diff --git a/linux-user/main.c b/linux-user/main.c index 0d36978ad6818649ffe7b1b8634c81fa06f133a1..17cdfa6d997f6af233a47529261c2d0c749b257e 100644 --- a/linux-user/main.c +++ b/linux-user/main.c @@ -1461,6 +1461,11 @@ void cpu_loop(CPUPPCState *env) ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], env->gpr[5], env->gpr[6], env->gpr[7], env->gpr[8]); + if (ret == (uint32_t)(-TARGET_QEMU_ESIGRETURN)) { + /* Returning from a successful sigreturn syscall. + Avoid corrupting register state. */ + break; + } if (ret > (uint32_t)(-515)) { env->crf[0] |= 0x1; ret = -ret; diff --git a/linux-user/ppc/syscall.h b/linux-user/ppc/syscall.h index a21d61b1d5bed8ed1b9c4d118db7758b8c4c1cfa..d789911e8a55f622147e7545e87f2c21d0c8354e 100644 --- a/linux-user/ppc/syscall.h +++ b/linux-user/ppc/syscall.h @@ -51,6 +51,9 @@ struct target_revectored_struct { abi_ulong __map[8]; /* 256 bits */ }; +/* Nasty hack: define a fake errno value for use by sigreturn. */ +#define TARGET_QEMU_ESIGRETURN 255 + /* * flags masks */ diff --git a/linux-user/signal.c b/linux-user/signal.c index 742d52a2acda2df3d3e274248eea79a44e2d3086..9c9c7eb63d306af33287acfc6f40c7b065377b1a 100644 --- a/linux-user/signal.c +++ b/linux-user/signal.c @@ -3182,6 +3182,602 @@ long do_rt_sigreturn(CPUState *env) return -TARGET_ENOSYS; } +#elif defined(TARGET_PPC) && !defined(TARGET_PPC64) + +/* FIXME: Many of the structures are defined for both PPC and PPC64, but + the signal handling is different enough that we haven't implemented + support for PPC64 yet. Hence the restriction above. + + There are various #if'd blocks for code for TARGET_PPC64. These + blocks should go away so that we can successfully run 32-bit and + 64-bit binaries on a QEMU configured for PPC64. */ + +/* Size of dummy stack frame allocated when calling signal handler. + See arch/powerpc/include/asm/ptrace.h. */ +#if defined(TARGET_PPC64) +#define SIGNAL_FRAMESIZE 128 +#else +#define SIGNAL_FRAMESIZE 64 +#endif + +/* See arch/powerpc/include/asm/sigcontext.h. */ +struct target_sigcontext { + target_ulong _unused[4]; + int32_t signal; +#if defined(TARGET_PPC64) + int32_t pad0; +#endif + target_ulong handler; + target_ulong oldmask; + target_ulong regs; /* struct pt_regs __user * */ + /* TODO: PPC64 includes extra bits here. */ +}; + +/* Indices for target_mcontext.mc_gregs, below. + See arch/powerpc/include/asm/ptrace.h for details. */ +enum { + TARGET_PT_R0 = 0, + TARGET_PT_R1 = 1, + TARGET_PT_R2 = 2, + TARGET_PT_R3 = 3, + TARGET_PT_R4 = 4, + TARGET_PT_R5 = 5, + TARGET_PT_R6 = 6, + TARGET_PT_R7 = 7, + TARGET_PT_R8 = 8, + TARGET_PT_R9 = 9, + TARGET_PT_R10 = 10, + TARGET_PT_R11 = 11, + TARGET_PT_R12 = 12, + TARGET_PT_R13 = 13, + TARGET_PT_R14 = 14, + TARGET_PT_R15 = 15, + TARGET_PT_R16 = 16, + TARGET_PT_R17 = 17, + TARGET_PT_R18 = 18, + TARGET_PT_R19 = 19, + TARGET_PT_R20 = 20, + TARGET_PT_R21 = 21, + TARGET_PT_R22 = 22, + TARGET_PT_R23 = 23, + TARGET_PT_R24 = 24, + TARGET_PT_R25 = 25, + TARGET_PT_R26 = 26, + TARGET_PT_R27 = 27, + TARGET_PT_R28 = 28, + TARGET_PT_R29 = 29, + TARGET_PT_R30 = 30, + TARGET_PT_R31 = 31, + TARGET_PT_NIP = 32, + TARGET_PT_MSR = 33, + TARGET_PT_ORIG_R3 = 34, + TARGET_PT_CTR = 35, + TARGET_PT_LNK = 36, + TARGET_PT_XER = 37, + TARGET_PT_CCR = 38, + /* Yes, there are two registers with #39. One is 64-bit only. */ + TARGET_PT_MQ = 39, + TARGET_PT_SOFTE = 39, + TARGET_PT_TRAP = 40, + TARGET_PT_DAR = 41, + TARGET_PT_DSISR = 42, + TARGET_PT_RESULT = 43, + TARGET_PT_REGS_COUNT = 44 +}; + +/* See arch/powerpc/include/asm/ucontext.h. Only