_cwp(cwp); } FORCE_RET(); } #endif void OPPROTO op_eval_ba(void) { T2 = 1; } void OPPROTO op_eval_be(void) { T2 = FLAG_SET(PSR_ZERO); } void OPPROTO op_eval_ble(void) { target_ulong Z = FLAG_SET(PSR_ZERO), N = FLAG_SET(PSR_NEG), V = FLAG_SET(PSR_OVF); T2 = Z | (N ^ V); } void OPPROTO op_eval_bl(void) { target_ulong N = FLAG_SET(PSR_NEG), V = FLAG_SET(PSR_OVF); T2 = N ^ V; } void OPPROTO op_eval_bleu(void) { target_ulong Z = FLAG_SET(PSR_ZERO), C = FLAG_SET(PSR_CARRY); T2 = C | Z; } void OPPROTO op_eval_bcs(void) { T2 = FLAG_SET(PSR_CARRY); } void OPPROTO op_eval_bvs(void) { T2 = FLAG_SET(PSR_OVF); } void OPPROTO op_eval_bn(void) { T2 = 0; } void OPPROTO op_eval_bneg(void) { T2 = FLAG_SET(PSR_NEG); } void OPPROTO op_eval_bne(void) { T2 = !FLAG_SET(PSR_ZERO); } void OPPROTO op_eval_bg(void) { target_ulong Z = FLAG_SET(PSR_ZERO), N = FLAG_SET(PSR_NEG), V = FLAG_SET(PSR_OVF); T2 = !(Z | (N ^ V)); } void OPPROTO op_eval_bge(void) { target_ulong N = FLAG_SET(PSR_NEG), V = FLAG_SET(PSR_OVF); T2 = !(N ^ V); } void OPPROTO op_eval_bgu(void) { target_ulong Z = FLAG_SET(PSR_ZERO), C = FLAG_SET(PSR_CARRY); T2 = !(C | Z); } void OPPROTO op_eval_bcc(void) { T2 = !FLAG_SET(PSR_CARRY); } void OPPROTO op_eval_bpos(void) { T2 = !FLAG_SET(PSR_NEG); } void OPPROTO op_eval_bvc(void) { T2 = !FLAG_SET(PSR_OVF); } #ifdef TARGET_SPARC64 void OPPROTO op_eval_xbe(void) { T2 = XFLAG_SET(PSR_ZERO); } void OPPROTO op_eval_xble(void) { target_ulong Z = XFLAG_SET(PSR_ZERO), N = XFLAG_SET(PSR_NEG), V = XFLAG_SET(PSR_OVF); T2 = Z | (N ^ V); } void OPPROTO op_eval_xbl(void) { target_ulong N = XFLAG_SET(PSR_NEG), V = XFLAG_SET(PSR_OVF); T2 = N ^ V; } void OPPROTO op_eval_xbleu(void) { target_ulong Z = XFLAG_SET(PSR_ZERO), C = XFLAG_SET(PSR_CARRY); T2 = C | Z; } void OPPROTO op_eval_xbcs(void) { T2 = XFLAG_SET(PSR_CARRY); } void OPPROTO op_eval_xbvs(void) { T2 = XFLAG_SET(PSR_OVF); } void OPPROTO op_eval_xbneg(void) { T2 = XFLAG_SET(PSR_NEG); } void OPPROTO op_eval_xbne(void) { T2 = !XFLAG_SET(PSR_ZERO); } void OPPROTO op_eval_xbg(void) { target_ulong Z = XFLAG_SET(PSR_ZERO), N = XFLAG_SET(PSR_NEG), V = XFLAG_SET(PSR_OVF); T2 = !(Z | (N ^ V)); } void OPPROTO op_eval_xbge(void) { target_ulong N = XFLAG_SET(PSR_NEG), V = XFLAG_SET(PSR_OVF); T2 = !(N ^ V); } void OPPROTO op_eval_xbgu(void) { target_ulong Z = XFLAG_SET(PSR_ZERO), C = XFLAG_SET(PSR_CARRY); T2 = !(C | Z); } void OPPROTO op_eval_xbcc(void) { T2 = !XFLAG_SET(PSR_CARRY); } void OPPROTO op_eval_xbpos(void) { T2 = !XFLAG_SET(PSR_NEG); } void OPPROTO op_eval_xbvc(void) { T2 = !XFLAG_SET(PSR_OVF); } #endif #define FCC #define FFLAG_SET(x) (env->fsr & x? 1: 0) #include "fbranch_template.h" #ifdef TARGET_SPARC64 #define FCC _fcc1 #define FFLAG_SET(x) ((env->fsr & ((uint64_t)x >> 32))? 1: 0) #include "fbranch_template.h" #define FCC _fcc2 #define FFLAG_SET(x) ((env->fsr & ((uint64_t)x >> 34))? 1: 0) #include "fbranch_template.h" #define FCC _fcc3 #define FFLAG_SET(x) ((env->fsr & ((uint64_t)x >> 36))? 1: 0) #include "fbranch_template.h" #endif #ifdef TARGET_SPARC64 void OPPROTO op_eval_brz(void) { T2 = (T0 == 0); } void OPPROTO op_eval_brnz(void) { T2 = (T0 != 0); } void OPPROTO op_eval_brlz(void) { T2 = ((int64_t)T0 < 0); } void OPPROTO op_eval_brlez(void) { T2 = ((int64_t)T0 <= 0); } void OPPROTO op_eval_brgz(void) { T2 = ((int64_t)T0 > 0); } void OPPROTO op_eval_brgez(void) { T2 = ((int64_t)T0 >= 0); } #endif void OPPROTO op_jmp_label(void) { GOTO_LABEL_PARAM(1); } void OPPROTO op_jnz_T2_label(void) { if (T2) GOTO_LABEL_PARAM(1); FORCE_RET(); } void OPPROTO op_jz_T2_label(void) { if (!T2) GOTO_LABEL_PARAM(1); FORCE_RET(); } #define F_OP(name, p) void OPPROTO op_f##name##p(void) #if defined(CONFIG_USER_ONLY) #define F_BINOP(name) \ F_OP(name, s) \ { \ FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \ } \ F_OP(name, d) \ { \ DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \ } \ F_OP(name, q) \ { \ QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \ } #else #define F_BINOP(name) \ F_OP(name, s) \ { \ FT0 = float32_ ## name (FT0, FT1, &env->fp_status); \ } \ F_OP(name, d) \ { \ DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \ } #endif F_BINOP(add); F_BINOP(sub); F_BINOP(mul); F_BINOP(div); #undef F_BINOP void OPPROTO op_fsmuld(void) { DT0 = float64_mul(float32_to_float64(FT0, &env->fp_status), float32_to_float64(FT1, &env->fp_status), &env->fp_status); } #if defined(CONFIG_USER_ONLY) void OPPROTO op_fdmulq(void) { QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status), float64_to_float128(DT1, &env->fp_status), &env->fp_status); } #endif #if defined(CONFIG_USER_ONLY) #define F_HELPER(name) \ F_OP(name, s) \ { \ do_f##name##s(); \ } \ F_OP(name, d) \ { \ do_f##name##d(); \ } \ F_OP(name, q) \ { \ do_f##name##q(); \ } #else #define F_HELPER(name) \ F_OP(name, s) \ { \ do_f##name##s(); \ } \ F_OP(name, d) \ { \ do_f##name##d(); \ } #endif F_OP(neg, s) { FT0 = float32_chs(FT1); } #ifdef TARGET_SPARC64 F_OP(neg, d) { DT0 = float64_chs(DT1); } #if defined(CONFIG_USER_ONLY) F_OP(neg, q) { QT0 = float128_chs(QT1); } #endif #endif /* Integer to float conversion. */ #ifdef USE_INT_TO_FLOAT_HELPERS F_HELPER(ito); #ifdef TARGET_SPARC64 F_HELPER(xto); #endif #else F_OP(ito, s) { FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status); } F_OP(ito, d) { DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status); } #if defined(CONFIG_USER_ONLY) F_OP(ito, q) { QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status); } #endif #ifdef TARGET_SPARC64 F_OP(xto, s) { FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status); } F_OP(xto, d) { DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status); } #if defined(CONFIG_USER_ONLY) F_OP(xto, q) { QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status); } #endif #endif #endif #undef F_HELPER /* floating point conversion */ void OPPROTO op_fdtos(void) { FT0 = float64_to_float32(DT1, &env->fp_status); } void OPPROTO op_fstod(void) { DT0 = float32_to_float64(FT1, &env->fp_status); } #if defined(CONFIG_USER_ONLY) void OPPROTO op_fqtos(void) { FT0 = float128_to_float32(QT1, &env->fp_status); } void OPPROTO