used for 32-bit PPC; + on 64-bit PPC, sigcontext and mcontext are one and the same. */ +struct target_mcontext { + target_ulong mc_gregs[48]; + /* Includes fpscr. */ + uint64_t mc_fregs[33]; + target_ulong mc_pad[2]; + /* We need to handle Altivec and SPE at the same time, which no + kernel needs to do. Fortunately, the kernel defines this bit to + be Altivec-register-large all the time, rather than trying to + twiddle it based on the specific platform. */ + union { + /* SPE vector registers. One extra for SPEFSCR. */ + uint32_t spe[33]; + /* Altivec vector registers. The packing of VSCR and VRSAVE + varies depending on whether we're PPC64 or not: PPC64 splits + them apart; PPC32 stuffs them together. */ +#if defined(TARGET_PPC64) +#define NVRREG 34 +#else +#define NVRREG 33 +#endif + ppc_avr_t altivec[NVRREG]; +#undef NVRREG + } mc_vregs __attribute__((__aligned__(16))); +}; + +struct target_ucontext { + target_ulong uc_flags; + target_ulong uc_link; /* struct ucontext __user * */ + struct target_sigaltstack uc_stack; +#if !defined(TARGET_PPC64) + int32_t uc_pad[7]; + target_ulong uc_regs; /* struct mcontext __user * + points to uc_mcontext field */ +#endif + target_sigset_t uc_sigmask; +#if defined(TARGET_PPC64) + target_sigset_t unused[15]; /* Allow for uc_sigmask growth */ + struct target_sigcontext uc_mcontext; +#else + int32_t uc_maskext[30]; + int32_t uc_pad2[3]; + struct target_mcontext uc_mcontext; +#endif +}; + +/* See arch/powerpc/kernel/signal_32.c. */ +struct target_sigframe { + struct target_sigcontext sctx; + struct target_mcontext mctx; + int32_t abigap[56]; +}; + +struct target_rt_sigframe { + struct target_siginfo info; + struct target_ucontext uc; + int32_t abigap[56]; +}; + +/* We use the mc_pad field for the signal return trampoline. */ +#define tramp mc_pad + +/* See arch/powerpc/kernel/signal.c. */ +static target_ulong get_sigframe(struct target_sigaction *ka, + CPUState *env, + int frame_size) +{ + target_ulong oldsp, newsp; + + oldsp = env->gpr[1]; + + if ((ka->sa_flags & TARGET_SA_ONSTACK) && + (sas_ss_flags(oldsp))) { + oldsp = (target_sigaltstack_used.ss_sp + + target_sigaltstack_used.ss_size); + } + + newsp = (oldsp - frame_size) & ~0xFUL; + + return newsp; +} + +static int save_user_regs(CPUState *env, struct target_mcontext *frame, + int sigret) +{ + target_ulong msr = env->msr; + int i; + target_ulong ccr = 0; + + /* In general, the kernel attempts to be intelligent about what it + needs to save for Altivec/FP/SPE registers. We don't care that + much, so we just go ahead and save everything. */ + + /* Save general registers. */ + for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { + if (__put_user(env->gpr[i], &frame->mc_gregs[i])) { + return 1; + } + } + if (__put_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]) + || __put_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]) + || __put_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]) + || __put_user(env->xer, &frame->mc_gregs[TARGET_PT_XER])) + return 1; + + for (i = 0; i < ARRAY_SIZE(env->crf); i++) { + ccr |= env->crf[i] << (32 - ((i + 1) * 4)); + } + if (__put_user(ccr, &frame->mc_gregs[TARGET_PT_CCR])) + return 1; + + /* Save Altivec registers if necessary. */ + if (env->insns_flags & PPC_ALTIVEC) { + for (i = 0; i < ARRAY_SIZE(env->avr); i++) { + ppc_avr_t *avr = &env->avr[i]; + ppc_avr_t *vreg = &frame->mc_vregs.altivec[i]; + + if (__put_user(avr->u64[0], &vreg->u64[0]) || + __put_user(avr->u64[1], &vreg->u64[1])) { + return 