op_fstoq(void) { QT0 = float32_to_float128(FT1, &env->fp_status); } void OPPROTO op_fqtod(void) { DT0 = float128_to_float64(QT1, &env->fp_status); } void OPPROTO op_fdtoq(void) { QT0 = float64_to_float128(DT1, &env->fp_status); } #endif /* Float to integer conversion. */ void OPPROTO op_fstoi(void) { *((int32_t *)&FT0) = float32_to_int32_round_to_zero(FT1, &env->fp_status); } void OPPROTO op_fdtoi(void) { *((int32_t *)&FT0) = float64_to_int32_round_to_zero(DT1, &env->fp_status); } #if defined(CONFIG_USER_ONLY) void OPPROTO op_fqtoi(void) { *((int32_t *)&FT0) = float128_to_int32_round_to_zero(QT1, &env->fp_status); } #endif #ifdef TARGET_SPARC64 void OPPROTO op_fstox(void) { *((int64_t *)&DT0) = float32_to_int64_round_to_zero(FT1, &env->fp_status); } void OPPROTO op_fdtox(void) { *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status); } #if defined(CONFIG_USER_ONLY) void OPPROTO op_fqtox(void) { *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status); } #endif void OPPROTO op_fmovs_cc(void) { if (T2) FT0 = FT1; } void OPPROTO op_fmovd_cc(void) { if (T2) DT0 = DT1; } #if defined(CONFIG_USER_ONLY) void OPPROTO op_fmovq_cc(void) { if (T2) QT0 = QT1; } #endif void OPPROTO op_flushw(void) { if (env->cansave != NWINDOWS - 2) { raise_exception(TT_SPILL | (env->otherwin != 0 ? (TT_WOTHER | ((env->wstate & 0x38) >> 1)): ((env->wstate & 0x7) << 2))); } } void OPPROTO op_saved(void) { env->cansave++; if (env->otherwin == 0) env->canrestore--; else env->otherwin--; FORCE_RET(); } void OPPROTO op_restored(void) { env->canrestore++; if (env->cleanwin < NWINDOWS - 1) env->cleanwin++; if (env->otherwin == 0) env->cansave--; else env->otherwin--; FORCE_RET(); } #endif #ifdef TARGET_SPARC64 // This function uses non-native bit order #define GET_FIELD(X, FROM, TO) \ ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1)) // This function uses the order in the manuals, i.e. bit 0 is 2^0 #define GET_FIELD_SP(X, FROM, TO) \ GET_FIELD(X, 63 - (TO), 63 - (FROM)) void OPPROTO op_array8() { T0 = (GET_FIELD_SP(T0, 60, 63) << (17 + 2 * T1)) | (GET_FIELD_SP(T0, 39, 39 + T1 - 1) << (17 + T1)) | (GET_FIELD_SP(T0, 17 + T1 - 1, 17) << 17) | (GET_FIELD_SP(T0, 56, 59) << 13) | (GET_FIELD_SP(T0, 35, 38) << 9) | (GET_FIELD_SP(T0, 13, 16) << 5) | (((T0 >> 55) & 1) << 4) | (GET_FIELD_SP(T0, 33, 34) << 2) | GET_FIELD_SP(T0, 11, 12); } void OPPROTO op_array16() { T0 = ((GET_FIELD_SP(T0, 60, 63) << (17 + 2 * T1)) | (GET_FIELD_SP(T0, 39, 39 + T1 - 1) << (17 + T1)) | (GET_FIELD_SP(T0, 17 + T1 - 1, 17) << 17) | (GET_FIELD_SP(T0, 56, 59) << 13) | (GET_FIELD_SP(T0, 35, 38) << 9) | (GET_FIELD_SP(T0, 13, 16) << 5) | (((T0 >> 55) & 1) << 4) | (GET_FIELD_SP(T0, 33, 34) << 2) | GET_FIELD_SP(T0, 11, 12)) << 1; } void OPPROTO op_array32() { T0 = ((GET_FIELD_SP(T0, 60, 63) << (17 + 2 * T1)) | (GET_FIELD_SP(T0, 39, 39 + T1 - 1) << (17 + T1)) | (GET_FIELD_SP(T0, 17 + T1 - 1, 17) << 17) | (GET_FIELD_SP(T0, 56, 59) << 13) | (GET_FIELD_SP(T0, 35, 38) << 9) | (GET_FIELD_SP(T0, 13, 16) << 5) | (((T0 >> 55) & 1) << 4) | (GET_FIELD_SP(T0, 33, 34) << 2) | GET_FIELD_SP(T0, 11, 12)) << 2; } void OPPROTO op_alignaddr() { uint64_t tmp; tmp = T0 + T1; env->gsr &= ~7ULL; env->gsr |= tmp & 7ULL; T0 = tmp & ~7ULL; } void OPPROTO op_faligndata() { uint64_t tmp; tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8); tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8); *((uint64_t *)&DT0) = tmp; } void OPPROTO op_movl_FT0_0(void) { *((uint32_t *)&FT0) = 0; } void OPPROTO op_movl_DT0_0(void) { *((uint64_t *)&DT0) = 0; } void OPPROTO op_movl_FT0_1(void) { *((uint32_t *)&FT0) = 0xffffffff; } void OPPROTO op_movl_DT0_1(void) { *((uint64_t *)&DT0) = 0xffffffffffffffffULL; } void OPPROTO op_fnot(void) { *(uint64_t *)&DT0 = ~*(uint64_t *)&DT1; } void OPPROTO op_fnots(void) { *(uint32_t *)&FT0 = ~*(uint32_t *)&FT1; } void OPPROTO op_fnor(void) { *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 | *(uint64_t *)&DT1); } void OPPROTO op_fnors(void) { *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 | *(uint32_t *)&FT1); } void OPPROTO op_for(void) { *(uint64_t *)&DT0 |= *(uint64_t *)&DT1; } void OPPROTO op_fors(void) { *(uint32_t *)&FT0 |= *(uint32_t *)&FT1; } void OPPROTO op_fxor(void) { *(uint64_t *)&DT0 ^= *(uint64_t *)&DT1; } void OPPROTO op_fxors(void) { *(uint32_t *)&FT0 ^= *(uint32_t *)&FT1; } void OPPROTO op_fand(void) { *(uint64_t *)&DT0 &= *(uint64_t *)&DT1; } void OPPROTO op_fands(void) { *(uint32_t *)&FT0 &= *(uint32_t *)&FT1; } void OPPROTO op_fornot(void) { *(uint64_t *)&DT0 = *(uint64_t *)&DT0 | ~*(uint64_t *)&DT1; } void OPPROTO op_fornots(void) { *(uint32_t *)&FT0 = *(uint32_t *)&FT0 | ~*(uint32_t *)&FT1; } void OPPROTO op_fandnot(void) { *(uint64_t *)&DT0 = *(uint64_t *)&DT0 & ~*(uint64_t *)&DT1; } void OPPROTO op_fandnots(void) { *(uint32_t *)&FT0 = *(uint32_t *)&FT0 & ~*(uint32_t *)&FT1; } void OPPROTO op_fnand(void) { *(uint64_t *)&DT0 = ~(*(uint64_t *)&DT0 & *(uint64_t *)&DT1); } void OPPROTO op_fnands(void) { *(uint32_t *)&FT0 = ~(*(uint32_t *)&FT0 & *(uint32_t *)&FT1); } void OPPROTO op_fxnor(void) { *(uint64_t *)&DT0 ^= ~*(uint64_t *)&DT1; } void OPPROTO op_fxnors(void) { *(uint32_t *)&FT0 ^= ~*(uint32_t *)&FT1; } #ifdef WORDS_BIGENDIAN #define VIS_B64(n) b[7 - (n)] #define VIS_W64(n) w[3 - (n)] #define VIS_SW64(n) sw[3 - (n)] #define VIS_L64(n) l[1 - (n)] #define VIS_B32(n) b[3 - (n)] #define VIS_W32(n) w[1 - (n)] #else #define VIS_B64(n) b[n] #define VIS_W64(n) w[n] #define VIS_SW64(n) sw[n] #define VIS_L64(n) l[n] #define VIS_B32(n) b[n] #define VIS_W32(n) w[n] #endif typedef union { uint8_t b[8]; uint16_t w[4]; int16_t sw[4]; uint32_t l[2]; float64 d; } vis64; typedef union { uint8_t b[4]; uint16_t w[2]; uint32_t l; float32 f; } vis32; void OPPROTO op_fpmerge(void) { vis64 s, d; s.d = DT0; d.d = DT1; // Reverse calculation order to handle overlap d.VIS_B64(7) = s.VIS_B64(3); d.VIS_B64(6) = d.VIS_B64(3); d.VIS_B64(5) = s.VIS_B64(2); d.VIS_B64(4) = d.VIS_B64(2); d.VIS_B64(3) = s.VIS_B64(1); d.VIS_B64(2) = d.VIS_B64(1); d.VIS_B64(1) = s.VIS_B64(0); //d.VIS_B64(0) = d.VIS_B64(0); DT0 = d.d; } void OPPROTO