1; + } + } + /* Set MSR_VR in the saved MSR value to indicate that + frame->mc_vregs contains valid data. */ + msr |= MSR_VR; + if (__put_user((uint32_t)env->spr[SPR_VRSAVE], + &frame->mc_vregs.altivec[32].u32[3])) + return 1; + } + + /* Save floating point registers. */ + if (env->insns_flags & PPC_FLOAT) { + for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { + if (__put_user(env->fpr[i], &frame->mc_fregs[i])) { + return 1; + } + } + if (__put_user((uint64_t) env->fpscr, &frame->mc_fregs[32])) + return 1; + } + + /* Save SPE registers. The kernel only saves the high half. */ + if (env->insns_flags & PPC_SPE) { +#if defined(TARGET_PPC64) + for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { + if (__put_user(env->gpr[i] >> 32, &frame->mc_vregs.spe[i])) { + return 1; + } + } +#else + for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { + if (__put_user(env->gprh[i], &frame->mc_vregs.spe[i])) { + return 1; + } + } +#endif + /* Set MSR_SPE in the saved MSR value to indicate that + frame->mc_vregs contains valid data. */ + msr |= MSR_SPE; + if (__put_user(env->spe_fscr, &frame->mc_vregs.spe[32])) + return 1; + } + + /* Store MSR. */ + if (__put_user(msr, &frame->mc_gregs[TARGET_PT_MSR])) + return 1; + + /* Set up the sigreturn trampoline: li r0,sigret; sc. */ + if (sigret) { + if (__put_user(0x38000000UL | sigret, &frame->tramp[0]) || + __put_user(0x44000002UL, &frame->tramp[1])) { + return 1; + } + } + + return 0; +} + +static int restore_user_regs(CPUState *env, + struct target_mcontext *frame, int sig) +{ + target_ulong save_r2 = 0; + target_ulong msr; + target_ulong ccr; + + int i; + + if (!sig) { + save_r2 = env->gpr[2]; + } + + /* Restore general registers. */ + for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { + if (__get_user(env->gpr[i], &frame->mc_gregs[i])) { + return 1; + } + } + if (__get_user(env->nip, &frame->mc_gregs[TARGET_PT_NIP]) + || __get_user(env->ctr, &frame->mc_gregs[TARGET_PT_CTR]) + || __get_user(env->lr, &frame->mc_gregs[TARGET_PT_LNK]) + || __get_user(env->xer, &frame->mc_gregs[TARGET_PT_XER])) + return 1; + if (__get_user(ccr, &frame->mc_gregs[TARGET_PT_CCR])) + return 1; + + for (i = 0; i < ARRAY_SIZE(env->crf); i++) { + env->crf[i] = (ccr >> (32 - ((i + 1) * 4))) & 0xf; + } + + if (!sig) { + env->gpr[2] = save_r2; + } + /* Restore MSR. */ + if (__get_user(msr, &frame->mc_gregs[TARGET_PT_MSR])) + return 1; + + /* If doing signal return, restore the previous little-endian mode. */ + if (sig) + env->msr = (env->msr & ~MSR_LE) | (msr & MSR_LE); + + /* Restore Altivec registers if necessary. */ + if (env->insns_flags & PPC_ALTIVEC) { + for (i = 0; i < ARRAY_SIZE(env->avr); i++) { + ppc_avr_t *avr = &env->avr[i]; + ppc_avr_t *vreg = &frame->mc_vregs.altivec[i]; + + if (__get_user(avr->u64[0], &vreg->u64[0]) || + __get_user(avr->u64[1], &vreg->u64[1])) { + return 1; + } + } + /* Set MSR_VEC in the saved MSR value to indicate that + frame->mc_vregs contains valid data. */ + if (__get_user(env->spr[SPR_VRSAVE], + (target_ulong *)(&frame->mc_vregs.altivec[32].u32[3]))) + return 1; + } + + /* Restore floating point registers. */ + if (env->insns_flags & PPC_FLOAT) { + uint64_t fpscr; + for (i = 0; i < ARRAY_SIZE(env->fpr); i++) { + if (__get_user(env->fpr[i], &frame->mc_fregs[i])) { + return 1; + } + } + if (__get_user(fpscr, &frame->mc_fregs[32])) + return 1; + env->fpscr = (uint32_t) fpscr; + } + + /* Save SPE registers. The kernel only saves the high half. */ + if (env->insns_flags & PPC_SPE) { +#if defined(TARGET_PPC64) + for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { + uint32_t hi; + + if (__get_user(hi, &frame->mc_vregs.spe[i])) { + return 1; + } + env->gpr[i] = ((uint64_t)hi << 32) | ((uint32_t) env->gpr[i]); + } +#else + for (i = 0; i < ARRAY_SIZE(env->gprh); i++) { + if (__get_user(env->gprh[i], &frame->mc_vregs.spe[i])) { + return 1; + } + } +#endif + if (__get_user(env->spe_fscr, &frame->mc_vregs.spe[32])) + return 1; + } + + return 0; +} + +static void setup_frame(int sig, struct target_sigaction *ka, + target_sigset_t *set, CPUState *env) +{ + struct target_sigframe *frame; + struct target_sigcontext *sc; + target_ulong frame_addr, newsp; + int err = 0; + int signal; + + frame_addr = get_sigframe(ka, env, sizeof(*frame)); + if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 1)) + goto sigsegv; + sc = &frame->sctx; + + signal = current_exec_domain_sig(sig); + + err |= __put_user(h2g(ka->_sa_handler), &sc->handler); + err |= __put_user(set->sig[0], &sc->oldmask); +#if defined(TARGET_PPC64) + err |= __put_user(set->sig[0] >> 32, &sc->_unused[3]); +#else + err |= __put_user(set->sig[1], &sc->_unused[3]); +#endif + err |= __put_user(h2g(&frame->mctx), &sc->regs); + err |= __put_user(sig, &sc->signal); + + /* Save user regs. */ + err |= save_user_regs(env, &frame->mctx, TARGET_NR_sigreturn); + + /* The kernel checks for the presence of a VDSO here. We don't + emulate a vdso, so use a sigreturn system call. */ + env->lr = (target_ulong) h2g(frame->mctx.tramp); + + /* Turn off all fp exceptions. */ + env->fpscr = 0; + + /* Create a stack frame for the caller of the handler. */ + newsp = frame_addr - SIGNAL_FRAMESIZE; + err |= __put_user(env->gpr[1], (target_ulong *)(uintptr_t) newsp); + + if (err) + goto sigsegv; + + /* Set up registers for signal handler. */ + env->gpr[1] = newsp; + env->gpr[3] = signal; + env->gpr[4] = (target_ulong) h2g(sc); + env->nip = (target_ulong) ka->_sa_handler; + /* Signal handlers are entered in big-endian mode. */ + env->msr &= ~MSR_LE; + + unlock_user_struct(frame, frame_addr, 1); + return; + +sigsegv: + unlock_user_struct(frame, frame_addr, 1); + if (logfile) + fprintf (logfile, "segfaulting from setup_frame\n"); + force_sig(SIGSEGV); +} + +static void setup_rt_frame(int sig, struct target_sigaction *ka, + target_siginfo_t *info, + target_sigset_t *set, CPUState *env) +{ + struct target_rt_sigframe *rt_sf; + struct target_mcontext *frame; + target_ulong rt_sf_addr, newsp = 0; + int i, err = 0; + int signal; + + rt_sf_addr = get_sigframe(ka, env, sizeof(*rt_sf)); + if (!lock_user_struct(VERIFY_WRITE, rt_sf, rt_sf_addr, 1)) + goto sigsegv; + + signal = current_exec_domain_sig(sig); + + err |= copy_siginfo_to_user(&rt_sf->info, info); + + err |= __put_user(0, &rt_sf->uc.uc_flags); + err |= __put_user(0, &rt_sf->uc.uc_link); + err |= __put_user((target_ulong)target_sigaltstack_used.ss_sp, + &rt_sf->uc.uc_stack.ss_sp); + err |= __put_user(sas_ss_flags(env->gpr[1]), + &rt_sf->uc.uc_stack.ss_flags); + err |= __put_user(target_sigaltstack_used.ss_size, + &rt_sf->uc.uc_stack.ss_size); + err |= __put_user(h2g (&rt_sf->uc.uc_mcontext), + &rt_sf->uc.uc_regs); + for(i = 0; i < TARGET_NSIG_WORDS; i++) { + err |= __put_user(set->sig[i], &rt_sf->uc.uc_sigmask.sig[i]); + } + + frame = &rt_sf->uc.uc_mcontext; + err |= save_user_regs(env, frame, TARGET_NR_rt_sigreturn); + + /* The kernel checks for the presence of a VDSO here. We don't + emulate a vdso, so use a sigreturn system call. */ + env->lr = (target_ulong) h2g(frame->tramp); + + /* Turn