op_fmul8x16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void OPPROTO op_fmul8x16al(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void OPPROTO op_fmul8x16au(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void OPPROTO op_fmul8sux16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void OPPROTO op_fmul8ulx16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_W64(r) = tmp >> 8; PMUL(0); PMUL(1); PMUL(2); PMUL(3); #undef PMUL DT0 = d.d; } void OPPROTO op_fmuld8sux16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_L64(r) = tmp; // Reverse calculation order to handle overlap PMUL(1); PMUL(0); #undef PMUL DT0 = d.d; } void OPPROTO op_fmuld8ulx16(void) { vis64 s, d; uint32_t tmp; s.d = DT0; d.d = DT1; #define PMUL(r) \ tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ if ((tmp & 0xff) > 0x7f) \ tmp += 0x100; \ d.VIS_L64(r) = tmp; // Reverse calculation order to handle overlap PMUL(1); PMUL(0); #undef PMUL DT0 = d.d; } void OPPROTO op_fexpand(void) { vis32 s; vis64 d; s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff); d.d = DT1; d.VIS_L64(0) = s.VIS_W32(0) << 4; d.VIS_L64(1) = s.VIS_W32(1) << 4; d.VIS_L64(2) = s.VIS_W32(2) << 4; d.VIS_L64(3) = s.VIS_W32(3) << 4; DT0 = d.d; } #define VIS_OP(name, F) \ void OPPROTO name##16(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \ d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \ d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \ d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \ \ DT0 = d.d; \ } \ \ void OPPROTO name##16s(void) \ { \ vis32 s, d; \ \ s.f = FT0; \ d.f = FT1; \ \ d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \ d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \ \ FT0 = d.f; \ } \ \ void OPPROTO name##32(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \ d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \ \ DT0 = d.d; \ } \ \ void OPPROTO name##32s(void) \ { \ vis32 s, d; \ \ s.f = FT0; \ d.f = FT1; \ \ d.l = F(d.l, s.l); \ \ FT0 = d.f; \ } #define FADD(a, b) ((a) + (b)) #define FSUB(a, b) ((a) - (b)) VIS_OP(op_fpadd, FADD) VIS_OP(op_fpsub, FSUB) #define VIS_CMPOP(name, F) \ void OPPROTO name##16(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \ d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \ d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \ d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \ \ DT0 = d.d; \ } \ \ void OPPROTO name##32(void) \ { \ vis64 s, d; \ \ s.d = DT0; \ d.d = DT1; \ \ d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \ d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \ \ DT0 = d.d; \ } #define FCMPGT(a, b) ((a) > (b)) #define FCMPEQ(a, b) ((a) == (b)) #define FCMPLE(a, b) ((a) <= (b)) #define FCMPNE(a, b) ((a) != (b)) VIS_CMPOP(op_fcmpgt, FCMPGT) VIS_CMPOP(op_fcmpeq, FCMPEQ) VIS_CMPOP(op_fcmple, FCMPLE) VIS_CMPOP(op_fcmpne, FCMPNE) #endif #define CHECK_ALIGN_OP(align) \ void OPPROTO op_check_align_T0_ ## align (void) \ { \ if (T0 & align) \ raise_exception(TT_UNALIGNED); \ FORCE_RET(); \ } CHECK_ALIGN_OP(1) CHECK_ALIGN_OP(3) CHECK_ALIGN_OP(7)