off all fp exceptions. */ + env->fpscr = 0; + + /* Create a stack frame for the caller of the handler. */ + newsp = rt_sf_addr - (SIGNAL_FRAMESIZE + 16); + err |= __put_user(env->gpr[1], (target_ulong *)(uintptr_t) newsp); + + if (err) + goto sigsegv; + + /* Set up registers for signal handler. */ + env->gpr[1] = newsp; + env->gpr[3] = (target_ulong) signal; + env->gpr[4] = (target_ulong) h2g(&rt_sf->info); + env->gpr[5] = (target_ulong) h2g(&rt_sf->uc); + env->gpr[6] = (target_ulong) h2g(rt_sf); + env->nip = (target_ulong) ka->_sa_handler; + /* Signal handlers are entered in big-endian mode. */ + env->msr &= ~MSR_LE; + + unlock_user_struct(rt_sf, rt_sf_addr, 1); + return; + +sigsegv: + unlock_user_struct(rt_sf, rt_sf_addr, 1); + if (logfile) + fprintf (logfile, "segfaulting from setup_rt_frame\n"); + force_sig(SIGSEGV); + +} + +long do_sigreturn(CPUState *env) +{ + struct target_sigcontext *sc = NULL; + struct target_mcontext *sr = NULL; + target_ulong sr_addr, sc_addr; + sigset_t blocked; + target_sigset_t set; + + sc_addr = env->gpr[1] + SIGNAL_FRAMESIZE; + if (!lock_user_struct(VERIFY_READ, sc, sc_addr, 1)) + goto sigsegv; + +#if defined(TARGET_PPC64) + set.sig[0] = sc->oldmask + ((long)(sc->_unused[3]) << 32); +#else + if(__get_user(set.sig[0], &sc->oldmask) || + __get_user(set.sig[1], &sc->_unused[3])) + goto sigsegv; +#endif + target_to_host_sigset_internal(&blocked, &set); + sigprocmask(SIG_SETMASK, &blocked, NULL); + + if (__get_user(sr_addr, &sc->regs)) + goto sigsegv; + if (!lock_user_struct(VERIFY_READ, sr, sr_addr, 1)) + goto sigsegv; + if (restore_user_regs(env, sr, 1)) + goto sigsegv; + + unlock_user_struct(sr, sr_addr, 1); + unlock_user_struct(sc, sc_addr, 1); + return -TARGET_QEMU_ESIGRETURN; + +sigsegv: + unlock_user_struct(sr, sr_addr, 1); + unlock_user_struct(sc, sc_addr, 1); + if (logfile) + fprintf (logfile, "segfaulting from do_sigreturn\n"); + force_sig(SIGSEGV); + return 0; +} + +/* See arch/powerpc/kernel/signal_32.c. */ +static int do_setcontext(struct target_ucontext *ucp, CPUState *env, int sig) +{ + struct target_mcontext *mcp; + target_ulong mcp_addr; + sigset_t blocked; + target_sigset_t set; + + if (copy_from_user(&set, h2g(ucp) + offsetof(struct target_ucontext, uc_sigmask), + sizeof (set))) + return 1; + +#if defined(TARGET_PPC64) + fprintf (stderr, "do_setcontext: not implemented\n"); + return 0; +#else + if (__get_user(mcp_addr, &ucp->uc_regs)) + return 1; + + if (!lock_user_struct(VERIFY_READ, mcp, mcp_addr, 1)) + return 1; + + target_to_host_sigset_internal(&blocked, &set); + sigprocmask(SIG_SETMASK, &blocked, NULL); + if (restore_user_regs(env, mcp, sig)) + goto sigsegv; + + unlock_user_struct(mcp, mcp_addr, 1); + return 0; + +sigsegv: + unlock_user_struct(mcp, mcp_addr, 1); + return 1; +#endif +} + +long do_rt_sigreturn(CPUState *env) +{ + struct target_rt_sigframe *rt_sf = NULL; + target_ulong rt_sf_addr; + + rt_sf_addr = env->gpr[1] + SIGNAL_FRAMESIZE + 16; + if (!lock_user_struct(VERIFY_READ, rt_sf, rt_sf_addr, 1)) + goto sigsegv; + + if (do_setcontext(&rt_sf->uc, env, 1)) + goto sigsegv; + + do_sigaltstack(rt_sf_addr + + offsetof(struct target_rt_sigframe, uc.uc_stack), + 0, env->gpr[1]); + + unlock_user_struct(rt_sf, rt_sf_addr, 1); + return -TARGET_QEMU_ESIGRETURN; + +sigsegv: + unlock_user_struct(rt_sf, rt_sf_addr, 1); + if (logfile) + fprintf (logfile, "segfaulting from do_rt_sigreturn\n"); + force_sig(SIGSEGV); + return 0; +} + #else static void setup_frame(int sig, struct target_sigaction *ka,